1
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
2
|
Duan Y, Rahmanudin A, Chen S, Kim N, Mohammadi M, Tybrandt K, Jonsson MP. Tuneable Anisotropic Plasmonics with Shape-Symmetric Conducting Polymer Nanoantennas. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303949. [PMID: 37528506 DOI: 10.1002/adma.202303949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/18/2023] [Indexed: 08/03/2023]
Abstract
A wide range of nanophotonic applications rely on polarization-dependent plasmonic resonances, which usually requires metallic nanostructures that have anisotropic shape. This work demonstrates polarization-dependent plasmonic resonances instead by breaking symmetry via material permittivity. The study shows that molecular alignment of a conducting polymer can lead to a material with polarization-dependent plasma frequency and corresponding in-plane hyperbolic permittivity region. This result is not expected based only on anisotropic charge mobility but implies that also the effective mass of the charge carriers becomes anisotropic upon polymer alignment. This unique feature is used to demonstrate circularly symmetric nanoantennas that provide different plasmonic resonances parallel and perpendicular to the alignment direction. The nanoantennas are further tuneable via the redox state of the polymer. Importantly, polymer alignment could blueshift the plasma wavelength and resonances by several hundreds of nanometers, forming a novel approach toward reaching the ultimate goal of redox-tunable conducting polymer nanoantennas for visible light.
Collapse
Affiliation(s)
- Yulong Duan
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Aiman Rahmanudin
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Shangzhi Chen
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Nara Kim
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| |
Collapse
|
3
|
Li S, Ai R, Chui KK, Fang Y, Lai Y, Zhuo X, Shao L, Wang J, Lin HQ. Routing the Exciton Emissions of WS 2 Monolayer with the High-Order Plasmon Modes of Ag Nanorods. NANO LETTERS 2023; 23:4183-4190. [PMID: 37158482 PMCID: PMC10214448 DOI: 10.1021/acs.nanolett.3c00054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Locally routing the exciton emissions in two-dimensional (2D) transition-metal dichalcogenides along different directions at the nanophotonic interface is of great interest in exploiting the promising 2D excitonic systems for functional nano-optical components. However, such control has remained elusive. Herein we report on a facile plasmonic approach for electrically controlled spatial modulation of the exciton emissions in a WS2 monolayer. The emission routing is enabled by the resonance coupling between the WS2 excitons and the multipole plasmon modes in individual silver nanorods placed on a WS2 monolayer. Different from prior demonstrations, the routing effect can be modulated by the doping level of the WS2 monolayer, enabling electrical control. Our work takes advantage of the high-quality plasmon modes supported by simple rod-shaped metal nanocrystals for the angularly resolved manipulation of 2D exciton emissions. Active control is achieved, which offers great opportunities for the development of nanoscale light sources and nanophotonic devices.
Collapse
Affiliation(s)
- Shasha Li
- Beijing
Computational Science Research Center, Beijing 100193, People’s Republic of China
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Ruoqi Ai
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Ka Kit Chui
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Yini Fang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Yunhe Lai
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Xiaolu Zhuo
- School
of Science and Engineering, The Chinese
University of Hong Kong (Shenzhen), Shenzhen 518172, People’s Republic of China
| | - Lei Shao
- State
Key Laboratory of Optoelectronic Materials and Technologies, Guangdong
Province Key Laboratory of Display Material and Technology, School
of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People’s
Republic of China
| | - Jianfang Wang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Hai-Qing Lin
- Beijing
Computational Science Research Center, Beijing 100193, People’s Republic of China
| |
Collapse
|
4
|
Mi X, Chen H, Li J, Qiao H. Plasmonic Au-Cu nanostructures: Synthesis and applications. Front Chem 2023; 11:1153936. [PMID: 36970414 PMCID: PMC10030581 DOI: 10.3389/fchem.2023.1153936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Plasmonic Au-Cu nanostructures composed of Au and Cu metals, have demonstrated advantages over their monolithic counterparts, which have recently attracted considerable attention. Au-Cu nanostructures are currently used in various research fields, including catalysis, light harvesting, optoelectronics, and biotechnologies. Herein, recent developments in Au-Cu nanostructures are summarized. The development of three types of Au-Cu nanostructures is reviewed, including alloys, core-shell structures, and Janus structures. Afterwards, we discuss the peculiar plasmonic properties of Au-Cu nanostructures as well as their potential applications. The excellent properties of Au-Cu nanostructures enable applications in catalysis, plasmon-enhanced spectroscopy, photothermal conversion and therapy. Lastly, we present our thoughts on the current status and future prospects of the Au-Cu nanostructures research field. This review is intended to contribute to the development of fabrication strategies and applications relating to Au-Cu nanostructures.
Collapse
Affiliation(s)
- Xiaohu Mi
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xixian New Area, China
| | - Huan Chen
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China
| | - Jinping Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China
- *Correspondence: Jinping Li, ; Haifa Qiao,
| | - Haifa Qiao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xixian New Area, China
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, China
- *Correspondence: Jinping Li, ; Haifa Qiao,
| |
Collapse
|
5
|
Kishen S, Tapar J, Emani NK. Tunable directional emission from electrically driven nano-strip metal-insulator-metal tunnel junctions. NANOSCALE ADVANCES 2022; 4:3609-3616. [PMID: 36134358 PMCID: PMC9400511 DOI: 10.1039/d2na00149g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/30/2022] [Indexed: 06/16/2023]
Abstract
Electrically driven nanoantennas for on-chip generation and manipulation of light have attracted significant attention in recent times. Metal-insulator-metal (MIM) tunnel junctions have been extensively used to electrically excite surface plasmons and photons via inelastic electron tunneling. However, the dynamic switching of light from MIM junctions into spatially separate channels has not been shown. Here, we numerically demonstrate switchable, highly directional light emission from electrically driven nano-strip Ag-SiO2-Ag tunnel junctions. The top electrode of our Ag-SiO2-Ag stack is divided into 16 nano-strips, with two of the tunnel junctions at the centre (S L and S R) acting as sources. Using full-wave electromagnetic simulations, we show that when S L is excited, the emission is highly directional with an angle of emission of -30° and an angular spread of ∼11°. When the excitation is switched to S R, the emission is redirected to an angle of 30° with an identical angular spread. A directivity of 29.4 is achieved in the forward direction, with a forward-to-backward ratio of 12. We also demonstrate wavelength-selective directional switching by changing the width, and thereby the resonance wavelength, of the sources. The emission can be tuned by varying the periodicity of the structure, paving the way for electrically driven, reconfigurable light sources.
Collapse
Affiliation(s)
- Saurabh Kishen
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad 502285 India
| | - Jinal Tapar
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad 502285 India
| | - Naresh Kumar Emani
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad 502285 India
| |
Collapse
|
6
|
Ding S, Zhang J, Liu C, Li N, Zhang S, Wang Z, Xi M. Investigation of Plasmonic-Enhanced Solar Photothermal Effect of Au NR@PVDF Micro-/Nanofilms. ACS OMEGA 2022; 7:20750-20760. [PMID: 35755366 PMCID: PMC9219058 DOI: 10.1021/acsomega.2c01146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Gold nanospheres (Au NSs) and gold nanorods (Au NRs) are traditional noble metal plasmonic nanomaterials. Particularly, Au NRs with tunable longitudinal plasmon resonance from the visible to the near-infrared (NIR) range were suitable for highly efficient photothermal applications due to the extended light-receiving range. In this work, we synthesized Au NRs and Au NSs of similar volumes and subsequently developed them into Au NR/poly(vinylidene fluoride) (PVDF) and Au NS/PVDF nanofilms, both of which exhibited excellent solar photothermal performance evaluated by solar photothermal experiments. We found that the Au NR/PVDF nanofilm showed a higher solar photothermal performance than the Au NS/PVDF nanofilm. Through detailed analysis, such as morphological characterization, optical measurement, and finite element method (FEM) modeling, we found that the plasmonic coupling effects inside the aggregated Au NR nanoclusters contributed to the spectral blue shifts and intensified the photothermal performance. As compared to Au NS/PVDF nanofilms, the Au NR/PVDF nanofilm exhibited a higher efficient light-to-heat conversion rate because of the extended light-receiving range and high absorbance, as a result of the strong plasmonic interactions inside nanoclusters, which was further validated by monochromatic laser photothermal experiments and FEM simulations. Our work proved that the Au NRs have huge potential for plasmonic solar photothermal applications and are envisioned for novel plasmonic applications.
Collapse
Affiliation(s)
- Shenyi Ding
- School
of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jixiang Zhang
- School
of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Cui Liu
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Nian Li
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Shudong Zhang
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhenyang Wang
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Min Xi
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- The
Key Laboratory Functional Molecular Solids Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
7
|
Zhuo X, Li S, Li N, Cheng X, Lai Y, Wang J. Mode-dependent energy exchange between near- and far-field through silicon-supported single silver nanorods. NANOSCALE 2022; 14:8362-8373. [PMID: 35635072 DOI: 10.1039/d2nr01402e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical antenna effects endow plasmonic nanoparticles with the capability to enhance and control various types of light-matter interaction. Most reported plasmonic systems can be regarded as single-channel nanoantennas, which rely only on a bright dipole plasmon mode for energy exchange between near- and far-field. Herein we demonstrate a dual-channel plasmonic system that can separate the excitation and emission processes into two energy exchange pathways mediated by the different plasmon modes, offering a higher degree of freedom for the manipulation of light-matter interaction. Our system, consisting of high-aspect-ratio Ag nanorods and Si substrates, can support a series of bright and dark plasmon modes with distinct near- and far-field properties and generate relatively intensive local field enhancement in the gap region. As a proof-of-principle, we take plasmon-enhanced fluorescence of dye molecules as an example to reveal the energy exchange mechanism in the dual-channel plasmonic system. Such a system is potentially also useful for manipulating other types of light-matter interaction. Our work represents a step toward the utilization of a broader class of plasmon resonance for the development of optical antennas and various on-chip nanophotonic components.
Collapse
Affiliation(s)
- Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Shasha Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Nannan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yunhe Lai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
8
|
Farheen H, Yan LY, Quiring V, Eigner C, Zentgraf T, Linden S, Förstner J, Myroshnychenko V. Broadband optical Ta 2O 5 antennas for directional emission of light. OPTICS EXPRESS 2022; 30:19288-19299. [PMID: 36221710 DOI: 10.1364/oe.455815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/09/2022] [Indexed: 06/16/2023]
Abstract
Highly directive antennas with the ability of shaping radiation patterns in desired directions are essential for efficient on-chip optical communication with reduced cross talk. In this paper, we design and optimize three distinct broadband traveling-wave tantalum pentoxide antennas exhibiting highly directional characteristics. Our antennas contain a director and reflector deposited on a glass substrate, which are excited by a dipole emitter placed in the feed gap between the two elements. Full-wave simulations in conjunction with global optimization provide structures with an enhanced linear directivity as high as 119 radiating in the substrate. The high directivity is a result of the interplay between two dominant TE modes and the leaky modes present in the antenna director. Furthermore, these low-loss dielectric antennas exhibit a near-unity radiation efficiency at the operational wavelength of 780 nm and maintain a broad bandwidth. Our numerical results are in good agreement with experimental measurements from the optimized antennas fabricated using a two-step electron-beam lithography, revealing the highly directive nature of our structures. We envision that our antenna designs can be conveniently adapted to other dielectric materials and prove instrumental for inter-chip optical communications and other on-chip applications.
Collapse
|
9
|
Dass M, Kuen L, Posnjak G, Burger S, Liedl T. Visible wavelength spectral tuning of absorption and circular dichroism of DNA-assembled Au/Ag core-shell nanorod assemblies. MATERIALS ADVANCES 2022; 3:3438-3445. [PMID: 35665317 PMCID: PMC9017759 DOI: 10.1039/d1ma01211h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
Plasmonic nanoparticles have unique properties which can be harnessed to manipulate light at the nanoscale. With recent advances in synthesis protocols that increase their stability, gold-silver core-shell nanoparticles have become suitable building blocks for plasmonic nanostructures to expand the range of attainable optical properties. Here we tune the plasmonic response of gold-silver core-shell nanorods over the visible spectrum by varying the thickness of the silver shell. Through the chiral arrangement of the nanorods with the help of various DNA origami designs, the spectral tunability of the plasmon resonance frequencies is transferred into circular dichroism signals covering the spectrum from 400 nm to 700 nm. Our approach could aid in the construction of better sensors as well as metamaterials with a tunable optical response in the visible region.
Collapse
Affiliation(s)
- Mihir Dass
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Lilli Kuen
- Computational Nano Optics, Zuse Institute Berlin 14195 Berlin Germany
| | - Gregor Posnjak
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Sven Burger
- Computational Nano Optics, Zuse Institute Berlin 14195 Berlin Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University Geschwister-Scholl-Platz 1 80539 Munich Germany
| |
Collapse
|
10
|
Chen Q, Nan X, Chen M, Pan D, Yang X, Wen L. Nanophotonic Color Routing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103815. [PMID: 34595789 DOI: 10.1002/adma.202103815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Recent advances in low-dimensional materials and nanofabrication technologies have stimulated many breakthroughs in the field of nanophotonics such as metamaterials and plasmonics that provide efficient ways of light manipulation at a subwavelength scale. The representative structure-induced spectral engineering techniques have demonstrated superior design of freedom compared with natural materials such as pigment/dye. In particular, the emerging spectral routing scheme enables extraordinary light manipulation in both frequency-domain and spatial-domain with high-efficiency utilization of the full spectrum, which is critically important for various applications and may open up entirely new operating paradigms. In this review, a comparative introduction on the operating mechanisms of spectral routing and spectral filtering schemes is given and recent progress on various color nanorouters based on metasurfaces, plasmonics, dielectric antennas is reviewed with a focus on the potential application in high-resolution imaging. With a thorough analysis and discussion on the advanced properties and drawbacks of various techniques, this report is expected to provide an overview and vision for the future development and application of nanophotonic color (spectral) routing techniques.
Collapse
Affiliation(s)
- Qin Chen
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianghong Nan
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Mingjie Chen
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Dahui Pan
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianguang Yang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Long Wen
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
11
|
Highly-efficient electrically-driven localized surface plasmon source enabled by resonant inelastic electron tunneling. Nat Commun 2021; 12:3111. [PMID: 34035272 PMCID: PMC8149681 DOI: 10.1038/s41467-021-23512-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
On-chip plasmonic circuitry offers a promising route to meet the ever-increasing requirement for device density and data bandwidth in information processing. As the key building block, electrically-driven nanoscale plasmonic sources such as nanoLEDs, nanolasers, and nanojunctions have attracted intense interest in recent years. Among them, surface plasmon (SP) sources based on inelastic electron tunneling (IET) have been demonstrated as an appealing candidate owing to the ultrafast quantum-mechanical tunneling response and great tunability. However, the major barrier to the demonstrated IET-based SP sources is their low SP excitation efficiency due to the fact that elastic tunneling of electrons is much more efficient than inelastic tunneling. Here, we remove this barrier by introducing resonant inelastic electron tunneling (RIET)—follow a recent theoretical proposal—at the visible/near-infrared (NIR) frequencies and demonstrate highly-efficient electrically-driven SP sources. In our system, RIET is supported by a TiN/Al2O3 metallic quantum well (MQW) heterostructure, while monocrystalline silver nanorods (AgNRs) were used for the SP generation (localized surface plasmons (LSPs)). In principle, this RIET approach can push the external quantum efficiency (EQE) close to unity, opening up a new era of SP sources for not only high-performance plasmonic circuitry, but also advanced optical sensing applications. On-chip circuits based on plasmonic systems are a promising potential technology. Here the authors present efficient, on-chip, localized plasmonic excitation based on resonant inelastic electron tunneling with metallic quantum well junction.
Collapse
|
12
|
Ma J, Wang X, Feng J, Huang C, Fan Z. Individual Plasmonic Nanoprobes for Biosensing and Bioimaging: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004287. [PMID: 33522074 DOI: 10.1002/smll.202004287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
With the advent of nanofabrication techniques, plasmonic nanoparticles (PNPs) have been widely applied in various research fields ranging from photocatalysis to chemical and bio-sensing. PNPs efficiently convert chemical or physical stimuli in their local environment into optical signals. PNPs also have excellent properties, including good biocompatibility, large surfaces for the attachment of biomolecules, tunable optical properties, strong and stable scattering light, and good conductivity. Thus, single optical biosensors with plasmonic properties enable a broad range of uses of optical imaging techniques in biological sensing and imaging with high spatial and temporal resolution. This work provides a comprehensive overview on the optical properties of single PNPs, the description of five types of commonly used optical imaging techniques, including surface plasmon resonance (SPR) microscopy, surface-enhanced Raman scattering (SERS) technique, differential interference contrast (DIC) microscopy, total internal reflection scattering (TIRS) microscopy, and dark-field microscopy (DFM) technique, with an emphasis on their single plasmonic nanoprobes and mechanisms for applications in biological imaging and sensing, as well as the challenges and future trends of these fields.
Collapse
Affiliation(s)
- Jun Ma
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jian Feng
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongcai Fan
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
13
|
Neubrech F, Duan X, Liu N. Dynamic plasmonic color generation enabled by functional materials. SCIENCE ADVANCES 2020; 6:6/36/eabc2709. [PMID: 32917622 PMCID: PMC7473667 DOI: 10.1126/sciadv.abc2709] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/23/2020] [Indexed: 05/04/2023]
Abstract
Displays are an indispensable medium to visually convey information in our daily life. Although conventional dye-based color displays have been rigorously advanced by world leading companies, critical issues still remain. For instance, color fading and wavelength-limited resolution restrict further developments. Plasmonic colors emerging from resonant interactions between light and metallic nanostructures can overcome these restrictions. With dynamic characteristics enabled by functional materials, dynamic plasmonic coloration may find a variety of applications in display technologies. In this review, we elucidate basic concepts for dynamic plasmonic color generation and highlight recent advances. In particular, we devote our review to a selection of dynamic controls endowed by functional materials, including magnesium, liquid crystals, electrochromic polymers, and phase change materials. We also discuss their performance in view of potential applications in current display technologies.
Collapse
Affiliation(s)
- Frank Neubrech
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Kirchoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Xiaoyang Duan
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Kirchoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Na Liu
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
14
|
Miao C, Xu H, Jiang M, Ji J, Kan C. Employing rhodium tripod stars for ultraviolet plasmon enhanced Fabry–Perot mode lasing. CrystEngComm 2020. [DOI: 10.1039/d0ce00890g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rhodium tripod stars serving as ultraviolet plasmons can provide a highly competitive platform to achieve high-performance Fabry–Perot lasing of quadrilateral ZnO microwires.
Collapse
Affiliation(s)
- Changzong Miao
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
- Key Laboratory for Intelligent Nano Materials and Devices
| | - Haiying Xu
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
- Department of Mathematics and Physics
| | - Mingming Jiang
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
- Key Laboratory for Intelligent Nano Materials and Devices
| | - Jiaolong Ji
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
| | - Caixia Kan
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
- Key Laboratory for Intelligent Nano Materials and Devices
| |
Collapse
|
15
|
Liu Y, Jiang M, Tang K, Ma K, Wu Y, Ji J, Kan C. Plasmon-enhanced high-performance Si-based light sources by incorporating alloyed Au and Ag nanorods. CrystEngComm 2020. [DOI: 10.1039/d0ce00823k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Benefitting from alloyed Au and Ag nanorods with desired plasmons, single ZnO:Ga microwire assembled on a p-Si template, can provide a promising candidate for the realization of high-efficiency Si-based light sources
Collapse
Affiliation(s)
- Yang Liu
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
| | - Mingming Jiang
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
- Key Laboratory for Intelligent Nano Materials and Devices
| | - Kai Tang
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
| | - Kunjie Ma
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
| | - Yuting Wu
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
| | - Jiaolong Ji
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
| | - Caixia Kan
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211106
- China
- Key Laboratory for Intelligent Nano Materials and Devices
| |
Collapse
|
16
|
Wu Y, Xu J, Jiang M, Zhou X, Wan P, Kan C. Tailoring the electroluminescence of a single microwire based heterojunction diode using Ag nanowires deposition. CrystEngComm 2020. [DOI: 10.1039/d0ce00049c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A single Ga-doped ZnO microwire covered by Ag nanowires (AgNWs@ZnO:Ga MW) was utilized to construct a promising ultraviolet light source, with p-GaN serving as a hole injection layer.
Collapse
Affiliation(s)
- Yuting Wu
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Juan Xu
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Mingming Jiang
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
- Key Laboratory for Intelligent Nano Materials and Devices (MOE)
| | - Xiangbo Zhou
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Peng Wan
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Caixia Kan
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
- Key Laboratory for Intelligent Nano Materials and Devices (MOE)
| |
Collapse
|
17
|
Wu T, Kou Y, Zheng H, Lu J, Kadasala NR, Yang S, Guo C, Liu Y, Gao M. A Novel Au@Cu 2O-Ag Ternary Nanocomposite with Highly Efficient Catalytic Performance: Towards Rapid Reduction of Methyl Orange Under Dark Condition. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E48. [PMID: 31878173 PMCID: PMC7023264 DOI: 10.3390/nano10010048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
Au@Cu2O core-shell nanocomposites (NCs) were synthesized by reducing copper nitrate on Au colloids with hydrazine. The thickness of the Cu2O shells could be varied by adjusting the molar ratios of Au: Cu. The results showed that the thickness of Cu2O shells played a crucial role in the catalytic activity of Au@Cu2O NCs under dark condition. The Au@Cu2O-Ag ternary NCs were further prepared by a simple galvanic replacement reaction method. Moreover, the surface features were revealed by TEM, XRD, XPS, and UV-Vis techniques. Compared with Au@Cu2O NCs, the ternary Au@Cu2O-Ag NCs had an excellent catalytic performance. The degradation of methyl orange (MO) catalyzed by Au@Cu2O-Ag NCs was achieved within 4 min. The mechanism study proved that the synergistic effects of Au@Cu2O-Ag NCs and sodium borohydride facilitated the degradation of MO. Hence, the designed Au@Cu2O-Ag NCs with high catalytic efficiency and good stability are expected to be the ideal environmental nanocatalysts for the degradation of dye pollutants in wastewater.
Collapse
Affiliation(s)
- Tong Wu
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yichuan Kou
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Hui Zheng
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Jianing Lu
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | | | - Shuo Yang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (S.Y.); (C.G.)
| | - Chenzi Guo
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (S.Y.); (C.G.)
| | - Yang Liu
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Ming Gao
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
18
|
Chow TH, Li N, Bai X, Zhuo X, Shao L, Wang J. Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles. Acc Chem Res 2019; 52:2136-2146. [PMID: 31368690 DOI: 10.1021/acs.accounts.9b00230] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gold nanobipyramids (Au NBPs) and gold nanorods (Au NRs) are two types of elongated plasmonic nanoparticles with their longitudinal dipolar plasmon wavelengths synthetically tunable from the visible region to the near-infrared region. Both have highly polarization-dependent absorption and scattering cross sections because of their anisotropic geometries. In terms of their differences, each Au NBP has five equally angularly separated twinning planes that are aligned parallel to the length direction, while the most common Au NRs are single-crystalline. As a result, Au NBPs possess two sharp end tips, while Au NRs have rounded or flat ends, resulting in very different plasmonic properties. In general, Au NBPs exhibit larger local electric field enhancements, larger optical cross sections, narrower line widths, better shape and size uniformity, and higher refractive index sensitivity than Au NRs. With the recent development of reliable methods for the growth of Au NBPs with high purity and uniformity, Au NBPs have been attracting much interest for the investigation of their intriguing plasmonic properties and applications. In this Account, we provide a concise introduction to Au NBPs, including their fascinating plasmonic properties, wet-chemistry growth methods, plasmonic applications, and structure-directing function. The synthesis of uniform Au NBPs with variable sizes is of vital importance to control their plasmonic properties. In the synthesis part, we summarize the recent developments on the synthesis of Au NBPs, with a focus on the role of seeds in the seed-mediated growth of pentatwinned Au NBPs and methods to improve their number purity. The excellent plasmonic properties of Au NBPs make them promising candidates for numerous applications. To further explore the largely improved functionalities of Au NBPs, different types of Au-NBP-based hybrid nanostructures have been prepared. They exhibit synergistic interactions between Au NBPs and the other components. We highlight the widespread plasmonic applications of Au NBPs and Au-NBP-based hybrid nanostructures in the fields of spectroscopy, photocatalysis, sensing, switching, and biomedical technologies. We next turn to the structure-directing function of Au NBPs to demonstrate the Au-NBP-directed growth of metal nanostructures and their applications. The structure-directing function is enabled by the unique pentatwinned crystalline structure of Au NBPs. Finally, we conclude with remarks on the future perspectives and research directions on Au NBPs as well as the remaining challenges. We hope that this Account will act as a platform to offer fascinating opportunities and stimulate fast-growing research on the various aspects of Au NBPs.
Collapse
Affiliation(s)
- Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Nannan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lei Shao
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
19
|
Xu QH. Color routing at the nanoscale. LIGHT, SCIENCE & APPLICATIONS 2019; 8:58. [PMID: 31263557 PMCID: PMC6592892 DOI: 10.1038/s41377-019-0170-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| |
Collapse
|