1
|
Zhang Y, Wang S, Rha H, Xu C, Pei Y, Ji X, Zhang J, Lu R, Zhang S, Xie Z, Kim JS. Bifunctional black phosphorus quantum dots platform: Delivery and remarkable immunotherapy enhancement of STING agonist. Biomaterials 2024; 311:122696. [PMID: 38971121 DOI: 10.1016/j.biomaterials.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Cancer immunotherapy has been developed to improve therapeutic effects for patients by activating the innate immune stimulator of interferon gene (STING) pathway. However, most patients cannot benefit from this therapy, mainly due to the problems of excessively low immune responses and lack of tumor specificity. Herein, we report a solution to these two problems by developing a bifunctional platform of black phosphorus quantum dots (BPQDs) for STING agonists. Specifically, BPQDs could connect targeted functional groups and regulate surface zeta potential by coordinating metal ions to increase loading (over 5 times) while maintaining high universality (7 STING agonists). The controlled release of STING agonists enabled specific interactions with their proteins, activating the STING pathway and stimulating the secretion release of immunosuppressive factors by phosphorylating TBK1 and IFN-IRF3 and secreting high levels of immunostimulatory cytokines, including IL-6, IFN-α, and IFN-β. Moreover, the immunotherapy was enhanced was enhanced mild photothermal therapy (PTT) of BPQDs platform, producing enough T cells to eliminate tumors and prevent tumor recurrence. This work facilitates further research on targeted delivery of small-molecule immune drugs to enhance the development of clinical immunotherapy.
Collapse
Affiliation(s)
- Yujun Zhang
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, PR China; International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Shijing Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, PR China
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Chang Xu
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China
| | - Yue Pei
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, PR China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518109, PR China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, PR China.
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Luo Y, Chen M, Zhang T, Peng Q. 2D nanomaterials-based delivery systems and their potentials in anticancer synergistic photo-immunotherapy. Colloids Surf B Biointerfaces 2024; 242:114074. [PMID: 38972257 DOI: 10.1016/j.colsurfb.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
As the field of cancer therapeutics evolves, integrating two-dimensional (2D) nanomaterials with photo-immunotherapy has emerged as a promising approach with significant potential to augment cancer treatment efficacy. These 2D nanomaterials include graphene-based 2D nanomaterials, 2D MXenes, 2D layered double hydroxides, black phosphorus nanosheets, 2D metal-organic frameworks, and 2D transition metal dichalcogenides. They exhibit high load capacities, multiple functionalization pathways, optimal biocompatibility, and physiological stability. Predominantly, they function as anti-tumor delivery systems, amalgamating diverse therapeutic modalities, most notably phototherapy and immunotherapy, and the former is a recognized non-invasive treatment modality, and the latter represents the most promising anti-cancer strategy presently accessible. Thus, integrating phototherapy and immunotherapy founded on 2D nanomaterials unveils a novel paradigm in the war against cancer. This review delineates the latest developments in 2D nanomaterials as delivery systems for synergistic photo-immunotherapy in cancer treatment. We elaborate on the burgeoning realm of photo-immunotherapy, exploring the interplay between phototherapy and enhanced immune cells, immune response modulation, or immunosuppressive tumor microenvironments. Notably, the strategies to augment photo-immunotherapy have also been discussed. Finally, we discuss the challenges and future perspectives of these 2D nanomaterials in photo-immunotherapy.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ming Chen
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Wu M, Zhou X, Zhang J, Liu L, Wang S, Zhu L, Ming Z, Zhang Y, Xia Y, Li W, Zhou Z, Fan M, Xiong J. Microfiber Actuators With Hot-Pressing-Programmable Mechano-Photothermal Responses for Electromagnetic Perception. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409606. [PMID: 39340284 DOI: 10.1002/adma.202409606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Electromagnetic radiation (EMR) is a ubiquitous harm and hard to detect dynamically in multiple scenarios. A mechano-photothermal cooperative microfiber film (MFF) actuator is developed that can synchronously detect EMR with high reliability. The programmable actuation is deployed by a hot-pressing methodology, achieving the MFF with moderate modulus (378 MPa) and superior toughness (87.26 MJ m-3) that ensure superior response (0.068 cm-1 s-1) and bending curvature (0.63 cm-1). A secondary hot-pressing can further program the actuation behavior with black phosphorus local photothermal enhancement patterns to achieve 2D-3D transformable geometries. An amphibious robot with a land-water adaptive locomotion mechanism is designed by programming the MFFs. It can crawl on land and locomote on water with a velocity up to ≈1.8 mm s-1, and ≈2.39 cm s-1, respectively. Employing the conductive fabric layer of the actuator with electromagnetic induction effect, the amphibious robot can synchronously perceive environmental EMR with sensitivity up to 99.73% ± 0.15% during locomotion, with superior adaptability to EMR source intensity (0.1 to 3000 W) and distance (≈9 m) compared to a commercial EMR detector. This EMR detective microfiber actuator can inspire a new direction of environment-interactive smart materials, and soft robots with multi-scenario adaptivity and autonomous environment perceptivity.
Collapse
Affiliation(s)
- Mengjie Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinran Zhou
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Jiwei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Luyun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shuang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Liming Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zechang Ming
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yufan Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Yong Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Weikang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zijie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Minghui Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jiaqing Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
4
|
Huang W, Yang Y, Zhang H. Surface Engineering of Two-Dimensional Black Phosphorus for Advanced Nanophotonics. Acc Chem Res 2024; 57:2464-2475. [PMID: 38991156 DOI: 10.1021/acs.accounts.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
ConspectusEverything in the world has two sides. We should correctly understand its two sides to pursue the positive side and get rid of the negative side. Recently, two-dimensional (2D) black phosphorus (BP) has received a tremendous amount of attention and has been applied for broad applications in optoelectronics, transistors, logic devices, and biomedicines due to its intrinsic properties, e.g., thickness-dependent bandgap, high mobility, highly anisotropic charge transport, and excellent biodegradability and biocompatibility. On one hand, rapid degradation of 2D BP under ambient conditions becomes a vital bottleneck that largely hampers its practical applications in optical and optoelectronic devices and photocatalysis. On the other hand, just because of its ambient instability, 2D BP as a novel kind of nanomedicine in a cancer drug delivery system can not only satisfy effective cancer therapy but also enable its safe biodegradation in vivo. Until now, a variety of surface functionality types and approaches have been employed to rationally modify 2D BP to meet the growing requirements of advanced nanophotonics.In this Account, we describe our research on surface engineering of 2D BP in two opposite ways: (i) stabilizing 2D BP by various approaches for advanced nanophotonic devices with both remarkable photoresponse behavior and environmentally structural stability and (ii) making full use of biodegradation, biocompatibility, and biological activity (e.g., photothermal therapy, photodynamic therapy, and bioimaging) of 2D BP for the construction of high-performance delivery nanoplatforms for biophotonic applications. We highlight the targeted aims of the surface-engineered 2D BP for advanced nanophotonics, including photonic devices (optics, optoelectronics, and photocatalysis) and photoinduced cancer therapy, by means of various surface functionalities, such as heteroatom incorporation, polymer functionalization, coating, heterostructure design, etc. From the viewpoint of potential applications, the fundamental properties of surface-engineered 2D BP and recent advances in surface-engineered 2D BP-based nanophotonic devices are briefly discussed. For the photonic devices, surface-engineered 2D BP can not only effectively improve environmentally structural stability but also simultaneously maintain photoresponse performance, enabling 2D BP-based devices for a wide range of practical applications. In terms of the photoinduced cancer therapy, surface-engineered 2D BP is more appropriate for the treatment of cancer due to negligible toxicity and excellent biodegradation and biocompatibility. We also provide our perspectives on future opportunities and challenges in this important and fast-growing field. It is envisioned that this Account can attract more attention in this area and inspire more scientists in a variety of research communities to accelerate the development of 2D BP for more widespread high-performance nanophotonic applications.
Collapse
Affiliation(s)
- Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Yuming Yang
- Key Laboratory of Neuroregeneration Ministry of Education and Jiangsu Province Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong 226001, P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
5
|
Tan H, Cao K, Zhao Y, Zhong J, Deng D, Pan B, Zhang J, Zhang R, Wang Z, Chen T, Shi Y. Brain-Targeted Black Phosphorus-Based Nanotherapeutic Platform for Enhanced Hypericin Delivery in Depression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310608. [PMID: 38461532 DOI: 10.1002/smll.202310608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Depression is a significant global health concern that remains inadequately treated due to the limited effectiveness of conventional drug therapies. One potential therapeutic agent, hypericin (HYP), is identified as an effective natural antidepressant. However, its poor water solubility, low bioavailability, and limited ability to penetrate the brain parenchyma have hindered its clinical application. To address these shortcomings and enhance the therapeutic efficacy of HYP, it is loaded onto black phosphorus nanosheets (BP) modified with the neural cell-targeting peptide RVG29 to synthesize a nanoplatform named BP-RVG29@HYP (BRH). This platform served as a nanocarrier for HYP and integrated the advantages of BP with advanced delivery methods and precise targeting strategies. Under the influence of 808 nm near-infrared irradiation (NIR), BRH effectively traversed an in vitro BBB model. In vivo experiments validated these findings, demonstrating that treatment with BRH significantly alleviated depressive-like behaviors and oxidative stress in mice. Importantly, BRH exhibited an excellent safety profile, causing minimal adverse effects, which highlighted its potential as a promising therapeutic agent. In brief, this novel nanocarrier holds great promise in the development of antidepressant drugs and can create new avenues for the treatment of depression.
Collapse
Affiliation(s)
- Hanxu Tan
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Kerun Cao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuying Zhao
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jialong Zhong
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Di Deng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
6
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
7
|
Zhu L, Zhong W, Meng X, Yang X, Zhang W, Tian Y, Li Y. Polymeric nanocarriers delivery systems in ischemic stroke for targeted therapeutic strategies. J Nanobiotechnology 2024; 22:424. [PMID: 39026255 PMCID: PMC11256638 DOI: 10.1186/s12951-024-02673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemic stroke is a complex, high-mortality disease with multifactorial etiology and pathogenesis. Currently, drug therapy is mainly used treat ischemic stroke in clinic, but there are still some limitations, such as limited blood-brain barrier (BBB) penetration efficiency, a narrow treatment time window and drug side effects. Recent studies have pointed out that drug delivery systems based on polymeric nanocarriers can effectively improve the insufficient treatment for ischemic stroke. They can provide neuronal protection by extending the plasma half-life of drugs, enhancing the drug's permeability to penetrate the BBB, and targeting specific structures and cells. In this review, we classified polymeric nanocarriers used for delivering ischemic stroke drugs and introduced their preparation methods. We also evaluated the feasibility and effectiveness and discussed the existing limitations and prospects of polymeric nanocarriers for ischemic stroke treatment. We hoped that this review could provide a theoretical basis for the future development of nanomedicine delivery systems for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xuchen Meng
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xiaosheng Yang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Wenchuan Zhang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yayuan Tian
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
8
|
He L, Chen Q, Lu Q, Yang M, Xie B, Chen T, Wang X. Autophagy-Inducing MoO 3-x Nanowires Boost Photothermal-Triggered Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202404822. [PMID: 38687056 DOI: 10.1002/anie.202404822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Autophagy could play suppressing role in cancer therapy by facilitating release of tumor antigens from dying cells and inducing immunogenic cell death (ICD). Therefore, discovery and rational design of more effective inducers of cytotoxic autophagy is expected to develop new strategies for finding innovative drugs for precise and successful cancer treatment. Herein, we develop MoO3-x nanowires (MoO3-x NWs) with high oxygen vacancy and strong photothermal responsivity to ablate tumors through hyperthermia, thus promote the induction of cytotoxic autophagy and severe ICD. As expected, the combination of MoO3-x NWs and photothermal therapy (PTT) effectively induces autophagy to promote the release of tumor antigens from the ablated cells, and induces the maturation and antigen presentation of dendritic cells (DCs), subsequently activates cytotoxic T lymphocytes (CTLs)-mediated adaptive immunity. Furthermore, the combination treatment of MoO3-x NWs with immune checkpoint blockade of PD-1 could promote the tumor-associated macrophages (TAMs) polarization into tumor-killing M1 macrophages, inhibit infiltration of Treg cells at tumor sites, and alleviate immunosuppression in the tumor microenvironment, finally intensify the anti-tumor activity in vivo. This study provides a strategy and preliminary elucidation of the mechanism of using MoO3-x nanowires with high oxygen vacancy to induce autophagy and thus enhance photothermal immunotherapy.
Collapse
Affiliation(s)
- Lizhen He
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Qi Chen
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Qichen Lu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Meijin Yang
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Bin Xie
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Wu B, Dou X, Zhao Y, Wang X, Zhao C, Xia J, Xing C, He S, Feng C. Chiral Supramolecular Nanofibers Regulated Tumor-Derived Exosomes Secretion for Constructing an Anti-Tumor Extracellular Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308335. [PMID: 38420895 DOI: 10.1002/smll.202308335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Tumor-derived exosomes (TDEs) induced extracellular microenvironment has recently been validated to be critical for tumor progression and metastasis, however, remodeling it for oncotherapy still remains a major challenge due to difficulty in regulation of TDEs secretion. Herein, the supramolecular chiral nanofibers, composed of L/D-phenylalanine derivates (L/D-Phe) and linear hyaluronic acid (HA), are successfully employed to construct TDEs induced anti-tumor extracellular microenvironment. The left-handed L-Phe @HA nanofibers significantly inhibit TDEs secretion into extracellular microenvironment, which results in suppression of tumor proliferation and metastasis in vitro and vivo. Biological assays and theoretical modeling reveal that these results are mainly attributed to strong adsorption of the key exosomes transporters (Ras-related protein Rab-27A and synaptosome-associated protein 23) on left-handed L-Phe @HA nanofibers via enhanced stereoselective interaction, leading to degradation and phosphorylated dropping of exosomes transporters. Subsequently, transfer function of exosomes transporters is limited, which causes remarkable inhibition of TDEs secretion. These findings provide a promising novel insight of chiral functional materials to establish an anti-tumor extracellular microenvironment via regulation of TDEs secretion.
Collapse
Affiliation(s)
- Beibei Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Yu Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Xueqian Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Jingyi Xia
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Chao Xing
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Sijia He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| |
Collapse
|
10
|
Xiao M, Wang L, Tang Q, Yang Q, Yang X, Zhu G, Lei L, Li S. Postoperative tumor treatment strategies: From basic research to clinical therapy. VIEW 2024; 5. [DOI: 10.1002/viw.20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
AbstractDespite progression in advanced treatments for malignant tumors, surgery remains the primary treatment intervention, which removes a large portion of firm tumor tissues; however, the postoperative phase poses a possible risk for provincial tumor recurrence and metastasis. Consequently, the prevention of tumor recurrence and metastasis has attracted research attention. In this review, we summarized the postoperative treatment strategies for various tumors from both basic research and clinical perspectives. We delineated the underlying factors contributing to the recurrence of malignant tumors with a substantial prevalence rate, related molecular mechanisms of tumor recurrence post‐surgery, and related means of monitoring recurrence and metastasis after surgery. Furthermore, we described relevant therapeutic approaches for postoperative tumor recurrence, including chemotherapy, radiation therapy, immunotherapy, targeted therapy, and photodynamic therapy. This review focused on the emerging technologies used for postoperative tumor treatment in recent years in terms of functional classification, including the prevention of postoperative tumor recurrence, functional reconstruction, and monitoring of recurrence. Finally, we discussed the future development and deficiencies of postoperative tumor therapy. To understand postoperative treatment strategies for tumors from clinical treatment and basic research and further guide the research directions for postoperative tumors.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery Binzhou People's Hospital Binzhou China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lanjie Lei
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| |
Collapse
|
11
|
Jiang W, Peng J, Jiang N, Zhang W, Liu S, Li J, Duan D, Li Y, Peng C, Yan Y, Zhao Y, Han G. Chitosan Phytate Nanoparticles: A Synergistic Strategy for Effective Dental Caries Prevention. ACS NANO 2024; 18:13528-13537. [PMID: 38747549 DOI: 10.1021/acsnano.3c11806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dental caries is a widespread oral disease that poses a significant medical challenge. Traditional caries prevention methods, primarily the application of fluoride, often fall short in effectively destroying biofilms and preventing enamel demineralization, thereby providing limited efficacy in halting the progression of caries over time. To address this issue, we have developed a green and cost-effective synergistic strategy for the prevention of dental caries. By combining natural sodium phytate and chitosan, we have created chitosan-sodium phytate nanoparticles that offer both the antimicrobial properties of chitosan and the enamel demineralization-inhibiting capabilities of sodium phytate. In an ex vivo biofilm model of human teeth, we found that these nanoparticles effectively prevent biofilm buildup and acid damage to the mineralized tissue. Additionally, topical treatment of dental caries in rodent models has shown that these nanoparticles effectively suppress disease progression without negatively impacting oral microbiota diversity or causing harm to the gingival-mucosal tissues, unlike traditional prevention methods.
Collapse
Affiliation(s)
- Weibo Jiang
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Orthodontics, Wuxi Stomatology Hospital, Health Road 6, Wuxi 214001, China
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Nan Jiang
- Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jianmin Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yongfa Yan
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Gang Han
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| |
Collapse
|
12
|
Li T, Zhang X, Shi C, Liu Q, Zhao Y. Biomimetic nanodrug blocks CD73 to inhibit adenosine and boosts antitumor immune response synergically with photothermal stimulation. J Nanobiotechnology 2024; 22:214. [PMID: 38689291 PMCID: PMC11059694 DOI: 10.1186/s12951-024-02487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Combination of tumor immunotherapy with photothermal therapy (PTT) is a feasible tactic to overcome the drawback of immunotherapy such as poor immune response. Via triggering the immunogenic cells death (ICD), PTT can stimulate the activity of immune cells, but meanwhile, the level of adenosine is elevated via the CD73-induced decomposition of ATP which is overexpressed accompanying with the PTT process, resulting in negative feedback to impair the immune stimulation. Herein, we developed a novel biomimetic photothermal nanodrug to specifically block CD73 for inhibition of adenosine production and more efficient priming of the suppressive immune microenvironments. The nanodrug, named as AptEM@CBA, is constructed by encapsulation of photothermal agent black phosphorus quantum dots (BPQDs) and selective CD73 inhibitor α, β-Methyleneadenosine 5'-diphosphate (AMPCP) in chitosan nanogels, which are further covered with aptamer AS1411 modified erythrocyte membrane (EM) for biomimetic camouflage. With AS1411 induced active targeting and EM induced long blood circulation time, the enrichment of the nanodrug tumor sites is promoted. The photothermal treatment promotes the maturation of dendritic cells. Meanwhile, the release of AMPCP suppress the adenosine generation via CD73 blockade, alleviating the impairment of adenosine to dendritic cells and suppressing regulatory T cells, synergically stimulate the activity of T cells. The combination of CD73 blockade with PTT, not only suppresses the growth of primary implanted tumors, but also boosts strong antitumor immunity to inhibit the growth of distal tumors, providing good potential for tumor photoimmunotherapy.
Collapse
Affiliation(s)
- Tan Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China
| | - Xingyu Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China
| | - Chengyu Shi
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China
| | - Qiao Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China
| | - Yuetao Zhao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| |
Collapse
|
13
|
Zhu Y, Arkin G, He T, Guo F, Zhang L, Wu Y, Prasad PN, Xie Z. Ultrasound imaging guided targeted sonodynamic therapy enhanced by magnetophoretically controlled magnetic microbubbles. Int J Pharm 2024; 655:124015. [PMID: 38527565 DOI: 10.1016/j.ijpharm.2024.124015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Sonodynamic therapy (SDT) utilizes ultrasonic excitation of a sensitizer to generate reactive oxygen species (ROS) to destroy tumor. Two dimensional (2D) black phosphorus (BP) is an emerging sonosensitizer that can promote ROS production to be used in SDT but it alone lacks active targeting effect and showed low therapy efficiency. In this study, a stable dispersion of integrated micro-nanoplatform consisting of BP nanosheets loaded and Fe3O4 nanoparticles (NPs) connected microbubbles was introduced for ultrasound imaging guided and magnetic field directed precision SDT of breast cancer. The targeted ultrasound imaging at 18 MHz and efficient SDT effects at 1 MHz were demonstrated both in-vitro and in-vivo on the breast cancer. The magnetic microbubbles targeted deliver BP nanosheets to the tumor site under magnetic navigation and increased the uptake of BP nanosheets by inducing cavitation effect for increased cell membrane permeability via ultrasound targeted microbubble destruction (UTMD). The mechanism of SDT by magnetic black phosphorus microbubbles was proposed to be originated from the ROS triggered mitochondria mediated apoptosis by up-regulating the pro-apoptotic proteins while down-regulating the anti-apoptotic proteins. In conclusion, the ultrasound theranostic was realized via the magnetic black phosphorus microbubbles, which could realize targeting and catalytic sonodynamic therapy.
Collapse
Affiliation(s)
- Yao Zhu
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, PR China; Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Gulzira Arkin
- Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Tianzhen He
- Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Fengjuan Guo
- Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Ling Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, PR China
| | - Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, PR China.
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, Guangdong, PR China.
| |
Collapse
|
14
|
Wang C, Gu B, Qi S, Hu S, Wang Y. Boosted photo-immunotherapy via near-infrared light excited phototherapy in tumor sites and photo-activation in sentinel lymph nodes. NANOSCALE ADVANCES 2024; 6:2075-2087. [PMID: 38633053 PMCID: PMC11019502 DOI: 10.1039/d4na00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
Phototherapy is a promising modality that could eradicate tumor and trigger immune responses via immunogenic cell death (ICD) to enhance anti-tumor immunity. However, due to the lack of deep-tissue-excitable phototherapeutic agents and appropriate excitation strategies, the utility of phototherapy for efficient activation of the immune system is challenging. Herein, we report functionalized ICG nanoparticles (NPs) with the capture capability of tumor-associated antigens (TAAs). Under near-infrared (NIR) light excitation, the ICG NPs exhibited high-performance phototherapy, i.e., synergistic photothermal therapy and photodynamic therapy, thereby efficiently eradicating primary solid tumor and inducing ICD and subsequently releasing TAAs. The ICG NPs also captured TAAs and delivered them to sentinel lymph nodes, and then the sentinel lymph nodes were activated with NIR light to trigger efficient T-cell immune responses through activation of dendritic cells with the assistance of ICG NP generated reactive oxygen species, inhibiting residual primary tumor recurrence and controlling distant tumor growth. The strategy of NIR light excited phototherapy in tumor sites and photo-activation in sentinel lymph nodes provides a powerful platform for active immune systems for anti-tumor photo-immunotherapy.
Collapse
Affiliation(s)
- Chen Wang
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Bobo Gu
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Shuhong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan Hubei 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences Suzhou 215163 China
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University Shanghai 200092 China
| |
Collapse
|
15
|
Chen B, Huang R, Zeng W, Wang W, Min Y. Nanocodelivery of an NIR photothermal agent and an acid-responsive TLR7 agonist prodrug to enhance cancer photothermal immunotherapy and the abscopal effect. Biomaterials 2024; 305:122434. [PMID: 38141501 DOI: 10.1016/j.biomaterials.2023.122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
The immunosuppressive tumor microenvironment (TME) greatly limits the actual outcome of immunotherapy. Therefore, it is urgent to develop appropriate strategies to reshape the TME and ultimately induce a strong immune response. Here, we developed a dual-functional liposome loaded with the photothermal agent IR808 near the infrared region (NIR) and Toll-like-receptor-7 (TLR7) agonist loxoribine prodrug (Lipo@IR808@Loxo) to achieve NIR light-triggered photothermal therapy (PTT) and the targeted delivery of immune adjuvants. Under NIR irradiation, Lipo@IR808@Loxo could greatly improve the efficiency of PTT to directly kill tumor cells and release tumor-associated antigens, which could work together with loaded loxoribine to relieve the immunosuppressive TME, effectively promoting the activation of antigen-presenting cells and subsequent antigen presentation. In this way, Lipo@IR808@Loxo could act as an in situ therapeutic cancer vaccine, eventually inducing a potent antitumor T-cell response. When further combined with immune checkpoint blockade, Lipo@IR808@Loxo-mediated photothermal immunotherapy could not only eliminate the primary tumors but also inhibit the growth of distant tumors, thus enhancing the abscopal effect.
Collapse
Affiliation(s)
- Bo Chen
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230001, China
| | - Ruijie Huang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Zeng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230001, China.
| | - Yuanzeng Min
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230001, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China; Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China; CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
16
|
Fan Y, Liu S, Gao E, Guo R, Dong G, Li Y, Gao T, Tang X, Liao H. The LMIT: Light-mediated minimally-invasive theranostics in oncology. Theranostics 2024; 14:341-362. [PMID: 38164160 PMCID: PMC10750201 DOI: 10.7150/thno.87783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024] Open
Abstract
Minimally-invasive diagnosis and therapy have gradually become the trend and research hotspot of current medical applications. The integration of intraoperative diagnosis and treatment is a development important direction for real-time detection, minimally-invasive diagnosis and therapy to reduce mortality and improve the quality of life of patients, so called minimally-invasive theranostics (MIT). Light is an important theranostic tool for the treatment of cancerous tissues. Light-mediated minimally-invasive theranostics (LMIT) is a novel evolutionary technology that integrates diagnosis and therapeutics for the less invasive treatment of diseased tissues. Intelligent theranostics would promote precision surgery based on the optical characterization of cancerous tissues. Furthermore, MIT also requires the assistance of smart medical devices or robots. And, optical multimodality lay a solid foundation for intelligent MIT. In this review, we summarize the important state-of-the-arts of optical MIT or LMIT in oncology. Multimodal optical image-guided intelligent treatment is another focus. Intraoperative imaging and real-time analysis-guided optical treatment are also systemically discussed. Finally, the potential challenges and future perspectives of intelligent optical MIT are discussed.
Collapse
Affiliation(s)
- Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Shuai Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Enze Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Rui Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Guozhao Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Yangxi Li
- Dept. of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China, 100084
| | - Tianxin Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Hongen Liao
- Dept. of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China, 100084
| |
Collapse
|
17
|
Astaneh ME, Fereydouni N. A focused review on hyaluronic acid contained nanofiber formulations for diabetic wound healing. Int J Biol Macromol 2023; 253:127607. [PMID: 37871723 DOI: 10.1016/j.ijbiomac.2023.127607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The significant clinical challenge presented by diabetic wounds is due to their impaired healing process and increased risk of complications. It is estimated that a foot ulcer will develop at some point in the lives of 15-25 % of diabetic patients. Serious complications, including infection and amputation, are often led to by these wounds. In the field of tissue engineering and regenerative medicine, nanofiber-based wound dressings have emerged in recent years as promising therapeutic strategies for diabetic wound healing. Hyaluronic acid (HA), among various nanofiber materials, has gained considerable attention due to its unique properties, including biocompatibility, biodegradability, and excellent moisture retention capacity. By promoting skin hydration and controlling inflammation, a crucial role in wound healing is played by HA. Wounds are also helped to heal faster by HA through the regulation of inflammation levels and signaling the body to build more blood vessels in the damaged area. Great potential in various applications, including wound healing, has been shown by the development and use of nanofiber formulations in medicine. However, challenges and limitations associated with nanofibers in medicine exist, such as reproducibility, proper characterization, and biological evaluation. By providing a biomimetic environment that enhances re-epithelialization and facilitates the delivery of active substances, nanofibers promote wound healing. In accelerating wound healing, promising results have been shown by HA-contained nanofiber formulations in diabetic wounds. Key strategies employed by these formulations include revascularization, modulation of the inflammation microenvironment, delivery of active substances, photothermal nanofibers, and nanoparticle-loaded fabrics. Particularly crucial is revascularization as it restores blood flow to the wound area, promoting healing. Wound healing can also be enhanced by modulating the inflammation microenvironment through controlling inflammation levels. Future perspectives in this field involve addressing the current challenges and limitations of nanofiber technology and further optimizing HA-contained nanofiber formulations for improved efficacy in diabetic wound healing. This includes exploring new fabrication techniques, enhancing the biocompatibility and biodegradability of nanofibers, and developing multifunctional nanofibers for targeted drug delivery. Not only does writing a review in the field of nanofiber-based wound dressings, particularly those containing hyaluronic acid, allow us to consolidate our current knowledge and understanding but also broadens our horizons. An opportunity is provided to delve deeper into the intricacies of this innovative therapeutic strategy, explore its potential and limitations, and envision future directions. By doing so, a contribution can be made to the ongoing advancements in tissue engineering and regenerative medicine, ultimately improving the quality of life for patients with diabetic wounds.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
18
|
Zheng S, Ji Y, Li N, Zhang L. Biomimetic Design of Peptide Inhibitor to Block CD47/SIRPα Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18101-18112. [PMID: 38038444 DOI: 10.1021/acs.langmuir.3c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
CD47 on the surface of tumor cells has become a research hot spot in immunotherapy and anticancer therapy, as it can bind to SIRPα protein on the surface of macrophages, which ultimately leads to immune escape of tumor cells. In the present study, molecular interactions between CD47 and human SIRPα proteins (including variant 1, V1 and variant 2, V2) were analyzed through molecular dynamics (MD) simulation and the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method. Hydrophobic interactions were found as the main driving force for the binding of CD47 on SIRPα. The residues including pyroglutamate acid (Z)1, L2, E35, Y37, E97, L101, and T102 of CD47 were identified with a significant favorable contribution to the binding of CD47 on SIRPα (both V1 and V2). Based on this, a peptide inhibitor library with the sequence ZLXRTLXEXY was designed (X represents the arbitrary residue of 20 standard amino acids) and then screened using molecular docking, MD simulations, and experimental validation. Finally, a peptide ZLIRTLHEWY was determined with high affinity with SIRPα from 8000 candidates, containing 6/10 residues favorable for the binding on SIRPα V1 and 8/10 residues favorable for the binding on SIRPα V2, which was thus considered to have potential anticancer function.
Collapse
Affiliation(s)
- Si Zheng
- Department of Biochemical Engineering and Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Yufan Ji
- Department of Biochemical Engineering and Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Nanxing Li
- Department of Biochemical Engineering and Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Lin Zhang
- Department of Biochemical Engineering and Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
19
|
Liang Y, Liu J, Zhao C, Sun H, Huang K, Xie Q, Zeng D, Lin H, Zhou B. HER2-targeting two-dimensional black phosphorus as a nanoplatform for chemo-photothermal therapy in breast cancer. Mater Today Bio 2023; 23:100812. [PMID: 37810752 PMCID: PMC10550767 DOI: 10.1016/j.mtbio.2023.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Trastuzumab (Tmab) targeted therapy or its combination with chemotherapy is normally insufficient to elicit a comprehensive therapeutic response owing to the inherent or acquired drug resistance and systemic toxicity observed in highly invasive HER2-positive breast cancer. In this study, we propose a novel approach that integrates photothermal therapy (PTT) with targeted therapy and chemotherapy, thereby achieving additive or synergistic therapeutic outcomes. We utilize PEGylated two-dimensional black phosphorus (2D BP) as a nanoplatform and photothermal agent to load chemotherapeutic drug mitoxantrone (MTO) and conjugate with Tmab (BP-PEG-MTO-Tmab). The in vitro and in vivo experiments demonstrated that the HER2-targeting BP-PEG-MTO-Tmab complexes exhibited desirable biocompatibility, safety and enhanced cancer cell uptake efficiency, resulting in increased accumulation and prolonged retention of BP and MTO within tumors. Consequently, the complex improved photothermal and chemotherapy treatment efficacy in HER2-positive cells in vitro and a subcutaneous tumor model in vivo, while minimized harm to normal cells and showed desirable organ compatibility. Collectively, our study provides compelling evidence for the remarkable efficacy of targeted and synergistic chemo-photothermal therapy utilizing all-in-one nanoparticles as a delivery system for BP and chemotherapeutic drug in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yuanke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Jinxing Liu
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
| | - Cong Zhao
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
| | - Hexing Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Kaiyuan Huang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Qin Xie
- Cancer Hospital of Shantou University Medical College, Shantou, 515031, China
| | - De Zeng
- Cancer Hospital of Shantou University Medical College, Shantou, 515031, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Benqing Zhou
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
| |
Collapse
|
20
|
He J, Ouyang X, Xiao F, Liu N, Wen L. Imaging-Guided Photoacoustic Immunotherapy Based on the Polydopamine-Functionalized Black Phosphorus Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54322-54334. [PMID: 37967339 DOI: 10.1021/acsami.3c13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Phototherapy has great application prospects in superficial tumors, such as melanoma, esophageal cancer, and breast carcinoma, owing to the advantages of noninvasiveness, high spatiotemporal selectivity, and less side effects. However, classical phototherapies including photodynamic and photothermal therapy still need to settle the bottleneck problems of poor efficacy, inevitable thermal damage, and a high rate of postoperative recurrence. In this study, we developed a nanocomposite with excellent optical properties and immune-stimulating properties, termed PBP@CpG, which was obtained by functionalizing black phosphorus (BP) with polydopamine and further adsorbing CpG. Benefiting from the protection of polydopamine against BP, ideal light absorption, and photoacoustic conversion properties, PBP@CpG not only enables precisely delineation of the tumor region with photoacoustic imaging but also powerfully disrupts the plasma membrane and cytoskeleton of tumor cells with a photoacoustic cavitation effect. In addition, we found that the photoacoustic cavitation effect was also capable of inducing immunogenic cell death and remarkably strengthening the antitumor immune response upon cooperating with immune adjuvant CpG. Therefore, PBP@CpG was expected to provide a promising nanoplatform for optical theranostics and herald a new strategy of photoimmunotherapy based on the photoacoustic cavitation effects and immunostimulatory effect.
Collapse
Affiliation(s)
- Jiawen He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Xumei Ouyang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Ning Liu
- School of Clinical Medicine, Jining Medical University, 272067 Jining, Shandong, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| |
Collapse
|
21
|
Wong PC, Kurniawan D, Wu JL, Wang WR, Chen KH, Chen CY, Chen YC, Veeramuthu L, Kuo CC, Ostrikov KK, Chiang WH. Plasma-Enabled Graphene Quantum Dot Hydrogel-Magnesium Composites as Bioactive Scaffolds for In Vivo Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44607-44620. [PMID: 37722031 DOI: 10.1021/acsami.3c05297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Bioactive and mechanically stable metal-based scaffolds are commonly used for bone defect repair. However, conventional metal-based scaffolds induce nonuniform cell growth, limiting damaged tissue restoration. Here, we develop a plasma nanotechnology-enhanced graphene quantum dot (GQD) hydrogel-magnesium (Mg) composite scaffold for functional bone defect repair by integrating a bioresource-derived nitrogen-doped GQD (NGQD) hydrogel into the Mg ZK60 alloy. Each scaffold component brings major synergistic advantages over the current alloy-based state of the art, including (1) mechanical support of the cortical bone and calcium deposition by the released Mg2+ during degradation; (2) enhanced uptake, migration, and distribution of osteoblasts by the porous hydrogel; and (3) improved osteoblast adhesion and proliferation, osteogenesis, and mineralization by the NGQDs in the hydrogel. Through an in vivo study, the hybrid scaffold with the much enhanced osteogenic ability induced by the above synergy promotes a more rapid, uniform, and directional bone growth across the hydrogel channel, compared with the control Mg-based scaffold. This work provides insights into the design of multifunctional hybrid scaffolds, which can be applied in other areas well beyond the demonstrated bone defect repair.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Lin Wu
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Ru Wang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Kuan-Hao Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan
| | - Chieh-Ying Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Ying-Chun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Biomedical Technologies and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
22
|
Zheng W, Zhang Y, Gao M, Qiu M. Emerging 2D pnictogens: a novel multifunctional photonic nanoplatform for cutting-edge precision treatment. Chem Commun (Camb) 2023; 59:10205-10225. [PMID: 37555438 DOI: 10.1039/d3cc02624h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The elements of the pnictogen group, known as the 15th (VA) family in the periodic table, including phosphorus (P), arsenic (As), antimony (Sb) and bismuth (Bi), have been widely used by alchemists to treat various diseases since ancient times and hold a pivotal position in the history of medicine, owing to their diverse pharmacological activities. Recently, with the development of modern nanotechnology, pnictogen group elements appear in a more innovative form, namely two-dimensional (2D) pnictogens (i.e. phosphorene, arsenene, and bismuthene) with a unique layered crystal structure and extraordinary optoelectronic characteristics, which endow them with significant superiority as a novel multifunctional photonic nanoplatform for cutting-edge precision treatment of various diseases. The puckered layer structure with ultralarge surface area make them ideal drug and gene delivery vectors that can avoid degradation and reduce target effects. The anisotropic morphology allows their easier internalization by cells and may improve gene transfection efficiency. Tunable optoelectronic characteristics endow them with excellent phototherapy performance as well as the ability to act as an optical switch to initiate subsequent therapeutic events. This review provides a brief overview of the properties, preparation and surface modifications of 2D pnictogens, and then focuses on its applications in cutting-edge precision treatment as a novel multifunctional photonic nanoplatform, such as phototherapy, photonic medicine, photo-adjuvant immunotherapy and photo-assisted gene therapy. Finally, the challenges and future development trends for 2D pnictogens are provided. With a focus on 2D pnictogen-based multifunctional photonic nanoplatforms, this review may also provide profound insights for the next generation innovative precision therapy.
Collapse
Affiliation(s)
- Wenjing Zheng
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Yifan Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Ming Gao
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
23
|
Huang X, He Y, Zhang M, Lu Z, Zhang T, Wang B. GPP-TSAIII nanocomposite hydrogel-based photothermal ablation facilitates melanoma therapy. Expert Opin Drug Deliv 2023; 20:1277-1295. [PMID: 37039332 DOI: 10.1080/17425247.2023.2200997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/01/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Photothermal therapy (PTT) is a promising cancer treatment, but its application is limited by low photoconversion efficiency. In this study, we aimed to develop a novel graphene oxide (GO)-based nanocomposite hydrogel to improve the bioavailability of timosaponin AIII (TSAIII) while maximizing PTT efficacy and enhancing the antitumor effect. METHODS GO was modified via physical cross-linking with polyvinyl alcohol. The pore structure of the gel was adjusted by repeated freeze-thawing and the addition of polyethylene glycol 2000 to obtain a nanocomposite hydrogel (GPP). The GPP loaded with TSAIII constituted a GPP-TSAIII drug delivery system, and its efficacy was evaluated by in vitro cytotoxicity, apoptosis, migration, and uptake analyses, and in vivo antitumor studies. RESULTS The encapsulation rate of GPP-TSAIII was 66.36 ± 3.97%, with slower in vitro release and higher tumor cell uptake (6.4-fold) compared to TSAIII. GPP-TSAIII in combination with PTT showed better bioavailability and antitumor effects in vivo than did TSAIII, with a 1.9-fold higher tumor suppression rate than the TSAIII group. CONCLUSIONS GPP is a potential vehicle for delivery of TSAIII-like poor water-soluble anticancer drugs. The innovative PTT co-delivery system may serve as a safe and effective melanoma treatment platform for further anticancer translational purposes.
Collapse
Affiliation(s)
- Xing Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihao He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Disease, Long hua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Ye Y, Ren K, Dong Y, Yang L, Zhang D, Yuan Z, Ma N, Song Y, Huang X, Qiao H. Mitochondria-Targeting Pyroptosis Amplifier of Lonidamine-Modified Black Phosphorus Nanosheets for Glioblastoma Treatments. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37220137 DOI: 10.1021/acsami.3c01559] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pyroptosis is accompanied by immunogenic mediators' release and serves as an innovative strategy to reprogram tumor microenvironments. However, damaged mitochondria, the origin of pyroptosis, are frequently eliminated by mitophagy, which will severely impair pyroptosis-elicited immune activation. Herein, black phosphorus nanosheets (BP) are employed as a pyroptosis inducer delivery and mitophagy flux blocking system since the degradation of BP could impair lysosomal function by altering the pH within lysosomes. The pyroptosis inducer of lonidamine (LND) was precoupled with the mitochondrial target moiety of triphenylphosphonium to facilitate the occurrence of pyroptosis. The mitochondria-targeting LND-modified BP (BPTLD) were further encapsulated into the macrophage membrane to endow the BPTLD with blood-brain barrier penetration and tumor-targeting capability. The antitumor activities of membrane-encapsulated BPTLD (M@BPTLD) were investigated using a murine orthotopic glioblastoma model. The results demonstrated that the engineered nanosystem of M@BPTLD could target the mitochondria, and induce as well as reinforce pyroptosis via mitophagy flux blocking, thereby boosting the release of immune-activated factors to promote the maturation of dendritic cells. Furthermore, upon near-infrared (NIR) irradiation, M@BPTLD induced stronger mitochondrial oxidative stress, which further advanced robust immunogenic pyroptosis in glioblastoma cells. Thus, this study utilized the autophagy flux inhibition and phototherapy performance of BP to amplify LND-mediated pyroptosis, which might greatly contribute to the development of pyroptosis nanomodulators.
Collapse
Affiliation(s)
- Youqing Ye
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Ren
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| | - Yuqin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dexin Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ziyang Yuan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ningyi Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
25
|
Zhang G, Ma C, He Q, Dong H, Cui L, Li L, Li L, Wang Y, Wang X. An efficient Pt@MXene platform for the analysis of small-molecule natural products. iScience 2023; 26:106622. [PMID: 37250310 PMCID: PMC10214401 DOI: 10.1016/j.isci.2023.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
Small-molecule (m/z<500) natural products have rich biological activity and significant application value thus need to be effectively detected. Surface-assisted laser desorption/ionization mass spectrometry (SALDI MS) has become a powerful detection tool for small-molecule analysis. However, more efficient substrates need to be developed to improve the efficiency of SALDI MS. Thus, platinum nanoparticle-decorated Ti3C2 MXene (Pt@MXene) was synthesized in this study as an ideal substrate for SALDI MS in positive ion mode and exhibited excellent performance for the high-throughput detection of small molecules. Compared with using MXene, GO, and CHCA matrix, a stronger signal peak intensity and wider molecular coverage was obtained using Pt@MXene in the detection of small-molecule natural products, with a lower background, excellent salt and protein tolerance, good repeatability, and high detection sensitivity. The Pt@MXene substrate was also successfully used to quantify target molecules in medicinal plants. The proposed method has potentially wide application.
Collapse
Affiliation(s)
- Guanhua Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Chunxia Ma
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Qing He
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Li Cui
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yan Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xiao Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| |
Collapse
|
26
|
Xiao M, Tang Q, Zeng S, Yang Q, Yang X, Tong X, Zhu G, Lei L, Li S. Emerging biomaterials for tumor immunotherapy. Biomater Res 2023; 27:47. [PMID: 37194085 DOI: 10.1186/s40824-023-00369-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/23/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND The immune system interacts with cancer cells in various intricate ways that can protect the individual from overproliferation of cancer cells; however, these interactions can also lead to malignancy. There has been a dramatic increase in the application of cancer immunotherapy in the last decade. However, low immunogenicity, poor specificity, weak presentation efficiency, and off-target side effects still limit its widespread application. Fortunately, advanced biomaterials effectively contribute immunotherapy and play an important role in cancer treatment, making it a research hotspot in the biomedical field. MAIN BODY This review discusses immunotherapies and the development of related biomaterials for application in the field. The review first summarizes the various types of tumor immunotherapy applicable in clinical practice as well as their underlying mechanisms. Further, it focuses on the types of biomaterials applied in immunotherapy and related research on metal nanomaterials, silicon nanoparticles, carbon nanotubes, polymer nanoparticles, and cell membrane nanocarriers. Moreover, we introduce the preparation and processing technologies of these biomaterials (liposomes, microspheres, microneedles, and hydrogels) and summarize their mechanisms when applied to tumor immunotherapy. Finally, we discuss future advancements and shortcomings related to the application of biomaterials in tumor immunotherapy. CONCLUSION Research on biomaterial-based tumor immunotherapy is booming; however, several challenges remain to be overcome to transition from experimental research to clinical application. Biomaterials have been optimized continuously and nanotechnology has achieved continuous progression, ensuring the development of more efficient biomaterials, thereby providing a platform and opportunity for breakthroughs in tumor immunotherapy.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
27
|
Keshavarz M, Alizadeh P, Kadumudi FB, Orive G, Gaharwar AK, Castilho M, Golafshan N, Dolatshahi-Pirouz A. Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21476-21495. [PMID: 37073785 PMCID: PMC10165608 DOI: 10.1021/acsami.3c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Several studies have shown that nanosilicate-reinforced scaffolds are suitable for bone regeneration. However, hydrogels are inherently too soft for load-bearing bone defects of critical sizes, and hard scaffolds typically do not provide a suitable three-dimensional (3D) microenvironment for cells to thrive, grow, and differentiate naturally. In this study, we bypass these long-standing challenges by fabricating a cell-free multi-level implant consisting of a porous and hard bone-like framework capable of providing load-bearing support and a softer native-like phase that has been reinforced with nanosilicates. The system was tested with rat bone marrow mesenchymal stem cells in vitro and as a cell-free system in a critical-sized rat bone defect. Overall, our combinatorial and multi-level implant design displayed remarkable osteoconductivity in vitro without differentiation factors, expressing significant levels of osteogenic markers compared to unmodified groups. Moreover, after 8 weeks of implantation, histological and immunohistochemical assays indicated that the cell-free scaffolds enhanced bone repair up to approximately 84% following a near-complete defect healing. Overall, our results suggest that the proposed nanosilicate bioceramic implant could herald a new age in the field of orthopedics.
Collapse
Affiliation(s)
- Mozhgan Keshavarz
- Department
of Materials Science and Engineering, Faculty of Engineering &
Technology, Tarbiat Modares University, P.O. Box 14115-143, Tehran 14115-143, Iran
- NanoBioCel
Research Group, School of Pharmacy, University
of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Parvin Alizadeh
- Department
of Materials Science and Engineering, Faculty of Engineering &
Technology, Tarbiat Modares University, P.O. Box 14115-143, Tehran 14115-143, Iran
| | - Firoz Babu Kadumudi
- DTU
Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Gorka Orive
- NanoBioCel
Research Group, School of Pharmacy, University
of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical
Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- University
Institute for Regenerative Medicine and Oral Implantology—UIRMI
(UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz 01006, Spain
- Bioaraba,
NanoBioCel Research Group, Vitoria-Gasteiz 01006, Spain
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College
Station, Texas TX 77843, United States
| | - Miguel Castilho
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
- Department
of Orthopedics, University Medical Center
Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Nasim Golafshan
- Department
of Orthopedics, University Medical Center
Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- DTU
Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
28
|
Xu H, Xu H, Ma S, Wei Y, He X, Guo C, Wang Y, Liang Z, Hu Y, Zhao L, Lian X, Huang D. Bifunctional electrospun poly (L-lactic acid) membranes incorporating black phosphorus nanosheets and nano-zinc oxide for enhanced biocompatibility and antibacterial properties in catheter materials. J Mech Behav Biomed Mater 2023; 142:105884. [PMID: 37148777 DOI: 10.1016/j.jmbbm.2023.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
For several decades, urinary tract infections caused by catheter-associated devices have negatively impacted not only medical device utilization, but also patient health. As such, the creation of catheter materials with both superior biocompatibility and antibacterial properties has become necessary. This study aimed to produce electrospun membranes based on polylactic acid (PLA) with the incorporation of black phosphorus nanosheets (BPNS) and nano-zinc oxide (nZnO) particles, as well as a mixture of both, in order to design bifunctional membranes with enhanced bioactivity and antibacterial features. The optimum spinning process was determined through examination of various PLA mass concentrations, spinning solution propelling speeds, and receiving drum rotating speeds, with emphasis on the mechanical properties of PLA membranes. Additionally, the antibacterial properties and cytocompatibility of the ZnO-BP/PLA antibacterial membranes were explored. Results demonstrated that the ZnO-BP/PLA antibacterial membranes displayed a rich porous structure, with uniform distribution of nZnO particles and BPNS. With the increase of polylactic acid concentration and the decrease of spinning solution advancing and drum rotation speeds, the mechanical properties of the fiber membrane were significantly improved. Furthermore, the composite membranes exhibited remarkable photothermal therapy (PTT) capabilities when aided by the synergistic effect of BP nanosheets and ZnO. This was achieved through near-infrared (NIR) irradiation, which not only dissipated the biofilm but also enhanced the release capability of Zn2+. Consequently, the composite membrane demonstrated an improved inhibitory effect on both Escherichia coli and Staphylococcus aureus. The results of cytotoxicity and adhesion experiments also indicated good cytocompatibility, with cells growing normally on the surface of the ZnO-BP/PLA antibacterial membrane. Overall, these findings validate the utilization of both BPNS and n-ZnO fillers in the creation of novel bifunctional PLA-based membranes, which possess both biocompatibility and antibacterial properties for interventional catheter materials.
Collapse
Affiliation(s)
- Haofeng Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Hao Xu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shilong Ma
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China.
| | - Xuhong He
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Chaiqiong Guo
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China.
| |
Collapse
|
29
|
Guo Z, Zhu AT, Fang RH, Zhang L. Recent Developments in Nanoparticle-Based Photo-Immunotherapy for Cancer Treatment. SMALL METHODS 2023; 7:e2300252. [PMID: 36960932 PMCID: PMC10192221 DOI: 10.1002/smtd.202300252] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Indexed: 05/17/2023]
Abstract
Phototherapy is an emerging approach for cancer treatment that is effective at controlling the growth of primary tumors. In the presence of light irradiation, photothermal and photodynamic agents that are delivered to tumor sites can induce local hyperthermia and the production of reactive oxygen species, respectively, that directly eradicate cancer cells. Nanoparticles, characterized by their small size and tunable physiochemical properties, have been widely utilized as carriers for phototherapeutic agents to improve their biocompatibility and tumor-targeted delivery. Nanocarriers can also be used to implement various codelivery strategies for further enhancing phototherapeutic efficiency. More recently, there has been considerable interest in augmenting the immunological effects of nanoparticle-based phototherapies, which can yield durable and systemic antitumor responses. This review provides an overview of recent developments in using nanoparticle technology to achieve photo-immunotherapy.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Audrey T Zhu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
30
|
Overchuk M, Weersink RA, Wilson BC, Zheng G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS NANO 2023; 17:7979-8003. [PMID: 37129253 PMCID: PMC10173698 DOI: 10.1021/acsnano.3c00891] [Citation(s) in RCA: 191] [Impact Index Per Article: 191.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumoricidal photodynamic (PDT) and photothermal (PTT) therapies harness light to eliminate cancer cells with spatiotemporal precision by either generating reactive oxygen species or increasing temperature. Great strides have been made in understanding biological effects of PDT and PTT at the cellular, vascular and tumor microenvironmental levels, as well as translating both modalities in the clinic. Emerging evidence suggests that PDT and PTT may synergize due to their different mechanisms of action, and their nonoverlapping toxicity profiles make such combination potentially efficacious. Moreover, PDT/PTT combinations have gained momentum in recent years due to the development of multimodal nanoplatforms that simultaneously incorporate photodynamically- and photothermally active agents. In this review, we discuss how combining PDT and PTT can address the limitations of each modality alone and enhance treatment safety and efficacy. We provide an overview of recent literature featuring dual PDT/PTT nanoparticles and analyze the strengths and limitations of various nanoparticle design strategies. We also detail how treatment sequence and dose may affect cellular states, tumor pathophysiology and drug delivery, ultimately shaping the treatment response. Lastly, we analyze common experimental design pitfalls that complicate preclinical assessment of PDT/PTT combinations and propose rational guidelines to elucidate the mechanisms underlying PDT/PTT interactions.
Collapse
Affiliation(s)
- Marta Overchuk
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Robert A Weersink
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
31
|
Zhang R, Ye Y, Wu J, Gao J, Huang W, Qin H, Tian H, Han M, Zhao B, Sun Z, Chen X, Dong X, Liu K, Liu C, Tu Y, Zhao S. Immunostimulant In Situ Fibrin Gel for Post-operative Glioblastoma Treatment by Macrophage Reprogramming and Photo-Chemo-Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17627-17640. [PMID: 37000897 DOI: 10.1021/acsami.3c00468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tumor recurrence remains the leading cause of treatment failure following surgical resection of glioblastoma (GBM). M2-like tumor-associated macrophages (TAMs) infiltrating the tumor tissue promote tumor progression and seriously impair the efficacy of chemotherapy and immunotherapy. In addition, designing drugs capable of crossing the blood-brain barrier and eliciting the applicable organic response is an ambitious challenge. Here, we propose an injectable nanoparticle-hydrogel system that uses doxorubicin (DOX)-loaded mesoporous polydopamine (MPDA) nanoparticles encapsulated in M1 macrophage-derived nanovesicles (M1NVs) as effectors and fibrin hydrogels as in situ delivery vehicles. In vivo fluorescence imaging shows that the hydrogel system triggers photo-chemo-immunotherapy to destroy remaining tumor cells when delivered to the tumor cavity of a model of subtotal GBM resection. Concomitantly, the result of flow cytometry indicated that M1NVs comprehensively improved the immune microenvironment by reprogramming M2-like TAMs to M1-like TAMs. This hydrogel system combined with a near-infrared laser effectively promoted the continuous infiltration of T cells, restored T cell effector function, inhibited the infiltration of myeloid-derived suppressor cells and regulatory T cells, and thereby exhibited a strong antitumor immune response and significantly inhibited tumor growth. Hence, MPDA-DOX-NVs@Gel (MD-NVs@Gel) presents a unique clinical strategy for the treatment of GBM recurrence.
Collapse
Affiliation(s)
- Ruotian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Yicheng Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianing Wu
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Junbin Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichang Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanfeng Qin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingyang Han
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Boyan Zhao
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Zhenying Sun
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xingli Dong
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Kun Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chang Liu
- Sport Science College, Beijing Sport University, Beijing 100091, China
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Shenzhen University General Hospital, Shenzhen 518000, China
| |
Collapse
|
32
|
Huang Q, Zhu W, Gao X, Liu X, Zhang Z, Xing B. Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Adv Drug Deliv Rev 2023; 195:114763. [PMID: 36841331 DOI: 10.1016/j.addr.2023.114763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Ion channels are transmembrane proteins ubiquitously expressed in all cells that control various ions (e.g. Na+, K+, Ca2+ and Cl- etc) crossing cellular plasma membrane, which play critical roles in physiological processes including regulating signal transduction, cell proliferation as well as excitatory cell excitation and conduction. Abnormal ion channel function is usually associated with dysfunctions and many diseases, such as neurodegenerative disorders, ophthalmic diseases, pulmonary diseases and even cancers. The precise regulation of ion channels not only helps to decipher physiological and pathological processes, but also is expected to become cutting-edge means for disease treatment. Recently, nanoparticles-mediated ion channel manipulation emerges as a highly promising way to meet the increasing requirements with respect to their simple, efficient, precise, spatiotemporally controllable and non-invasive regulation in biomedicine and other research frontiers. Thanks the advantages of their unique properties, nanoparticles can not only directly block the pore sites or kinetics of ion channels through their tiny size effect, and perturb active voltage-gated ion channel by their charged surface, but they can also act as antennas to conduct or enhance external physical stimuli to achieve spatiotemporal, precise and efficient regulation of various ion channel activities (e.g. light-, mechanical-, and temperature-gated ion channels etc). So far, nanoparticles-mediated ion channel regulation has shown potential prospects in many biomedical fields at the interfaces of neuro- and cardiovascular modulation, physiological function regeneration and tumor therapy et al. Towards such important fields, in this typical review, we specifically outline the latest studies of different types of ion channels and their activities relevant to the diseases. In addition, the different types of stimulation responsive nanoparticles, their interaction modes and targeting strategies towards the plasma membrane ion channels will be systematically summarized. More importantly, the ion channel regulatory methods mediated by functional nanoparticles and their bioapplications associated with physiological modulation and therapeutic development will be discussed. Last but not least, current challenges and future perspectives in this field will be covered as well.
Collapse
Affiliation(s)
- Qiwen Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weisheng Zhu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyin Gao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Liu
- School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhijun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
33
|
Su Y, Lu K, Huang Y, Zhang J, Sun X, Peng J, Zhou Y, Zhao L. Targeting Warburg effect to rescue the suffocated photodynamic therapy: A cancer-specific solution. Biomaterials 2023; 294:122017. [PMID: 36680943 DOI: 10.1016/j.biomaterials.2023.122017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
The cancer photodynamic therapy (PDT) is limited by a congenital defect, namely the tumor hypoxia. Cancer cells are characterized by the vigorous oxygen-consuming glycolysis, which is well-known as the "Warburg effect" and one of the primary causes for the hypoxia. Herein, we employed the glucose metabolism as the cancer-specific target to enhance the performance of PDT. The Salvianolic acid B as the inhibitor of glucose uptake and aerobic glycolysis was concomitantly delivered with the photosensitizer chlorin e6 by a redox-responsive organosilica cross-linked micelle. The results demonstrated that the Salvianolic acid B suppressed the glucose metabolism, retarded the oxygen consumption to retain adequate oxygen as the ammo for PDT, which remarkably improve the efficacy of PDT both in vitro and in vivo. Our study not only provides an alternative strategy to address the hypoxia problem for PDT, but also enhances the selectivity of the treatment by targeting the cancer-specific Warburg effect.
Collapse
Affiliation(s)
- Yaoquan Su
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Keqiang Lu
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Yuhang Huang
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Jingyu Zhang
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Yunyun Zhou
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
34
|
Liu L, Pan Y, Zhao C, Huang P, Chen X, Rao L. Boosting Checkpoint Immunotherapy with Biomaterials. ACS NANO 2023; 17:3225-3258. [PMID: 36746639 DOI: 10.1021/acsnano.2c11691] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The immune checkpoint blockade (ICB) therapy has revolutionized the field of cancer treatment, while low response rates and systemic toxicity limit its clinical outcomes. With the rapid advances in nanotechnology and materials science, various types of biomaterials have been developed to maximize therapeutic efficacy while minimizing side effects by increasing tumor antigenicity, reversing immunosuppressive microenvironment, amplifying antitumor immune response, and reducing extratumoral distribution of checkpoint inhibitors as well as enhancing their retention within target sites. In this review, we reviewed current design strategies for different types of biomaterials to augment ICB therapy effectively and then discussed present representative biomaterial-assisted immune modulation and targeted delivery of checkpoint inhibitors to boost ICB therapy. Current challenges and future development prospects for expanding the ICB with biomaterials were also summarized. We anticipate this review will be helpful for developing emerging biomaterials for ICB therapy and promoting the clinical application of ICB therapy.
Collapse
Affiliation(s)
- Lujie Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074
| | - Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
35
|
Li K, Yang D, Liu D. Targeted Nanophotoimmunotherapy Potentiates Cancer Treatment by Enhancing Tumor Immunogenicity and Improving the Immunosuppressive Tumor Microenvironment. Bioconjug Chem 2023; 34:283-301. [PMID: 36648963 DOI: 10.1021/acs.bioconjchem.2c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cancer immunotherapy, such as immune checkpoint blockade, chimeric antigen receptor, and cytokine therapy, has emerged as a robust therapeutic strategy activating the host immune system to inhibit primary and metastatic lesions. However, low tumor immunogenicity (LTI) and immunosuppressive tumor microenvironment (ITM) severely compromise the killing effect of immune cells on tumor cells, which fail to evoke a strong and effective immune response. As an exogenous stimulation therapy, phototherapy can induce immunogenic cell death (ICD), enhancing the therapeutic effect of tumor immunotherapy. However, the lack of tumor targeting and the occurrence of immune escape significantly reduce its efficacy in vivo, thus limiting its clinical application. Nanophotoimmunotherapy (nano-PIT) is a precision-targeted tumor treatment that co-loaded phototherapeutic agents and various immunotherapeutic agents by specifically targeted nanoparticles (NPs) to improve the effectiveness of phototherapy, reduce its phototoxicity, enhance tumor immunogenicity, and reverse the ITM. This review will focus on the theme of nano-PIT, introduce the current research status of nano-PIT on converting "cold" tumors to "hot" tumors to improve immune efficacy according to the classification of immunotherapy targets, and discuss the challenges, opportunities, and prospects.
Collapse
Affiliation(s)
- Kunwei Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Dan Yang
- Department of Pharmaceutical Sciences, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an 710021, China
| | - Dechun Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
36
|
Zhang L, Pan K, Huang S, Zhang X, Zhu X, He Y, Chen X, Tang Y, Yuan L, Yu D. Graphdiyne Oxide-Mediated Photodynamic Therapy Boosts Enhancive T-Cell Immune Responses by Increasing Cellular Stiffness. Int J Nanomedicine 2023; 18:797-812. [PMID: 36814858 PMCID: PMC9939947 DOI: 10.2147/ijn.s392998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
Purpose Nanomaterial-based photodynamic therapy (PDT) has been commonly used for the treatment of cancerous tumors. Despite significant achievements made in this field, the intrinsic impact of nanomaterials-based PDT on the mechanical properties of oral squamous cell carcinoma (OSCC) cells is not entirely understood. Here, we used atomic force microscopy (AFM) to measure the stiffness of OSCC cells subjected to PDT in co-culture systems to evaluate the T cell-mediated cancer cell-killing effects. Methods In this study, AFM was used to assess the stiffness of PDT-subjected cells. The phototoxicity of graphdiyne oxide (GDYO) was assessed using confocal laser scanning microscopy (CLSM), measurements of membrane cholesterol levels, and assessments of the F-actin cytoskeleton. A co-culture system was used to evaluate the effects of CD8+ T cells (cytotoxic T lymphocytes), demonstrating how PDT modulates the mechanical properties of cancer cells and activates T cell responses. The antitumor immunotherapeutic effect of GDYO was further evaluated in a murine xenograft model. Results GDYO increased the mechanical stiffness of tumor cells and augmented T-cell cytotoxicity and inflammatory cytokine secretion (IFN-γ and TNF-α) under laser in vitro. Furthermore, GDYO-based PDT exerted inhibitory effects on OSCC models and elicited antitumor immune responses via specific cytotoxic T cells. Conclusion These results highlight that GDYO is a promising candidate for OSCC therapy, shifting the mechanical forces of OSCC cells and breaking through the barriers of the immunosuppressive tumor microenvironment. Our study provides a novel perspective on nanomaterial-based antitumor therapies.
Collapse
Affiliation(s)
- Lejia Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Kuangwu Pan
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Siyuan Huang
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Xiliu Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Xinyu Zhu
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Yi He
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Xun Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Yuquan Tang
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Lingyu Yuan
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China,Correspondence: Dongsheng Yu, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China, Email
| |
Collapse
|
37
|
Yan W, Rafieerad A, Alagarsamy KN, Saleth LR, Arora RC, Dhingra S. Immunoengineered MXene nanosystem for mitigation of alloantigen presentation and prevention of transplant vasculopathy. NANO TODAY 2023; 48:None. [PMID: 37187503 PMCID: PMC10181944 DOI: 10.1016/j.nantod.2022.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/27/2022] [Accepted: 11/23/2022] [Indexed: 05/17/2023]
Abstract
MXenes are an emerging class of nanomaterials with significant potential for applications in nanomedicine. Amongst MXene technologies, titanium carbide (Ti3C2Tx) nanomaterials are the most mature and have received significant attention to tackle longstanding clinical challenges due to its tailored physical and material properties. Cardiac allograft vasculopathy is an aggressive form of atherosclerosis and a major cause of mortality among patients with heart transplants. Blood vessel endothelial cells (ECs) stimulate alloreactive T-lymphocytes to result in sustained inflammation. Herein, we report the first application of Ti3C2Tx MXene nanosheets for prevention of allograft vasculopathy. MXene nanosheets interacted with human ECs and downregulated the expression of genes involved in alloantigen presentation, and consequently reduced the activation of allogeneic lymphocytes. RNA-Seq analysis of lymphocytes showed that treatment with MXene downregulated genes responsible for transplant-induced T-cell activation, cell-mediated rejection, and development of allograft vasculopathy. In an in vivo rat model of allograft vasculopathy, treatment with MXene reduced lymphocyte infiltration and preserved medial smooth muscle cell integrity within transplanted aortic allografts. These findings highlight the potential of Ti3C2Tx MXene in treatment of allograft vasculopathy and inflammatory diseases.
Collapse
Affiliation(s)
- Weiang Yan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Alireza Rafieerad
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Rakesh C. Arora
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
- Correspondence to: Institute of Cardiovascular Sciences St. Boniface Hospital Research Centre Department of Physiology and Pathophysiology Rady Faculty of Health Sciences, University of Manitoba, R-3028-2, 351 Tache Avenue, Winnipeg R2H2A6, Canada.
| |
Collapse
|
38
|
Migliaccio V, Blal N, De Girolamo M, Mastronardi V, Catalano F, Di Gregorio I, Lionetti L, Pompa PP, Guarnieri D. Inter-Organelle Contact Sites Mediate the Intracellular Antioxidant Activity of Platinum Nanozymes: A New Perspective on Cell-Nanoparticle Interaction and Signaling. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3882-3893. [PMID: 36629473 PMCID: PMC9880958 DOI: 10.1021/acsami.2c22375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/30/2022] [Indexed: 05/25/2023]
Abstract
The catalytic and antioxidant properties of platinum nanoparticles (PtNPs) make them promising candidates for several applications in nanomedicine. However, an open issue, still shared among most nanomaterials, is the understanding on how internalized PtNPs, which are confined within endo-lysosomal compartments, can exert their activities. To address this problem, here we study the protective effect of 5 nm PtNPs on a human hepatic (HepG2) cell line exposed to dichlorodiphenylethylene (DDE) as a model of oxidative stress. Our results indicate that PtNPs are very efficient to reduce DDE-induced damage in HepG2 cells, in an extent that depends on DDE dose. PtNPs can contrast the unbalance of mitochondrial dynamics induced by DDE and increase the expression of the SOD2 mitochondrial enzyme that recovers cells from oxidative stress. Interestingly, in cells treated with PtNPs─alone or in combination with DDE─mitochondria form contact sites with a rough endoplasmic reticulum and endo-lysosomes containing nanoparticles. These findings indicate that the protective capability of PtNPs, through their intrinsic antioxidant properties and modulating mitochondrial functionality, is mediated by an inter-organelle crosstalk. This study sheds new light about the protective action mechanisms of PtNPs and discloses a novel nano-biointeraction mechanism at the intracellular level, modulated by inter-organelle communication and signaling.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Naym Blal
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Micaela De Girolamo
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Valentina Mastronardi
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Federico Catalano
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Ilaria Di Gregorio
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Lillà Lionetti
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Daniela Guarnieri
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| |
Collapse
|
39
|
Wang D, Peng Y, Li Y, Kpegah JKSK, Chen S. Multifunctional inorganic biomaterials: New weapons targeting osteosarcoma. Front Mol Biosci 2023; 9:1105540. [PMID: 36660426 PMCID: PMC9846365 DOI: 10.3389/fmolb.2022.1105540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Osteosarcoma is the malignant tumor with the highest incidence rate among primary bone tumors and with a high mortality rate. The anti-osteosarcoma materials are the cross field between material science and medicine, having a wide range of application prospects. Among them, biological materials, such as compounds from black phosphorous, magnesium, zinc, copper, silver, etc., becoming highly valued in the biological materials field as well as in orthopedics due to their good biocompatibility, similar mechanical properties with biological bones, good biodegradation effect, and active antibacterial and anti-tumor effects. This article gives a comprehensive review of the research progress of anti-osteosarcoma biomaterials.
Collapse
Affiliation(s)
- Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shijie Chen,
| | - Yi Peng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shijie Chen,
| | - Yuezhan Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland,*Correspondence: Shijie Chen,
| | | | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China,*Correspondence: Shijie Chen,
| |
Collapse
|
40
|
Zhao C, Han X, Wang S, Pan Z, Tang X, Jiang Z. Violet Phosphorus Nanosheet: A Biocompatible and Stable Platform for Stimuli-Responsive Multimodal Cancer Phototherapy. Adv Healthc Mater 2023; 12:e2201995. [PMID: 36285829 DOI: 10.1002/adhm.202201995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Indexed: 01/26/2023]
Abstract
As a functional 2D material, black phosphorus (BP) has garnered wide attention from many researchers in recent years. BP has a wide NIR absorption window and is a promising candidate for cancer phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT). However, due to its rapid degradation and short shelf-life in conventional water, the application of BP in the field of cancer therapy is limited. Violet phosphorus (VP), the more stable allotrope of phosphorus, has not yet been investigated for its function and biological application. In this study, VP nanosheets are successfully fabricated by liquid-phase exfoliation and demonstrated that their shelf-life in deionized water could be as long as 10 days, which is much longer than that of BP. Through in vivo and in vitro experiments, the PDT, PTT, and catalytic therapeutic effects of VP, as well as its excellent biosafety for the first time are shown. VP effectively inhibits tumor growth without causing major side effects. The current study provides new ideas and strategies for the biological application of 2D sheets of phosphorus isotope and lays the foundation for further studies on exploring the biomedical application of phosphorus isotopes.
Collapse
Affiliation(s)
- Chen Zhao
- School of Life Science, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao Han
- School of Life Science, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Shanshan Wang
- School of Life Science, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - ZhenYi Pan
- School of Life Science, Beijing University of Chemical Technology, Beijing, 100081, China
| | - Xiaoying Tang
- School of Life Science, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenqi Jiang
- School of Life Science, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
41
|
Patel T, Mohd Itoo A, Paul M, Purna Kondapaneni L, Ghosh B, Biswas S. Block HPMA-based pH-sensitive Gemcitabine Pro-drug Nanoaggregate for Cancer Treatment. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Wolfram A, Fuentes-Soriano P, Herold-Mende C, Romero-Nieto C. Boron- and phosphorus-containing molecular/nano platforms: exploiting pathological redox imbalance to fight cancer. NANOSCALE 2022; 14:17500-17513. [PMID: 36326151 DOI: 10.1039/d2nr03126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer is currently the second leading cause of death globally. Despite multidisciplinary efforts, therapies to fight various types of cancer still remain inefficient. Reducing high recurrence rates and mortality is thus a major challenge to tackle. In this context, redox imbalance is an undervalued characteristic of cancer. However, it may be targeted by boron- and phosphorus-containing materials to selectively or systemically fight cancer. In particular, boron and phosphorus derivatives are attractive building blocks for rational drug discovery due to their unique and wide regioselective chemistry, high degree of tuneability and chemical stability. Thus, they can be meticulously employed to access tunable molecular platforms to selectively exploit the redox imbalance of cancer cells towards necrosis/apoptosis. This field of research holds a remarkable potential; nevertheless, it is still in its infancy. In this mini-review, we underline recent advances in the development of boron- or phosphorus-derivatives as molecular/nano platforms for rational anticancer drug design. Our goal is to provide comprehensive information on different methodologies that bear an outstanding potential to further develop this very promising field of research.
Collapse
Affiliation(s)
- Anna Wolfram
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Pablo Fuentes-Soriano
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Carlos Romero-Nieto
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Multi-enzyme activity nanozymes for biosensing and disease treatment. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Xie Z, Duo Y, Fan T, Zhu Y, Feng S, Li C, Guo H, Ge Y, Ahmed S, Huang W, Liu H, Qi L, Guo R, Li D, Prasad PN, Zhang H. Light-induced tumor theranostics based on chemical-exfoliated borophene. LIGHT, SCIENCE & APPLICATIONS 2022; 11:324. [PMID: 36369148 PMCID: PMC9652458 DOI: 10.1038/s41377-022-00980-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 06/03/2023]
Abstract
Among 2D materials (Xenes) which are at the forefront of research activities, borophene, is an exciting new entry due to its uniquely varied optical, electronic, and chemical properties in many polymorphic forms with widely varying band gaps including the lightest 2D metallic phase. In this paper, we used a simple selective chemical etching to prepare borophene with a strong near IR light-induced photothermal effect. The photothermal efficiency is similar to plasmonic Au nanoparticles, with the added benefit of borophene being degradable due to electron deficiency of boron. We introduce this selective chemical etching process to obtain ultrathin and large borophene nanosheets (thickness of ~4 nm and lateral size up to ~600 nm) from the precursor of AlB2. We also report first-time observation of a selective Acid etching behavior showing HCl etching of Al to form a residual B lattice, while HF selectively etches B to yield an Al lattice. We demonstrate that through surface modification with polydopamine (PDA), a biocompatible smart delivery nanoplatform of B@PDA can respond to a tumor environment, exhibiting an enhanced cellular uptake efficiency. We demonstrate that borophene can be more suitable for safe photothermal theranostic of thick tumor using deep penetrating near IR light compared to gold nanoparticles which are not degradable, thus posing long-term toxicity concerns. With about 40 kinds of borides, we hope that our work will open door to more discoveries of this top-down selective etching approach for generating borophene structures with rich unexplored thermal, electronic, and optical properties for many other technological applications.
Collapse
Affiliation(s)
- Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Yanhong Duo
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Taojian Fan
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, 518020, Shenzhen, China
| | - Shuai Feng
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Chuanbo Li
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Honglian Guo
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Yanqi Ge
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Shakeel Ahmed
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University, 226019, Nantong, Jiangsu, China
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, 510632, Guangzhou, China
| | - Ling Qi
- Department of Core Medical Laboratory, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guang Dong Province, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, 510632, Guangzhou, China
| | - Defa Li
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Han Zhang
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China.
| |
Collapse
|
45
|
Oxygen-boosted biomimetic nanoplatform for synergetic phototherapy/ferroptosis activation and reversal of immune-suppressed tumor microenvironment. Biomaterials 2022; 290:121832. [PMID: 36228518 DOI: 10.1016/j.biomaterials.2022.121832] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022]
Abstract
Photodynamic therapy (PDT) induces apoptosis of cancer cells by generating cytotoxic reactive oxygen species, the therapeutic effect of which, however, is impeded by intrinsic/inducible apoptosis-resistant mechanisms in cancer cells and hypoxia of tumor microenvironment (TME); also, PDT-induced anti-tumor immunity activation is insufficient. To deal with these obstacles, a novel biomimetic nanoplatform is fabricated for the precise delivery of photosensitizer chlorin e6 (Ce6), hemin and PEP20 (CD47 inhibitory peptide), integrating oxygen-boosted PDT, ferroptosis activation and CD47-SIRPα blockade. Hemin's catalase-mimetic activity alleviates TME hypoxia and enhances PDT. The nanoplatform activates ferroptosis via both classical (down-regulating glutathione peroxidase 4 pathway) and non-classical (inducing Fe2+ overload) modes. Besides the role of hemin in consuming glutathione and up-regulating heme oxygenase-1 expression, interestingly, we observe that Ce6 enhance ferroptosis activation via both classical and non-classical modes. The anti-cancer immunity is reinforced by combining PEP20-mediated CD47-SIRPα blockade and PDT-mediated T cell activation, efficiently suppressing primary tumor growth and metastasis. PEP20 has been revealed for the first time to sensitize ferroptosis by down-regulating system Xc-. This work sheds new light on the mechanisms of PDT-ferroptosis activation interplay and bridges immunotherapy and ferroptosis activation, laying the theoretical foundation for novel combinational modes of cancer treatment.
Collapse
|
46
|
Tsukamoto T, Fujita Y, Shimogami M, Kaneda K, Seto T, Mizukami K, Takei M, Isobe Y, Yasui H, Sato K. Inside-the-body light delivery system using endovascular therapy-based light illumination technology. EBioMedicine 2022; 85:104289. [PMID: 36208989 PMCID: PMC9669774 DOI: 10.1016/j.ebiom.2022.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Background Light-based therapies are promising for treating diseases including cancer, hereditary conditions, and protein-related disorders. However, systems, methods, and devices that deliver light deep inside the body are limited. This study aimed to develop an endovascular therapy-based light illumination technology (ET-BLIT), capable of providing deep light irradiation within the body. Methods The ET-BLIT system consists of a catheter with a single lumen as a guidewire and diffuser, with a transparent section at the distal end for thermocouple head attachment. The optical light diffuser alters the emission direction laterally, according to the optical fibre's nose-shape angle. If necessary, after delivering the catheter to the target position in the vessel, the diffuser is inserted into the catheter and placed in the transparent section in the direction of the target lesion. Findings ET-BLIT was tested in an animal model. The 690-nm near-infrared (NIR) light penetrated the walls of blood vessels to reach the liver and kidneys without causing temperature increase, vessel damage, or blood component alterations. NIR light transmittance from the diffuser to the detector within the organ or vessel was approximately 30% and 65% for the renal and hepatic arteries, respectively. Interpretation ET-BLIT can be potentially used in clinical photo-based medicine, as a far-out technology. ET-BLIT uses a familiar method that can access the whole body, as the basic procedure is comparable to that of endovascular therapy in terms of sequence and technique. Therefore, the use of the ET-BLIT system is promising for many light-based therapies that are currently in the research phase. Funding Supported by Programme for Developing Next-generation Researchers (Japan Science and Technology Agency); JSPS KAKENHI (18K15923, 21K07217); JST-CREST (JPMJCR19H2); JST-FOREST-Souhatsu (JPMJFR2017); The Uehara Memorial Foundation; Yasuda Memorial Medical Foundation; Mochida Memorial Foundation for Medical and Pharmaceutical Research; Takeda Science Foundation; The Japan Health Foundation; Takahashi Industrial and Economic Research Foundation; AICHI Health Promotion Foundation; and Princess Takamatsu Cancer Research Fund.
Collapse
|
47
|
Chen H, Wang M, Huang W. Two-Dimensional Selenium Nanosheet-Based Sponges with Superior Hydrophobicity and Excellent Photothermal Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3756. [PMID: 36364530 PMCID: PMC9657928 DOI: 10.3390/nano12213756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Photothermally assisted superhydrophobic materials play an important role in a variety of applications, such as oil purification, waste oil collection, and solar desalination, due to their facile fabrication, low-cost, flexibility, and tunable thermal conversion. However, the current widely used superhydrophobic sponges with photothermal properties are usually impaired by a high loading content of photothermal agents (e.g., gold or silver nanoparticles, carbon nanotubes), low photothermal efficiency, and require harmful processes for modification. Here, a one-pot, simple composite consisting of two-dimensional (2D) selenium (Se) nanosheets (NSs) and commercially used melamine sponge (MS) is rationally designed and successfully fabricated by a facile dip-coating method via physical adsorption between 2D Se NSs and MS. The loading content of 2D Se NSs on the skeleton of the MS can be well controlled by dipping cycle. The results demonstrate that after the modification of 2D Se NSs on the MS, the wettability transition from hydrophilicity to hydrophobicity can be easily achieved, even at a very low loading of 2D Se NSs, and the highly stable photothermal conversion of the as-fabricated composites can be realized with a maximum temperature of 111 ± 3.2 °C due to the excellent photothermal effect of 2D Se NSs. It is anticipated that this composite will afford new design strategies for multifunctional porous structures for versatile applications, such as high-performance solar desalination and photothermal sterilization.
Collapse
Affiliation(s)
- Hongyan Chen
- Engineering Training Center, Nantong University, Nantong 226019, China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
48
|
Xu W, Pang C, Song C, Qian J, Feola S, Cerullo V, Fan L, Yu H, Lehto VP. Black porous silicon as a photothermal agent and immunoadjuvant for efficient antitumor immunotherapy. Acta Biomater 2022; 152:473-483. [PMID: 36087872 DOI: 10.1016/j.actbio.2022.08.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 02/06/2023]
Abstract
Photothermal therapy (PTT) in combination with other treatment modalities has shown great potential to activate immunotherapy against tumor metastasis. However, the nanoparticles (NPs) that generate PTT have served as the photothermal agent only. Moreover, researchers have widely utilized highly immunogenic tumor models to evaluate the immune response of these NPs thus giving over-optimistic results. In the present study black porous silicon (BPSi) NPs were developed to serve as both the photothermal agent and the adjuvant for PTT-based antitumor immunotherapy. We found that the poorly immunogenic tumor models such as B16 are more valid to evaluate NP-based immunotherapy than the widely used immunogenic models such as CT26. Based on the B16 cancer model, a cocktail regimen was developed that combined BPSi-based PTT with doxorubicin (DOX) and cytosine-phosphate-guanosine (CpG). BPSi-based PTT was an important trigger to activate the specific immunotherapy to inhibit tumor growth by featuring the selective upregulation of TNF-α. Either by adding a low dose DOX or by prolonging the laser heating time, a similar efficacy of immunotherapy was evoked to inhibit tumor growth. Moreover, BPSi acted as a co-adjuvant for CpG to significantly boost the immunotherapy. The present study demonstrates that the BPSi-based regimen is a potent and safe antitumor immunotherapy modality. Moreover, our study highlighted that tuning the laser heating parameters of PTT is an alternative to the toxic cytostatic to evoke immunotherapy, paving the way to optimize the PTT-based combination therapy for enhanced efficacy and decreased side effects. STATEMENT OF SIGNIFICANCE: Tumor metastasis causes directly or indirectly more than 90% of cancer deaths. Combination of photothermal therapy (PTT), chemotherapy and immunotherapy based on nanoparticles (NPs) has shown great potential to inhibit distant and metastatic tumors. However, these NPs typically act only as photothermal agents and many of them have been evaluated with immunogenic tumor models. The present study developed black porous silicon working as both the photothermal conversion agent and the immunoadjuvant to inhibit distant tumor. It was recognized that the poorly immunogenic tumor model B16 is more appropriate to evaluate immunotherapy than the widely used immunogenic model CT26. The coordination mechanism of the PTT-based combination therapy regimen was discovered in detail, paving the way to optimize cancer immunotherapy for enhanced efficacy and decreased side effects.
Collapse
Affiliation(s)
- Wujun Xu
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland.
| | - Cui Pang
- Department of Pharmaceutical Chemistry and Analysis, Airforce Medical University, 169th Changle West Road, Xi'an, Shaanxi 710032, China; Department of Oncology, The Air Force Hospital from Eastern Theater of PLA, Nanjing 210001, China
| | - Chaojun Song
- School of Life Science, Northwestern Polytechnical University, Xi'an 710032, China
| | - Jing Qian
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Sara Feola
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Vincenzo Cerullo
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, Airforce Medical University, 169th Changle West Road, Xi'an, Shaanxi 710032, China.
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland.
| |
Collapse
|
49
|
Bordy S, Byun J, Poulikakos LV. Nanophotonic materials: enabling targeted cancer diagnostics and therapeutics with light. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Ma S, Wang C, Dong Y, Jing W, Wei P, Peng C, Liu Z, Zhao B, Wang Y. Microsphere-Gel Composite System with Mesenchymal Stem Cell Recruitment, Antibacterial, and Immunomodulatory Properties Promote Bone Regeneration via Sequential Release of LL37 and W9 Peptides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38525-38540. [PMID: 35973165 DOI: 10.1021/acsami.2c10242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various types of biomaterials have been widely used to treat complex bone defects. However, potential infection risks and inappropriate host immune responses induced by biomaterials can adversely affect the final bone repair outcome. Therefore, the development of novel bone biomaterials with antibacterial and immunomodulatory capabilities is conducive to achieving a good interaction between the host and material, thereby creating a local microenvironment favorable for osteogenesis and ultimately accelerating bone regeneration. In this study, we fabricated a porcine small intestinal submucosa (SIS) hydrogel containing LL37 peptides and polylactic-glycolic acid (PLGA) microspheres encapsulated with WP9QY(W9) peptide (LL37-W9/PLGA-SIS), which can fill irregular bone defects and exhibits excellent mechanical properties. In vitro experiments showed that the microsphere-gel composite system had sequential drug release characteristics. The LL37 peptide released first had good antibacterial performance and BMSC recruitment ability, which could prevent infection at an early stage and increase the number of BMSCs at the injured site. In addition, it also has immunomodulatory properties, showing both pro-inflammatory and anti-inflammatory activities, but its early pro-inflammatory properties are more inclined to activate the M1 phenotype of macrophages. Moreover, the subsequently released W9 peptide not only reduced the expression of pro-inflammatory genes to alleviate inflammation and induced more macrophages to convert to M2 phenotypes but also promoted the osteogenic differentiation of BMSCs. This finely regulated immune response is considered to be more closely related to the physiological bone healing process. When studying the interaction between macrophages and BMSCs mediated by the material, it was found that the immunomodulatory and osteogenic effects were enhanced. In vivo experiments, we constructed rat skull defect models, which further proved that LL37-W9/PLGA-SIS gel can properly regulate the immune response, and has a good ability to promote osteogenesis in situ. In conclusion, the LL37-W9/PLGA-SIS hydrogel has great application prospects in immune regulation and bone therapy.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chuanwen Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Yifan Dong
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
- Foshan (Southern China) Institute for New Materials, Foshan 528220, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zihao Liu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| |
Collapse
|