1
|
Wang Y, Ai B, Jiang Y, Wang Z, Chen C, Xiao Z, Xiao G, Zhang G. Swiss roll nanoarrays for chiral plasmonic photocatalysis. J Colloid Interface Sci 2025; 678:818-826. [PMID: 39217697 DOI: 10.1016/j.jcis.2024.08.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Manipulating the chirality at nanoscale has drawn great attention among scientists, considering its pivotal role in various applications of current interest, including nano-optics, biomedicine, and photocatalysis. In this work, we delve into this arena by fabricating chiral Swiss roll nanoarray (SRNA) continuous films employing colloidal lithography. The technique permits the dimension of Swiss roll metamaterials to reduce to nanoscale, thus achieving chiroptical response (circular dichroism (CD)) in the visible region. The interplay between the CD signals and plasmon resonance modes is revealed through theoretical simulations, enabling a deep understanding of chiral plasmonic metamaterials. The polarization-sensitive photocatalytic activity of chiral SRNAs is investigated, noting a marked increase in the reaction rate when the chirality of SRNAs matches with the handedness of circularly polarized light (CPL). Notably, the SRNA continuous films based on substrate possess integration and reusability without complex recycling process, enhancing their practicality in applications like sensing and plasmonic nanochemistry, particularly toward polarization-dependent photocatalysis.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044, PR China
| | - Yun Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zengyao Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Chong Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zifan Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ge Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Gang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
2
|
Chaubey SK, Kumar R, Lalaguna PL, Kartau M, Bianco S, Tabouillot V, Thomson AR, Sutherland A, Lyutakov O, Gadegaard N, Karimullah AS, Kadodwala M. Ultrasensitive Raman Detection of Biomolecular Conformation at the Attomole Scale using Chiral Nanophotonics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404536. [PMID: 39045909 DOI: 10.1002/smll.202404536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Understanding the function of a biomolecule hinges on its 3D conformation or secondary structure. Chirally sensitive, optically active techniques based on the differential absorption of UV-vis circularly polarized light excel at rapid characterisation of secondary structures. However, Raman spectroscopy, a powerful method for determining the structure of simple molecules, has limited capacity for structural analysis of biomolecules because of intrinsically weak optical activity, necessitating millimolar (mM) sample quantities. A breakthrough is presented for utilising Raman spectroscopy in ultrasensitive biomolecular conformation detection, surpassing conventional Raman optical activity by 15 orders of magnitude. This strategy combines chiral plasmonic metasurfaces with achiral molecular Raman reporters and enables the detection of different conformations (α-helix and random coil) of a model peptide (poly-L/D-lysine) at the ≤attomole level (monolayer). This exceptional sensitivity stems from the ability to detect local, molecular-scale changes in the electromagnetic (EM) environment of a chiral nanocavity induced by the presence of biomolecules using molecular Raman reporters. Further signal enhancement is achieved by incorporating achiral Au nanoparticles. The introduction of the nanoparticles creates highly localized regions of extreme optical chirality. This approach, which exploits Raman, a generic phenomenon, paves the way for next-generation technologies for the ultrasensitive detection of diverse biomolecular structures.
Collapse
Affiliation(s)
- Shailendra K Chaubey
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rahul Kumar
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Paula L Lalaguna
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Martin Kartau
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Simona Bianco
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Victor Tabouillot
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew R Thomson
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew Sutherland
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Oleksiy Lyutakov
- Department of Solid-State Engineering, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Nikolaj Gadegaard
- James Watt School of Engineering, Rankine Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Affar S Karimullah
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Malcolm Kadodwala
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
3
|
Tian Y, Wu F, Lv X, Luan X, Li F, Xu G, Niu W. Enantioselective Surface-Enhanced Raman Scattering by Chiral Au Nanocrystals with Finely Modulated Chiral Fields and Internal Standards. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403373. [PMID: 39004880 DOI: 10.1002/adma.202403373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The chiral discrimination of enantiomers is crucial for drug screening and agricultural production. Surface-enhanced Raman scattering (SERS) is proposed for discriminating enantiomers benefiting from chiral plasmonic materials. However, the mechanism of enantioselective SERS is unclear, and fluctuating SERS intensities may result in errors. Herein, this work demonstrates a reliable SERS substrate using chiral Au nanocrystals with finely modulated chiral fields and internal standards. Chiral electromagnetic fields are enhanced after modulation, which is conducive to increasing the difference in the enantiomeric SERS intensity, as evidenced by the experimental and simulation results. Furthermore, the SERS stability is improved by the corrective effect of the internal standards, and the relative standard deviation is significantly reduced. Using finely modulated chiral fields and internal standards, L- and D-phenylalanine exhibit a stable six times difference in SERS ratio. Theoretical simulations reveal that linearly polarized light can also excite the chiral fields of chiral Au nanocrystals, indicating non-chiral far-field light is converted into chiral near-field sources by chiral Au nanocrystals. Thus, the mechanism of enantioselective SERS can be elucidated by the scattering difference of chiral molecules in chiral near fields. This study will pave the way for the development of enantioselective SERS and related chiroptical technologies.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiali Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoxi Luan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Kim RM, Han JH, Lee SM, Kim H, Lim YC, Lee HE, Ahn HY, Lee YH, Ha IH, Nam KT. Chiral plasmonic sensing: From the perspective of light-matter interaction. J Chem Phys 2024; 160:061001. [PMID: 38341778 DOI: 10.1063/5.0178485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/07/2024] [Indexed: 02/13/2024] Open
Abstract
Molecular chirality is represented as broken mirror symmetry in the structural orientation of constituent atoms and plays a pivotal role at every scale of nature. Since the discovery of the chiroptic property of chiral molecules, the characterization of molecular chirality is important in the fields of biology, physics, and chemistry. Over the centuries, the field of optical chiral sensing was based on chiral light-matter interactions between chiral molecules and polarized light. Starting from simple optics-based sensing, the utilization of plasmonic materials that could control local chiral light-matter interactions by squeezing light into molecules successfully facilitated chiral sensing into noninvasive, ultrasensitive, and accurate detection. In this Review, the importance of plasmonic materials and their engineering in chiral sensing are discussed based on the principle of chiral light-matter interactions and the theory of optical chirality and chiral perturbation; thus, this Review can serve as a milestone for the proper design and utilization of plasmonic nanostructures for improved chiral sensing.
Collapse
Affiliation(s)
- Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Min Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Wallace S, Kartau M, Kakkar T, Davis C, Szemiel A, Samardzhieva I, Vijayakrishnan S, Cole S, De Lorenzo G, Maillart E, Gautier K, Lapthorn AJ, Patel AH, Gadegaard N, Kadodwala M, Hutchinson E, Karimullah AS. Multiplexed Biosensing of Proteins and Virions with Disposable Plasmonic Assays. ACS Sens 2023; 8:3338-3348. [PMID: 37610841 PMCID: PMC10521139 DOI: 10.1021/acssensors.2c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Our growing ability to tailor healthcare to the needs of individuals has the potential to transform clinical treatment. However, the measurement of multiple biomarkers to inform clinical decisions requires rapid, effective, and affordable diagnostics. Chronic diseases and rapidly evolving pathogens in a larger population have also escalated the need for improved diagnostic capabilities. Current chemical diagnostics are often performed in centralized facilities and are still dependent on multiple steps, molecular labeling, and detailed analysis, causing the result turnaround time to be over hours and days. Rapid diagnostic kits based on lateral flow devices can return results quickly but are only capable of detecting a handful of pathogens or markers. Herein, we present the use of disposable plasmonics with chiroptical nanostructures as a platform for low-cost, label-free optical biosensing with multiplexing and without the need for flow systems often required in current optical biosensors. We showcase the detection of SARS-CoV-2 in complex media as well as an assay for the Norovirus and Zika virus as an early developmental milestone toward high-throughput, single-step diagnostic kits for differential diagnosis of multiple respiratory viruses and any other emerging diagnostic needs. Diagnostics based on this platform, which we term "disposable plasmonics assays," would be suitable for low-cost screening of multiple pathogens or biomarkers in a near-point-of-care setting.
Collapse
Affiliation(s)
- Stephanie Wallace
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Martin Kartau
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Tarun Kakkar
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Agnieszka Szemiel
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Iliyana Samardzhieva
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Swetha Vijayakrishnan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Sarah Cole
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Emmanuel Maillart
- HORIBA France SAS, 14, Boulevard Thomas Gobert-Passage Jobin Yvon, CS 45002, 91120 Palaiseau, France
| | - Kevin Gautier
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Adrian J Lapthorn
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Nikolaj Gadegaard
- James Watt School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, G12 8LT Glasgow, U.K
| | - Malcolm Kadodwala
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Affar S Karimullah
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| |
Collapse
|
6
|
Li D, Xu C, Xie J, Lee C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2377. [PMID: 37630962 PMCID: PMC10458771 DOI: 10.3390/nano13162377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Junsheng Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| |
Collapse
|
7
|
Xu C, Ren Z, Zhou H, Zhou J, Ho CP, Wang N, Lee C. Expanding chiral metamaterials for retrieving fingerprints via vibrational circular dichroism. LIGHT, SCIENCE & APPLICATIONS 2023; 12:154. [PMID: 37357238 DOI: 10.1038/s41377-023-01186-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/27/2023]
Abstract
Circular dichroism (CD) spectroscopy has been widely demonstrated for detecting chiral molecules. However, the determination of chiral mixtures with various concentrations and enantiomeric ratios can be a challenging task. To solve this problem, we report an enhanced vibrational circular dichroism (VCD) sensing platform based on plasmonic chiral metamaterials, which presents a 6-magnitude signal enhancement with a selectivity of chiral molecules. Guided by coupled-mode theory, we leverage both in-plane and out-of-plane symmetry-breaking structures for chiral metamaterial design enabled by a two-step lithography process, which increases the near-field coupling strengths and varies the ratio between absorption and radiation loss, resulting in improved chiral light-matter interaction and enhanced molecular VCD signals. Besides, we demonstrate the thin-film sensing process of BSA and β-lactoglobulin proteins, which contain secondary structures α-helix and β-sheet and achieve a limit of detection down to zeptomole level. Furthermore, we also, for the first time, explore the potential of enhanced VCD spectroscopy by demonstrating a selective sensing process of chiral mixtures, where the mixing ratio can be successfully differentiated with our proposed chiral metamaterials. Our findings improve the sensing signal of molecules and expand the extractable information, paving the way toward label-free, compact, small-volume chiral molecule detection for stereochemical and clinical diagnosis applications.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Chong Pei Ho
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Nan Wang
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore.
- NUS Graduate School for Integrative Science and Engineering Program (ISEP), National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
8
|
Han JH, Lim YC, Kim RM, Lv J, Cho NH, Kim H, Namgung SD, Im SW, Nam KT. Neural-Network-Enabled Design of a Chiral Plasmonic Nanodimer for Target-Specific Chirality Sensing. ACS NANO 2023; 17:2306-2317. [PMID: 36648062 DOI: 10.1021/acsnano.2c08867] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Quantitative analysis of chiral molecules in various solvents is essential. However, there are still many challenges to enhancing the sensitivity in precisely determining both concentration and chirality. Here, we built an algorithmic methodology to predict and optimally design the chiroptical response of chiral plasmonic sensors for a specific target chiral analyte with the aid of deep learning. Based upon the analytic and intuitive understanding of the Born-Kuhn type plasmonic nanodimer, we designed and trained the neural networks that can successfully predict the chiroptical properties and further inversely design the plasmonic structure to achieve the intended circular dichroism. The developed algorithm could identify the optimum structure exhibiting the maximum sensitivity for the given specific analytes. Surprisingly, we discovered that sensitivity strongly depends on the various conditions of analytes and can be finely tuned with the structural parameters of plasmonic nanodimers. We envision that this study can provide a general platform to develop ultrasensitive chiral plasmonic sensors whose structure and sensitivity have been evolved algorithmically for adoption in specific applications.
Collapse
Affiliation(s)
- Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Jiawei Lv
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Seok Daniel Namgung
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
9
|
Green D, Forbes KA. Optical chirality of vortex beams at the nanoscale. NANOSCALE 2023; 15:540-552. [PMID: 36530138 DOI: 10.1039/d2nr05426d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work we undertake a systematic study of the optical chirality density of Laguerre-Gaussian and Bessel laser beams tightly focused into nanoscale volumes. In particular we highlight the unique contributions to optical chirality from longitudinal electromagnetic fields, i.e. light that is polarised in the direction of propagation. The influence that polarisation, spin and orbital angular momentum, radial index, degree of focusing, and diffraction has on the optical chirality is studied. The results show that the optical chirality of structured light beams at the nanoscale is significantly richer than that of the well-known circularly polarised propagating plane wave. The work lays the foundation for chiral nanophotonics, and chiral quantum optics based on structured light illumination.
Collapse
Affiliation(s)
- Dale Green
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
| | - Kayn A Forbes
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
| |
Collapse
|
10
|
Tabouillot V, Kumar R, Lalaguna PL, Hajji M, Clarke R, Karimullah AS, Thomson AR, Sutherland A, Gadegaard N, Hashiyada S, Kadodwala M. Near-Field Probing of Optical Superchirality with Plasmonic Circularly Polarized Luminescence for Enhanced Bio-Detection. ACS PHOTONICS 2022; 9:3617-3624. [PMID: 36411820 PMCID: PMC9673156 DOI: 10.1021/acsphotonics.2c01073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Nanophotonic platforms in theory uniquely enable < femtomoles of chiral biological and pharmaceutical molecules to be detected, through the highly localized changes in the chiral asymmetries of the near fields that they induce. However, current chiral nanophotonic based strategies are intrinsically limited because they rely on far field optical measurements that are sensitive to a much larger near field volume, than that influenced by the chiral molecules. Consequently, they depend on detecting small changes in far field optical response restricting detection sensitivities. Here, we exploit an intriguing phenomenon, plasmonic circularly polarized luminescence (PCPL), which is an incisive local probe of near field chirality. This allows the chiral detection of monolayer quantities of a de novo designed peptide, which is not achieved with a far field response. Our work demonstrates that by leveraging the capabilities of nanophotonic platforms with the near field sensitivity of PCPL, optimal biomolecular detection performance can be achieved, opening new avenues for nanometrology.
Collapse
Affiliation(s)
- Victor Tabouillot
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Rahul Kumar
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Paula L. Lalaguna
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Maryam Hajji
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Rebecca Clarke
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Affar S. Karimullah
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Andrew R. Thomson
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Andrew Sutherland
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Nikolaj Gadegaard
- School
of Engineering, Rankine Building, University
of Glasgow, GlasgowG12 8LT, U.K.
| | - Shun Hashiyada
- Department
of Electrical, Electronic, and Communication Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-Ku, Tokyo112-8551, Japan
| | - Malcolm Kadodwala
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| |
Collapse
|
11
|
Wang Y, Ai B, Wang Z, Guan Y, Chen X, Zhang G. Chiral nanohelmet array films with Three-Dimensional (3D) resonance cavities. J Colloid Interface Sci 2022; 626:334-344. [DOI: 10.1016/j.jcis.2022.06.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
|
12
|
Kim T, Kwak S, Hwang M, Hong J, Choi J, Yeom B, Kim Y. Recognition of 3D Chiral Microenvironments for Myoblast Differentiation. ACS Biomater Sci Eng 2022; 8:4230-4235. [PMID: 36169613 DOI: 10.1021/acsbiomaterials.2c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell chirality plays a critical role in the linkage between molecular chirality and the asymmetrical biological functions of body organs. However, enantioselective interactions between cell chirality and the extracellular environment are not yet fully understood. In this study, we investigated the effects of structurally chiral extracellular microenvironments on cellular alignments and differentiations. Twisted wrinkle-shaped chiral micropatterns were prepared using biaxial and asymmetric buckling methods, wherein structural handedness was determined from the orientation of the tilt angle between the first and second microwrinkles. Myoblasts were separately cultured on two enantiomeric chiral micropatterns in a mirror-reflected shape. Cells cultured on the left-handed chiral micropatterns preferred alignments along the direction of the second microwrinkle, with a relatively deeper valley than that of the first microwrinkle. The aligned cells on the left-handed pattern showed higher differentiation rates, as assessed by fusion indices and marker protein expression levels, than those cultured on right-handed chiral micropatterns. These results suggest that myoblasts exhibit enantioselective recognition of structurally chiral microenvironments, which can promote cellular alignments and differentiation.
Collapse
Affiliation(s)
- Taeyeon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seran Kwak
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Myonghoo Hwang
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinwoo Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.,Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
13
|
Ji CY, Li X, Chen S, Liu X, Han Y, Hong X, Liang Q, Liu J, Li J. Recent progress on artificial propeller chirality and related circular dichroism engineering. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Hu J, Xiao Y, Zhou LM, Jiang X, Qiu W, Fei W, Chen Y, Zhan Q. Ultra-narrow-band circular dichroism by surface lattice resonances in an asymmetric dimer-on-mirror metasurface. OPTICS EXPRESS 2022; 30:16020-16030. [PMID: 36221455 DOI: 10.1364/oe.457661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 06/16/2023]
Abstract
Narrow-linewidth circular dichroism (CD) spectroscopy is a promising candidate to push the limits of molecular handedness detection toward a monolayer or even to a single molecule level. Here, we designed a hybrid metasurface consisting of a periodic array of symmetry-breaking dielectric dimers on a gold substrate, which can generate strong CD of 0.44 with an extremely-narrow linewidth of 0.40 nm in the near-infrared. We found that two surface lattice resonance modes can be excited in the designed metasurface, which can be superimposed in the crossing spectral region, enabling a remarkable differential absorption with a high Q-factor for circular polarizations. The multipole decomposition of the resonance modes shows that the magnetic dipole component contributes most to the CD. Our simulation results also show that the CD response of the chiral structure can be engineered by modulating the structural parameters to reach the optimal CD performance. Ultra-narrow-linewidth CD response offered by the proposed metasurface with dissymmetry provides new possibilities towards design of the high-sensitive polarization detecting, chiral sensing and efficient chiral light emitting devices.
Collapse
|
15
|
Therien DAB, Read ST, Rosendahl SM, Lagugné‐Labarthet F. Optical Resonances of Chiral Metastructures in the Mid‐infrared Spectral Range. Isr J Chem 2022. [DOI: 10.1002/ijch.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Denis A. B. Therien
- Department of Chemistry Western University The University of Western Ontario). 1151 Richmond Street London Ontario, N6A 5B7 Canada
| | - Stuart T. Read
- Canadian Light Source Inc. 44 Innovation Blvd Saskatoon Saskatchewan S7N 2V3 Canada
| | - Scott M. Rosendahl
- Canadian Light Source Inc. 44 Innovation Blvd Saskatoon Saskatchewan S7N 2V3 Canada
| | - François Lagugné‐Labarthet
- Department of Chemistry Western University The University of Western Ontario). 1151 Richmond Street London Ontario, N6A 5B7 Canada
| |
Collapse
|
16
|
Witzdam L, Meurer YL, Garay-Sarmiento M, Vorobii M, Söder D, Quandt J, Haraszti T, Rodriguez-Emmenegger C. Brush-Like Interface on Surface-Attached Hydrogels Repels Proteins and Bacteria. Macromol Biosci 2022; 22:e2200025. [PMID: 35170202 DOI: 10.1002/mabi.202200025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Indexed: 11/10/2022]
Abstract
Interfacing artificial materials with biological tissues remains a challenge. The direct contact of their surface with the biological milieu results in multiscale interactions, in which biomacromolecules adsorb and act as transducers mediating the interactions with cells and tissues. So far, only antifouling polymer brushes have been able to conceal the surface of synthetic materials. However, their complex synthesis has precluded their translation to applications. Here, we show that ultra-thin surface-attached hydrogel coatings of N-(2-hydroxypropyl) methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) provided the same level of protection as brushes. In spite of being readily applicable, these coatings prevented the fouling from whole blood plasma and provided a barrier to the adhesion of Gram positive and negative bacteria. The analysis of the components of the surface free energy and nanoindentation experiments revealed that the excellent antifouling properties stem from the strong surface hydrophilicity and the presence of a brush-like structure at the water interface. Moreover, these coatings could be functionalized to achieve antimicrobial activity while remaining stealth and non-cytotoxic to eukaryotic cells. Such level of performance was previously only achieved with brushes. Thus, we anticipate that this readily applicable strategy is a promising route to enhance the biocompatibility of real biomedical devices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lena Witzdam
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Yannick L Meurer
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany.,Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, 79110, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Chair of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen, 52074, Germany
| | - Mariia Vorobii
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Dominik Söder
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Jonas Quandt
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Tamás Haraszti
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | | |
Collapse
|
17
|
Cho J, Hwang M, Shin M, Oh J, Cho J, Son JG, Yeom B. Chiral Plasmonic Nanowaves by Tilted Assembly of Unidirectionally Aligned Block Copolymers with Buckling-Induced Microwrinkles. ACS NANO 2021; 15:17463-17471. [PMID: 34606232 DOI: 10.1021/acsnano.1c03752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral-structured nanoscale materials exhibit chiroptical properties with preferential absorptions of circularly polarized light. The distinctive optical responses of chiral materials have great potential for advanced optical and biomedical applications. However, the fabrication of three-dimensional structures with mirrored nanoscale geometry is still challenging. This study introduces chiral plasmonic nanopatterns in wavy shapes based on the unidirectional alignment of block copolymer thin films and their tilted transfer, combined with buckling processes. The cylindrical nanodomains of polystyrene-block-poly(2-vinylpyridine) thin films were unidirectionally aligned over a large area by the shear-rolling process. The aligned block copolymer thin films were transferred onto uniaxially prestrained polydimethylsiloxane films at certain angles relative to the stretching directions. The strain was then released to induce buckling. The aligned nanopatterns across the axis of the formed microwrinkles were selectively infiltrated with gold ions. After reduction by plasma treatment, chiral plasmonic nanowave patterns were fabricated with the presence of mirror-reflected circular dichroism spectra. This fabrication method does not require any lithography processing or innately chiral biomaterials, which can be advantageous over other conventional fabrication methods for artificial nanoscale chiral materials.
Collapse
Affiliation(s)
- Junghyun Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Myonghoo Hwang
- Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Minkyung Shin
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jinwoo Oh
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Gon Son
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
18
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
19
|
Detection of COVID-19 Virus on Surfaces Using Photonics: Challenges and Perspectives. Diagnostics (Basel) 2021. [PMID: 34205401 DOI: 10.3390/diagnostics11061119.(] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses. However, providing insights into the technical aspect also helps researchers identify the possibilities and difficulties in this field. The contents of this study were collected from six authoritative databases: Web of Science, IEEE Xplore, Science Direct, Scopus, PubMed Central, and Google Scholar. This review includes an analysis and summary of laser techniques to diagnose COVID-19 such as fluorescence methods, surface-enhanced Raman scattering, surface plasmon resonance, and integration of Raman scattering with SPR techniques. Finally, we select the best strategies that could potentially be the most effective methods of reducing epidemic spreading and improving healthcare in the environment.
Collapse
|
20
|
Taha BA, Al Mashhadany Y, Bachok NN, Ashrif A Bakar A, Hafiz Mokhtar MH, Dzulkefly Bin Zan MS, Arsad N. Detection of COVID-19 Virus on Surfaces Using Photonics: Challenges and Perspectives. Diagnostics (Basel) 2021; 11:1119. [PMID: 34205401 PMCID: PMC8234865 DOI: 10.3390/diagnostics11061119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses. However, providing insights into the technical aspect also helps researchers identify the possibilities and difficulties in this field. The contents of this study were collected from six authoritative databases: Web of Science, IEEE Xplore, Science Direct, Scopus, PubMed Central, and Google Scholar. This review includes an analysis and summary of laser techniques to diagnose COVID-19 such as fluorescence methods, surface-enhanced Raman scattering, surface plasmon resonance, and integration of Raman scattering with SPR techniques. Finally, we select the best strategies that could potentially be the most effective methods of reducing epidemic spreading and improving healthcare in the environment.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq;
| | - Nur Nadia Bachok
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Ahmad Ashrif A Bakar
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Mohd Hadri Hafiz Mokhtar
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Mohd Saiful Dzulkefly Bin Zan
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Norhana Arsad
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| |
Collapse
|