1
|
Wang D, Li YL, Zheng XR, Ji RN, Xie X, Song K, Lin FC, Li NN, Jiang Z, Liu C, Zheng YW, Wang SW, Lu W, Jia BH, Wang QH. Decimeter-depth and polarization addressable color 3D meta-holography. Nat Commun 2024; 15:8242. [PMID: 39300075 DOI: 10.1038/s41467-024-52267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Fueled by the rapid advancement of nanofabrication, metasurface has provided unprecedented opportunities for 3D holography. Large depth 3D meta-holography not only greatly increases information storage capacity, but also enables distinguishing of the relative spatial relationship of 3D objects, which has important applications in fields like optical information storage and medical diagnosis. Although the methods based on Fresnel diffraction theory can reconstruct the real depth information of 3D objects, the maximum depth is only 2 mm. Here, we develop a 3D meta-holography based on angular spectrum diffraction theory to break through the depth limit. By developing the angular spectrum diffraction theory into meta-holography, the metasurface structure with independent polarization control is used to create a polarization multiplexing 3D meta-hologram. The fabricated amorphous silicon metasurface increases the depth range by 47.5 times and realizes 0.95 dm depth reconstruction for polarization independent and different color 3D meta-hologram in visible. Such polarization controlled large-depth color meta-holography is expected to open avenue for data storage, display, information security and virtual reality.
Collapse
Affiliation(s)
- Di Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Yi-Long Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Xin-Ru Zheng
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ruo-Nan Ji
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.
| | - Xin Xie
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Kun Song
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Fan-Chuan Lin
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Nan-Nan Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Zhao Jiang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Chao Liu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Yi-Wei Zheng
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Shao-Wei Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Bao-Hua Jia
- Centre for Atomaterials and Nanomanufacturing, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Qiong-Hua Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
2
|
Chen S, Shu Y, Cao H, Wang D, Wan H, Gui C. Nondestructive Demolding of Structure-Designable High-Aspect-Ratio Nanoimprint Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39264266 DOI: 10.1021/acs.langmuir.4c02293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Demolding is a crucial step in nanoimprint lithography (NIL) for successfully transferring template structures onto resist materials. The process, however, is often hindered by the adhesion and friction between the template and resist, leading to inevitable defects on the replicas and posing challenges in replicating templates with high-aspect-ratio (HAR) structures. Here, we introduce a novel approach using the dissolvable template method to achieve the nondestructive demolding of structure-designable HAR nanoimprint templates. The templates were fabricated by the 3D lithography technology, employing a positive photoresist that can be easily dissolved in alkaline solutions after exposure to ultraviolet (UV) radiation. By implementing this method, we successfully transferred dense arrays of pillars with a minimal diameter of 1.2 μm and a significant aspect ratio of 18, as well as a microlens array diffuser with randomly distributed structural parameters. The dissolvable template method paves the way for stress-free demolding, broadening NIL's application range.
Collapse
Affiliation(s)
- Shuo Chen
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Shu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Cao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Deming Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Wan
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration, Wuhan University, Wuhan 430072, China
| | - Chengqun Gui
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Wu X, Lian H, Xia C, Deng J, Li X, Zhang C. Mechanistic insights and applications of lignin-based ultraviolet shielding composites: A comprehensive review. Int J Biol Macromol 2024; 280:135477. [PMID: 39250986 DOI: 10.1016/j.ijbiomac.2024.135477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Lignin is a green aromatic polymer constructed from repeating phenylpropane units, incorporating features such as phenolic hydroxyl groups, carbonyl groups, and conjugated double bonds that serve as chromophores. These structural attributes enable it to absorb a wide spectrum of ultraviolet radiation within the 250-400 nm range. The resulting properties make lignin a material of considerable interest for its potential applications in polymers, packaging, architectural decoration, and beyond. By examining the structure of lignin, this research delves into the structural influence on its UV-shielding capabilities. Through a comparative analysis of lignin's use in various UV-shielding applications, the study explores the interplay between lignin's structure and its interactions with other materials. This investigation aims to elucidate the UV-shielding mechanism, thereby offering insights that could inform the development of high-value applications for lignin in UV-shielding composite materials.
Collapse
Affiliation(s)
- Xinyu Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hailan Lian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junqian Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changhang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Kang H, Kim H, Kim K, Rho J. Printable Spin-Multiplexed Metasurfaces for Ultraviolet Holographic Displays. ACS NANO 2024. [PMID: 39096499 DOI: 10.1021/acsnano.4c06280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Multiplexed ultraviolet (UV) metaholograms, which are capable of displaying multiple holographic images from a single-layer device, are promising for enhancing tamper resistance and functioning as optical encryption devices. Despite considerable interest in optical security, the commercialization of UV metaholograms encounters obstacles, such as high-resolution patterning and material choices. Here, we realize spin-multiplexed UV metaholograms using a high-throughput printable platform that incorporates a zirconium dioxide (ZrO2) particle-embedded resin (PER). Utilizing ZrO2 PER, which is transparent and exhibits a refractive index of approximately 1.8 at 320 nm, we fabricated a single device capable of encoding dual holographic information depending on polarization states is fabricated. We demonstrate UV metaholograms achieving efficiencies of 56.23% with left circularly polarized incident beams and 57.28% with right circularly polarized incident beams. These multiplexed UV metaholograms fabricated using a one-step platform enable real-world applications in anticounterfeiting and encryption.
Collapse
Affiliation(s)
- Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyungtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- Nanomaterial Institute of National Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Menshikov E, Lazarenko P, Kovalyuk V, Dubkov S, Maslova N, Prokhodtsov A, Vorobyov A, Kozyukhin S, Goltsman G, Sinev IS. Reversible Laser Imprinting of Phase Change Photonic Structures in Integrated Waveguides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38345-38354. [PMID: 39010705 DOI: 10.1021/acsami.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Formation of laser-induced periodic surface structures (LIPSS) is known as a fast and robust method of functionalization of material surfaces. Of particular interest are LIPSS that manifest as periodic modulation of phase state of the material, as it implies reversibility of phase modification that constitute rewritable LIPSS, and recently was demonstrated for chalcogenide phase change materials (PCMs). Due to remarkable properties of chalcogenide PCMs─nonvolatality, prominent optical contrast and ns switching speed─such novel phase change LIPSS hold potential for exciting applications in all-optical tunable photonics. In this work we explore phase change LIPSS formation in thin films of Ge2Sb2Te5 (GST) integrated with planar and rib waveguides. We demonstrate that by fine-tuning laser radiation, the morphology of phase change LIPSS can be controlled, including their period and fill factor, and investigate the limitations of multicycle rewriting of the structures. We also demonstrate the formation of phase change LIPSS on a 1D waveguide, which has potential for use as tunable Bragg filters or structures for on-demand light decoupling into the far-field. The presented concept of applying phase change LIPSS offers a promising approach to enable fast and simple tuning in integrated photonic devices.
Collapse
Affiliation(s)
- Evgenii Menshikov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Department of Information Engineering, University of Brescia, Brescia 25123, Italy
- National Research University of Electronic Technology, Zelenograd 124498, Russia
| | - Petr Lazarenko
- National Research University of Electronic Technology, Zelenograd 124498, Russia
| | - Vadim Kovalyuk
- Laboratory of Photonic Gas Sensors, University of Science and Technology MISIS, Moscow 119049, Russia
- National Research University Higher School of Economics, Moscow 101000, Russia
| | - Sergey Dubkov
- National Research University of Electronic Technology, Zelenograd 124498, Russia
| | - Nadezhda Maslova
- IRC for Nanotechnology of the Science Park of St. Petersburg State University, St. Petersburg 199034, Russia
| | - Alexey Prokhodtsov
- National Research University of Electronic Technology, Zelenograd 124498, Russia
- Laboratory of Photonic Gas Sensors, University of Science and Technology MISIS, Moscow 119049, Russia
| | | | - Sergey Kozyukhin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gregory Goltsman
- National Research University Higher School of Economics, Moscow 101000, Russia
- Russian Quantum Center, Skolkovo 143025, Russia
| | - Ivan S Sinev
- Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Terekhov P, Chang S, Rahman MT, Shafi S, Ahn HJ, Zhao L, Ni X. Enhancing metasurface fabricability through minimum feature size enforcement. NANOPHOTONICS 2024; 13:3147-3154. [PMID: 39055568 PMCID: PMC11267437 DOI: 10.1515/nanoph-2024-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 07/27/2024]
Abstract
The metasurfaces have shown great potential for miniaturizing conventional optics while offering extended flexibility. Recently, there has been considerable interest in using algorithms to generate meta-atom shapes for these metasurfaces, as they offer vast design freedom and not biased by the human intuition. However, these complex designs significantly increase the difficulty of fabrication. To address this, we introduce a design process that rigorously enforces the fabricability of both the material-filled (fill) and empty (void) regions in a metasurface design. This process takes into account specific constraints regarding the minimum feature size for each region. Additionally, it corrects any violations of these constraints across the entire device, ensuring only minimal impact on performance. Our method provides a practical way to create metasurface designs that are easy to fabricate, even with complex shapes, hence improving the overall production yield of these advanced meta-optical components.
Collapse
Affiliation(s)
- Pavel Terekhov
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Shengyuan Chang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Md Tarek Rahman
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Sadman Shafi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Hyun-Ju Ahn
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Linghan Zhao
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Xingjie Ni
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| |
Collapse
|
7
|
Zhou H, Li D, Ren Z, Xu C, Wang LF, Lee C. Surface plasmons-phonons for mid-infrared hyperspectral imaging. SCIENCE ADVANCES 2024; 10:eado3179. [PMID: 38809968 PMCID: PMC11135386 DOI: 10.1126/sciadv.ado3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Surface plasmons have proven their ability to boost the sensitivity of mid-infrared hyperspectral imaging by enhancing light-matter interactions. Surface phonons, a counterpart technology to plasmons, present unclear contributions to hyperspectral imaging. Here, we investigate this by developing a plasmon-phonon hyperspectral imaging system that uses asymmetric cross-shaped nanoantennas composed of stacked plasmon-phonon materials. The phonon modes within this system, controlled by light polarization, capture molecular refractive index intensity and lineshape features, distinct from those observed with plasmons, enabling more precise and sensitive molecule identification. In a deep learning-assisted imaging demonstration of severe acute respiratory syndrome coronavirus (SARS-CoV), phonons exhibit enhanced identification capabilities (230,400 spectra/s), facilitating the de-overlapping and observation of the spatial distribution of two mixed SARS-CoV spike proteins. In addition, the plasmon-phonon system demonstrates increased identification accuracy (93%), heightened sensitivity, and enhanced detection limits (down to molecule monolayers). These findings extend phonon polaritonics to hyperspectral imaging, promising applications in imaging-guided molecule screening and pharmaceutical analysis.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, Jiangsu 215123, China
- NUS Graduate School–Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
8
|
Jeong M, Ko B, Jung C, Kim J, Jang J, Mun J, Lee J, Yun S, Kim S, Rho J. Printable Light-Emitting Metasurfaces with Enhanced Directional Photoluminescence. NANO LETTERS 2024; 24:5783-5790. [PMID: 38695397 DOI: 10.1021/acs.nanolett.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Nanoimprint lithography is gaining popularity as a cost-efficient way to reproduce nanostructures in large quantities. Recent advances in nanoimprinting lithography using high-index nanoparticles have demonstrated replication of photonic devices, but it is difficult to confer special properties on nanostructures beyond general metasurfaces. Here, we introduce a novel method for fabricating light-emitting metasurfaces using nanoimprinting lithography. By utilizing quantum dots embedded in resin, we successfully imprint dielectric metasurfaces that function simultaneously as both emitters and resonators. This approach to incorporating quantum dots into metasurfaces demonstrates an improvement in photoluminescence characteristics compared to the situation where quantum dots and metasurfaces are independently incorporated. Design of the metasurface is specifically tailored to support photonic modes within the emission band of quantum dots with a large enhancement of photoluminescence. This study indicates that nanoimprinting lithography has the capability to construct nanostructures using functionalized nanoparticles and could be used in various fields of nanophotonic applications.
Collapse
Affiliation(s)
- Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Jungho Mun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suhyeon Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
9
|
Zhang K, Lin Y, Qiu Y, Zhao X, Zheng S, Dong Y, Zhong Q, Hu T. Nanoimprinted TiO 2 Metasurfaces with Reduced Meta-Atom Aspect Ratio and Enhanced Performance for Holographic Imaging. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2273. [PMID: 38793343 PMCID: PMC11123217 DOI: 10.3390/ma17102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Metasurface holograms, with the capability to manipulate spatial light amplitudes and phases, are considered next-generation solutions for holographic imaging. However, conventional fabrication approaches for meta-atoms are heavily dependent on electron-beam lithography (EBL), a technique known for its expensive and time-consuming nature. In this paper, a polarization-insensitive metasurface hologram is proposed using a cost-effective and rapid nanoimprinting method with titanium dioxide (TiO2) nanoparticle loaded polymer (NLP). Based on a simulation, it has been found that, despite a reduction in the aspect ratio of meta-atoms of nearly 20%, which is beneficial to silicon master etching, NLP filling, and the mold release processes, imaging efficiency can go up to 54% at wavelength of 532 nm. In addition, it demonstrates acceptable imaging quality at wavelengths of 473 and 671 nm. Moreover, the influence of fabrication errors and nanoimprinting material degradation in terms of residual layer thickness, meta-atom loss or fracture, thermal-induced dimensional variation, non-uniform distribution of TiO2 particles, etc., on the performance is investigated. The simulation results indicate that the proposed device exhibits a high tolerance to these defects, proving its applicability and robustness in practice.
Collapse
Affiliation(s)
- Kaiyu Zhang
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Yuqi Lin
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Yang Qiu
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Xingyan Zhao
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Shaonan Zheng
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Yuan Dong
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Qize Zhong
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Ting Hu
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Gong J, Xiong L, Pu M, Li X, Ma X, Luo X. Visible Meta-Displays for Anti-Counterfeiting with Printable Dielectric Metasurfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308687. [PMID: 38342615 PMCID: PMC11077653 DOI: 10.1002/advs.202308687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/15/2024] [Indexed: 02/13/2024]
Abstract
Metasurfaces, 2D arrays of nanostructures, have gained significant attention in recent years due to their ability to manipulate light at the subwavelength scale. Their diverse applications range from advanced optical devices to sensing and imaging technologies. However, the mass production of dielectric metasurfaces with tailored properties for visible light has remained a challenge. Therefore, the demand for efficient and cost-effective fabrication methods for metasurfaces has driven the continuing development of various techniques. In this research article, a high-throughput production method is presented for multifunctional dielectric metasurfaces in the visible light range using one-step high-index TiO2-polymer composite (TPC) printing, which is a variant of nanoprinting lithography (NIL) for the direct replication of patterned multifunctional dielectric metasurfaces using a TPC material as the printing ink. The batch fabrication of dielectric metasurfaces is demonstrated with controlled geometry and excellent optical response, enabling high-performance light-matter interactions for potential applications of visible meta-displays.
Collapse
Affiliation(s)
- Jintao Gong
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
| | - Lingxing Xiong
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
- Key Laboratory for Information Science of Electromagnetic Waves (MoE)Fudan UniversityShanghai200433China
| | - Mingbo Pu
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiong Li
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiaoliang Ma
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiangang Luo
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
11
|
Kang H, Oh D, Jeon N, Kim J, Kim H, Badloe T, Rho J. Tailoring high-refractive-index nanocomposites for manufacturing of ultraviolet metasurfaces. MICROSYSTEMS & NANOENGINEERING 2024; 10:53. [PMID: 38654843 PMCID: PMC11035676 DOI: 10.1038/s41378-024-00681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 04/26/2024]
Abstract
Nanoimprint lithography (NIL) has been utilized to address the manufacturing challenges of high cost and low throughput for optical metasurfaces. To overcome the limitations inherent in conventional imprint resins characterized by a low refractive index (n), high-n nanocomposites have been introduced to directly serve as meta-atoms. However, comprehensive research on these nanocomposites is notably lacking. In this study, we focus on the composition of high-n zirconium dioxide (ZrO2) nanoparticle (NP) concentration and solvents used to produce ultraviolet (UV) metaholograms and quantify the transfer fidelity by the measured conversion efficiency. The utilization of 80 wt% ZrO2 NPs in MIBK, MEK, and acetone results in conversion efficiencies of 62.3%, 51.4%, and 61.5%, respectively, at a wavelength of 325 nm. The analysis of the solvent composition and NP concentration can further enhance the manufacturing capabilities of high-n nanocomposites in NIL, enabling potential practical use of optical metasurfaces.
Collapse
Affiliation(s)
- Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Dongkyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Trevon Badloe
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang, Republic of Korea
| |
Collapse
|
12
|
Zhou J, Jiang L, Yu G, Wang J, Wu Y, Wang J. Solution to the issue of high-order diffraction images for cylindrical computer-generated holograms. OPTICS EXPRESS 2024; 32:14978-14993. [PMID: 38859160 DOI: 10.1364/oe.518935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 06/12/2024]
Abstract
The cylindrical computer-generated hologram (CCGH), featuring a 360° viewing zone, has garnered widespread attention. However, the issue of high-order diffraction images due to pixelated structure in CCGH has not been previously reported and solved. For a cylindrical model offering a 360° viewing zone in the horizontal direction, the high-order diffraction images always overlap with the reconstruction image, leading to quality degradation. Furthermore, the 4f system is commonly used to eliminate high-order diffraction images in planar CGH, but its implementation is predictably complex for a cylindrical model. In this paper, we propose a solution to the issue of high-order diffraction images for CCGH. We derive the cylindrical diffraction formula from the outer hologram surface to the inner object surface in the spectral domain, and based on this, we subsequently analyze the effects brought by the pixel structure and propose the high-order diffraction model. Based on the proposed high-order diffraction model, we use the gradient descent method to optimize CCGH accounting for all diffraction orders simultaneously. Furthermore, we discuss the issue of circular convolution due to the periodicity of the Fast Fourier Transform (FFT) in cylindrical diffraction. The correctness of the proposed high-order diffraction model and the effectiveness of the proposed optimization method are demonstrated by numerical simulation. To our knowledge, this is the first time that the issue of high-order diffraction images in CCGH has been proposed, and we believe our solution can offer valuable guidance to practitioners in the field.
Collapse
|
13
|
Kim J, Kim H, Kang H, Kim W, Chen Y, Choi J, Lee H, Rho J. A water-soluble label for food products prevents packaging waste and counterfeiting. NATURE FOOD 2024; 5:293-300. [PMID: 38575840 DOI: 10.1038/s43016-024-00957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
Sustainability, humidity sensing and product origin are important features of food packaging. While waste generated from labelling and packaging causes environmental destruction, humidity can result in food spoilage during delivery and counterfeit-prone labelling undermines consumer trust. Here we introduce a food label based on a water-soluble nanocomposite ink with a high refractive index that addresses these issues. By patterning the nanocomposite ink using nanoimprint lithography, the resultant metasurface shows bright and vivid structural colours. This method makes it possible to quickly and inexpensively create patterns on large surfaces. A QR code is also developed that can provide up-to-date information on food products. Microprinting hidden in the QR code protects against counterfeiting, cannot be physically detached or replicated and may be used as a humidity indicator. Our proposed food label can reduce waste while ensuring customers receive accurate product information.
Collapse
Affiliation(s)
- Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Wonjoong Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Yi Chen
- Materials, Engineering and Manufacturing Research Group, Scion, Rotorua, New Zealand
| | - Jonghyun Choi
- Bioengineering Technology Group, The New Zealand Institute for Plant & Food Research, Hamilton, New Zealand.
| | - Heon Lee
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea.
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea.
- National Institute of Nanomaterials Technology (NINT), Pohang, Republic of Korea.
| |
Collapse
|
14
|
Park JS, Lim SWD, Amirzhan A, Kang H, Karrfalt K, Kim D, Leger J, Urbas A, Ossiander M, Li Z, Capasso F. All-Glass 100 mm Diameter Visible Metalens for Imaging the Cosmos. ACS NANO 2024; 18:3187-3198. [PMID: 38230651 PMCID: PMC10832996 DOI: 10.1021/acsnano.3c09462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Metasurfaces, optics made from subwavelength-scale nanostructures, have been limited to millimeter-sizes by the scaling challenge of producing vast numbers of precisely engineered elements over a large area. In this study, we demonstrate an all-glass 100 mm diameter metasurface lens (metalens) comprising 18.7 billion nanostructures that operates in the visible spectrum with a fast f-number (f/1.5, NA = 0.32) using deep-ultraviolet (DUV) projection lithography. Our work overcomes the exposure area constraints of lithography tools and demonstrates that large metasurfaces are commercially feasible. Additionally, we investigate the impact of various fabrication errors on the imaging quality of the metalens, several of which are specific to such large area metasurfaces. We demonstrate direct astronomical imaging of the Sun, the Moon, and emission nebulae at visible wavelengths and validate the robustness of such metasurfaces under extreme environmental thermal swings for space applications.
Collapse
Affiliation(s)
- Joon-Suh Park
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Soon Wei Daniel Lim
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Arman Amirzhan
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hyukmo Kang
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Karlene Karrfalt
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
- Air
Force Research Laboratory, Wright-Patterson
Air Force Base, Dayton, Ohio 45433, United States
| | - Daewook Kim
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Joel Leger
- Air
Force Research Laboratory, Wright-Patterson
Air Force Base, Dayton, Ohio 45433, United States
| | - Augustine Urbas
- Air
Force Research Laboratory, Wright-Patterson
Air Force Base, Dayton, Ohio 45433, United States
| | - Marcus Ossiander
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Institute
of Experimental Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Zhaoyi Li
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Federico Capasso
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
15
|
Zhang C, Chen L, Lin Z, Song J, Wang D, Li M, Koksal O, Wang Z, Spektor G, Carlson D, Lezec HJ, Zhu W, Papp S, Agrawal A. Tantalum pentoxide: a new material platform for high-performance dielectric metasurface optics in the ultraviolet and visible region. LIGHT, SCIENCE & APPLICATIONS 2024; 13:23. [PMID: 38246925 PMCID: PMC10800353 DOI: 10.1038/s41377-023-01330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 01/23/2024]
Abstract
Dielectric metasurfaces, composed of planar arrays of subwavelength dielectric structures that collectively mimic the operation of conventional bulk optical elements, have revolutionized the field of optics by their potential in constructing high-efficiency and multi-functional optoelectronic systems on chip. The performance of a dielectric metasurface is largely determined by its constituent material, which is highly desired to have a high refractive index, low optical loss and wide bandgap, and at the same time, be fabrication friendly. Here, we present a new material platform based on tantalum pentoxide (Ta2O5) for implementing high-performance dielectric metasurface optics over the ultraviolet and visible spectral region. This wide-bandgap dielectric, exhibiting a high refractive index exceeding 2.1 and negligible extinction coefficient across a broad spectrum, can be easily deposited over large areas with good quality using straightforward physical vapor deposition, and patterned into high-aspect-ratio subwavelength nanostructures through commonly-available fluorine-gas-based reactive ion etching. We implement a series of high-efficiency ultraviolet and visible metasurfaces with representative light-field modulation functionalities including polarization-independent high-numerical-aperture lensing, spin-selective hologram projection, and vivid structural color generation, and the devices exhibit operational efficiencies up to 80%. Our work overcomes limitations faced by scalability of commonly-employed metasurface dielectrics and their operation into the visible and ultraviolet spectral range, and provides a novel route towards realization of high-performance, robust and foundry-manufacturable metasurface optics.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Lu Chen
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
- University of Maryland, College Park, MD, 20742, USA
| | - Zhelin Lin
- School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Junyeob Song
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Danyan Wang
- School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Moxin Li
- School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Okan Koksal
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Zi Wang
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
- University of Maryland, College Park, MD, 20742, USA
| | - Grisha Spektor
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - David Carlson
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Henri J Lezec
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Wenqi Zhu
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
- University of Maryland, College Park, MD, 20742, USA
| | - Scott Papp
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Amit Agrawal
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
16
|
Latif S, Kim J, Khaliq HS, Mahmood N, Ansari MA, Chen X, Akbar J, Badloe T, Zubair M, Massoud Y, Mehmood MQ, Rho J. Spin-Selective Angular Dispersion Control in Dielectric Metasurfaces for Multichannel Meta-Holographic Displays. NANO LETTERS 2024; 24:708-714. [PMID: 38165767 DOI: 10.1021/acs.nanolett.3c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Angle-dependent next-generation displays have potential applications in 3D stereoscopic and head-mounted displays, image combiners, and encryption for augmented reality (AR) and security. Metasurfaces enable such exceptional functionalities with groundbreaking achievements in efficient displays over the past decades. However, limitations in angular dispersion control make them unfit for numerous nanophotonic applications. Here, we propose a spin-selective angle-dependent all-dielectric metasurface with a unique design strategy to manifest distinct phase information at different incident angles of light. As a proof of concept, the phase masks of two images are encoded into the metasurface and projected at the desired focal plane under different angles of left circularly polarized (LCP) light. Specifically, the proposed multifunctional metasurface generates two distinct holographic images under LCP illumination at angles of +35 and -35°. The presented holographic displays may provide a feasible route toward multifunctional meta-devices for potential AR displays, encrypted imaging, and information storage applications.
Collapse
Affiliation(s)
- Sabiha Latif
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Ferozepur Road, Lahore 54600, Pakistan
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hafiz Saad Khaliq
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Ferozepur Road, Lahore 54600, Pakistan
| | - Nasir Mahmood
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Muhammad Afnan Ansari
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Xianzhong Chen
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Jehan Akbar
- Glasgow College, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Trevon Badloe
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Muhammad Zubair
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Muhammad Qasim Mehmood
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Ferozepur Road, Lahore 54600, Pakistan
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
17
|
Yuan H, Zhang B, Zhong Z. Polarization-encoded optical secret sharing based on a dielectric metasurface incorporating near-field nanoprinting and far-field holography. OPTICS EXPRESS 2023; 31:43934-43949. [PMID: 38178477 DOI: 10.1364/oe.505549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/26/2023] [Indexed: 01/06/2024]
Abstract
Metasurface encryption with high concealment and resolution is promising for information security. To improve the encryption security, a polarization-encoded secret sharing scheme based on dielectric metasurface by combining the secret sharing method with nanoprinting and holography is proposed. In this encryption scheme, the secret image is split into camouflaged holograms of different polarization channels and shares a total of 24-1 encryption channels. Benefiting from the secret sharing mechanism, the secret image cannot be obtained by decoding the hologram with a single shared key. Specifically, the secret hologram of a specific channel in the far field can be obtained by specifying the optical key, acquiring the near-field nanoprinting image to determine the combination order for the shared key, and decoding using multiple shared keys. The secret sharing encryption scheme can not only enhance the security level of metasurface encryption, but also increase the number of information channels by predefining camouflage information. We believe that it has important potential applications in large-capacity optical encryption and information storage.
Collapse
|
18
|
Yang Y, Badloe T, Song D, Park S, Rho J. Building an optics and photonics research ecosystem in South Korea: Collaborative innovation between academia and industry. LIGHT, SCIENCE & APPLICATIONS 2023; 12:289. [PMID: 38044357 PMCID: PMC10694129 DOI: 10.1038/s41377-023-01332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Duheon Song
- Samsung Advanced Institute of Technology (SAIT), Suwon, 16678, Republic of Korea
- School of System Semiconductor Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seongjin Park
- Pohang Iron and Steel Company (POSCO), Pohang, 37859, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
| |
Collapse
|
19
|
Ray NJ, Yoo JH, Nguyen HT, Norton M, Cross D, Carr CW, Feigenbaum E. Enhanced laser-induced damage performance of all-glass metasurfaces for energetic pulsed laser applications. APPLIED OPTICS 2023; 62:8219-8223. [PMID: 38037922 DOI: 10.1364/ao.502242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
To fabricate optical components with surface layers compatible with high-power laser applications that may operate as antireflective coatings, polarization rotators, or harness physical anisotropy for other uses, metasurfaces are becoming an appealing candidate. In this study, large-beam (1.05 cm diameter) 351-nm laser-induced damage testing was performed on an all-glass metasurface structure composed of cone-like features with a subwavelength spacing of adjacent features. These structures were fabricated on untreated fused silica glass and damage tested, as were structures that were fabricated on fused silica glass that experienced a preliminary etching process to remove the surface Beilby layer that is characteristic of polished fused silica. The laser-induced damage onset for structures on untreated fused silica glass was 19.3J⋅c m -2, while the sample that saw an initial pretreatment etch exhibited an improved damage onset of 20.4J⋅c m -2, only 6% short of the reference pretreated glass damage onset of 21.7J⋅c m -2. For perspective, the National Ignition Facility operational average fluence at this wavelength and pulse length is about 10J/c m 2. At a fluence of 25.5J⋅c m -2, the reference (pretreated) fused silica initiated 5.2 damage sites per m m 2, while the antireflective metasurface sample with a preliminary etching process treatment initiated 9.8 damage sites per m m 2. These findings demonstrate that substrate-engraved metasurfaces are compatible with high energy and power laser applications, further broadening their application space.
Collapse
|
20
|
Yang J, Li LS, He Q, Li C, Qu Y, Wang LV. An ultrahigh-fidelity 3D holographic display using scattering to homogenize the angular spectrum. SCIENCE ADVANCES 2023; 9:eadi9987. [PMID: 37824613 PMCID: PMC10569707 DOI: 10.1126/sciadv.adi9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
A three-dimensional (3D) holographic display (3DHD) can preserve all the volumetric information about an object. However, the poor fidelity of 3DHD constrains its applications. Here, we present an ultrahigh-fidelity 3D holographic display that uses scattering for homogenization of angular spectrum. A scattering medium randomizes the incident photons and homogenizes the angular spectrum distribution. The redistributed field is recorded by a photopolymer film with numerous modulation modes and a half-wavelength scale pixel size. We have experimentally improved the contrast of a focal spot to 6 × 106 and tightened its spatial resolution to 0.5 micrometers, respectively ~300 and 4.4 times better than digital approaches. By exploiting the spatial multiplexing ability of the photopolymer and the transmission channel selection capability of the scattering medium, we have realized a dynamic holographic display of 3D spirals consisting of 20 foci across 1 millimeter × 1 millimeter × 26 millimeters with uniform intensity.
Collapse
Affiliation(s)
- Jiamiao Yang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei S. Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qiaozhi He
- Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengmingyue Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuan Qu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
21
|
Wang J, Yu F, Chen J, Wang J, Chen R, Zhao Z, Chen J, Chen X, Lu W, Li G. Continuous-Spectrum-Polarization Recombinant Optical Encryption with a Dielectric Metasurface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304161. [PMID: 37408327 DOI: 10.1002/adma.202304161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
The Jones matrix, with eight degrees of freedom (DoFs), provides a general mathematical framework for the multifunctional design of metasurfaces. Theoretically, the maximum eight DoFs can be further extended in the spectrum dimension to endow unique encryption capabilities. However, the topology and intrinsic spectral responses of meta-atoms constrains the continuous engineering of polarization evolution over wavelength dimension. In this work, a forward evolution strategy to quickly establish the mapping relationships between the solutions of the dispersion Jones matrix and the spectral responses of meta-atoms is reported. Based on the eigenvector transformation method, arbitrary conjugate polarization channels over the continuous-spectrum dimension are successfully reconstructed. As a proof-of-concept, a silicon metadevice is demonstrated for optical information encryption transmission. Remarkably, the arbitrary combination forms of polarization and wavelength dimension increase the information capacity (210 ), and the measured polarization contrasts of the conjugate polarization conversion are >94% in the entire wavelength range (3-4 µm). It is believed that the proposed approach will benefit secure optical and quantum information technologies.
Collapse
Affiliation(s)
- Jiuxu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, China
| | - Feilong Yu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Jin Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Jie Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Rongsheng Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Zengyue Zhao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Jian Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
| | - Guanhai Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
| |
Collapse
|
22
|
Barulin A, Park H, Park B, Kim I. Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: A simulation study. PHOTOACOUSTICS 2023; 32:100545. [PMID: 37645253 PMCID: PMC10461252 DOI: 10.1016/j.pacs.2023.100545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Photoacoustic microscopy is advancing with research on utilizing ultraviolet and visible light. Dual-wavelength approaches are sought for observing DNA/RNA- and vascular-related disorders. However, the availability of high numerical aperture lenses covering both ultraviolet and visible wavelengths is severely limited due to challenges such as chromatic aberration in the optics. Herein, we present a groundbreaking proposal as a pioneering simulation study for incorporating multilayer metalenses into ultraviolet-visible photoacoustic microscopy. The proposed metalens has a thickness of 1.4 µm and high numerical aperture of 0.8. By arranging cylindrical hafnium oxide nanopillars, we design an achromatic transmissive lens for 266 and 532 nm wavelengths. The metalens achieves a diffraction-limited focal spot, surpassing commercially available objective lenses. Through three-dimensional photoacoustic simulation, we demonstrate high-resolution imaging with superior endogenous contrast of targets with ultraviolet and visible optical absorption bands. This metalens will open new possibilities for downsized multispectral photoacoustic microscopy in clinical and preclinical applications.
Collapse
Affiliation(s)
- Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyemi Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
23
|
Yang Y, Seong J, Choi M, Park J, Kim G, Kim H, Jeong J, Jung C, Kim J, Jeon G, Lee KI, Yoon DH, Rho J. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. LIGHT, SCIENCE & APPLICATIONS 2023; 12:152. [PMID: 37339970 DOI: 10.1038/s41377-023-01169-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 06/22/2023]
Abstract
Metasurfaces have been continuously garnering attention in both scientific and industrial fields, owing to their unprecedented wavefront manipulation capabilities using arranged subwavelength artificial structures. To date, research has mainly focused on the full control of electromagnetic characteristics, including polarization, phase, amplitude, and even frequencies. Consequently, versatile possibilities of electromagnetic wave control have been achieved, yielding practical optical components such as metalenses, beam-steerers, metaholograms, and sensors. Current research is now focused on integrating the aforementioned metasurfaces with other standard optical components (e.g., light-emitting diodes, charged-coupled devices, micro-electro-mechanical systems, liquid crystals, heaters, refractive optical elements, planar waveguides, optical fibers, etc.) for commercialization with miniaturization trends of optical devices. Herein, this review describes and classifies metasurface-integrated optical components, and subsequently discusses their promising applications with metasurface-integrated optical platforms including those of augmented/virtual reality, light detection and ranging, and sensors. In conclusion, this review presents several challenges and prospects that are prevalent in the field in order to accelerate the commercialization of metasurfaces-integrated optical platforms.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Minseok Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junkyeong Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junhyeon Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gyoseon Jeon
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Kyung-Il Lee
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Dong Hyun Yoon
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
| |
Collapse
|
24
|
Asad A, Kim J, Khaliq HS, Mahmood N, Akbar J, Chani MTS, Kim Y, Jeon D, Zubair M, Mehmood MQ, Massoud Y, Rho J. Spin-isolated ultraviolet-visible dynamic meta-holographic displays with liquid crystal modulators. NANOSCALE HORIZONS 2023; 8:759-766. [PMID: 37128758 DOI: 10.1039/d2nh00555g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Wearable displays or head-mounted displays (HMDs) have the ability to create a virtual image in the field of view of one or both eyes. Such displays constitute the main platform for numerous virtual reality (VR)- and augmented reality (AR)-based applications. Meta-holographic displays integrated with AR technology have potential applications in the advertising, media, and healthcare sectors. In the previous decade, dielectric metasurfaces emerged as a suitable choice for designing compact devices for highly efficient displays. However, the small conversion efficiency, narrow bandwidth, and costly fabrication procedures limit the device's functionalities. Here, we proposed a spin-isolated dielectric multi-functional metasurface operating at broadband optical wavelengths with high transmission efficiency in the ultraviolet (UV) and visible (Vis) regimes. The proposed metasurface comprised silicon nitride (Si3N4)-based meta-atoms with high bandgap, i.e., ∼ 5.9 eV, and encoded two holographic phase profiles. Previously, the multiple pieces of holographic information incorporated in the metasurfaces using interleaved and layer stacking techniques resulted in noisy and low-efficiency outputs. A single planar metasurface integrated with a liquid crystal was demonstrated numerically and experimentally in the current work to validate the spin-isolated dynamic UV-Vis holographic information at broadband wavelengths. In our opinion, the proposed metasurface can have promising applications in healthcare, optical security encryption, anti-counterfeiting, and UV-Vis nanophotonics.
Collapse
Affiliation(s)
- Aqsa Asad
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan.
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Hafiz Saad Khaliq
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan.
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nasir Mahmood
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Jehan Akbar
- Glasgow College, University of Electronic Science and Technology of China, Chengdu 610056, China
| | | | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Dongmin Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Muhammad Zubair
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Muhammad Qasim Mehmood
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan.
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
25
|
So S, Kim J, Badloe T, Lee C, Yang Y, Kang H, Rho J. Multicolor and 3D Holography Generated by Inverse-Designed Single-Cell Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208520. [PMID: 36575136 DOI: 10.1002/adma.202208520] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/17/2022] [Indexed: 05/17/2023]
Abstract
Metasurface-generated holography has emerged as a promising route for fully reproducing vivid scenes by manipulating the optical properties of light using ultra-compact devices. However, achieving multiple holographic images using a single metasurface is still difficult due to the capacity limit of a single meta-atom. In this work, an inverse design method based on gradient-descent optimization is presented to encode multiple pieces of holographic information into a single metasurface. The proposed method allows the inverse design of single-cell metasurfaces without the need for complex meta-atom design strategies, facilitating high-throughput fabrication using broadband low-loss materials. By exploiting the proposed design method, both multiplane red-green-blue (RGB) color and three-dimensional (3D) holograms are designed and experimentally demonstrated. Multiplane RGB color holograms with nine distinct holograms are achieved, which demonstrate the state-of-the-art data capacity of a phase-only metasurface. The first experimental demonstration of metasurface-generated 3D holograms with completely independent and distinct images in each plane is also presented. The current research findings provide a viable route for practical metasurface-generated holography by demonstrating the high-density holography produced by a single metasurface. It is expected to ultimately lead to optical storage, display, and full-color imaging applications.
Collapse
Affiliation(s)
- Sunae So
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Electro-Mechanical Systems Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chihun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea
| |
Collapse
|