1
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Wu Z, Yin Y, Liu R, Li X, Sun Y, Yau SY, Wu L, Liu Y, Adzic M, Zhang H, Chen G. A refined formula derived from Jiawei-Xiaoyao pill exerts rapid antidepressant-like effects in LPS-induced depression by reducing neuroinflammation and restoring neuroplasticity signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118647. [PMID: 39094756 DOI: 10.1016/j.jep.2024.118647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei-Xiaoyao Pill (JWX), a classic formula in traditional Chinese medicine, is derived from Xiaoyao Pill by adding significant amounts of Gardeniae Fructus (GF) and Moutan Cortex (MC). It is frequently used for the treatment of depression. JWX has been demonstrated to uniquely elicit rapid antidepressant-like effects within the prescribed dosage range. To date, GF has been shown to have rapid antidepressant-like effects, but a much higher dose is required than its proportion in JWX. It is assumed that the synergism of GF with a minimum number of other herbs in JWX serves as a refined formula that exerts these rapid antidepressant-like effects. Identification of a refined formula is important for prioritizing the herbs and ingredients to optimize the quality control of JWX. However, such a refined formula for JWX has not been identified yet. AIM OF THE STUDY Here we aimed to identify a refined formula derived from JWX for optimized rapid antidepressant-like effects. Since the neuroinflammation mechanism involving in depression treatment has not been previously investigated for JWX, we tested the mechanism for both JWX and the refined formula. MATERIALS AND METHODS Individual herbs (MC; ASR, Angelica Sinensis Radix; Bupleuri Radix; Paeonia Radix Alba) that show antidepressant-like responses were mixed with GF at the proportional dosage in JWX to identify the refined formula. Rapid antidepressant-like effects were assessed by using NSF (Novelty Suppressed Feeding Test) and other behavioral tests following a single administration. The identified formula was further tested in a lipopolysaccharide (LPS)-induced depressive model, and the molecular signaling mechanisms were investigated using Western blot analysis, immunofluorescence, and pharmacological inhibition of mTOR signaling. Scopolamine (Scop) was used as a positive control for induction of rapid antidepressant effects. RESULTS A combination of GF, MC and ASR (GMA) at their dosages proportional to JWX induced behavioral signs of rapid antidepressant-like responses in both normal and LPS-treated mice, with the antidepressant-like effects sustained for 5 d. Similar to JWX or Scop, GMA rapidly reduced the neuroinflammation signaling of Iba-1-NF-кB, enhanced neuroplasticity signaling of CaMKII-mTOR-BDNF, and attenuated the upregulated expressions of the NMDAR sub-units GluN1 and GluN2B in the hippocampus of LPS-treated mice. GMA, JWX and Scop rapidly restored the number of BDNF-positive cells reduced by LPS treatment in the CA3 region of the hippocampus. Furthermore, rapamycin, a selective inhibitor of mTOR, blunted the rapid antidepressant-like effects and hippocampal BDNF signaling upregulation by GMA. CONCLUSION GMA may serve as a refined formula from JWX, capable of inducing rapid antidepressant-like effects. In the LPS-induced depression model, the effects of GMA were mediated via rapidly alleviating neuroinflammation and enhancing neuroplasticity.
Collapse
Affiliation(s)
- Zhangjie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Xianhui Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, PR China
| | - Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, PR China
| | - Yan Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China
| | - Miroslav Adzic
- "Vinča Institute" of Nuclear Sciences, Laboratory of Molecular Biology and Endocrinology 090, University of Belgrade, 11001 Belgrade, Serbia
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
3
|
Fogaça MV, Daher F, Picciotto MR. Effects of ketamine on GABAergic and glutamatergic activity in the mPFC: biphasic recruitment of GABA function in antidepressant-like responses. Neuropsychopharmacology 2024:10.1038/s41386-024-02002-1. [PMID: 39390105 DOI: 10.1038/s41386-024-02002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Major depressive disorder (MDD) is associated with disruptions in glutamatergic and GABAergic activity in the medial prefrontal cortex (mPFC), leading to altered synaptic formation and function. Low doses of ketamine rapidly rescue these deficits, inducing fast and sustained antidepressant effects. While it is suggested that ketamine produces a rapid glutamatergic enhancement in the mPFC, the temporal dynamics and the involvement of GABA interneurons in its sustained effects remain unclear. Using simultaneous photometry recordings of calcium activity in mPFC pyramidal and GABA neurons, as well as chemogenetic approaches in Gad1-Cre mice, we explored the hypothesis that initial effects of ketamine on glutamate signaling trigger subsequent enhancement of GABAergic responses, contributing to its sustained antidepressant responses. Calcium recordings revealed a biphasic effect of ketamine on activity of mPFC GABA neurons, characterized by an initial transient decrease (phase 1, <30 min) followed by an increase (phase 2, >60 min), in parallel with a transient increase in excitation/inhibition levels (10 min) and lasting enhancement of glutamatergic activity (30-120 min). Previous administration of ketamine enhanced GABA neuron activity during the sucrose splash test (SUST) and novelty suppressed feeding test (NSFT), 24 h and 72 h post-treatment, respectively. Chemogenetic inhibition of GABA interneurons during the surge of GABAergic activity (phase 2), or immediately before the SUST or NSFT, occluded ketamine's behavioral actions. These results indicate that time-dependent modulation of GABAergic activity is required for the sustained antidepressant-like responses induced by ketamine, suggesting that approaches to enhance GABAergic plasticity and function are promising therapeutic targets for antidepressant development.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA.
| | - Fernanda Daher
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| |
Collapse
|
4
|
Liu L, Li R, Wu L, Guan Y, Miao M, Wang Y, Li C, Wu C, Lu G, Hu X, Sun L. (2R,6R)-hydroxynorketamine alleviates PTSD-like endophenotypes by regulating the PI3K/AKT signaling pathway in rats. Pharmacol Biochem Behav 2024; 245:173891. [PMID: 39369910 DOI: 10.1016/j.pbb.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Patients diagnosed with post-traumatic stress disorder (PTSD) mainly exhibit enduring adverse emotions, heightening susceptibility to suicidal thoughts and behaviors. Notably, metabolites of ketamine, particularly (2R,6R)-hydroxyketamine (HNK), have demonstrated favorable antidepressant properties. However, the precise mechanism through which HNK exerts its therapeutic effects on negative emotional symptoms in PTSD patients should be fully elucidated. METHODS In this investigation, a model involving a single prolonged stress and plantar shock (SPS&S) was utilized, followed by the administration of (2R, 6R)-HNK into the lateral ventricle subsequent to the recovery phase. The evaluation of PTSD-related behaviors was conducted through the open field test (OFT), elevated plus maze test (EMPT), and forced swim test (FST). The expression of phosphatidylinositol 3-kinase (PI3K)/phosphokinase B (AKT) signaling pathway in rat brain regions was analyzed using molecular biology experiments. RESULTS SPS&S rats displayed adverse emotional behaviors characterized by depression and anxiety. Treatment with (2R, 6R)-HNK enhanced exploratory behavior and reversed negative emotional behaviors. This intervention mitigated disruptions in the expression levels of PI3K/AKT signaling pathway-associated proteins in the HIP and PFC, without influencing PI3K/AKT signaling in the AMY of SPS&S rats. CONCLUSION Traumatic stress can trigger negative emotional reactions in rats, potentially involving the PI3K/AKT signaling pathway in the HIP, PFC, and AMY. The (2R, 6R)-HNK compounds have demonstrated the potential to mitigate adverse emotions in rats subjected to the SPS&S paradigm. This effect may be attributed to the modulation of the PI3K/AKT signaling pathway in the HIP, and PFC, with a particularly notable impact observed in the HIP region.
Collapse
Affiliation(s)
- Lifen Liu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Rui Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Lanxia Wu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yubo Guan
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Miao Miao
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yuxuan Wang
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Changjiang Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Chunyan Wu
- Department of Neurology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Guohua Lu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Xinyu Hu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China; Department of Neurosurgery, Shanting District People's Hospital, Beijing Road, New Town, Zaozhuang, Shandong 277200, PR China; Management Committee of Shanting Economic Development Zone, No.37, Fuqian Road, Zaozhuang, Shandong 277200, PR China.
| |
Collapse
|
5
|
Quintanilla B, Zarate CA, Pillai A. Ketamine's mechanism of action with an emphasis on neuroimmune regulation: can the complement system complement ketamine's antidepressant effects? Mol Psychiatry 2024; 29:2849-2858. [PMID: 38575806 DOI: 10.1038/s41380-024-02507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Over 300 million people worldwide suffer from major depressive disorder (MDD). Unfortunately, only 30-40% of patients with MDD achieve complete remission after conventional monoamine antidepressant therapy. In recent years, ketamine has revolutionized the treatment of MDD, with its rapid antidepressant effects manifesting within a few hours as opposed to weeks with conventional antidepressants. Many research endeavors have sought to identify ketamine's mechanism of action in mood disorders; while many studies have focused on ketamine's role in glutamatergic modulation, several studies have implicated its role in regulating neuroinflammation. The complement system is an important component of the innate immune response vital for synaptic plasticity. The complement system has been implicated in the pathophysiology of depression, and studies have shown increases in complement component 3 (C3) expression in the prefrontal cortex of suicidal individuals with depression. Given the role of the complement system in depression, ketamine and the complement system's abilities to modulate glutamatergic transmission, and our current understanding of ketamine's anti-inflammatory properties, there is reason to suspect a common link between the complement system and ketamine's mechanism of action. This review will summarize ketamine's anti- inflammatory roles in the periphery and central nervous system, with an emphasis on complement system regulation.
Collapse
Affiliation(s)
- Brandi Quintanilla
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
6
|
Fogaça MV, Daher F, Picciotto MR. Effects of ketamine on GABAergic and glutamatergic activity in the mPFC: biphasic recruitment of GABA function in antidepressant-like responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605610. [PMID: 39131322 PMCID: PMC11312475 DOI: 10.1101/2024.07.29.605610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Major depressive disorder (MDD) is associated with disruptions in glutamatergic and GABAergic activity in the medial prefrontal cortex (mPFC), leading to altered synaptic formation and function. Low doses of ketamine rapidly rescue these deficits, inducing fast and sustained antidepressant effects. While it is suggested that ketamine produces a rapid glutamatergic enhancement in the mPFC, the temporal dynamics and the involvement of GABA interneurons in its sustained effects remain unclear. Using simultaneous photometry recordings of calcium activity in mPFC pyramidal and GABA neurons, as well as chemogenetic approaches in Gad1-Cre mice, we explored the hypothesis that initial effects of ketamine on glutamate signaling trigger subsequent enhancement of GABAergic responses, contributing to its sustained antidepressant responses. Calcium recordings revealed a biphasic effect of ketamine on activity of mPFC GABA neurons, characterized by an initial transient decrease (phase 1, <30 min) followed by an increase (phase 2, >60 min), in parallel with a transient increase in excitation/inhibition levels (10 min) and lasting enhancement of glutamatergic activity (30-120 min). Previous administration of ketamine enhanced GABA neuron activity during the sucrose splash test (SUST) and novelty suppressed feeding test (NSFT), 24 h and 72 h post-treatment, respectively. Chemogenetic inhibition of GABA interneurons during the surge of GABAergic activity (phase 2), or immediately before the SUST or NSFT, occluded ketamine's behavioral actions. These results indicate that time-dependent modulation of GABAergic activity is required for the sustained antidepressant-like responses induced by ketamine, suggesting that approaches to enhance GABAergic plasticity and function are promising therapeutic targets for antidepressant development.
Collapse
Affiliation(s)
- Manoela V. Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| | - Fernanda Daher
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| |
Collapse
|
7
|
Jiang Y, Dong Y, Hu H. The N-methyl-d-aspartate receptor hypothesis of ketamine's antidepressant action: evidence and controversies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230225. [PMID: 38853549 PMCID: PMC11343275 DOI: 10.1098/rstb.2023.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
Substantial clinical evidence has unravelled the superior antidepressant efficacy of ketamine: in comparison to traditional antidepressants targeting the monoamine systems, ketamine, as an N-methyl-d-aspartate receptor (NMDAR) antagonist, acts much faster and more potently. Surrounding the antidepressant mechanisms of ketamine, there is ample evidence supporting an NMDAR-antagonism-based hypothesis. However, alternative arguments also exist, mostly derived from the controversial clinical results of other NMDAR inhibitors. In this article, we first summarize the historical development of the NMDAR-centred hypothesis of rapid antidepressants. We then classify different NMDAR inhibitors based on their mechanisms of inhibition and evaluate preclinical as well as clinical evidence of their antidepressant effects. Finally, we critically analyse controversies and arguments surrounding ketamine's NMDAR-dependent and NMDAR-independent antidepressant action. A better understanding of ketamine's molecular targets and antidepressant mechanisms should shed light on the future development of better treatment for depression. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Yihao Jiang
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou311100, People's Republic of China
| | - Yiyan Dong
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
| | - Hailan Hu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou311100, People's Republic of China
| |
Collapse
|
8
|
Cao K, Zhong J, Wang S, Shi Y, Bai S, Zhao J, Yang L, Liang Q, Deng D, Zhang R. SiNiSan exerts antidepressant effects by modulating serotonergic/GABAergic neuron activity in the dorsal raphe nucleus region through NMDA receptor in the adolescent depression mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118040. [PMID: 38479542 DOI: 10.1016/j.jep.2024.118040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Affiliation(s)
- Kerun Cao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jialong Zhong
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shanshan Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Bai
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinlan Zhao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Yang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, 518000, China.
| | - Di Deng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Wang Z, Hu Q, Tian C, Wang R, Jiao Q, Chen F, Wu T, Wang J, Zhu Y, Liu A, Zhang W, Li J, Shen H. Prophylactic Effects of n-Acethylcysteine on Inflammation-induced Depression-like Behaviors in Mice. Neuroscience 2024; 549:42-54. [PMID: 38729599 DOI: 10.1016/j.neuroscience.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/16/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Depression, affecting individuals worldwide, is a prevalent mental disease, with an increasing incidence. Numerous studies have been conducted on depression, yet its pathogenesis remains elusive. Recent advancements in research indicate that disturbances in synaptic transmission, synaptic plasticity, and reduced neurotrophic factor expression significantly contribute to depression's pathogenesis. In our study, we utilized adult male C57BL/6J mice. Lipopolysaccharide (LPS) can induce both chronic and acute depression-like symptoms in mice, a widely used model for studying depression associated with inflammation. N-acetylcysteine (NAC) exhibits anti-inflammatory and ameliorative effects on depressive symptoms. This study sought to determine whether NAC use could mitigate inflammatory depressive behavior through the enhancement of synaptic transmission, synaptic plasticity, and increasing levels of brain-derived neurotrophic factor (BDNF). In this study, we discovered that in mice modeled with depression-like symptoms, the expression levels of dendrites, BDNF, and miniature excitatory postsynaptic potential (mEPSC) in glutamatergic neurons, as well as the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPARs) GluA1 and GluA2 subunits, were significantly decreased. These findings suggest an impairment in the synaptic transmission of glutamatergic neurons. Following treatment with NAC, the previously mentioned levels improved, indicating an enhancement in both synaptic transmission and synaptic plasticity. Our results suggest that NAC exerts a protective effect on mouse models of inflammatory depression, potentially through the enhancement of synaptic transmission and plasticity, as well as the restoration of neurotrophic factor expression. These findings offer vital animal experimental evidence supporting NAC's role in mitigating inflammatory depressive behaviors.
Collapse
Affiliation(s)
- Zhenhuan Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China; Comprehensive Development Service Center, Tianjin Baodi District Health Commission, Tianjin, China
| | - Chao Tian
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ruipeng Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qingyan Jiao
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Feng Chen
- Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tongrui Wu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jialiang Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yuxuan Zhu
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China.
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China.
| | - Hui Shen
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Daher F, Villalobos NA, Hanley M, Atack JR, Popa MO, Fogaça MV. Basmisanil, an α5-GABA AR negative allosteric modulator, produces rapid and sustained antidepressant-like responses in male mice. Neurosci Lett 2024; 833:137828. [PMID: 38772437 PMCID: PMC11146097 DOI: 10.1016/j.neulet.2024.137828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
There is a critical need for safer and better-tolerated alternatives to address the current limitations of antidepressant treatments for major depressive disorder. Recently, drugs targeting the GABA system via α5-containing GABAA receptors (α5-GABAAR) as negative allosteric modulators (α5-NAMs) have shown promise in alleviating stress-related behaviors in preclinical studies, suggesting that α5-NAMs may have translational relevance as novel antidepressant medications. Here, we evaluated the efficacy of Basmisanil, an α5-NAM that has been evaluated in Phase 2 clinical studies as a cognitive enhancer, in a battery of behavioral tests relevant to coping strategies, motivation, and aversion in male mice, along with plasma and brain pharmacokinetic measurements. Our findings reveal that Basmisanil induces dose-dependent rapid antidepressant-like responses in the forced swim test and sucrose splash test without promoting locomotor stimulating effects. Furthermore, Basmisanil elicits sustained behavioral responses in the female urine sniffing test and sucrose splash test, observed 24 h and 48 h post-treatment, respectively. Bioanalysis of plasma and brain samples confirms effective blood-brain barrier penetration by Basmisanil and extrapolation to previously published data suggest that effects were observed at doses (10 and 30 mg/kg i.p.) corresponding to relatively modest levels of α5-GABAAR occupancy (40-65 %). These results suggest that Basmisanil exhibits a combination of rapid and sustained antidepressant-like effects highlighting the potential of α5-NAMs as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Fernanda Daher
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Narcy A Villalobos
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - Marcus Hanley
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - Mariana O Popa
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - Manoela V Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
11
|
Zhao X, Du Y, Yao Y, Dai W, Yin Y, Wang G, Li Y, Zhang L. Psilocybin promotes neuroplasticity and induces rapid and sustained antidepressant-like effects in mice. J Psychopharmacol 2024; 38:489-499. [PMID: 38680011 DOI: 10.1177/02698811241249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Psilocybin offers new hope for treating mood disorders due to its rapid and sustained antidepressant effects, as standard medications require weeks or months to exert their effects. However, the mechanisms underlying this action of psilocybin have not been identified. AIMS To investigate whether psilocybin has rapid and sustained antidepressant-like effects in mice and investigate whether its potential mechanisms of action are related to promoted neuroplasticity. METHODS We first examined the antidepressant-like effects of psilocybin in normal mice by the forced swimming test and in chronic corticosterone (CORT)-exposed mice by the sucrose preference test and novelty-suppressed feeding test. Furthermore, to explore the role of neuroplasticity in mediating the antidepressant-like effects of psilocybin, we measured structural neuroplasticity and neuroplasticity-associated protein levels in the prefrontal cortex (PFC) and hippocampus. RESULTS We observed that a single dose of psilocybin had rapid and sustained antidepressant-like effects in both healthy mice and chronic CORT-exposed mice. Moreover, psilocybin ameliorated chronic CORT exposure-induced inhibition of neuroplasticity in the PFC and hippocampus, including by increasing neuroplasticity (total number of dendritic branches and dendritic spine density), synaptic protein (p-GluA1, PSD95 and synapsin-1) levels, BDNF-mTOR signalling pathway activation (BDNF, TrkB and mTOR levels), and promoting neurogenesis (number of DCX-positive cells). CONCLUSIONS Our results demonstrate that psilocybin elicits robust, rapid and sustained antidepressant-like effects which is accompanied by the promotion of neuroplasticity in the PFC and hippocampus.
Collapse
Affiliation(s)
- Xiangting Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| | - Yingjie Du
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yishan Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongyu Yin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guyan Wang
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yunfeng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Liming Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
12
|
Yokoyama R, Ago Y, Igarashi H, Higuchi M, Tanuma M, Shimazaki Y, Kawai T, Seiriki K, Hayashida M, Yamaguchi S, Tanaka H, Nakazawa T, Okamura Y, Hashimoto K, Kasai A, Hashimoto H. (R)-ketamine restores anterior insular cortex activity and cognitive deficits in social isolation-reared mice. Mol Psychiatry 2024; 29:1406-1416. [PMID: 38388704 PMCID: PMC11189812 DOI: 10.1038/s41380-024-02419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Chronic social isolation increases the risk of mental health problems, including cognitive impairments and depression. While subanesthetic ketamine is considered effective for cognitive impairments in patients with depression, the neural mechanisms underlying its effects are not well understood. Here we identified unique activation of the anterior insular cortex (aIC) as a characteristic feature in brain-wide regions of mice reared in social isolation and treated with (R)-ketamine, a ketamine enantiomer. Using fiber photometry recording on freely moving mice, we found that social isolation attenuates aIC neuronal activation upon social contact and that (R)-ketamine, but not (S)-ketamine, is able to counteracts this reduction. (R)-ketamine facilitated social cognition in social isolation-reared mice during the social memory test. aIC inactivation offset the effect of (R)-ketamine on social memory. Our results suggest that (R)-ketamine has promising potential as an effective intervention for social cognitive deficits by restoring aIC function.
Collapse
Affiliation(s)
- Rei Yokoyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Hisato Igarashi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Momoko Higuchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuto Shimazaki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Misuzu Hayashida
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shun Yamaguchi
- Department of Morphological Neuroscience, Graduate School of Medicine, Gifu University, Gifu, Gifu, 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu, Gifu, 501-1194, Japan
| | - Hirokazu Tanaka
- Faculty of Information Technology, Tokyo City University, Setagaya, Tokyo, 158-8557, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chuo, Chiba, 260-8670, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- Systems Brain Science Project, Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, 565-0871, Japan.
- Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan.
- Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Li Y, Yang Y, Guan X, Liu Z, Pan L, Wang Y, Jia X, Yang J, Hou T. SorCS2 is involved in promoting periodontitis-induced depression-like behaviour in mice. Oral Dis 2024. [PMID: 38568959 DOI: 10.1111/odi.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Emerging evidence supports the association between periodontitis and depression, although the mechanisms are unclear. This study investigated the role of SorCS2 in the pathogenesis of periodontitis-induced depression. MATERIALS AND METHODS An experimental periodontitis model was established using SorCS2 knockout mice and their wild-type littermates, and depression-like behaviour was evaluated. The expression of proBDNF signalling, neuronal activity, and glutamate-associated signalling pathways were further measured by western blotting and immunofluorescence. In addition, neuroinflammatory status, astrocytic and microglial markers, and the expression of corticosterone-related factors were measured by immunofluorescence, western blotting, and enzyme-linked immunosorbent assays. RESULTS SorCS2 deficiency alleviated periodontitis-induced depression-like behaviour in mice. Further results suggested that SorCS2 deficiency downregulated the expression of pro-BDNF and glutamate signalling and restored neuronal activities in mice with periodontitis. Neuroinflammation in the mouse hippocampus was triggered by experimental periodontitis but was not affected by SorCS2 deficiency. The levels of corticosterone and the expression of glucocorticoid receptors were also not altered. CONCLUSION Our study, for the first time, reveals the critical role of SorCS2 in the pathogenesis of periodontitis-induced depression. The underlying mechanism involves proBDNF and glutamate signalling in the hippocampus, providing a novel therapeutic target for periodontitis-associated depression.
Collapse
Affiliation(s)
- Yingxue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lifei Pan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiangbin Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jianmin Yang
- Department of Medicine, Weill Cornell Medical School, Cornell University, New York, New York, USA
| | - Tiezhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Ma H, Li JF, Qiao X, Zhang Y, Hou XJ, Chang HX, Chen HL, Zhang Y, Li YF. Sigma-1 receptor activation mediates the sustained antidepressant effect of ketamine in mice via increasing BDNF levels. Acta Pharmacol Sin 2024; 45:704-713. [PMID: 38097715 PMCID: PMC10943013 DOI: 10.1038/s41401-023-01201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/15/2023] [Indexed: 03/17/2024] Open
Abstract
Sigma-1 receptor (S1R) is a unique multi-tasking chaperone protein in the endoplasmic reticulum. Since S1R agonists exhibit potent antidepressant-like activity, S1R has become a novel target for antidepression therapy. With a rapid and sustained antidepressant effect, ketamine may also interact with S1R. In this study, we investigated whether the antidepressant action of ketamine was related to S1R activation. Depression state was evaluated in the tail suspension test (TST) and a chronic corticosterone (CORT) procedure was used to induce despair-like behavior in mice. The neuronal activities and structural changes of pyramidal neurons in medial prefrontal cortex (mPFC) were assessed using fiber-optic recording and immunofluorescence staining, respectively. We showed that pharmacological manipulation of S1R modulated ketamine-induced behavioral effect. Furthermore, pretreatment with an S1R antagonist BD1047 (3 mg·kg-1·d-1, i.p., for 3 consecutive days) significantly weakened the structural and functional restoration of pyramidal neuron in mPFC caused by ketamine (10 mg·kg-1, i.p., once). Ketamine indirectly triggered the activation of S1R and subsequently increased the level of BDNF. Pretreatment with an S1R agonist SA4503 (1 mg·kg-1·d-1, i.p., for 3 consecutive days) enhanced the sustained antidepressant effect of ketamine, which was eliminated by knockdown of BDNF in mPFC. These results reveal a critical role of S1R in the sustained antidepressant effect of ketamine, and suggest that a combination of ketamine and S1R agonists may be more beneficial for depression patients.
Collapse
Affiliation(s)
- Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jin-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin Qiao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yue Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | | | - Hai-Xia Chang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hong-Lei Chen
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100083, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of the People's Republic of China, Beijing, 100083, China.
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, 100083, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
15
|
Chen F, Li L, Huang M, Wang Y, Wang L, Jin F, Yang L, Gao M, Li L, Wang Y, Zhou L, Yang J, Yao G, Li Q, Yang X. Natural product Kaji-ichigoside F1 exhibits rapid antidepression via activating the AMPA-BDNF-mTOR pathway and inhibiting the NMDAR-CaMKIIα pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155452. [PMID: 38422650 DOI: 10.1016/j.phymed.2024.155452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Depression is a common and recurrent neuropsychiatric disorder. Recent studies have shown that the N-methyl-d-aspartate (NMDA) receptor (NMDAR) is involved in the pathophysiology of depression. Previous studies have found that Kaji-ichigoside F1 (KF1) has a protective effect against NMDA-induced neurotoxicity. However, the antidepressant mechanism of KF1 has not been confirmed yet. PURPOSE In the present study, we aimed to evaluate the rapid antidepressant activity of KF1 and explore the underlying mechanism. STUDY DESIGN First, we explored the effect of KF1 on NMDA-induced hippocampal neurons and the underlying mechanism. Second, depression was induced in C57BL/6 mice via chronic unpredictable mild stress (CUMS), and the immediate and persistent depression-like behavior was evaluated using the forced swimming test (FST) after a single administration of KF1. Third, the contributions of NMDA signaling to the antidepressant effect of KF1 were investigated using pharmacological interventions. Fourth, CUMS mice were treated with KF1 for 21 days, and then their depression-like behaviors and the underlying mechanism were further explored. METHODS The FST was used to evaluate immediate and persistent depression-like behavior after a single administration of KF1 with or without NMDA pretreatment. The effect of KF1 on depressive-like behavior was investigated in CUMS mice by treating them with KF1 once daily for 21 days through the sucrose preference test, FST, open field test, and tail suspension test. Then, the effects of KF1 on the morphology and molecular and functional phenotypes of primary neuronal cells and hippocampus of mice were investigated by hematoxylin-eosin staining, Nissl staining, propidium iodide staining, TUNEL staining, Ca2+ imaging, JC-1 staining, ELISA, immunofluorescence analysis, RT-PCR, and Western blot. RESULTS KF1 could effectively improve cellular viability, reduce apoptosis, inhibit the release of LDH and Ca2+, and increase the mitochondrial membrane potential and the number of dendritic spines numbers in hippocampal neurons. Moreover, behavioral tests showed that KF1 exerted acute and sustained antidepressant-like effects by reducing Glu-levels and ameliorating neuronal damage in the hippocampus. Additionally, in vivo and in vitro experiments revealed that PSD95, Syn1, α-amino-3‑hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and brain-derived neurotrophic factor (BDNF) were upregulated at the protein level, and BDNF and AMPA were upregulated at the mRNA level. NR1 and NR2A showed the opposite trend. CONCLUSION These results confirm that KF1 exerts rapid antidepressant effects mainly by activating the AMPA-BDNF-mTOR pathway and inhibiting the NMDAR-CaMKIIα pathway. This study serves as a new reference for discovering rapid antidepressants.
Collapse
Affiliation(s)
- Faju Chen
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Liangqun Li
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Maoyang Huang
- Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yuankai Wang
- Huaxi District People,s Hospital, Guiyang 550025, China
| | - Li Wang
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Fengli Jin
- Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Lishou Yang
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ming Gao
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Lilang Li
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yu Wang
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Lang Zhou
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Juan Yang
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Guanping Yao
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Qiji Li
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xiaosheng Yang
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| |
Collapse
|
16
|
Francis-Oliveira J, Higa GSV, Viana FJC, Cruvinel E, Carlos-Lima E, da Silva Borges F, Zampieri TT, Rebello FP, Ulrich H, De Pasquale R. TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex. Exp Neurol 2024; 373:114652. [PMID: 38103709 DOI: 10.1016/j.expneurol.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development.
Collapse
Affiliation(s)
- José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil; Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP 09210-580, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Thais Tessari Zampieri
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernanda Pereira Rebello
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil.
| |
Collapse
|
17
|
Tiliwaerde M, Gao N, Yang Y, Jin Z. A novel NMDA receptor modulator: the antidepressant effect and mechanism of GW043. CNS Neurosci Ther 2024; 30:e14598. [PMID: 38332552 PMCID: PMC10853642 DOI: 10.1111/cns.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
AIMS The N-methyl-D-aspartate (NMDA) receptor (NMDAR) has been proven to be strongly correlated with rapid antidepressant effects. Here, GW043, as a new compound targeting NMDAR, we explored its antidepressant effects and its mechanism of action. METHODS Our study utilized electrophysiological techniques to confirm the effect of GW043 on NMDAR currents. Additionally, we assessed the selectivity of GW043 through high-throughput receptor-ligand binding experiments. The antidepressant properties of GW043 were examined using rodent behavioral models including the Forced Swim Test (FST), Tail Suspension Test (TST), and Chronic Unpredictable Mild Stress (CUMS). Mechanistic insight into GW043's onset was gained through western blot analysis, BrdU staining, Golgi staining, and electrophysiological techniques. RESULTS Electrophysiological studies indicated that GW043 acts as a partial agonist of NMDAR. Behavioral experiments confirmed the antidepressant effect of GW043 in rodents. Mechanistic investigations revealed that GW043 modulates synaptic plasticity through the LTP and BDNF-mTOR pathways, consequently leading to an increase in the number of newborn neurons and subsequent antidepressant effects. CONCLUSION Our findings disclose that GW043, as a partial agonist of NMDAR, can reverse depression-like behaviors in rats by modulating synaptic plasticity, indicating its potential as an antidepressant agent.
Collapse
Affiliation(s)
- Murezati Tiliwaerde
- Department of Pharmacology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Nana Gao
- Department of Gastrointestinal Surgery and Clinical Nutrition, Beijing Shijitan HospitalCaptial Medical UniversityBeijingChina
| | - Yaqi Yang
- Department of Pharmacology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Department of Pharmacy, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Zengliang Jin
- Department of Pharmacology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| |
Collapse
|
18
|
Derosa S, Misztak P, Mingardi J, Mazzini G, Müller HK, Musazzi L. Changes in neurotrophic signaling pathways in brain areas of the chronic mild stress rat model of depression as a signature of ketamine fast antidepressant response/non-response. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110871. [PMID: 37793481 DOI: 10.1016/j.pnpbp.2023.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Major Depressive Disorder (MDD) is a highly debilitating disorder characterized by a persistent feeling of sadness and anhedonia. Traditional antidepressants have a delayed onset of action and lack of efficacy in up to one third of patients, leading to treatment resistant depression (TRD). Recent years have witnessed a revolutionary treatment of TRD with the introduction of the fast-acting antidepressant ketamine. However, ketamine's mechanisms of action are still poorly understood. Here, we used the chronic mild stress animal model of depression on male rats to investigate the involvement of neurotrophic signaling pathways in stress vulnerability/resilience and fast antidepressant response/non-response to acute subanesthetic ketamine. We performed our analysis on both the hippocampus and the prefrontal cortex, two brain areas implicated in stress-related disorders, considering different subcellular fractions. We measured the activation by phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinases (ERKs), glycogen synthase kinase-3 beta (GSK3 β), mammalian target of rapamycin (mTOR), and eukaryotic elongation factor 2 (eEF2), key effectors in the regulation of neuroplasticity and glutamatergic transmission which were previously associated to ketamine's fast antidepressant effect. We showed here for the first time that both stress and ketamine induced brain area and subcellular fraction specific changes in these pathways. Our study represents the first attempt to identify molecular mechanisms underlying the response/non-response to ketamine in an animal model of depression. This approach could give a crucial contribution to the study of etiopathogenetic mechanisms as well as to the identification of novel targets for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Sara Derosa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Mazzini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
19
|
Xie M, Huang Y, Cai W, Zhang B, Huang H, Li Q, Qin P, Han J. Neurobiological Underpinnings of Hyperarousal in Depression: A Comprehensive Review. Brain Sci 2024; 14:50. [PMID: 38248265 PMCID: PMC10813043 DOI: 10.3390/brainsci14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Patients with major depressive disorder (MDD) exhibit an abnormal physiological arousal pattern known as hyperarousal, which may contribute to their depressive symptoms. However, the neurobiological mechanisms linking this abnormal arousal to depressive symptoms are not yet fully understood. In this review, we summarize the physiological and neural features of arousal, and review the literature indicating abnormal arousal in depressed patients. Evidence suggests that a hyperarousal state in depression is characterized by abnormalities in sleep behavior, physiological (e.g., heart rate, skin conductance, pupil diameter) and electroencephalography (EEG) features, and altered activity in subcortical (e.g., hypothalamus and locus coeruleus) and cortical regions. While recent studies highlight the importance of subcortical-cortical interactions in arousal, few have explored the relationship between subcortical-cortical interactions and hyperarousal in depressed patients. This gap limits our understanding of the neural mechanism through which hyperarousal affects depressive symptoms, which involves various cognitive processes and the cerebral cortex. Based on the current literature, we propose that the hyperconnectivity in the thalamocortical circuit may contribute to both the hyperarousal pattern and depressive symptoms. Future research should investigate the relationship between thalamocortical connections and abnormal arousal in depression, and explore its implications for non-invasive treatments for depression.
Collapse
Affiliation(s)
- Musi Xie
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
| | - Ying Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
| | - Wendan Cai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Bingqi Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Haonan Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
- Pazhou Laboratory, Guangzhou 510330, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| |
Collapse
|
20
|
Riggs LM, Pereira EFR, Thompson SM, Gould TD. cAMP-dependent protein kinase signaling is required for ( 2R,6R)-hydroxynorketamine to potentiate hippocampal glutamatergic transmission. J Neurophysiol 2024; 131:64-74. [PMID: 38050689 PMCID: PMC11286304 DOI: 10.1152/jn.00326.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
(2R,6R)-Hydroxynorketamine (HNK) is a ketamine metabolite that shows rapid antidepressant-like effects in preclinical studies and lacks the adverse N-methyl-d-aspartate receptor (NMDAR) inhibition-related properties of ketamine. Investigating how (2R,6R)-HNK exerts its antidepressant actions may be informative in the design of novel pharmacotherapies with improved safety and efficacy. We sought to identify the molecular substrates through which (2R,6R)-HNK induces functional changes at excitatory synapses, a prevailing hypothesis for how rapid antidepressant effects are initiated. We recorded excitatory postsynaptic potentials in hippocampal slices from male Wistar Kyoto rats, which have impaired hippocampal plasticity and are resistant to traditional antidepressants. (2R,6R)-HNK (10 µM) led to a rapid potentiation of electrically evoked excitatory postsynaptic potentials at Schaffer collateral CA1 stratum radiatum synapses. This potentiation was associated with a decrease in paired pulse facilitation, suggesting an increase in the probability of glutamate release. The (2R,6R)-HNK-induced potentiation was blocked by inhibiting either cyclic adenosine monophosphate (cAMP) or its downstream target, cAMP-dependent protein kinase (PKA). As cAMP is a potent regulator of brain-derived neurotrophic factor (BDNF) release, we assessed whether (2R,6R)-HNK exerts this acute potentiation through a rapid increase in cAMP-dependent BDNF-TrkB signaling. We found that the cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the acute synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions in vivo. These results suggest that, by potentiating glutamate release via cAMP-PKA signaling, (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission that promote structural plasticity leading to maintained antidepressant action.NEW & NOTEWORTHY Ketamine is a rapid-acting antidepressant and its preclinical effects are mimicked by its (2R,6R)-(HNK) metabolite. We found that (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission by potentiating glutamate release via cAMP-PKA signaling at hippocampal Schaffer collateral synapses. This cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the rapid synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions that are thought to maintain antidepressant action in vivo.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Edna F R Pereira
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Veterans Affairs Maryland Health Care System, Baltimore, Maryland, United States
| |
Collapse
|
21
|
Taraku B, Loureiro JR, Sahib AK, Zavaliangos-Petropulu A, Al-Sharif N, Leaver A, Wade B, Joshi S, Woods RP, Espinoza R, Narr KL. Ketamine treatment modulates habenular and nucleus accumbens static and dynamic functional connectivity in major depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.01.23299282. [PMID: 38106178 PMCID: PMC10723506 DOI: 10.1101/2023.12.01.23299282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dysfunctional reward processing in major depressive disorder (MDD) involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Ketamine elicits rapid antidepressant and alleviates anhedonia in MDD. To clarify how ketamine perturbs reward circuitry in MDD, we examined how serial ketamine infusions (SKI) modulate static and dynamic functional connectivity (FC) in Hb and NAc networks. MDD participants (n=58, mean age=40.7 years, female=28) received four ketamine infusions (0.5mg/kg) 2-3 times weekly. Resting-state fMRI scans and clinical assessments were collected at baseline and 24 hours post-SKI completion. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Paired t-tests examined changes in FC pre-to-post SKI, and correlations were used to determine relationships between FC changes with mood and anhedonia. Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in Hamilton Depression Rating Scale. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.
Collapse
Affiliation(s)
- Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Joana R Loureiro
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashish K Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Noor Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Benjamin Wade
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shantanu Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger P Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Dong WT, Long LH, Deng Q, Liu D, Wang JL, Wang F, Chen JG. Mitochondrial fission drives neuronal metabolic burden to promote stress susceptibility in male mice. Nat Metab 2023; 5:2220-2236. [PMID: 37985735 DOI: 10.1038/s42255-023-00924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Neurons are particularly susceptible to energy fluctuations in response to stress. Mitochondrial fission is highly regulated to generate ATP via oxidative phosphorylation; however, the role of a regulator of mitochondrial fission in neuronal energy metabolism and synaptic efficacy under chronic stress remains elusive. Here, we show that chronic stress promotes mitochondrial fission in the medial prefrontal cortex via activating dynamin-related protein 1 (Drp1), resulting in mitochondrial dysfunction in male mice. Both pharmacological inhibition and genetic reduction of Drp1 ameliorates the deficit of excitatory synaptic transmission and stress-related depressive-like behavior. In addition, enhancing Drp1 fission promotes stress susceptibility, which is alleviated by coenzyme Q10, which potentiates mitochondrial ATP production. Together, our findings unmask the role of Drp1-dependent mitochondrial fission in the deficits of neuronal metabolic burden and depressive-like behavior and provides medication basis for metabolism-related emotional disorders.
Collapse
Affiliation(s)
- Wan-Ting Dong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Hong Long
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Qiao Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duo Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| | - Jian-Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| |
Collapse
|
23
|
Olié E, Lengvenyte A, Courtet P. [How can ketamine be used to manage suicidal risk?]. Biol Aujourdhui 2023; 217:157-160. [PMID: 38018943 DOI: 10.1051/jbio/2023029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 11/30/2023]
Abstract
In France, suicidal behaviors remain a major public health issue. Depressed patients with suicidal ideation have more severe depressive symptoms, a more unfavorable disease course, and a greater number of suicide attempts than patients without suicidal ideation. Unfortunately, conventional antidepressants tend to be less effective in patients with suicidal tendencies than in those without. Nevertheless, promising advancements have emerged with the use of ketamine, which has shown significant and rapid efficacy in reducing the intensity of suicidal ideation in depressed patients within the first 72 h after its administration. Several mechanisms are potentially involved: (1) reduction of anhedonia. It has been demonstrated that ketamine reduces both anhedonia and suicidal ideation. In depressed patients, the reduction of anhedonia observed 2 h after ketamine administration is associated with metabolic changes in the anterior cingulate cortex involved in suicidal ideation; (2) activation of neuroplasticity cascades. The reduction in suicidal ideation within 24 h following ketamine administration is correlated with changes in plasma BDNF levels and is modulated by the Val66Met functional polymorphism of the BDNF gene. Moreover, preclinical and clinical studies have shown that ketamine induces functional and connectivity changes in the prefrontal and anterior cingulate regions, which are strongly implicated in suicidal behaviors; (3) reduction of inflammation. It is now widely accepted that suicidal behaviors are associated with low-grade inflammation, and with elevated quinolinic acid and reduced kynurenic acid levels. Interestingly, predictors of a reduction in suicidal ideation after ketamine infusion include initial severity of suicidal thoughts and depression, as well as baseline blood levels of kynurenic acid; (4) involvement of the opioidergic system. Post-mortem studies have indicated alterations in the opioidergic system related to suicidal behaviors. A recent study suggested that the antisuicidal effect of ketamine may depend on this system because naltrexone, an antagonist of mu opioid receptors, abolished the typical antidepressant effect and reduction in suicidal ideation observed following ketamine administration. In conclusion, ketamine exhibits promising potential in mitigating suicidal ideation - its effects are specific, rapid, albeit temporary. The suggested mechanisms driving its efficacy are multifaceted. Nevertheless, it is yet to be determined whether ketamine administration can effectively prevent suicidal behaviors.
Collapse
Affiliation(s)
- Emilie Olié
- Département Urgences et Post-Urgences Psychiatriques, CHU Lapeyronie, Hôpital Lapeyronie, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| | - Aisté Lengvenyte
- Département Urgences et Post-Urgences Psychiatriques, CHU Lapeyronie, Hôpital Lapeyronie, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| | - Philippe Courtet
- Département Urgences et Post-Urgences Psychiatriques, CHU Lapeyronie, Hôpital Lapeyronie, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| |
Collapse
|
24
|
Shi S, Zhang M, Xie W, Ju P, Chen N, Wang F, Lyu D, Wang M, Hong W. Sleep deprivation alleviates depression-like behaviors in mice via inhibiting immune and inflammatory pathways and improving neuroplasticity. J Affect Disord 2023; 340:100-112. [PMID: 37543111 DOI: 10.1016/j.jad.2023.07.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Sleep deprivation (SD) has been suggested to have a rapid antidepressant effect. There is substantial evidence that neuroinflammation and neuroplasticity play critical roles in the pathophysiology and treatment of depression. Here, we investigated the mechanisms of SD to alleviate depression-like behaviors of mice, and the role of neuroinflammation and neuroplasticity in it. METHODS Adult male C57BL/6 J mice were subjected to chronic restraint stress (CRS) for 6 weeks, and 6 h of SD were administrated. Behavioral tests were performed to measure depression-like behaviors. RNA-sequencing and bioinformatic analysis were performed in the anterior cingulate cortex (ACC). The differentially expressed genes were confirmed by quantitative real-time polymerase chain reaction (RT-qPCR). Neuroinflammation and neuroplasticity were measured by western blotting and immunofluorescence staining. RESULTS Behavioral tests demonstrated that SD swiftly attenuated the depression-like behaviors induced by CRS. RNA-sequencing identified the upregulated immune and inflammatory pathways after CRS exposure were downregulated by SD. Furthermore, SD reversed the levels of immune and inflammation-related mRNA, pro-inflammatory factors and microglia activation in ACC. Additionally, the impaired neuroplasticity elicited by CRS in the prefrontal cortex (PFC) and ACC were improved by SD. LIMITATIONS More in-depth studies are required to determine the role of different SD protocols in depressive symptoms and their underlying mechanisms. CONCLUSIONS Our study revealed the rapid antidepressant effect of SD on CRS mice through the reduction of the neuroinflammatory response in ACC and the improvement of neuroplasticity in PFC and ACC, providing a theoretical basis for the clinical application of SD as a rapid antidepressant treatment.
Collapse
Affiliation(s)
- Shuxiang Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Mengke Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Weijie Xie
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Peijun Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Ningning Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Fan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Meiti Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China.
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China; Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
25
|
Guo L, Wang S, Tian H, Shang M, Xu J, Wang C. Novel synergistic treatment for depression: involvement of GSK3β-regulated AMPA receptors in the prefrontal cortex of mice. Cereb Cortex 2023; 33:10504-10513. [PMID: 37566915 DOI: 10.1093/cercor/bhad299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Previous evidence has suggested a vital role of glycogen synthase kinase 3β-mediated α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors trafficking in depression. Considering the antidepressant effect of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors activation in the prefrontal cortex, we hypothesized that glycogen synthase kinase 3β-induced alterations in α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors function in the prefrontal cortex participate in depression. Herein, we confirmed that the levels of phosphorylated glycogen synthase kinase 3β and GluA1, the latter being a subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, were decreased in the prefrontal cortex of the chronic social defeat stress model mice presenting with depressive-like behaviors. We then found that a glycogen synthase kinase 3β (p.S9A) point mutation downregulated GluA1 and induced depressive-like behaviors in mice, whereas an agonist of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, PF-4778574 (2 mg/kg) did not reversed the molecular changes. On the other hand, the antidepressant effect of PF-4778574 was dose dependent, and the single administration of PF-4778574 at a lower dose (0.5 mg/kg) or of the glycogen synthase kinase 3β inhibitor SB216763 (5 and 10 mg/kg) did not evoke an antidepressant effect. In contrast, co-treatment with PF-4778574 (0.5 mg/kg) and SB216763 (10 mg/kg) led to antidepressant effects similar to those of PF-4778574 (2 mg/kg). Our results suggest that glycogen synthase kinase 3β-induced α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors dysfunction in the prefrontal cortex is one of the key mechanisms of depression, and the combination of a lower dose of PF-4778574 with SB216763 shows potential as a novel synergistic treatment for depression.
Collapse
Affiliation(s)
- Lei Guo
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Shuzhuo Wang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Haihua Tian
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, PR China
| | - Mengyuan Shang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jia Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
26
|
Can AT, Mitchell JS, Dutton M, Bennett M, Hermens DF, Lagopoulos J. Insights into the neurobiology of suicidality: explicating the role of glutamatergic systems through the lens of ketamine. Psychiatry Clin Neurosci 2023; 77:513-529. [PMID: 37329495 DOI: 10.1111/pcn.13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Suicidality is a prevalent mental health condition, and managing suicidal patients is one of the most challenging tasks for health care professionals due to the lack of rapid-acting, effective psychopharmacological treatment options. According to the literature, suicide has neurobiological underpinnings that are not fully understood, and current treatments for suicidal tendencies have considerable limitations. To treat suicidality and prevent suicide, new treatments are required; to achieve this, the neurobiological processes underlying suicidal behavior must be thoroughly investigated. Although multiple neurotransmitter systems, particularly serotonergic systems, have been studied in the past, less has been reported in relation to disruptions in glutamatergic neurotransmission, neuronal plasticity, and neurogenesis that result from stress-related abnormalities of the hypothalamic-pituitary-adrenal system. Informed by the literature, which reports robust antisuicidal and antidepressive properties of subanaesthetic doses of ketamine, this review aims to provide an examination of the neurobiology of suicidality (and relevant mood disorders) with implications of pertinent animal, clinical, and postmortem studies. We discuss dysfunctions in the glutamatergic system, which may play a role in the neuropathology of suicidality and the role of ketamine in restoring synaptic connectivity at the molecular levels.
Collapse
Affiliation(s)
- Adem Tevfik Can
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Jules Shamus Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Maxwell Bennett
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | | | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| |
Collapse
|
27
|
Johnston JN, Allen J, Shkolnikov I, Sanchez-Lafuente CL, Reive BS, Scheil K, Liang S, Christie BR, Kalynchuk LE, Caruncho HJ. Reelin Rescues Behavioral, Electrophysiological, and Molecular Metrics of a Chronic Stress Phenotype in a Similar Manner to Ketamine. eNeuro 2023; 10:ENEURO.0106-23.2023. [PMID: 37550058 PMCID: PMC10431216 DOI: 10.1523/eneuro.0106-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 08/09/2023] Open
Abstract
Over the past decade, ketamine, an NMDA receptor antagonist, has demonstrated fast-acting antidepressant effects previously unseen with monoaminergic-based therapeutics. Concerns regarding psychotomimetic effects limit the use of ketamine for certain patient populations. Reelin, an extracellular matrix glycoprotein, has shown promise as a putative fast-acting antidepressant in a model of chronic stress. However, research has not yet demonstrated the changes that occur rapidly after peripheral reelin administration. To address this key gap in knowledge, male Long-Evans rats underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 d). On day 21, rats were then administered an acute dose of ketamine (10 mg/kg, i.p.), reelin (3 µg, i.v.), or vehicle. Twenty-four hours after administration, rats underwent behavioral or in vivo electrophysiological testing before killing. Immunohistochemistry was used to confirm changes in hippocampal reelin immunoreactivity. Lastly, the hippocampus was microdissected from fresh tissue to ascertain whole cell and synaptic-specific changes in protein expression through Western blotting. Chronic corticosterone induced a chronic stress phenotype in the forced swim test and sucrose preference test (SPT). Both reelin and ketamine rescued immobility and swimming, however reelin alone rescued latency to immobility. In vivo electrophysiology revealed decreases in hippocampal long-term potentiation (LTP) after chronic stress which was increased significantly by both ketamine and reelin. Reelin immunoreactivity in the dentate gyrus paralleled the behavioral and electrophysiological findings, but no significant changes were observed in synaptic-level protein expression. This exploratory research supports the putative rapid-acting antidepressant effects of an acute dose of reelin across behavioral, electrophysiological, and molecular measures.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Irene Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Carla L Sanchez-Lafuente
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Brady S Reive
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Kaylene Scheil
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Stanley Liang
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
28
|
Fogaça MV, Wu M, Li C, Li XY, Duman RS, Picciotto MR. M1 acetylcholine receptors in somatostatin interneurons contribute to GABAergic and glutamatergic plasticity in the mPFC and antidepressant-like responses. Neuropsychopharmacology 2023; 48:1277-1287. [PMID: 37142667 PMCID: PMC10354201 DOI: 10.1038/s41386-023-01583-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
Alterations in glutamatergic and GABAergic function in the medial prefrontal cortex (mPFC) are prevalent in individuals with major depressive disorder, resulting in impaired synaptic plasticity that compromises the integrity of signal transfer to limbic regions. Scopolamine, a non-selective muscarinic receptor antagonist, produces rapid antidepressant-like effects by targeting M1-type acetylcholine receptors (M1R) on somatostatin (SST) interneurons. So far, these effects have been investigated with relatively short-term manipulations, and long-lasting synaptic mechanisms involved in these responses are still unknown. Here, we generated mice with conditional deletion of M1R (M1f/fSstCre+) only in SST interneurons to determine the role of M1R in modulating long-term GABAergic and glutamatergic plasticity in the mPFC that leads to attenuation of stress-relevant behaviors. We have also investigated whether the molecular and antidepressant-like effects of scopolamine could be mimicked or occluded in male M1f/fSstCre+ mice. M1R deletion in SST-expressing neurons occluded the rapid and sustained antidepressant-like effects of scopolamine, as well as scopolamine-induced increases in c-Fos+/CaMKIIα cells and proteins necessary for glutamatergic and GABAergic function in the mPFC. Importantly, M1R SST deletion resulted in resilience to chronic unpredictable stress in behaviors relevant to coping strategies and motivation, and to a lesser extent, in behaviors relevant to avoidance. Finally, M1R SST deletion also prevented stress-induced impairments in the expression of GABAergic and glutamatergic markers in the mPFC. These findings suggest that the antidepressant-like effects of scopolamine result from modulation of excitatory and inhibitory plasticity via M1R blockade in SST interneurons. This mechanism could represent a promising strategy for antidepressant development.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA.
| | - Min Wu
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Chan Li
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Xiao-Yuan Li
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| |
Collapse
|
29
|
Cervetto C, Amaroli A, Amato S, Gatta E, Diaspro A, Maura G, Signore A, Benedicenti S, Marcoli M. Photons Induce Vesicular Exocytotic Release of Glutamate in a Power-Dependent Way. Int J Mol Sci 2023; 24:10977. [PMID: 37446155 DOI: 10.3390/ijms241310977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Andrea Amaroli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Alberto Diaspro
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia-IIT, Via Morego 30, 16133 Genova, Italy
- Biophysics Institute, National Research Council-CNR, Via de Marini, 6, 16149 Genova, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Antonio Signore
- Therapeutic Dentistry Department, Institute of Dentistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, b. 2, 119992 Moskow, Russia
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| |
Collapse
|
30
|
Als TD, Kurki MI, Grove J, Voloudakis G, Therrien K, Tasanko E, Nielsen TT, Naamanka J, Veerapen K, Levey DF, Bendl J, Bybjerg-Grauholm J, Zeng B, Demontis D, Rosengren A, Athanasiadis G, Bækved-Hansen M, Qvist P, Bragi Walters G, Thorgeirsson T, Stefánsson H, Musliner KL, Rajagopal VM, Farajzadeh L, Thirstrup J, Vilhjálmsson BJ, McGrath JJ, Mattheisen M, Meier S, Agerbo E, Stefánsson K, Nordentoft M, Werge T, Hougaard DM, Mortensen PB, Stein MB, Gelernter J, Hovatta I, Roussos P, Daly MJ, Mors O, Palotie A, Børglum AD. Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses. Nat Med 2023; 29:1832-1844. [PMID: 37464041 PMCID: PMC10839245 DOI: 10.1038/s41591-023-02352-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 04/17/2023] [Indexed: 07/20/2023]
Abstract
Depression is a common psychiatric disorder and a leading cause of disability worldwide. Here we conducted a genome-wide association study meta-analysis of six datasets, including >1.3 million individuals (371,184 with depression) and identified 243 risk loci. Overall, 64 loci were new, including genes encoding glutamate and GABA receptors, which are targets for antidepressant drugs. Intersection with functional genomics data prioritized likely causal genes and revealed new enrichment of prenatal GABAergic neurons, astrocytes and oligodendrocyte lineages. We found depression to be highly polygenic, with ~11,700 variants explaining 90% of the single-nucleotide polymorphism heritability, estimating that >95% of risk variants for other psychiatric disorders (anxiety, schizophrenia, bipolar disorder and attention deficit hyperactivity disorder) were influencing depression risk when both concordant and discordant variants were considered, and nearly all depression risk variants influenced educational attainment. Additionally, depression genetic risk was associated with impaired complex cognition domains. We dissected the genetic and clinical heterogeneity, revealing distinct polygenic architectures across subgroups of depression and demonstrating significantly increased absolute risks for recurrence and psychiatric comorbidity among cases of depression with the highest polygenic burden, with considerable sex differences. The risks were up to 5- and 32-fold higher than cases with the lowest polygenic burden and the background population, respectively. These results deepen the understanding of the biology underlying depression, its disease progression and inform precision medicine approaches to treatment.
Collapse
Affiliation(s)
- Thomas D Als
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Center for Genomics and Personalized Medicine, Aarhus, Denmark.
| | - Mitja I Kurki
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, USA
| | - Karen Therrien
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elisa Tasanko
- Department of Psychology and Logopedics, SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - Trine Tollerup Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Joonas Naamanka
- Department of Psychology and Logopedics, SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - Kumar Veerapen
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Biao Zeng
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ditte Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Anders Rosengren
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Centre Sct. Hans, Capital Region of Denmark, Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
| | - Georgios Athanasiadis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Centre Sct. Hans, Capital Region of Denmark, Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Marie Bækved-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | | | | | | | - Katherine L Musliner
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research (NCRR), Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
- The Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Veera M Rajagopal
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Leila Farajzadeh
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Janne Thirstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Bjarni J Vilhjálmsson
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - John J McGrath
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Manuel Mattheisen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sandra Meier
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Esben Agerbo
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research (NCRR), Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | | | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Centre Copenhagen, Capital Region of Denmark, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Centre Sct. Hans, Capital Region of Denmark, Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Clinical Sciences and GLOBE Institute, LF Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Preben B Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research (NCRR), Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Departments of Psychiatry and Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Iiris Hovatta
- Department of Psychology and Logopedics, SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Center for Genomics and Personalized Medicine, Aarhus, Denmark.
| |
Collapse
|
31
|
Li M, Han L, Xiao J, Zhang S, Liu G, Sun X. IL-1ra treatment prevents chronic social defeat stress-induced depression-like behaviors and glutamatergic dysfunction via the upregulation of CREB-BDNF. J Affect Disord 2023; 335:358-370. [PMID: 37217098 DOI: 10.1016/j.jad.2023.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/30/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Proinflammatory cytokines IL-1β has been proposed to be a key mediator in the pathophysiology of mood-related disorders. However, the IL-1 receptor antagonist (IL-1ra) is a natural antagonist of IL-1 and plays a key role in the regulation of IL-1-mediated inflammation, the effects of IL-1ra in stress-induced depression has not been well elucidated. METHODS Chronic social defeat stress (CSDS) and lipopolysaccharide (LPS) were used to investigate the effects of IL-1ra. ELISA kit and qPCR were used to detect IL-1ra levels. Golgi staining and electrophysiological recordings were used to investigate glutamatergic neurotransmission in the hippocampus. Immunofluorescence and western blotting were used to analyze CREB-BDNF pathway and synaptic proteins. RESULTS Serum levels of IL-1ra increased significantly in two animal models of depression, and there was a significant correlation between serum IL-1ra levels and depression-like behaviors. Both CSDS and LPS induced the imbalance of IL-1ra and IL-1β in the hippocampus. Furthermore, chronic intracerebroventricular (i.c.v.) infusion of IL-1ra not only blocked CSDS-induced depression-like behaviors, but also alleviated CSDS-induced decrease in dendritic spine density and impairments in AMPARs-mediated neurotransmission. Finally, IL-1ra treatment produces antidepressant-like effects through the activation of CREB-BDNF in the hippocampus. LIMITATION Further studies need to investigate the effect of IL-1ra in the periphery in CSDS-induced depression. CONCLUSION Our study suggests that the imbalance of IL-1ra and IL-1β reduces the expression of the CREB-BDNF pathway in the hippocampus, which dysregulates AMPARs-mediated neurotransmission, ultimately leading to depression-like behaviors. IL-1ra could be a new potential candidate for the treatment of mood disorders.
Collapse
Affiliation(s)
- Mingxing Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430012, China; Department of Psychiatry, Wuhan Mental Health Center, Wuhan 430012, China.
| | - Li Han
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430012, China; Department of Psychiatry, Wuhan Mental Health Center, Wuhan 430012, China
| | - Junli Xiao
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430012, China; Department of Psychiatry, Wuhan Mental Health Center, Wuhan 430012, China
| | - Song Zhang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangya Liu
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Wuhan 430023, China.
| | - Xuejiao Sun
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
32
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. Pharmacological Mechanism of Ketamine in Suicidal Behavior Based on Animal Models of Aggressiveness and Impulsivity: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:ph16040634. [PMID: 37111391 PMCID: PMC10146327 DOI: 10.3390/ph16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Around 700,000 people die from suicide each year in the world. Approximately 90% of suicides have a history of mental illness, and more than two-thirds occur during a major depressive episode. Specific therapeutic options to manage the suicidal crisis are limited and measures to prevent acting out also remain limited. Drugs shown to reduce the risk of suicide (antidepressants, lithium, or clozapine) necessitate a long delay of onset. To date, no treatment is indicated for the treatment of suicidality. Ketamine, a glutamate NMDA receptor antagonist, is a fast-acting antidepressant with significant effects on suicidal ideation in the short term, while its effects on suicidal acts still need to be demonstrated. In the present article, we reviewed the literature on preclinical studies in order to identify the potential anti-suicidal pharmacological targets of ketamine. Impulsive-aggressive traits are one of the vulnerability factors common to suicide in patients with unipolar and bipolar depression. Preclinical studies in rodent models with impulsivity, aggressiveness, and anhedonia may help to analyze, at least in part, suicide neurobiology, as well as the beneficial effects of ketamine/esketamine on reducing suicidal ideations and preventing suicidal acts. The present review focuses on disruptions in the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation, and/or the HPA axis in rodent models with an impulsive/aggressive phenotype, because these traits are critical risk factors for suicide in humans. Ketamine can modulate these endophenotypes of suicide in human as well as in animal models. The main pharmacological properties of ketamine are then summarized. Finally, numerous questions arose regarding the mechanisms by which ketamine may prevent an impulsive-aggressive phenotype in rodents and suicidal ideations in humans. Animal models of anxiety/depression are important tools to better understand the pathophysiology of depressed patients, and in helping develop novel and fast antidepressant drugs with anti-suicidal properties and clinical utility.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Fabrice Jollant
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- Pôle de Psychiatrie, CHU Nîmes, 30900 Nîmes, France
- Department of Psychiatry, McGill University and McGill Group for Suicide Studies, Montréal, QC H3A 0G4, Canada
| | - Laurent Tritschler
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Romain Colle
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| |
Collapse
|
33
|
Inaba H, Li H, Kawatake-Kuno A, Dewa KI, Nagai J, Oishi N, Murai T, Uchida S. GPCR-mediated calcium and cAMP signaling determines psychosocial stress susceptibility and resiliency. SCIENCE ADVANCES 2023; 9:eade5397. [PMID: 37018397 PMCID: PMC10075968 DOI: 10.1126/sciadv.ade5397] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Chronic stress increases the risk of developing psychiatric disorders, including mood and anxiety disorders. Although behavioral responses to repeated stress vary across individuals, the underlying mechanisms remain unclear. Here, we perform a genome-wide transcriptome analysis of an animal model of depression and patients with clinical depression and report that dysfunction of the Fos-mediated transcription network in the anterior cingulate cortex (ACC) confers a stress-induced social interaction deficit. Critically, CRISPR-Cas9-mediated ACC Fos knockdown causes social interaction deficits under stressful situation. Moreover, two classical second messenger pathways, calcium and cyclic AMP, in the ACC during stress differentially modulate Fos expression and regulate stress-induced changes in social behaviors. Our findings highlight a behaviorally relevant mechanism for the regulation of calcium- and cAMP-mediated Fos expression that has potential as a therapeutic target for psychiatric disorders related to stressful environments.
Collapse
Affiliation(s)
- Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ken-ichi Dewa
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoya Oishi
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
34
|
Qin Y, Guo X, Song W, Liang Z, Wang Y, Feng D, Yang Y, Li M, Gao M. Antidepressant-like effect of CP-101,606: Evidence of mTOR pathway activation. Mol Cell Neurosci 2023; 124:103821. [PMID: 36775184 DOI: 10.1016/j.mcn.2023.103821] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND As a non-competitive N-methyl d-aspartate receptor antagonist, ketamine exerts rapid-onset and long-lasting antidepressant effects on depression, but some side effects limit its use. To identify a safer compound that may provide similar antidepressant effects, here we investigated whether CP-101,606, a selective NR2B receptor inhibitor, provides similar antidepressant effects and explored its underlying mechanisms. METHODS To mimic depressive-like behavior, mice were subjected to chronic unpredictable mild stress (CUMS) for 21 days. Mice were treated with CP-101,606 at 10, 20, and 40 mg/kg doses for 7, 14, and 21 days, respectively, followed by a sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). Western blot analysis was performed on several targets (mTOR, p-mTOR, p70S6K, p-p70S6K, PSD-95, and GluA1), along with immunohistochemistry (GluA1) and immunofluorescence (p-mTOR) assays, using hippocampal tissue. RESULTS CP-101,606 at 20 and 40 mg/kg doses for 7 and 14 days and fluoxetine 10 mg/kg and CP-101606 20 mg/kg for 21 days ameliorated depression-like behaviors in the SPT, TST, and FST. The effects of CP-101,606 were associated with a reversal of the CUMS-induced decrease in mTOR (Ser2448) and p70S6K (Thr389) phosphorylation and increasing PSD95 and GluA1 synthesis in the hippocampus. CONCLUSIONS Our results demonstrate that CP-101,606 produces antidepressant effects in CUMS mice, which may be mediated by mTOR signaling cascade upregulation. Our findings suggest the possible utility of CP-101,606 as a treatment for depression.
Collapse
Affiliation(s)
- Yu Qin
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xinlei Guo
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wenyue Song
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zehuai Liang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yahui Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dan Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yiru Yang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingxing Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingqi Gao
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
35
|
Ago Y, Yokoyama R, Asano S, Hashimoto H. Roles of the monoaminergic system in the antidepressant effects of ketamine and its metabolites. Neuropharmacology 2023; 223:109313. [PMID: 36328065 DOI: 10.1016/j.neuropharm.2022.109313] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
While the molecular target of (R,S)-ketamine (ketamine) is thought to be the NMDA receptor, subanesthetic doses of ketamine have been known to modulate monoaminergic neurotransmission in the central nervous system. Although the involvement of the serotonergic system in the antidepressant effects of ketamine has been reported in most studies of this topic, some recent studies have reported that the dopaminergic system plays a key role in the effects of ketamine. Additionally, several lines of evidence suggest that the antidepressant-like effects of (R)-ketamine might be independent of the monoaminergic system. Ketamine metabolites also differ considerably in their ability to regulate monoamine neurotransmitters relative to (S)-ketamine and (R)-ketamine, while (2R,6R)-hydroxynorketamine might share common serotonergic signaling mechanisms with ketamine. In the current review, we summarize the effects of ketamine and its metabolites on monoamine neurotransmission in the brain and discuss the potential roles of the monoaminergic system in the mechanism of action of ketamine.
Collapse
Affiliation(s)
- Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Rei Yokoyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan; Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
36
|
Deng D, Cui Y, Gan S, Xie Z, Cui S, Cao K, Wang S, Shi G, Yang L, Bai S, Shi Y, Liu Z, Zhao J, Zhang R. Sinisan alleviates depression-like behaviors by regulating mitochondrial function and synaptic plasticity in maternal separation rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154395. [PMID: 36103769 DOI: 10.1016/j.phymed.2022.154395] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sinisan (SNS) consists of four kinds of herbs, which is the core of antidepressant prescription widely used in traditional Chinese medicine clinic treatment for depression induced by early life stress. However, the role and precise mechanism of SNS antidepressant have not yet been elucidated. PURPOSE This study aimed to investigate the mechanism SNS on antidepressant of regulating mitochondrial function to improve hippocampal synaptic plasticity. METHODS 90 Sprague-Dawley (SD) rats male pups on Post-Natal Day (PND) 0 were randomly divided into Control group (ddH20), Model group (ddH20), Fluoxetine group (5.0 mg/kg fluoxetine), and SNS-L group (2.5 g/kg SNS), SNS-M group (5.0 g/kg SNS) and SNS-H group (10.0 g/kg SNS), 15 animals per group. Maternal separation (MS) from PND1 to PND21, drug intervention from PND60 to PND90, and behavior tests including sucrose preference test, open field test and forced swimming test from PND83 to PND90 were performed. Synaptic structure and mitochondrial structure were observed by TEM. The expression levels of PSD-95 and SYN were detected by immunohistochemistry and western blot test, the adenosine triphosphate (ATP) content in the hippocampus was detected by assay kits, and the expression levels of Mfn2, Drp1 and Fis1 protein were detected by western bolt test. RESULTS SNS can alleviate depression-like and anxiety-like behaviors in MS rats, improve the damage of synapses and mitochondria, reduce the decrease of ATP in hippocampus, and reverse the expression levels of PSD-95, SYN, Mfn2, Drp1, and Fis1 proteins. CONCLUSION SNS reduced the risk of early life stress induced depression disorder via regulating mitochondrial function and synaptic plasticity. Targeting mitochondrial may be a novel prospective therapeutic avenue for antidepressant.
Collapse
Affiliation(s)
- Di Deng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongfei Cui
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu Gan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zedan Xie
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sainan Cui
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kerun Cao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shanshan Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoqi Shi
- School of Foreign Studies, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Bai
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinlan Zhao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
37
|
Chen J, Luo Y, Liang X, Kong X, Xiao Q, Tang J, Qi Y, Tang Y, Xiu Y. Alteration in NMDAR subunits in different brain regions of chronic unpredictable mild stress (CUMS) rat model. Transl Neurosci 2022; 13:379-389. [PMID: 36348956 PMCID: PMC9601380 DOI: 10.1515/tnsci-2022-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
N-Methyl-d-aspartate receptor (NMDAR) signaling pathway has been implicated in the pathogenesis and treatment of depression. However, the role of NMDAR subunits in depression is still unclear. In this study, alteration in all seven NMDAR subunits in several brain areas of rats exposed to chronic unpredictable mild stress (CUMS), an animal model of depression, was detected. Our findings demonstrated that: (1) CUMS could induce a reduction in sucrose preference, an indicator of typical depression-like behaviors; (2) CUMS significantly reduced the NMDAR subunits of GluN2B and GluN3 in the medial prefrontal cortex (mPFC), but not altered all seven NMDAR subunits in hippocampus and corpus callosum of rats; (3) subunit composition of NMDARs in corpus callosum was different from that in mPFC, PFC and hippocampus; and (4) the mRNA expressions of GluN2B, GluN3A and GluN3B in mPFC as well as mRNA expression of GluN2C in corpus callosum were correlated to sucrose preference in rats. These findings suggested that GluN2B and GluN3 in mPFC may contribute to the pathophysiology of depression.
Collapse
Affiliation(s)
- Jing Chen
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yanmin Luo
- Department of Physiology, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xin Liang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiangru Kong
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, P. R. China
| | - Qian Xiao
- Department of Radioactive Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jing Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yingqiang Qi
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yun Xiu
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
38
|
Dong X, Huang R. Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154355. [PMID: 35908520 DOI: 10.1016/j.phymed.2022.154355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Depression, one of the most common mental illnesses and mood disorder syndromes, can seriously harm physical and mental health. As the pathophysiology of depression remains unclear, there is a need to find novel therapeutic agents. Ferulic acid (FA), a phenolic compound found in various Chinese herbal medicines, has anti-inflammatory and free radical scavenging properties as well as a wide range of therapeutic effects against depression. PURPOSE In this review, we appraised preclinical research to fully discuss the anti-depression capacity of FA and discussed FAs' holistic characteristics that can contribute to better management of depression. STUDY DESIGN We reviewed the results of in vitro and in vivo experiments using FA to treat depression and explored the possible antidepressant pharmacological mechanisms of FA for the clinical treatment of depression. METHODS Electronic databases, including PubMed, Google Scholar, and China National Knowledge Infrastructure, were searched from the beginning of the database creation to December 2021. RESULTS Studies on the antidepressant effects of FA show that it may exert such effects through various mechanisms. These include the following: the regulation of monoamine and non-monoamine neurotransmitter levels, inhibition of hypothalamic-pituitary-adrenal axis hyperfunction and neuroinflammation, promotion of hippocampal neurogenesis and upregulation brain-derived neurotrophic factor level, neuroprotection (inhibition of neuroinflammation, oxidative stress, mitochondrial dysfunction, and apoptosis), and downregulation of oxidative stress. CONCLUSION Preclinical studies on the antidepressant effects of FA were reviewed in this study, and research on the antidepressant mechanisms of FA was summarized, confirming that FA can exert antidepressant effects through various pharmacological mechanisms. However, more multicenter clinical case-control studies are needed to confirm the clinical efficacy of FA.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR China.
| |
Collapse
|
39
|
Estrada-Reyes R, Quero-Chávez DB, Alarcón-Elizalde S, Cercós MG, Trueta C, Constantino-Jonapa LA, Oikawa-Sala J, Argueta J, Cruz-Garduño R, Dubocovich ML, Benítez-King GA. Antidepressant Low Doses of Ketamine and Melatonin in Combination Produce Additive Neurogenesis in Human Olfactory Neuronal Precursors. Molecules 2022; 27:molecules27175650. [PMID: 36080418 PMCID: PMC9458007 DOI: 10.3390/molecules27175650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 01/18/2023] Open
Abstract
Melatonin (MEL), an indolamine with diverse functions in the brain, has been shown to produce antidepressant-like effects, presumably through stimulating neurogenesis. We recently showed that the combination of MEL with ketamine (KET), an NMDA receptor antagonist, has robust antidepressant-like effects in mice, at doses that, by themselves, are non-effective and have no adverse effects. Here, we show that the KET/MEL combination increases neurogenesis in a clone derived from human olfactory neuronal precursors, a translational pre-clinical model for effects in the human CNS. Neurogenesis was assessed by the formation of cell clusters > 50 µm in diameter, positively stained for nestin, doublecortin, BrdU and Ki67, markers of progenitor cells, neurogenesis, and proliferation. FGF, EGF and BDNF growth factors increased the number of cell clusters in cultured, cloned ONPs. Similarly, KET or MEL increased the number of clusters in a dose-dependent manner. The KET/MEL combination further increased the formation of clusters, with a maximal effect obtained after a triple administration schedule. Our results show that the combination of KET/MEL, at subeffective doses that do not produce adverse effects, stimulate neurogenesis in human neuronal precursors. Moreover, the mechanism by which the combination elicits neurogenesis is meditated by melatonin receptors, CaM Kinase II and CaM antagonism. This could have clinical advantages for the fast treatment of depression.
Collapse
Affiliation(s)
- Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Daniel B. Quero-Chávez
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Salvador Alarcón-Elizalde
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Montserrat G. Cercós
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Citlali Trueta
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Luis A. Constantino-Jonapa
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Julián Oikawa-Sala
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Ricardo Cruz-Garduño
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Margarita L. Dubocovich
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), 955 Main Street, Buffalo, NY 14203, USA
| | - Gloria A. Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
- Correspondence: or ; Tel.: +52-5541605097
| |
Collapse
|
40
|
Riggs LM, Thompson SM, Gould TD. (2R,6R)-hydroxynorketamine rapidly potentiates optically-evoked Schaffer collateral synaptic activity. Neuropharmacology 2022; 214:109153. [PMID: 35661657 PMCID: PMC9904284 DOI: 10.1016/j.neuropharm.2022.109153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
(2R,6R)-hydroxynorketamine (HNK) is a metabolite of ketamine that exerts rapid and sustained antidepressant-like effects in preclinical studies. We hypothesize that the rapid antidepressant actions of (2R,6R)-HNK involve an acute increase in glutamate release at Schaffer collateral synapses. Here, we used an optogenetic approach to assess whether (2R,6R)-HNK promotes glutamate release at CA1-projecting Schaffer collateral terminals in response to select optical excitation of CA3 afferents. The red-shifted channelrhodopsin, ChrimsonR, was expressed in dorsal CA3 neurons of adult male Sprague Dawley rats. Transverse slices were collected four weeks later to determine ChrimsonR expression and to assess the acute synaptic effects of an antidepressant-relevant concentration of (2R,6R)-HNK (10 μM). (2R,6R)-HNK led to a rapid potentiation of CA1 field excitatory postsynaptic potentials evoked by recurrent optical stimulation of ChrimsonR-expressing CA3 afferents. This potentiation is mediated in part by an increase in glutamate release probability, as (2R,6R)-HNK suppressed paired-pulse facilitation at CA3 projections, an effect that correlated with the magnitude of the (2R,6R)-HNK-induced potentiation of CA1 activity. These results demonstrate that (2R,6R)-HNK increases the probability of glutamate release at CA1-projecting Schaffer collateral afferents, which may be involved in the antidepressant-relevant behavioral adaptations conferred by (2R,6R)-HNK in vivo. The current study also establishes proof-of-principle that genetically-encoded light-sensitive proteins can be used to investigate the synaptic plasticity induced by novel antidepressant compounds in neuronal subcircuits.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
41
|
Liu L, Dai L, Xu D, Wang Y, Bai L, Chen X, Li M, Yang S, Tang Y. Astrocyte secretes IL-6 to modulate PSD-95 palmitoylation in basolateral amygdala and depression-like behaviors induced by peripheral nerve injury. Brain Behav Immun 2022; 104:139-154. [PMID: 35636613 DOI: 10.1016/j.bbi.2022.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Dysfunction of glutamatergic synaptic plasticity in basolateral amygdala (BLA) constitutes a critical pathogenic mechanism underlying the depression-like behaviors induced by chronic pain. Astrocytes serve as an important supporting cell modulating glutamatergic synaptic transmission. Here, we found that peripheral spared nerve injury (SNI) induced astrocyte activation to release IL-6 in BLA. Inhibition of astrocyte activity attenuated SNI-induced IL-6 overexpression and depression-like behaviors. Moreover, SNI enhanced the abundance of DHHC2 in synaptosome and DHHC3 in Golgi apparatus, promoted PSD-95 palmitoylation, and increased the recruitment of GluR1 and NR2B at synapses. Suppression of IL-6 or PSD-95 palmitoylation attenuated the synaptic accumulation of GluR1 and NR2B in BLA and improved depression-like behaviors induced by SNI. Furthermore, IL-6 downstream PI3K increased the expression of DHHC3 in Golgi apparatus and facilitated the interaction of palmitoylated PSD-95 with GluR1 and NR2B at synapses. These findings collectively suggested that SNI activated astrocyte to release IL-6 in BLA, which promoted PSD-95 palmitoylation and enhanced the synaptic trafficking of GluR1 and NR2B, and subsequently mediated the depression-like behaviors induced by nerve injury.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Luqi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Yinchan Wang
- Core Facility of West China Hospital, Sichuan University, Chengdu 610093, China
| | - Lin Bai
- Core Facility of West China Hospital, Sichuan University, Chengdu 610093, China
| | - Xiaoting Chen
- Animal Experimental Center of West China Hospital, Sichuan University, Chengdu 610093, China
| | - Mengzhou Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Shuai Yang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Yuying Tang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China.
| |
Collapse
|
42
|
Li Q, Zhao W, Liu S, Zhao Y, Pan W, Wang X, Liu Z, Xu Y. Partial resistance to citalopram in a Wistar-Kyoto rat model of depression: An evaluation using resting-state functional MRI and graph analysis. J Psychiatr Res 2022; 151:242-251. [PMID: 35500452 DOI: 10.1016/j.jpsychires.2022.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Wistar-Kyoto (WKY) rats as an endogenous depression model partially lack a response to classic selective serotonin reuptake inhibitors (SSRIs). Thus, this strain has the potential to be established as a model of treatment-resistant depression (TRD). However, the SSRI resistance in WKY rats is still not fully understood. In this study, WKY and control rats were subjected to a series of tests, namely, a forced swim test (FST), a sucrose preference test (SPT), and an open field test (OFT), and were scanned in a 7.0-T MRI scanner before and after three-week citalopram or saline administration. Behavioral results demonstrated that WKY rats had increased immobility in the FST and decreased sucrose preference in the SPT and central time spent in the OFT. However, citalopram did not improve immobility in the FST. The amplitude of low-frequency fluctuation (ALFF) analysis showed regional changes in the striatum and hippocampus of WKY rats. However, citalopram partially reversed the ALFF value in the dorsal part of the two regions. Functional connectivity (FC) analysis showed that FC strengths were decreased in WKY rats compared with controls. Nevertheless, citalopram partially increased FC strengths in WKY rats. Based on FC, global graph analysis demonstrated decreased network efficiency in WKY + saline group compared with control + saline group, but citalopram showed weak network efficiency improvement. In conclusion, resting-state fMRI results implied widely affected brain function at both regional and global levels in WKY rats. Citalopram had only partial effects on these functional changes, indicating a potential treatment resistance mechanism.
Collapse
Affiliation(s)
- Qi Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Wentao Zhao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Zhao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China; National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan, China
| | - Weixing Pan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Xiao Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Mental Health, Shanxi Medical University, Taiyuan, China; National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
43
|
Gao F, Liu A, Qi X, Wang M, Chen X, Wei S, Gao S, Sun Y, Sun P, Li X, Sun W, Li J, Liu Q. Ppp4r3a deficiency leads to depression-like behaviors in mice by modulating the synthesis of synaptic proteins. Dis Model Mech 2022; 15:dmm049374. [PMID: 35314861 PMCID: PMC9150120 DOI: 10.1242/dmm.049374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic stress is one of the main risk factors for the onset of major depressive disorder. Chronic unpredictable mild stress results in reduced expression of synaptic proteins and depression-like behaviors in rodent models. However, the upstream molecule that senses the demand for synaptic proteins and initiates their synthesis under chronic stress remains unknown. In this study, chronic unpredictable mild stress reduced the expression of PPP4R3A in the prefrontal cortex and hippocampus in mice. Selective knockout of Ppp4r3a in the cortex and hippocampus mimicked the depression- and anxiety-like behavioral effects of chronic stress in mice. Notably, Ppp4r3a deficiency led to downregulated mTORC1 signaling, which resulted in reduced synthesis of synaptic proteins and impaired synaptic functions. By contrast, overexpression of Ppp4r3a in the cortex and hippocampus protected against behavioral and synaptic deficits induced by chronic stress in a PPP4R3A-mTORC1-dependent manner. Rapamycin treatment of Ppp4r3a-overexpressing neurons blocked the regulatory effect of Ppp4r3a on the synthesis of synaptic proteins by directly inhibiting mTORC1. Overall, our results reveal a regulatory role of Ppp4r3a in driving synaptic protein synthesis in chronic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
44
|
Kilonzo K, Strahnen D, Prex V, Gems J, van der Veen B, Kapanaiah SKT, Murthy BKB, Schulz S, Sprengel R, Bannerman D, Kätzel D. Distinct contributions of GluA1-containing AMPA receptors of different hippocampal subfields to salience processing, memory and impulse control. Transl Psychiatry 2022; 12:102. [PMID: 35288531 PMCID: PMC8921206 DOI: 10.1038/s41398-022-01863-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is associated with a broad range of severe and currently pharmacoresistant cognitive deficits. Prior evidence suggests that hypofunction of AMPA-type glutamate receptors (AMPARs) containing the subunit GLUA1, encoded by GRIA1, might be causally related to impairments of selective attention and memory in this disorder, at least in some patients. In order to clarify the roles of GluA1 in distinct cell populations, we investigated behavioural consequences of selective Gria1-knockout in excitatory neurons of subdivisions of the prefrontal cortex and the hippocampus, assessing sustained attention, impulsivity, cognitive flexibility, anxiety, sociability, hyperactivity, and various forms of short-term memory in mice. We found that virally induced reduction of GluA1 across multiple hippocampal subfields impaired spatial working memory. Transgene-mediated ablation of GluA1 from excitatory cells of CA2 impaired short-term memory for conspecifics and objects. Gria1 knockout in CA3 pyramidal cells caused mild impairments of object-related and spatial short-term memory, but appeared to partially increase social interaction and sustained attention and to reduce motor impulsivity. Our data suggest that reduced hippocampal GluA1 expression-as seen in some patients with schizophrenia-may be a central cause particularly for several short-term memory deficits. However, as impulse control and sustained attention actually appeared to improve with GluA1 ablation in CA3, strategies of enhancement of AMPAR signalling likely require a fine balance to be therapeutically effective across the broad symptom spectrum of schizophrenia.
Collapse
Affiliation(s)
- Kasyoka Kilonzo
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Daniel Strahnen
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Vivien Prex
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - John Gems
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | | | | | | | - Stefanie Schulz
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
45
|
Molecular Signaling Mechanisms for the Antidepressant Effects of NLX-101, a Selective Cortical 5-HT1A Receptor Biased Agonist. Pharmaceuticals (Basel) 2022; 15:ph15030337. [PMID: 35337135 PMCID: PMC8954942 DOI: 10.3390/ph15030337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Depression is the most prevalent of the mental illnesses and serotonin (5-hydroxytryptamine, 5-HT) is considered to be the major neurotransmitter involved in its etiology and treatment. In this context, 5-HT1A receptors have attracted interest as targets for therapeutic intervention. Notably the activation of presynaptic 5-HT1A autoreceptors delays antidepressant effects whereas the stimulation of postsynaptic 5-HT1A heteroreceptors is needed for an antidepressant action. NLX-101 (also known as F15599) is a selective biased agonist which exhibits preferred activation of cortical over brain stem 5-HT1A receptors. Here, we used behavioral, neurochemical and molecular methods to examine the antidepressant-like effects in rats of a single dose of NLX-101 (0.16 mg/kg, i.p.). NLX-101 reduced immobility in the forced swim test when measured 30 min but not 24 h after drug administration. NLX-101 increased extracellular concentrations of glutamate and dopamine in the medial prefrontal cortex, but no changes were detected in the efflux of noradrenaline or 5-HT. NLX-101 also produced an increase in the activation of pmTOR, pERK1/2 and pAkt, and the expression of PSD95 and GluA1, which may contribute to its rapid antidepressant action.
Collapse
|
46
|
Yao H, Guo W, Suo L, Li G, Wang Y, Chen Y, Sun Y, Ding R. Preventive effects of the AMPA receptor potentiator LY450108 in an LPS-induced depressive mouse model. Behav Brain Res 2022; 424:113813. [PMID: 35202718 DOI: 10.1016/j.bbr.2022.113813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 02/19/2022] [Indexed: 12/21/2022]
Abstract
Previous studies have demonstrated a close association between α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) and depressive disorders, and activation of AMPARs may represent a promising way to treat depression. However, the effects of AMPAR potentiators on depression and the underlying mechanism have not been comprehensively clarified. We used lipopolysaccharide (LPS) to establish a depressive mouse model and an in vitro damage model of SH-SY5Y cells, and the AMPAR potentiator LY450108 was introduced to the study. We found that LY450108 alleviated LPS-induced depressive behavior and abnormal phosphorylation of hippocampal AMPARs in mice. LY450108 also alleviated LPS-induced apoptosis and decreased the viability of SH-SY5Y cells. In addition, LY450108 protected SH-SY5Y cells from LPS-induced abnormal phosphorylation of AMPARs. In conclusion, our findings suggest that LY450108 has antidepressant effects against LPS-induced neuronal damage and depression.
Collapse
Affiliation(s)
- Hui Yao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, PR China; Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, PR China
| | - Wenting Guo
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, PR China
| | - Longlong Suo
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, PR China
| | - Guoliang Li
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, PR China
| | - Yunsheng Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, PR China
| | - Yuanyuan Chen
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, PR China
| | - Yingui Sun
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, PR China.
| | - Runtao Ding
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, PR China.
| |
Collapse
|
47
|
Scotton E, Antqueviezc B, Vasconcelos M, Dalpiaz G, Paul Géa L, Ferraz Goularte J, Colombo R, Ribeiro Rosa A. Is (R)-ketamine a Potential Therapeutic Agent for Treatment-Resistant Depression with Less Detrimental Side Effects? A Review of Molecular Mechanisms Underlying Ketamine and its Enantiomers. Biochem Pharmacol 2022; 198:114963. [PMID: 35182519 DOI: 10.1016/j.bcp.2022.114963] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Approximately one-third of individuals with major depressive disorder are resistant to conventional antidepressants (i.e., monoamine-based therapies), and, even among respondents, a proper therapeutic effect may require weeks of treatment. Ketamine, a racemic mixture of the two enantiomers, (R)-ketamine and (S)-ketamine, is an N-methyl-d-aspartate receptor (NMDAR) antagonist and has been shown to have rapid-acting antidepressant properties in patients with treatment-resistant depression (TRD). Although (R)-ketamine has a lower affinity for NMDAR, it presents greater potency and longer-lasting antidepressant properties, with no major side effects, than racemic ketamine or (S)-ketamine in preclinical findings. Thereby, ketamine and its enantiomers have not only an antagonistic effect on NMDAR but also a strong synaptogenic-modulatory effect, which is impaired in TRD pathophysiology. In this review, we summarize the current evidence regarding the modulation of neurotransmission, neuroplasticity, and neural network activity as putative mechanisms of these rapid-acting antidepressants, highlighting differences on intracellular signaling pathways of synaptic proteins such as mammalian target of rapamycin (mTOR), extracellular signal-regulated kinase (ERK) and brain-derived neurotrophic factor (BDNF). In addition, we discuss probable mechanisms involved in the side effects of ketamine and its enantiomers.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology, Programa de Pós-Graduação em Farmacologia e Terapêutica, UFRGS, Porto Alegre, RS, Brazil.
| | - Bárbara Antqueviezc
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Mailton Vasconcelos
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Instituto de Psicologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Giovana Dalpiaz
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Luiza Paul Géa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Jéferson Ferraz Goularte
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.
| | - Adriane Ribeiro Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology, Programa de Pós-Graduação em Farmacologia e Terapêutica, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
48
|
Rossetti C, Cherix A, Guiraud LF, Cardinaux JR. New Insights Into the Pivotal Role of CREB-Regulated Transcription Coactivator 1 in Depression and Comorbid Obesity. Front Mol Neurosci 2022; 15:810641. [PMID: 35242012 PMCID: PMC8886117 DOI: 10.3389/fnmol.2022.810641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Depression and obesity are major public health concerns, and there is mounting evidence that they share etiopathophysiological mechanisms. The neurobiological pathways involved in both mood and energy balance regulation are complex, multifactorial and still incompletely understood. As a coactivator of the pleiotropic transcription factor cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 1 (CRTC1) has recently emerged as a novel regulator of neuronal plasticity and brain functions, while CRTC1 dysfunction has been associated with neurodegenerative and psychiatric diseases. This review focuses on recent evidence emphasizing the critical role of CRTC1 in the neurobiology of depression and comorbid obesity. We discuss the role of CRTC1 downregulation in mediating chronic stress-induced depressive-like behaviors, and antidepressant response in the light of the previously characterized Crtc1 knockout mouse model of depression. The putative role of CRTC1 in the alteration of brain energy homeostasis observed in depression is also discussed. Finally, we highlight rodent and human studies supporting the critical involvement of CRTC1 in depression-associated obesity.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antoine Cherix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia F. Guiraud
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Lambert PM, Lu X, Zorumski CF, Mennerick S. Physiological markers of rapid antidepressant effects of allopregnanolone. J Neuroendocrinol 2022; 34:e13023. [PMID: 34423498 PMCID: PMC8807818 DOI: 10.1111/jne.13023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023]
Abstract
The rise of ketamine and brexanolone as rapid antidepressant treatments raises the question of common mechanisms. Both drugs act without the long onset time of traditional antidepressants such as selective serotonin reuptake inhibitors. The drugs also share the interesting feature of benefit that persists beyond the initial drug lifetime. Here, we briefly review literature on functional changes that may mark the triggering mechanism of rapid antidepressant actions. Because ketamine has a longer history of study as a rapid antidepressant, we use this literature as a template to guide hypotheses about common action. Brexanolone has the complication of being a formulation of a naturally occurring neurosteroid; thus, endogenous levels need to be considered when studying the impact of exogenous administration. We conclude that network disinhibition and increased high-frequency oscillations are candidates to mediate acute triggering effects of rapid antidepressants.
Collapse
Affiliation(s)
- Peter M Lambert
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| |
Collapse
|
50
|
Witkin JM. The romantic age of pharmacological science. Pharmacol Biochem Behav 2022; 214:173354. [DOI: 10.1016/j.pbb.2022.173354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
|