1
|
Kim SH, Lee J, Jang M, Roh SE, Kim S, Lee JH, Seo J, Baek J, Hwang JY, Baek IS, Lee YS, Shigetomi E, Lee CJ, Koizumi S, Kim SK, Kim SJ. Cerebellar Bergmann glia integrate noxious information and modulate nocifensive behaviors. Nat Neurosci 2025:10.1038/s41593-024-01807-z. [PMID: 39748107 DOI: 10.1038/s41593-024-01807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/27/2024] [Indexed: 01/04/2025]
Abstract
The cerebellum is activated by noxious stimuli and pathological pain but its role in noxious information processing remains unknown. Here, we show that in mice, cutaneous noxious electrical stimuli induced noradrenaline (NA) release from locus coeruleus (LC) terminals in the cerebellar cortex. Bergmann glia (BG) accumulated these LC-NA signals by increasing intracellular calcium in an integrative manner ('flares'). BG flares were also elicited in response to an intraplantar capsaicin injection. Chemogenetic inactivation of LC terminals or BG in the cerebellar cortex or BG-specific knockdown of α1-adrenergic receptors suppressed BG flares, reduced nocifensive licking and had analgesic effects in nerve injury-induced chronic neuropathic pain. Moreover, chemogenetic activation of BG or an intraplantar capsaicin injection reduced Purkinje cell firing, which may disinhibit the output activity of the deep cerebellar nuclei. These results suggest a role for BG in computing noxious information from the LC and in modulating pain-related behaviors by regulating cerebellar output.
Collapse
Affiliation(s)
- Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Mirae Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Eon Roh
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soobin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jewoo Seo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jinhee Baek
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Yoon Hwang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - In Seon Baek
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Gu J, Sugimura YK, Kato F, Del Negro CA. Central amygdala-to-pre-Bötzinger complex neurotransmission is direct and inhibitory. Eur J Neurosci 2024; 60:6799-6811. [PMID: 39498665 PMCID: PMC11612842 DOI: 10.1111/ejn.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024]
Abstract
Breathing behaviour is subject to emotional regulation, but the underlying mechanisms remain unclear. Here, we demonstrate a direct relationship between the central amygdala, a major output hub of the limbic system associated with emotional brain function, and the brainstem pre-Bötzinger complex, which generates the fundamental rhythm and pattern for breathing. The connection between these two sites is monosynaptic and inhibitory, involving GABAergic central amygdala neurons whose axonal projections act predominantly via ionotropic GABAA receptors to produce inhibitory postsynaptic currents in pre-Bötzinger neurons. This pathway may provide a mechanism to inhibit breathing in the context of freezing to assess threats and plan defensive action. The existence of this pathway may further explain how epileptic seizures invading the amygdala cause long-lasting apnea, which can be fatal. Although their ultimate importance awaits further behavioural tests, these results elucidate a link between emotional brain function and breathing, which underlies survival-related behaviour in mammals and pertains to human anxiety disorders.
Collapse
Affiliation(s)
- Jeffrey Gu
- Department of Applied Science and NeuroscienceWilliam & MaryWilliamsburgVirginiaUSA
| | - Yae K. Sugimura
- Center for Neuroscience of Pain and Department of NeuroscienceThe Jikei University School of MedicineTokyoJapan
| | - Fusao Kato
- Center for Neuroscience of Pain and Department of NeuroscienceThe Jikei University School of MedicineTokyoJapan
| | | |
Collapse
|
3
|
Wang X, Yue Z, Shi L, He W, Shao L, Liu Y, Zhang J, Bi S, Deng T, Yuan F, Wang S. Activation of Centromedial Amygdala GABAergic Neurons Produces Hypotension in Mice. Neurosci Bull 2024:10.1007/s12264-024-01317-9. [PMID: 39581900 DOI: 10.1007/s12264-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/27/2024] [Indexed: 11/26/2024] Open
Abstract
The central amygdala (CeA) is a crucial modulator of emotional, behavioral, and autonomic functions, including cardiovascular responses. Despite its importance, the specific circuit by which the CeA modulates blood pressure remains insufficiently explored. Our investigations demonstrate that photostimulation of GABAergic neurons in the centromedial amygdala (CeMGABA), as opposed to those in the centrolateral amygdala (CeL), produces a depressor response in both anesthetized and freely-moving mice. In addition, activation of CeMGABA axonal terminals projecting to the nucleus tractus solitarius (NTS) significantly reduces blood pressure. These CeMGABA neurons form synaptic connections with NTS neurons, allowing for the modulation of cardiovascular responses by influencing the caudal or rostral ventrolateral medulla. Furthermore, CeMGABA neurons targeting the NTS receive dense inputs from the CeL. Consequently, stimulation of CeMGABA neurons elicits hypotension through the CeM-NTS circuit, offering deeper insights into the cardiovascular responses associated with emotions and behaviors.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ziteng Yue
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Luo Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei He
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Liuqi Shao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuhang Liu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinye Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shangyu Bi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| |
Collapse
|
4
|
Cummings JL, Brubaker M, Selzler KJ, Gonzalez ST, Patel M, Stahl SM. An overview of the pathophysiology of agitation in Alzheimer's dementia with a focus on neurotransmitters and circuits. CNS Spectr 2024:1-10. [PMID: 39438777 DOI: 10.1017/s1092852924000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's dementia (AD) is a progressive, neurodegenerative disease often accompanied by neuropsychiatric symptoms that profoundly impact both patients and caregivers. Agitation is among the most prevalent and distressing of these symptoms and often requires treatment. Appropriate therapeutic interventions depend on understanding the biological basis of agitation and how it may be affected by treatment. This narrative review discusses a proposed pathophysiology of agitation in Alzheimer's dementia based on convergent evidence across research approaches. Available data indicate that agitation in Alzheimer's dementia is associated with an imbalance of activity between key prefrontal and subcortical brain regions. The monoamine neurotransmitter systems serve as key modulators of activity within these brain regions and circuits and are rendered abnormal in AD. Patients with AD who exhibited agitation symptoms during life have alterations in neurotransmitter nuclei and related systems when the brain is examined at autopsy. The authors present a model of agitation in Alzheimer's dementia in which noradrenergic hyperactivity along with serotonergic deficits and dysregulated striatal dopamine release contribute to agitated and aggressive behaviors.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Malaak Brubaker
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, New Jersey, USA
| | | | | | - Mehul Patel
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, New Jersey, USA
| | - Stephen M Stahl
- Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, California; Department of Psychiatry and Neurology, University of California, Riverside School of Medicine, Riverside, California, USA
| |
Collapse
|
5
|
Heinemans M, Moita MA. Looming stimuli reliably drive innate defensive responses in male rats, but not learned defensive responses. Sci Rep 2024; 14:21578. [PMID: 39285228 PMCID: PMC11405667 DOI: 10.1038/s41598-024-70256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Survival relies on an organism's intrinsic ability to instinctively react to stimuli such as food, water, and threats, ensuring the fundamental ability to feed, drink, and avoid danger even in the absence of prior experience. These natural, unconditioned stimuli can also facilitate associative learning, where pairing them consistently with neutral cues will elicit responses to these cues. Threat conditioning, a well-explored form of associative learning, commonly employs painful electric shocks, mimicking injury, as unconditioned stimuli. It remains elusive whether actual injury or pain is necessary for effective learning, or whether the threat of harm is sufficient. Approaching predators create looming shadows and sounds, triggering strong innate defensive responses like escape and freezing. This study investigates whether visual looming stimuli can induce learned freezing or learned escape responses to a conditioned stimulus in male rats. Surprisingly, pairing a neutral tone with a looming stimulus only weakly evokes learned defensive responses, in contrast to the strong responses observed when the looming stimulus is replaced by a shock. This dissociation sheds light on the boundaries for learned defensive responses thereby impacting our comprehension of learning processes and defensive strategies.
Collapse
Affiliation(s)
- Mirjam Heinemans
- Champalimaud Research, Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | - Marta A Moita
- Champalimaud Research, Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida de Brasília, 1400-038, Lisbon, Portugal.
| |
Collapse
|
6
|
Basu A, Yang JH, Yu A, Glaeser-Khan S, Rondeau JA, Feng J, Krystal JH, Li Y, Kaye AP. Frontal Norepinephrine Represents a Threat Prediction Error Under Uncertainty. Biol Psychiatry 2024; 96:256-267. [PMID: 38316333 PMCID: PMC11269024 DOI: 10.1016/j.biopsych.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND To adapt to threats in the environment, animals must predict them and engage in defensive behavior. While the representation of a prediction error signal for reward has been linked to dopamine, a neuromodulatory prediction error for aversive learning has not been identified. METHODS We measured and manipulated norepinephrine release during threat learning using optogenetics and a novel fluorescent norepinephrine sensor. RESULTS We found that norepinephrine response to conditioned stimuli reflects aversive memory strength. When delays between auditory stimuli and footshock are introduced, norepinephrine acts as a prediction error signal. However, temporal difference prediction errors do not fully explain norepinephrine dynamics. To explain noradrenergic signaling, we used an updated reinforcement learning model with uncertainty about time and found that it explained norepinephrine dynamics across learning and variations in temporal and auditory task structure. CONCLUSIONS Norepinephrine thus combines cognitive and affective information into a predictive signal and links time with the anticipation of danger.
Collapse
Affiliation(s)
- Aakash Basu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut
| | - Jen-Hau Yang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Abigail Yu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | | | - Jocelyne A Rondeau
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Clinical Neuroscience Division, Veterans Administration National Center for PTSD, West Haven, Connecticut
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; Peking University-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Clinical Neuroscience Division, Veterans Administration National Center for PTSD, West Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
7
|
Kiyokawa Y, Ootaki M, Kambe Y, Tanaka KD, Kimura G, Tanikawa T, Takeuchi Y. Approach/Avoidance Behavior to Novel Objects is Correlated with the Serotonergic and Dopaminergic Systems in the Brown Rat (Rattus norvegicus). Neuroscience 2024; 549:110-120. [PMID: 38723837 DOI: 10.1016/j.neuroscience.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The brown rat (Rattus norvegicus) is known to show three types of behavioral responses to novel objects. Whereas some rats are indifferent to novel objects, neophobic and neophilic rats show avoidance and approach behavior, respectively. Here, we compared the dopaminergic, serotonergic, and noradrenergic systems immunohistochemically among these rats. Trapped wild rats and laboratory rats were first individually exposed to the novel objects in their home cage. Wild rats were divided into neophobic and indifferent rats depending on their behavioral responses. Similarly, laboratory rats were divided into neophilic and indifferent rats. Consistent with the behavioral differences, in the paraventricular nucleus of the hypothalamus, Fos expression in corticotropin-releasing hormone-containing neurons was higher in the neophobic rats than in the indifferent rats. In the anterior basal amygdala, the neophobic rats showed higher Fos expression than the indifferent rats. In the posterior basal amygdala, the neophobic and neophilic rats showed lower and higher Fos expressions than the indifferent rats, respectively. When we compared the neuromodulatory systems, in the dorsal raphe, the number of serotonergic neurons and Fos expression in serotonergic neurons increased linearly from neophobic to indifferent to neophilic rats. In the ventral tegmental area, Fos expression in dopaminergic neurons was higher in the neophilic rats than in the indifferent rats. These results demonstrate that approach/avoidance behavior to novel objects is correlated with the serotonergic and dopaminergic systems in the brown rat. We propose that the serotonergic system suppresses avoidance behavior while the dopaminergic system enhances approach behavior to novel objects.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Masato Ootaki
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshikazu Kambe
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Kazuyuki D Tanaka
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Goro Kimura
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Zhao H, Liu J, Shao Y, Feng X, Zhao B, Sun L, Liu Y, Zeng L, Li XM, Yang H, Duan S, Yu YQ. Control of defensive behavior by the nucleus of Darkschewitsch GABAergic neurons. Natl Sci Rev 2024; 11:nwae082. [PMID: 38686177 PMCID: PMC11057443 DOI: 10.1093/nsr/nwae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
The nucleus of Darkschewitsch (ND), mainly composed of GABAergic neurons, is widely recognized as a component of the eye-movement controlling system. However, the functional contribution of ND GABAergic neurons (NDGABA) in animal behavior is largely unknown. Here, we show that NDGABA neurons were selectively activated by different types of fear stimuli, such as predator odor and foot shock. Optogenetic and chemogenetic manipulations revealed that NDGABA neurons mediate freezing behavior. Moreover, using circuit-based optogenetic and neuroanatomical tracing methods, we identified an excitatory pathway from the lateral periaqueductal gray (lPAG) to the ND that induces freezing by exciting ND inhibitory outputs to the motor-related gigantocellular reticular nucleus, ventral part (GiV). Together, these findings indicate the NDGABA population as a novel hub for controlling defensive response by relaying fearful information from the lPAG to GiV, a mechanism critical for understanding how the freezing behavior is encoded in the mammalian brain.
Collapse
Affiliation(s)
- Huiying Zhao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Jinrong Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Yujin Shao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Xiang Feng
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Binhan Zhao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Sun
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yijun Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Xiao-Ming Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Yang
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Shumin Duan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Yan-Qin Yu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
9
|
Stroman PW, Umraw M, Keast B, Algitami H, Hassanpour S, Merletti J. Structural and Physiological Modeling (SAPM) for the Analysis of Functional MRI Data Applied to a Study of Human Nociceptive Processing. Brain Sci 2023; 13:1568. [PMID: 38002528 PMCID: PMC10669617 DOI: 10.3390/brainsci13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
A novel method has been developed for analyzing connectivity between regions based on functional magnetic resonance imaging (fMRI) data. This method, termed structural and physiological modeling (SAPM), combines information about blood oxygenation-level dependent (BOLD) responses, anatomy, and physiology to model coordinated signaling across networks of regions, including input and output signaling from each region and whether signaling is predominantly inhibitory or excitatory. The present study builds on a prior proof-of-concept demonstration of the SAPM method by providing evidence for the choice of network model and anatomical sub-regions, demonstrating the reproducibility of the results and identifying statistical thresholds needed to infer significance. The method is further validated by applying it to investigate human nociceptive processing in the brainstem and spinal cord and comparing the results to the known neuroanatomy, including anatomical regions and inhibitory and excitatory signaling. The results of this analysis demonstrate that it is possible to obtain reliable information about input and output signaling from anatomical regions and to identify whether this signaling has predominantly inhibitory or excitatory effects. SAPM provides much more detailed information about neuroanatomy than was previously possible based on fMRI data.
Collapse
Affiliation(s)
- Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Maya Umraw
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Brieana Keast
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Hannan Algitami
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Shima Hassanpour
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Jessica Merletti
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| |
Collapse
|
10
|
Ma HT, Zhang HC, Zuo ZF, Liu YX. Heterogeneous organization of Locus coeruleus: An intrinsic mechanism for functional complexity. Physiol Behav 2023; 268:114231. [PMID: 37172640 DOI: 10.1016/j.physbeh.2023.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Locus coeruleus (LC) is a small nucleus located deep in the brainstem that contains the majority of central noradrenergic neurons, which provide the primary source of noradrenaline (NA) throughout the entire central nervous system (CNS).The release of neurotransmitter NA is considered to modulate arousal, sensory processing, attention, aversive and adaptive stress responses as well as high-order cognitive function and memory, with the highly ramified axonal arborizations of LC-NA neurons sending wide projections to the targeted brain areas. For over 30 years, LC was thought to be a homogeneous nucleus in structure and function due to the widespread uniform release of NA by LC-NA neurons and simultaneous action in several CNS regions, such as the prefrontal cortex, hippocampus, cerebellum, and spinal cord. However, recent advances in neuroscience tools have revealed that LC is probably not so homogeneous as we previous thought and exhibits heterogeneity in various aspects. Accumulating studies have shown that the functional complexity of LC may be attributed to its heterogeneity in developmental origin, projection patterns, topography distribution, morphology and molecular organization, electrophysiological properties and sex differences. This review will highlight the heterogeneity of LC and its critical role in modulating diverse behavioral outcomes.
Collapse
Affiliation(s)
- Hai-Tao Ma
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China.
| | - Hao-Chen Zhang
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhong-Fu Zuo
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ying-Xue Liu
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
11
|
Effinger DP, Quadir SG, Ramage MC, Cone MG, Herman MA. Sex-specific effects of psychedelic drug exposure on central amygdala reactivity and behavioral responding. Transl Psychiatry 2023; 13:119. [PMID: 37031219 PMCID: PMC10082812 DOI: 10.1038/s41398-023-02414-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
Psilocybin and its active metabolite psilocin have been shown to elicit rapid and long-lasting symptom improvements in a variety of affective psychiatric illnesses. However, the region-specific alterations underlying these therapeutic effects remain relatively unknown. The central amygdala (CeA) is a primary output region within the extended amygdala that is dysregulated in affective psychiatric disorders. Here, we measured CeA activity using the activity marker c-Fos and CeA reactivity using fiber photometry paired with an aversive air-puff stimulus. We found that psilocin administration acutely increased CeA activity in both males and females and increased stimulus specific CeA reactivity in females, but not males. In contrast, psilocin produced time-dependent decreases in reactivity in males, but not in females, as early as 2 days and lasting to 28 days post administration. We also measured behavioral responses to the air-puff stimulus and found sex-dependent changes in threat responding but not exploratory behavior or general locomotion. Repeated presentations of the auditory component of the air-puff were also performed and sex-specific effects of psilocin on CeA reactivity to the auditory-alone stimulus were also observed. This study provides new evidence that a single dose of psilocin produces sex-specific, time-dependent, and enduring changes in CeA reactivity and behavioral responding to specific components of an aversive stimulus.
Collapse
Affiliation(s)
- D P Effinger
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - S G Quadir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M C Ramage
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M G Cone
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
12
|
Casey E, Avale ME, Kravitz A, Rubinstein M. Dopaminergic innervation at the central nucleus of the amygdala reveals distinct topographically segregated regions. Brain Struct Funct 2023; 228:663-675. [PMID: 36737539 DOI: 10.1007/s00429-023-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023]
Abstract
The central nucleus of the amygdala (CeA) is involved in the expression of fear and anxiety disorders. Anatomically, it is divided into medial (CeM), lateral (CeL), and capsular (CeC) divisions. The CeA is densely innervated by dopaminergic projections that originate in the ventral periaqueductal gray/dorsal raphe (vPAG/DR) and the ventral tegmental area (VTA). However, whether dopamine (DA) exerts a homogenous control over the CeA or differentially regulates the various CeA subdivisions is still unknown. Here, we performed a neuroanatomical analysis of the mouse CeA and found that DAergic innervations from the PAG/DR and VTA constitute distinct, non-overlapping, pathways differing also in the relative expression of the dopamine transporter. By quantifying the distribution of DAergic fibers and the origin of DA inputs we identified two distinct regions in the CeL: a frontal region innervated by the VTA and vPAG/DR, a caudal region innervated only by the vPAG/DR, and three distinct regions in the CeC: fronto-dorsal innervated only by the VTA, fronto-ventral with sparse DAergic innervation, and a caudal region with low innervation from the vPAG/DR. In addition, we found that each region displays a distinct pattern of c-Fos activation following the administration of various DAeric drugs such as cocaine, SKF 38,393, quinpirole or haloperidol. In summary, we revealed unique properties of the DAergic pathways innervating the CeA, distinguishing six topographically segregated and functionally distinct regions. This unanticipated level of heterogeneity calls for more precise neuroanatomical specificity in future functional studies of the CeA.
Collapse
Affiliation(s)
- Eric Casey
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - María Elena Avale
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Alexxai Kravitz
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63108, USA.,Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63108, USA.,Department of Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina. .,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Kokhan VS, Ustyugov AA, Pikalov VA. Dynamics of Dopamine and Other Monoamines Content in Rat Brain after Single Low-Dose Carbon Nuclei Irradiation. Life (Basel) 2022; 12:life12091306. [PMID: 36143343 PMCID: PMC9502711 DOI: 10.3390/life12091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Space radiation, presented primarily by high-charge and -energy particles (HZEs), has a substantial impact on the central nervous system (CNS) of astronauts. This impact, surprisingly, has not only negative but also positive effects on CNS functions. Despite the fact that the mechanisms of this effect have not yet been elucidated, several studies indicate a key role for monoaminergic networks underlying these effects. Here, we investigated the effects of acute irradiation with 450 MeV/n carbon (12C) nuclei at a dose of 0.14 Gy on Wistar rats; a state of anxiety was accessed using a light–dark box, spatial memory in a Morris water maze, and the dynamics of monoamine metabolism in several brain morphological structures using HPLC. No behavioral changes were observed. Irradiation led to the immediate suppression of dopamine turnover in the prefrontal cortex, hypothalamus, and striatum, while a decrease in the level of norepinephrine was detected in the amygdala. However, these effects were transient. The deferred effect of dopamine turnover increase was found in the hippocampus. These data underscore the ability of even low-dose 12C irradiation to affect monoaminergic networks. However, this impact is transient and is not accompanied by behavioral alterations.
Collapse
Affiliation(s)
- Viktor S. Kokhan
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology, 119034 Moscow, Russia
- Correspondence: ; Tel.: +7-92-5462-9948
| | - Alexey A. Ustyugov
- Institute of Physiologically Active Compounds RAS, 142432 Chernogolovka, Russia
| | - Vladimir A. Pikalov
- Institute for High Energy Physics Named by A.A. Logunov of National Research Centre “Kurchatov Institute”, 142281 Protvino, Russia
| |
Collapse
|
14
|
Moscarello JM, Penzo MA. The central nucleus of the amygdala and the construction of defensive modes across the threat-imminence continuum. Nat Neurosci 2022; 25:999-1008. [PMID: 35915178 DOI: 10.1038/s41593-022-01130-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In nature, animals display defensive behaviors that reflect the spatiotemporal distance of threats. Laboratory-based paradigms that elicit specific defensive responses in rodents have provided valuable insight into the brain mechanisms that mediate the construction of defensive modes with varying degrees of threat imminence. In this Review, we discuss accumulating evidence that the central nucleus of the amygdala (CeA) plays a key role in this process. Specifically, we propose that the mutually inhibitory circuits of the CeA use a winner-takes-all strategy that supports transitioning across defensive modes and the execution of specific defensive behaviors to previously formed threat associations. Our proposal provides a conceptual framework in which seemingly divergent observations regarding CeA function can be interpreted and identifies various areas of priority for future research.
Collapse
Affiliation(s)
- Justin M Moscarello
- Department of Psychological & Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| | - Mario A Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Tsukioka K, Yamanaka K, Waki H. Implication of the Central Nucleus of the Amygdala in Cardiovascular Regulation and Limiting Maximum Exercise Performance During High-intensity Exercise in Rats. Neuroscience 2022; 496:52-63. [PMID: 35690335 DOI: 10.1016/j.neuroscience.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022]
Abstract
To date, the mechanism of central fatigue during high-intensity exercise has remained unclear. Here we elucidate the central mechanisms of cardiovascular regulation during high-intensity exercise with a focus on the hypothesis that amygdala activation acts to limit maximum exercise performance. In the first of three experiments, we probed the involvement of the central nucleus of the amygdala (CeA) in such regulation. Wistar rats were subjected to a maximum exercise test and their total running time and cardiovascular responses were compared before and after bilateral CeA lesions. Next, probing the role of central pathways, we tested whether high-intensity exercise activated neurons in CeA and/or the hypothalamic paraventricular nucleus (PVN) that project to the nucleus tractus solitarius (NTS). Finally, to understand the potential autonomic mechanisms affecting maximum exercise performance, we measured the cardiovascular responses in anesthetized rats to electrical microstimulation of the CeA, PVN, or both. We have found that (1) CeA lesions resulted in an increase in the total exercise time and the time at which an abrupt increase in arterial pressure appeared, indicating an apparent suppression of fatigue. (2) We confirmed that high-intensity exercise activated both the PVN-NTS and CeA-NTS pathways. Moreover, we discovered that (3) while stimulation of the CeA or PVN alone both induced pressor responses, their simultaneous stimulation also increased muscle vascular resistance. These results are evidence that cardiovascular responses during high-intensity exercise are affected by CeA activation, which acts to limit maximum exercise performance, and may implicate autonomic control modulating the PVN-NTS pathway via the CeA.
Collapse
Affiliation(s)
- Kei Tsukioka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan.
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; Institute of Health and Sports Science & Medicine, Juntendo University, Chiba 270-1695, Japan.
| |
Collapse
|
16
|
Botta A, Lagravinese G, Bove M, Pelosin E, Bonassi G, Avenanti A, Avanzino L. Sensorimotor inhibition during emotional processing. Sci Rep 2022; 12:6998. [PMID: 35488018 PMCID: PMC9054825 DOI: 10.1038/s41598-022-10981-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Visual processing of emotional stimuli has been shown to engage complex cortical and subcortical networks, but it is still unclear how it affects sensorimotor integration processes. To fill this gap, here, we used a TMS protocol named short-latency afferent inhibition (SAI), capturing sensorimotor interactions, while healthy participants were observing emotional body language (EBL) and International Affective Picture System (IAPS) stimuli. Participants were presented with emotional (fear- and happiness-related) or non-emotional (neutral) EBL and IAPS stimuli while SAI was tested at 120 ms and 300 ms after pictures presentation. At the earlier time point (120 ms), we found that fear-related EBL and IAPS stimuli selectively enhanced SAI as indexed by the greater inhibitory effect of somatosensory afferents on motor excitability. Larger early SAI enhancement was associated with lower scores at the Behavioural Inhibition Scale (BIS). At the later time point (300 ms), we found a generalized SAI decrease for all kind of stimuli (fear, happiness or neutral). Because the SAI index reflects integrative activity of cholinergic sensorimotor circuits, our findings suggest greater sensitivity of such circuits during early (120 ms) processing of threat-related information. Moreover, the correlation with BIS score may suggest increased attention and sensory vigilance in participants with greater anxiety-related dispositions. In conclusion, the results of this study show that sensorimotor inhibition is rapidly enhanced while processing threatening stimuli and that SAI protocol might be a valuable option in evaluating emotional-motor interactions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Alessandro Botta
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, 16132, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, 16132, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, ASL4, Azienda Sanitaria Locale Chiavarese, Chiavari, Italy
| | - Alessio Avenanti
- Centro di Neuroscienze Cognitive and Dipartimento di Psicologia, Campus Cesena, Alma Mater Studiorum-University of Bologna, Cesena, Italy.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Laura Avanzino
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, 16132, Genoa, Italy. .,IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
17
|
Maren S. Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit. Front Syst Neurosci 2022; 16:888461. [PMID: 35520882 PMCID: PMC9062589 DOI: 10.3389/fnsys.2022.888461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic interventions for disorders of fear and anxiety rely on behavioral approaches that reduce pathological fear memories. For example, learning that threat-predictive stimuli are no longer associated with aversive outcomes is central to the extinction of conditioned fear responses. Unfortunately, fear memories are durable, long-lasting, and resistant to extinction, particularly under high levels of stress. This is illustrated by the "immediate extinction deficit," which is characterized by a poor long-term reduction of conditioned fear when extinction procedures are attempted within hours of fear conditioning. Here, I will review recent work that has provided new insight into the neural mechanisms underlying resistance to fear extinction. Emerging studies reveal that locus coeruleus norepinephrine modulates amygdala-prefrontal cortical circuits that are critical for extinction learning. These data suggest that stress-induced activation of brain neuromodulatory systems biases fear memory at the expense of extinction learning. Behavioral and pharmacological strategies to reduce stress in patients undergoing exposure therapy might improve therapeutic outcomes.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
18
|
Chen SY, Yao J, Hu YD, Chen HY, Liu PC, Wang WF, Zeng YH, Zhuang CW, Zeng SX, Li YP, Yang LY, Huang ZX, Huang KQ, Lai ZT, Hu YH, Cai P, Chen L, Wu S. Control of Behavioral Arousal and Defense by a Glutamatergic Midbrain-Amygdala Pathway in Mice. Front Neurosci 2022; 16:850193. [PMID: 35527820 PMCID: PMC9070111 DOI: 10.3389/fnins.2022.850193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
In response to external threatening signals, animals evolve a series of defensive behaviors that depend on heightened arousal. It is believed that arousal and defensive behaviors are coordinately regulated by specific neurocircuits in the central nervous system. The ventral tegmental area (VTA) is a key structure located in the ventral midbrain of mice. The activity of VTA glutamatergic neurons has recently been shown to be closely related to sleep–wake behavior. However, the specific role of VTA glutamatergic neurons in sleep–wake regulation, associated physiological functions, and underlying neural circuits remain unclear. In the current study, using an optogenetic approach and synchronous polysomnographic recording, we demonstrated that selective activation of VTA glutamatergic neurons induced immediate transition from sleep to wakefulness and obviously increased the amount of wakefulness in mice. Furthermore, optogenetic activation of VTA glutamatergic neurons induced multiple defensive behaviors, including burrowing, fleeing, avoidance and hiding. Finally, viral-mediated anterograde activation revealed that projections from the VTA to the central nucleus of the amygdala (CeA) mediated the wake- and defense-promoting effects of VTA glutamatergic neurons. Collectively, our results illustrate that the glutamatergic VTA is a key neural substrate regulating wakefulness and defensive behaviors that controls these behaviors through its projection into the CeA. We further discuss the possibility that the glutamatergic VTA-CeA pathway may be involved in psychiatric diseases featuring with excessive defense.
Collapse
Affiliation(s)
- Shang-Yi Chen
- Department of Epidemiology and Health Statistics, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jing Yao
- Fujian Province Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yu-Duan Hu
- Department of Epidemiology and Health Statistics, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Hui-Yun Chen
- Fujian Province Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Pei-Chang Liu
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wen-Feng Wang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Yu-Hang Zeng
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Cong-Wen Zhuang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Shun-Xing Zeng
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yue-Ping Li
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Liu-Yun Yang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zi-Xuan Huang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Kai-Qi Huang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Zhen-Ting Lai
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Yong-Huai Hu
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Ping Cai
- Fujian Province Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, China
- *Correspondence: Ping Cai,
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Li Chen,
| | - Siying Wu
- Department of Epidemiology and Health Statistics, The School of Public Health, Fujian Medical University, Fuzhou, China
- Siying Wu,
| |
Collapse
|
19
|
Zhang SQ, Xia ZX, Deng Q, Yang PF, Long LH, Wang F, Chen JG. Repeated vagus nerve stimulation produces anxiolytic effects via upregulation of AMPAR function in centrolateral amygdala of male rats. Neurobiol Stress 2022; 18:100453. [PMID: 35685681 PMCID: PMC9170826 DOI: 10.1016/j.ynstr.2022.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Repeated vagus nerve stimulation (rVNS) exerts anxiolytic effect by activation of noradrenergic pathway. Centrolateral amygdala (CeL), a lateral subdivision of central amygdala, receives noradrenergic inputs, and its neuronal activity is positively correlated to anxiolytic effect of benzodiazepines. The activation of β-adrenergic receptors (β-ARs) could enhance glutamatergic transmission in CeL. However, it is unclear whether the neurobiological mechanism of noradrenergic system in CeL mediates the anxiolytic effect induced by rVNS. Here, we find that rVNS treatment produces an anxiolytic effect in male rats by increasing the neuronal activity of CeL. Electrophysiology recording reveals that rVNS treatment enhances the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated excitatory neurotransmission in CeL, which is mimicked by β-ARs agonist isoproterenol or blocked by β-ARs antagonist propranolol. Moreover, chemogenetic inhibition of CeL neurons or pharmacological inhibition of β-ARs in CeL intercepts both enhanced glutamatergic neurotransmission and the anxiolytic effects by rVNS treatment. These results suggest that the amplified AMPAR trafficking in CeL via activation of β-ARs is critical for the anxiolytic effects induced by rVNS treatment. rVNS amplifies the noradrenergic system in CeL and results in anxiolysis. rVNS treatment enhances AMPAR-mediated excitatory neurotransmission CeL via β-ARs. Pharmacological inhibition β-ARs in CeL intercept the anxiolytic effects by rVNS. Exciting CeL neurons lead to an increase in inhibitory inputs into CeM neurons. Inhibiting CeL neurons abate inhibitory inputs into CeM and anxiolysis by rVNS.
Collapse
|
20
|
Genetic influences on central and peripheral nervous system activity during fear conditioning. Transl Psychiatry 2022; 12:95. [PMID: 35260551 PMCID: PMC8904491 DOI: 10.1038/s41398-022-01861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Fear conditioning is an evolutionarily conserved type of learning serving as a model for the acquisition of situationally induced anxiety. Brain function supporting fear conditioning may be genetically influenced, which in part could explain genetic susceptibility for anxiety following stress exposure. Using a classical twin design and functional magnetic resonance imaging, we evaluated genetic influences (h2) on brain activity and standard autonomic measures during fear conditioning. We found an additive genetic influence on mean brain activation (h2 = 0.34) and autonomic responses (h2 = 0.24) during fear learning. The experiment also allowed estimation of the genetic influence on brain activation during safety learning (h2 = 0.55). The mean safety, but not fear, related brain activation was genetically correlated with autonomic responses. We conclude that fear and safety learning processes, both involved in anxiety development, are moderately genetically influenced as expressed both in the brain and the body.
Collapse
|
21
|
Baidoo N, Leri F. Extended amygdala, conditioned withdrawal and memory consolidation. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110435. [PMID: 34509531 DOI: 10.1016/j.pnpbp.2021.110435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Opioid withdrawal can be associated to environmental cues through classical conditioning. Exposure to these cues can precipitate a state of conditioned withdrawal in abstinent subjects, and there are suggestions that conditioned withdrawal can perpetuate the addiction cycle in part by promoting the storage of memories. This review discusses evidence supporting the hypothesis that conditioned withdrawal facilitates memory consolidation by activating a neurocircuitry that involves the extended amygdala. Specifically, the central amygdala, the bed nucleus of the stria terminalis, and the nucleus accumbens shell interact functionally during withdrawal, mediate expression of conditioned responses, and are implicated in memory consolidation. From this perspective, the extended amygdala could be a neural pathway by which drug-seeking behaviour performed during a state of conditioned withdrawal is more likely to become habitual and persistent.
Collapse
Affiliation(s)
- Nana Baidoo
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada
| | - Francesco Leri
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada.
| |
Collapse
|
22
|
Liu N, Li B, Zhang L, Yang D, Yang F. Basolateral Amygdala Mediates Central Mechanosensory Feedback of Musculoskeletal System. Front Mol Neurosci 2022; 15:834980. [PMID: 35250478 PMCID: PMC8889035 DOI: 10.3389/fnmol.2022.834980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 12/01/2022] Open
Abstract
Musculoskeletal diseases, such as osteoporosis and sarcopenia, are tremendous and growing public health concerns. Considering the intimate functional relationship between muscle and bone throughout development, growth, and aging, muscle provides the primary source of skeletal loading through contraction force. However, significant gaps exist in our knowledge regarding the role of muscle in bone homeostasis and little is known regarding the mechanism through which the central nervous system responds and regulates unloading-induced bone loss. Here, we showed that the basolateral amygdala (BLA) and medial part of the central nucleus (CeM) are anatomically connected with the musculoskeletal system. Unloading-induced bone loss is accompanied by a decrease in serum semaphorin 3A (Sema3A) levels as well as sensory denervation. In vivo fiber photometry recordings indicated that the mechanical signal is integrated by the BLA and CeM within 24 h and subsequently regulates bone remodeling. Moreover, chemogenetic activation of BLACaMKII neurons mitigates severe bone loss caused by mechanical unloading via increased serum levels of Sema3A and sensory innervation. These results indicate that the BLA integrates the mechanosensory signals rapidly and mediates the systemic hormonal secretion of Sema3A to maintain bone homeostasis.
Collapse
Affiliation(s)
- Nian Liu
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Botai Li
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Dazhi Yang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- *Correspondence: Dazhi Yang,
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Fan Yang,
| |
Collapse
|
23
|
Lazarini-Lopes W, Silva-Cardoso GK, Leite-Panissi CRA, Garcia-Cairasco N. Increased TRPV1 Channels and FosB Protein Expression Are Associated with Chronic Epileptic Seizures and Anxiogenic-like Behaviors in a Preclinical Model of Temporal Lobe Epilepsy. Biomedicines 2022; 10:biomedicines10020416. [PMID: 35203625 PMCID: PMC8962263 DOI: 10.3390/biomedicines10020416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Christie Ramos Andrade Leite-Panissi
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Physiology Department, Ribeirão Preto School of Medicine and Neuroscience and Behavioral Sciences Department, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Correspondence:
| |
Collapse
|
24
|
Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022; 47:260-275. [PMID: 34400783 PMCID: PMC8617307 DOI: 10.1038/s41386-021-01109-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Anxiety is experienced in response to threats that are distal or uncertain, involving changes in one's subjective state, autonomic responses, and behavior. Defensive and physiologic responses to threats that involve the amygdala and brainstem are conserved across species. While anxiety responses typically serve an adaptive purpose, when excessive, unregulated, and generalized, they can become maladaptive, leading to distress and avoidance of potentially threatening situations. In primates, anxiety can be regulated by the prefrontal cortex (PFC), which has expanded in evolution. This prefrontal expansion is thought to underlie primates' increased capacity to engage high-level regulatory strategies aimed at coping with and modifying the experience of anxiety. The specialized primate lateral, medial, and orbital PFC sectors are connected with association and limbic cortices, the latter of which are connected with the amygdala and brainstem autonomic structures that underlie emotional and physiological arousal. PFC pathways that interface with distinct inhibitory systems within the cortex, the amygdala, or the thalamus can regulate responses by modulating neuronal output. Within the PFC, pathways connecting cortical regions are poised to reduce noise and enhance signals for cognitive operations that regulate anxiety processing and autonomic drive. Specialized PFC pathways to the inhibitory thalamic reticular nucleus suggest a mechanism to allow passage of relevant signals from thalamus to cortex, and in the amygdala to modulate the output to autonomic structures. Disruption of specific nodes within the PFC that interface with inhibitory systems can affect the negative bias, failure to regulate autonomic arousal, and avoidance that characterize anxiety disorders.
Collapse
Affiliation(s)
- Margaux M Kenwood
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
- Wisconsin National Primate Center, Madison, WI, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
25
|
Agoglia AE, Zhu M, Quadir SG, Bluitt MN, Douglass E, Hanback T, Tella J, Ying R, Hodge CW, Herman MA. Sex-specific plasticity in CRF regulation of inhibitory control in central amygdala CRF1 neurons after chronic voluntary alcohol drinking. Addict Biol 2022; 27:e13067. [PMID: 34075665 PMCID: PMC8636550 DOI: 10.1111/adb.13067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/01/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023]
Abstract
Despite strong preclinical evidence for the ability of corticotropin releasing factor 1 (CRF1) antagonists to regulate alcohol consumption, clinical trials have not yet demonstrated therapeutic effects of these compounds in alcohol use disorder (AUD) patients. Several confounding factors may limit the translation of preclinical CRF1 research to patients, including reliance on experimenter-administered alcohol instead of voluntary consumption, a preponderance of evidence collected in male subjects only and an inability to assess the effects of alcohol on specific brain circuits. A population of particular interest is the CRF1-containing neurons of the central amygdala (CeA). CRF1 CeA neurons are sensitive to ethanol, but the effects of alcohol drinking on CRF signalling within this population are unknown. In the present study, we assessed the effects of voluntary alcohol drinking on inhibitory control of CRF1+ CeA neurons from male and female CRF1:GFP mice using ex vivo electrophysiology and determined the contributions of CRF1 signalling to inhibitory control and voluntary alcohol drinking. Chronic alcohol drinking produced neuroadaptations in CRF1+ neurons that increased the sensitivity of GABAA receptor-mediated sIPSCs to the acute effects of alcohol, CRF and the CRF1 antagonist R121919, but these adaptations were more pronounced in male versus female mice. The CRF1 antagonist CP-154,526 reduced voluntary alcohol drinking in both sexes and abolished sex differences in alcohol drinking. The lack of alcohol-induced adaptation in the female CRF1 system may be related to the elevated alcohol intake exhibited by female mice and could contribute to the ineffectiveness of CRF1 antagonists in female AUD patients.
Collapse
Affiliation(s)
- AE Agoglia
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - M Zhu
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - SG Quadir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - MN Bluitt
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - E Douglass
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - T Hanback
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - J Tella
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - R Ying
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - CW Hodge
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - MA Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
26
|
Tian T, Young CB, Zhu Y, Xu J, He Y, Chen M, Hao L, Jiang M, Qiu J, Chen X, Qin S. Socioeconomic Disparities Affect Children's Amygdala-Prefrontal Circuitry via Stress Hormone Response. Biol Psychiatry 2021; 90:173-181. [PMID: 33832707 DOI: 10.1016/j.biopsych.2021.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The socioeconomic status (SES) of a family can affect almost all aspects of a child's life, including health and current and future achievement. The potential adverse effects of low SES on children's emotional development are thought to result from proximal factors such as stress. The underlying neurobiological mechanisms, however, remain elusive. METHODS The effect of SES on children's integrative cortisol secretion and its modulations on emotion-related brain systems and connectivity were examined in children aged 6 to 12 years. In study 1, we investigated the relationship between SES and cortisol secretion in 239 children. In study 2, using resting-state and task-dependent functional magnetic resonance imaging in a subsample of 50 children, we investigated how SES affects children's amygdala-prefrontal functional organization through cortisol secretion. RESULTS Children from lower SES exhibited lower cortisol secretion, considering basal cortisol, nocturnal cortisol activity during sleep, and cortisol awakening response, which mediated higher amygdala nuclei intrinsic functional connectivity with the medial and dorsolateral prefrontal cortex (PFC). Critically, these children also exhibited higher task-evoked ventromedial PFC activity through higher intrinsic connectivity of the centromedial amygdala with the medial PFC. They also exhibited higher functional coupling of the centromedial amygdala with the dorsolateral PFC when processing negative emotions. CONCLUSIONS This study demonstrates that SES shapes children's amygdala-prefrontal circuitry through stress-sensitive cortisol secretion, with the most prominent effect in the centromedial amygdala's functional coordination with the ventromedial and dorsolateral PFC involved in processing negative emotions. Our findings provide important insight into the neurobiological etiology underlying how socioeconomic disparities shape children's emotional development.
Collapse
Affiliation(s)
- Ting Tian
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Yannan Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jiahua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Ying He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Menglu Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Lei Hao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; College of Teacher Education, Southwest University, Chongqing, China
| | - Min Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Xu Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
27
|
Campese VD. The lesser evil: Pavlovian-instrumental transfer & aversive motivation. Behav Brain Res 2021; 412:113431. [PMID: 34175357 DOI: 10.1016/j.bbr.2021.113431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
While our understanding of appetitive motivation includes accounts of rich cognitive phenomena, such as choice, sensory-specificity and outcome valuation, the same is not true in aversive processes. A highly sophisticated picture has emerged of Pavlovian fear conditioning and extinction, but progress in aversive motivation has been somewhat limited to these fundamental behaviors. Many differences between appetitive and aversive stimuli permit different kinds of analyses; a widely used procedure in appetitive studies that can expand the scope of aversive motivation is Pavlovian-instrumental transfer (PIT). Recently, this motivational transfer effect has been used to examine issues pertaining to sensory-specificity and the nature of defensive control in avoidance learning. Given enduring controversies and unresolved criticisms surrounding avoidance research, PIT offers a valuable, well-controlled procedure with which to similarly probe this form of motivation. Furthermore, while avoidance itself can be criticized as artificial, PIT can be an effective model for how skills learned through avoidance can be practically applied to encounters with threatening or fearful stimuli and stress. Despite sensory-related challenges presented by the limited aversive unconditioned stimuli typically used in research, transfer testing can nevertheless provide valuable information on the psychological nature of this historically controversial phenomenon.
Collapse
|
28
|
Fortin SM, Chen J, Grill HJ, Hayes MR. The Mesencephalic Trigeminal Nucleus Controls Food Intake and Body Weight via Hindbrain POMC Projections. Nutrients 2021; 13:nu13051642. [PMID: 34068091 PMCID: PMC8152732 DOI: 10.3390/nu13051642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
The mesencephalic trigeminal nucleus (Mes5) processes oral sensory–motor information, but its role in the control of energy balance remains unexplored. Here, using fluorescent in situ hybridization, we show that the Mes5 expresses the melanocortin-4 receptor. Consistent with MC4R activation in other areas of the brain, we found that Mes5 microinjection of the MC4R agonist melanotan-II (MTII) suppresses food intake and body weight in the mouse. Furthermore, NTS POMC-projecting neurons to the Mes5 can be chemogenetically activated to drive a suppression in food intake. Taken together, these findings highlight the Mes5 as a novel target of melanocortinergic control of food intake and body weight regulation, although elucidating the endogenous role of this circuit requires future study. While we observed the sufficiency of Mes5 MC4Rs for food intake and body weight suppression, these receptors do not appear to be necessary for food intake or body weight control. Collectively, the data presented here support the functional relevance of the NTS POMC to Mes5 projection pathway as a novel circuit that can be targeted to modulate food intake and body weight.
Collapse
Affiliation(s)
- Samantha M. Fortin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.F.); (J.C.)
| | - Jack Chen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.F.); (J.C.)
| | - Harvey J. Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.F.); (J.C.)
- Correspondence:
| |
Collapse
|
29
|
Kenwood MM, Kalin NH. Nonhuman Primate Models to Explore Mechanisms Underlying Early-Life Temperamental Anxiety. Biol Psychiatry 2021; 89:659-671. [PMID: 33229035 PMCID: PMC7952470 DOI: 10.1016/j.biopsych.2020.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023]
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, causing significant suffering and disability. Behavioral inhibition is a temperament that is linked to an increased risk for the later development of anxiety disorders and other stress-related psychopathology, and understanding the neural systems underlying this dispositional risk could provide insight into novel treatment targets for anxiety disorders. Nonhuman primates (NHPs) have anxiety-related temperaments that are similar to those of humans with behavioral inhibition, facilitating the design of translational models related to human psychopathology. Characterization of our NHP model of behavioral inhibition, which we term anxious temperament (AT), reveals that it is trait-like. Exploration of the neural substrates of AT in NHPs has revealed a distributed neural circuit that is linked to individual differences in AT, which includes the dorsal amygdala. AT-related metabolism in the dorsal amygdala, including the central nucleus, is stable across time and can be detected even in safe contexts, suggesting that AT has trait-like neural signatures within the brain. The use of lesioning and novel chemogenetic methods allows for mechanistic perturbation of the amygdala to determine its causal contribution to AT. Studies characterizing the molecular bases for individual differences in AT in the dorsal amygdala, which take advantage of novel methods for probing cellular and molecular systems, suggest involvement of neurotrophic systems, which point to the importance of neuroplasticity in AT. These novel methods, when used in combination with translational NHP models such as AT, promise to provide insights into the brain systems underlying the early risk for anxiety disorder development.
Collapse
|
30
|
Aygün D, Ertaş Fİ, Gündüz A, Benbir Şenel G, Karadeniz D, Kızıltan M. The role of pedunculopontine nucleus in isolated REM sleep behavior disorder and REM sleep without atonia. Parkinsonism Relat Disord 2021; 84:68-73. [PMID: 33571873 DOI: 10.1016/j.parkreldis.2021.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The aim of this study was to analyze the functions of pedunculopontine nucleus (PPN) in isolated REM sleep behavior disorder (iRBD) and REM sleep without atonia (RSWA) to investigate the role of PPN in dream-enacting motor behaviors in RBD. We evaluated the activity of PPN through the prepulse modulation (PPM) together with other brainstem reflexes to investigate the differences in changes at brainstem. METHODS We included nine patients with isolated RSWA and 10 patients with iRBD. For diagnosis, all patients underwent polysomnography. None of the patients had parkinsonism or dementia. We also included 17 healthy participants with similar age and sex. Blink reflex (BR), PPM of BR, recovery excitability of BR, and auditory startle reflex (ASR) were recorded in all participants. RESULTS There was a prepulse inhibition deficit in iRBD and RSWA groups compared to healthy subjects. The BR-R2 recovery at 200 ms interval was also higher in patients with iRBD and RSWA. In ASR recordings, the response probabilities were higher in the RBD group compared to RSWA and control groups. CONCLUSION The PPM was abnormal in both iRBD and RSWA whereas ASR was enhanced in iRBD. We suggest that there are certain similarities and differences in the pathophysiologies of iRBD and RSWA.
Collapse
Affiliation(s)
- Demet Aygün
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Division of Clinical Electroneurophysiology, Istanbul, Turkey
| | - F İnci Ertaş
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Division of Clinical Electroneurophysiology, Istanbul, Turkey
| | - Ayşegül Gündüz
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Division of Clinical Electroneurophysiology, Istanbul, Turkey.
| | - Gülçin Benbir Şenel
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Division of Clinical Electroneurophysiology, Istanbul, Turkey
| | - Derya Karadeniz
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Division of Clinical Electroneurophysiology, Istanbul, Turkey
| | - Meral Kızıltan
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Division of Clinical Electroneurophysiology, Istanbul, Turkey
| |
Collapse
|
31
|
Borodovitsyna O, Duffy BC, Pickering AE, Chandler DJ. Anatomically and functionally distinct locus coeruleus efferents mediate opposing effects on anxiety-like behavior. Neurobiol Stress 2020; 13:100284. [PMID: 33344735 PMCID: PMC7739179 DOI: 10.1016/j.ynstr.2020.100284] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
The locus coeruleus (LC) is a critical node in the stress response, and its activation has been shown to promote hypervigilance and anxiety-like behavior. This noradrenergic nucleus has historically been considered homogeneous with highly divergent neurons that operate en masse to collectively affect central nervous system function and behavioral state. However, in recent years, LC has been identified as a heterogeneous structure whose neurons innervate discrete terminal fields and contribute to distinct aspects of behavior. We have previously shown that in late adolescent male rats, an acute traumatic stressor, simultaneous physical restraint and exposure to predator odor, preferentially induces c-Fos expression in a subset of dorsal LC neurons and persistently increases anxiety-like behavior. To investigate how these neurons respond to and contribute to the behavioral response to stress, we used a combination of retrograde tracing, whole-cell patch clamp electrophysiology, and chemogenetics. Here we show that LC neurons innervating the central nucleus of the amygdala (CeA) and medial prefrontal cortex (mPFC) undergo distinct electrophysiological changes in response to stressor exposure and have opposing roles in mediating anxiety-like behavior. While neurons innervating CeA become more excitable in response to stress and promote anxiety-like behavior, those innervating mPFC become less excitable and appear to promote exploration. These findings show that LC neurons innervating distinct terminal fields have unique physiological responses to particular stimuli. Furthermore, these observations advance the understanding of the LC as a complex and heterogeneous structure whose neurons maintain unique roles in various forms of behavior. Locus coeruleus-central amygdala projections are hyperactive one week after stress. Locus coeruleus-prefrontal cortex projections are hypoactive one week after stress. Chemogenetic manipulation of each pathway distinctly affects anxiety-like behavior.
Collapse
Key Words
- AHP, afterhyperpolarization
- Anxiety-like behavior
- CRF, corticotropin releasing factor
- CeA, central nucleus of the amygdala
- Central nucleus of amygdala
- EPM, elevated plus maze
- LC, locus coeruleus
- Locus coeruleus
- Medial prefrontal cortex
- NE, norepinephrine
- OFT, open field test
- PBS, phosphate buffered saline
- Stress
- TMT, 2,4,5-trimethylthiazole
- aCSF, artificial cerebrospinal fluid
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Olga Borodovitsyna
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| | - Brenna C Duffy
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS81TD, UK
| | - Daniel J Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| |
Collapse
|
32
|
The Insula Cortex Contacts Distinct Output Streams of the Central Amygdala. J Neurosci 2020; 40:8870-8882. [PMID: 33051345 DOI: 10.1523/jneurosci.0567-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
The emergence of genetic tools has provided new means of mapping functionality in central amygdala (CeA) neuron populations based on their molecular profiles, response properties, and importantly, connectivity patterns. While abundant evidence indicates that neuronal signals arrive in the CeA eliciting both aversive and appetitive behaviors, our understanding of the anatomy of the underlying long-range CeA network remains fragmentary. In this study, we combine viral tracings, electrophysiological, and optogenetic approaches to establish in male mice, a wiring chart between the insula cortex (IC), a major sensory input region of the lateral and capsular part of the CeA (CeL/C), and four principal output streams of this nucleus. We found that retrogradely labeled output neurons occupy discrete and likely strategic locations in the CeL/C, and that they are disproportionally controlled by the IC. We identified a direct line of connection between the IC and the lateral hypothalamus (LH), which engages numerous LH-projecting CeL/C cells whose activity can be strongly upregulated on firing of IC neurons. In comparison, CeL/C neurons projecting to the bed nucleus of the stria terminalis (BNST) are also frequently contacted by incoming IC axons, but the strength of this connection is weak. Our results provide a link between long-range inputs and outputs of the CeA and pave the way to a better understanding of how internal, external, and experience dependent information may impinge on action selection by the CeA.SIGNIFICANCE STATEMENT Our current knowledge of the circuit organization within the central amygdala (CeA), a critical regulator of emotional states, includes independent information about its long-range efferents and afferents. We do not know how incoming sensory information is appraised and routed through the CeA to the different output channels. We address this issue by using three different techniques to investigate how a sensory region, the insula cortex (IC), connects with the motor, physiological and autonomic output centers of the CeA. We uncover a strong connection between the IC and the lateral hypothalamus (LH) with a monosynaptic relay in the CeA and shed new light on the previously described functions of IC and CeA through direct projections to the LH.
Collapse
|
33
|
Ghaemi Kerahrodi J, Michal M. The fear-defense system, emotions, and oxidative stress. Redox Biol 2020; 37:101588. [PMID: 32739155 PMCID: PMC7767737 DOI: 10.1016/j.redox.2020.101588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/04/2020] [Accepted: 05/17/2020] [Indexed: 12/31/2022] Open
Abstract
Psychosocial stress has a profound impact on well-being and health. The response to stress is associated mainly with the amygdala, a crucial structure of the fear-defense system, essential for social cognition and emotion regulation. Recent neuroimaging-studies demonstrated how an increased metabolic activity of the amygdala enhances inflammation, and leads to cardiometabolic disease. The development of therapeutic strategies depends on our understanding of both which factors activate the fear-defense system and the subsequent molecular mechanisms that translate emotional stress into cell damage. Fear of emotions as an aftermath of attachment trauma is the most important trigger of the maladaptive activation of the fear-defense system. The central molecular pathways are enhanced myelopoiesis and upregulated proinflammatory gene expression, glucocorticoid and insulin resistance, and oxidative stress. Therapeutic strategies may benefit from holistic approaches. Psychotherapy can reduce the maladaptively increased activation of the fear-defense system. Biological interventions can buffer the detrimental effects of oxidative stress in the organism.
Collapse
Affiliation(s)
- Jasmin Ghaemi Kerahrodi
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Matthias Michal
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Germany
| |
Collapse
|
34
|
Castro-Vale I, Carvalho D. The Pathways between Cortisol-Related Regulation Genes and PTSD Psychotherapy. Healthcare (Basel) 2020; 8:healthcare8040376. [PMID: 33019527 PMCID: PMC7712185 DOI: 10.3390/healthcare8040376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 01/30/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) only develops after exposure to a traumatic event in some individuals. PTSD can be chronic and debilitating, and is associated with co-morbidities such as depression, substance use, and cardiometabolic disorders. One of the most important pathophysiological mechanisms underlying the development of PTSD and its subsequent maintenance is a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis. The corticotrophin-releasing hormone, cortisol, glucocorticoid receptor (GR), and their respective genes are some of the mediators of PTSD's pathophysiology. Several treatments are available, including medication and psychotherapies, although their success rate is limited. Some pharmacological therapies based on the HPA axis are currently being tested in clinical trials and changes in HPA axis biomarkers have been found to occur in response not only to pharmacological treatments, but also to psychotherapy-including the epigenetic modification of the GR gene. Psychotherapies are considered to be the first line treatments for PTSD in some guidelines, even though they are effective for some, but not for all patients with PTSD. This review aims to address how knowledge of the HPA axis-related genetic makeup can inform and predict the outcomes of psychotherapeutic treatments.
Collapse
Affiliation(s)
- Ivone Castro-Vale
- Medical Psychology Unit, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Correspondence:
| | - Davide Carvalho
- Department of Endocrinology, Diabetes and Metabolism, São João Hospital University Centre, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| |
Collapse
|
35
|
Yang CF, Kim EJ, Callaway EM, Feldman JL. Monosynaptic Projections to Excitatory and Inhibitory preBötzinger Complex Neurons. Front Neuroanat 2020; 14:58. [PMID: 33013329 PMCID: PMC7507425 DOI: 10.3389/fnana.2020.00058] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
The key driver of breathing rhythm is the preBötzinger Complex (preBötC) whose activity is modulated by various functional inputs, e.g., volitional, physiological, and emotional. While the preBötC is highly interconnected with other regions of the breathing central pattern generator (bCPG) in the brainstem, there is no data about the direct projections to either excitatory and inhibitory preBötC subpopulations from other elements of the bCPG or from suprapontine regions. Using modified rabies tracing, we identified neurons throughout the brain that send monosynaptic projections to identified excitatory and inhibitory preBötC neurons in mice. Within the brainstem, neurons from sites in the bCPG, including the contralateral preBötC, Bötzinger Complex, the nucleus of the solitary tract (NTS), parafacial region (pF L /pF V ), and parabrachial nuclei (PB), send direct projections to both excitatory and inhibitory preBötC neurons. Suprapontine inputs to the excitatory and inhibitory preBötC neurons include the superior colliculus, red nucleus, amygdala, hypothalamus, and cortex; these projections represent potential direct pathways for volitional, emotional, and physiological control of breathing.
Collapse
Affiliation(s)
- Cindy F. Yang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Euiseok J. Kim
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Edward M. Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jack L. Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|