1
|
You X, Niu L, Fu J, Ge S, Shi J, Zhang Y, Zhuang P. Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury. Neural Regen Res 2025; 20:2153-2168. [PMID: 39359076 DOI: 10.4103/nrr.nrr-d-24-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/11/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00002/figure1/v/2024-09-30T120553Z/r/image-tiff Traumatic brain injury is a prevalent disorder of the central nervous system. In addition to primary brain parenchymal damage, the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury; however, the underlying pathogenesis remains unclear, and effective intervention methods are lacking. Intestinal dysfunction is a significant consequence of traumatic brain injury. Being the most densely innervated peripheral tissue in the body, the gut possesses multiple pathways for the establishment of a bidirectional "brain-gut axis" with the central nervous system. The gut harbors a vast microbial community, and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal, hormonal, and immune pathways. A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications. We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury, with a specific focus on the complex biological processes of peripheral nerves, immunity, and microbes triggered by traumatic brain injury, encompassing autonomic dysfunction, neuroendocrine disturbances, peripheral immunosuppression, increased intestinal barrier permeability, compromised responses of sensory nerves to microorganisms, and potential effector nuclei in the central nervous system influenced by gut microbiota. Additionally, we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury. This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the "brain-gut-microbiota axis."
Collapse
Affiliation(s)
- Xinyu You
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Niu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiafeng Fu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shining Ge
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanjun Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Maitin-Shepard M, O'Tierney-Ginn P, Kraneveld AD, Lyall K, Fallin D, Arora M, Fasano A, Mueller NT, Wang X, Caulfield LE, Dickerson AS, Diaz Heijtz R, Tarui T, Blumberg JB, Holingue C, Schmidt RJ, Garssen J, Almendinger K, Lin PID, Mozaffarian D. Food, nutrition, and autism: from soil to fork. Am J Clin Nutr 2024; 120:240-256. [PMID: 38677518 DOI: 10.1016/j.ajcnut.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Food and nutrition-related factors have the potential to impact development of autism spectrum disorder (ASD) and quality of life for people with ASD, but gaps in evidence exist. On 10 November 2022, Tufts University's Friedman School of Nutrition Science and Policy and Food and Nutrition Innovation Institute hosted a 1-d meeting to explore the evidence and evidence gaps regarding the relationships of food and nutrition with ASD. This meeting report summarizes the presentations and deliberations from the meeting. Topics addressed included prenatal and child dietary intake, the microbiome, obesity, food-related environmental exposures, mechanisms and biological processes linking these factors and ASD, food-related social factors, and data sources for future research. Presentations highlighted evidence for protective associations with prenatal folic acid supplementation and ASD development, increases in risk of ASD with maternal gestational obesity, and the potential for exposure to environmental contaminants in foods and food packaging to influence ASD development. The importance of the maternal and child microbiome in ASD development or ASD-related behaviors in the child was reviewed, as was the role of discrimination in leading to disparities in environmental exposures and psychosocial factors that may influence ASD. The role of child diet and high prevalence of food selectivity in children with ASD and its association with adverse outcomes were also discussed. Priority evidence gaps identified by participants include further clarifying ASD development, including biomarkers and key mechanisms; interactions among psychosocial, social, and biological determinants; interventions addressing diet, supplementation, and the microbiome to prevent and improve quality of life for people with ASD; and mechanisms of action of diet-related factors associated with ASD. Participants developed research proposals to address the priority evidence gaps. The workshop findings serve as a foundation for future prioritization of scientific research to address evidence gaps related to food, nutrition, and ASD.
Collapse
Affiliation(s)
| | | | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Laura E Caulfield
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Tomo Tarui
- Department of Pediatrics, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Jeffrey B Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Calliope Holingue
- Center for Autism Services, Science and Innovation, Kennedy Krieger Institute and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences, the MIND Institute, University of California Davis, Davis, CA, United States
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Katherine Almendinger
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Pi-I Debby Lin
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - Dariush Mozaffarian
- Food is Medicine Institute, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States.
| |
Collapse
|
3
|
Niosi A, Võ NH, Sundaramurthy P, Welch C, Penn A, Yuldasheva Y, Alfareh A, Rausch K, Amin-Rahbar T, Cavanaugh J, Yadav P, Peterson S, Brown R, Hu A, Ardon-Castro A, Nguyen D, Crawford R, Lee W, Morris EJ, Jensen MH, Mulligan K. Kismet/CHD7/CHD8 affects gut microbiota, mechanics, and the gut-brain axis in Drosophila melanogaster. Biophys J 2024:S0006-3495(24)00413-2. [PMID: 38902926 DOI: 10.1016/j.bpj.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
The gut microbiome affects brain and neuronal development and may contribute to the pathophysiology of neurodevelopmental disorders. However, it is unclear how risk genes associated with such disorders affect gut physiology in a manner that could impact microbial colonization and how the mechanical properties of the gut tissue might play a role in gut-brain bidirectional communication. To address this, we used Drosophila melanogaster with a null mutation in the gene kismet, an ortholog of chromodomain helicase DNA-binding protein (CHD) family members CHD7 and CHD8. In humans, these are risk genes for neurodevelopmental disorders with co-occurring gastrointestinal symptoms. We found that kismet mutant flies have a significant increase in gastrointestinal transit time, indicating the functional homology of kismet with CHD7/CHD8 in vertebrates. Rheological characterization of dissected gut tissue revealed significant changes in the mechanics of kismet mutant gut elasticity, strain stiffening behavior, and tensile strength. Using 16S rRNA metagenomic sequencing, we also found that kismet mutants have reduced diversity and abundance of gut microbiota at every taxonomic level. To investigate the connection between the gut microbiome and behavior, we depleted gut microbiota in kismet mutant and control flies and quantified the flies' courtship behavior. Depletion of gut microbiota rescued courtship defects of kismet mutant flies, indicating a connection between gut microbiota and behavior. In striking contrast, depletion of the gut microbiome in the control strain reduced courtship activity, demonstrating that antibiotic treatment can have differential impacts on behavior and may depend on the status of microbial dysbiosis in the gut prior to depletion. We propose that Kismet influences multiple gastrointestinal phenotypes that contribute to the gut-microbiome-brain axis to influence behavior. We also suggest that gut tissue mechanics should be considered as an element in the gut-brain communication loop, both influenced by and potentially influencing the gut microbiome and neurodevelopment.
Collapse
Affiliation(s)
- Angelo Niosi
- Department of Biological Sciences, California State University, Sacramento, California
| | - Nguyên Henry Võ
- Department of Biological Sciences, California State University, Sacramento, California
| | | | - Chloe Welch
- Department of Biological Sciences, California State University, Sacramento, California
| | - Aliyah Penn
- Department of Biological Sciences, California State University, Sacramento, California
| | - Yelena Yuldasheva
- Department of Biological Sciences, California State University, Sacramento, California
| | - Adam Alfareh
- Department of Biological Sciences, California State University, Sacramento, California
| | - Kaitlyn Rausch
- Department of Biological Sciences, California State University, Sacramento, California
| | - Takhmina Amin-Rahbar
- Department of Biological Sciences, California State University, Sacramento, California
| | - Jeffery Cavanaugh
- Department of Physics and Astronomy, California State University, Sacramento, California
| | - Prince Yadav
- Department of Physics and Astronomy, California State University, Sacramento, California
| | - Stephanie Peterson
- Department of Biological Sciences, California State University, Sacramento, California
| | - Raina Brown
- Department of Biological Sciences, California State University, Sacramento, California
| | - Alain Hu
- Department of Biological Sciences, California State University, Sacramento, California
| | - Any Ardon-Castro
- Department of Biological Sciences, California State University, Sacramento, California
| | - Darren Nguyen
- Department of Biological Sciences, California State University, Sacramento, California
| | - Robert Crawford
- Department of Biological Sciences, California State University, Sacramento, California
| | - Wendy Lee
- Department of Computer Science, San Jose State University, San Jose, California
| | - Eliza J Morris
- Department of Physics and Astronomy, California State University, Sacramento, California
| | - Mikkel Herholdt Jensen
- Department of Physics and Astronomy, California State University, Sacramento, California.
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, California.
| |
Collapse
|
4
|
Hung LY, Margolis KG. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat Rev Gastroenterol Hepatol 2024; 21:142-163. [PMID: 38114585 DOI: 10.1038/s41575-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid-compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.
Collapse
Affiliation(s)
- Lin Y Hung
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
- Department of Pediatrics, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Mathew NE, McCaffrey D, Walker AK, Mallitt KA, Masi A, Morris MJ, Ooi CY. The search for gastrointestinal inflammation in autism: a systematic review and meta-analysis of non-invasive gastrointestinal markers. Mol Autism 2024; 15:4. [PMID: 38233886 PMCID: PMC10795298 DOI: 10.1186/s13229-023-00575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/04/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Gastrointestinal symptoms and inflammatory gastrointestinal diseases exist at higher rates in the autistic population. It is not clear however whether autism is associated with elevated gastrointestinal inflammation as studies examining non-invasive faecal biomarkers report conflicting findings. To understand the research landscape and identify gaps, we performed a systematic review and meta-analysis of studies measuring non-invasive markers of gastrointestinal inflammation in autistic and non-autistic samples. Our examination focused on faecal biomarkers as sampling is non-invasive and these markers are a direct reflection of inflammatory processes in the gastrointestinal tract. METHODS We extracted data from case-control studies examining faecal markers of gastrointestinal inflammation. We searched PubMed, Embase, Cochrane CENTRAL, CINAHL, PsycINFO, Web of Science Core Collection and Epistemonikos and forward and backwards citations of included studies published up to April 14, 2023 (PROSPERO CRD42022369279). RESULTS There were few studies examining faecal markers of gastrointestinal inflammation in the autistic population, and many established markers have not been studied. Meta-analyses of studies examining calprotectin (n = 9) and lactoferrin (n = 3) were carried out. A total of 508 autistic children and adolescents and 397 non-autistic children and adolescents were included in the meta-analysis of calprotectin studies which found no significant group differences (ROM: 1.30 [0.91, 1.86]). Estimated differences in calprotectin were lower in studies with siblings and studies which did not exclude non-autistic controls with gastrointestinal symptoms. A total of 139 autistic participants and 75 non-autistic controls were included in the meta-analysis of lactoferrin studies which found no significant group differences (ROM: 1.27 [0.79, 2.04]). LIMITATIONS All studies included in this systematic review and meta-analysis examined children and adolescents. Many studies included non-autistic controls with gastrointestinal symptoms which limit the validity of their findings. The majority of studies of gastrointestinal inflammation focused on children under 12 with few studies including adolescent participants. Most studies that included participants aged four or under did not account for the impact of age on calprotectin levels. Future studies should screen for relevant confounders, include larger samples and explore gastrointestinal inflammation in autistic adolescents and adults. CONCLUSIONS There is no evidence to suggest higher levels of gastrointestinal inflammation as measured by calprotectin and lactoferrin are present in autistic children and adolescents at the population level. Preliminary evidence suggests however that higher calprotectin levels may be present in a subset of autistic participants, who may be clinically characterised by more severe gastrointestinal symptoms and higher levels of autistic traits.
Collapse
Affiliation(s)
- Nisha E Mathew
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
| | - Delyse McCaffrey
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
| | - Adam K Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3800, Australia
| | - Kylie-Ann Mallitt
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anne Masi
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
| | - Margaret J Morris
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Chee Y Ooi
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia.
- Department of Gastroenterology, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia.
| |
Collapse
|
6
|
Robinson BG, Oster BA, Robertson K, Kaltschmidt JA. Loss of ASD-related molecule Cntnap2 affects colonic motility in mice. Front Neurosci 2023; 17:1287057. [PMID: 38027494 PMCID: PMC10665486 DOI: 10.3389/fnins.2023.1287057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Gastrointestinal (GI) symptoms are highly prevalent among individuals with autism spectrum disorder (ASD), but the molecular link between ASD and GI dysfunction remains poorly understood. The enteric nervous system (ENS) is critical for normal GI motility and has been shown to be altered in mouse models of ASD and other neurological disorders. Contactin-associated protein-like 2 (Cntnap2) is an ASD-related synaptic cell-adhesion molecule important for sensory processing. In this study, we examine the role of Cntnap2 in GI motility by characterizing Cntnap2's expression in the ENS and assessing GI function in Cntnap2 mutant mice. We find Cntnap2 expression predominately in enteric sensory neurons. We further assess in vivo and ex vivo GI motility in Cntnap2 mutants and show altered transit time and colonic motility patterns. The overall organization of the ENS appears undisturbed. Our results suggest that Cntnap2 plays a role in GI function and may provide a molecular link between ASD and GI dysfunction.
Collapse
Affiliation(s)
- Beatriz G. Robinson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
- Neurosciences IDP Graduate Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Beau A. Oster
- Nevada ENDURE Program, University of Nevada, Reno, Reno, NV, United States
| | - Keiramarie Robertson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
- Neurosciences IDP Graduate Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Julia A. Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Bell SM, Evans JM, Greif EA, Tsai KL, Friedenberg SG, Clark LA. GWAS using low-pass whole genome sequence reveals a novel locus in canine congenital idiopathic megaesophagus. Mamm Genome 2023; 34:464-472. [PMID: 37041421 PMCID: PMC10600401 DOI: 10.1007/s00335-023-09991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Congenital idiopathic megaesophagus (CIM) is a gastrointestinal disorder of dogs wherein the esophagus is dilated and swallowing activity is reduced, causing regurgitation of ingesta. Affected individuals experience weight loss and malnourishment and are at risk for aspiration pneumonia, intussusception, and euthanasia. Great Danes have among the highest incidences of CIM across dog breeds, suggesting a genetic predisposition. We generated low-pass sequencing data for 83 Great Danes and used variant calls to impute missing whole genome single-nucleotide variants (SNVs) for each individual based on haplotypes phased from 624 high-coverage dog genomes, including 21 Great Danes. We validated the utility of our imputed data set for genome-wide association studies (GWASs) by mapping loci known to underlie coat phenotypes with simple and complex inheritance patterns. We conducted a GWAS for CIM with 2,010,300 SNVs, identifying a novel locus on canine chromosome 1 (P-val = 2.76 × 10-10). Associated SNVs are intergenic or intronic and are found in two clusters across a 1.7-Mb region. Inspection of coding regions in high-coverage genomes from affected Great Danes did not reveal candidate causal variants, suggesting that regulatory variants underlie CIM. Further studies are necessary to assess the role of these non-coding variants.
Collapse
Affiliation(s)
- Sarah M Bell
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Jacquelyn M Evans
- College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elizabeth A Greif
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Kate L Tsai
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| | - Leigh Anne Clark
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| |
Collapse
|
8
|
Wang X, Tang R, Wei Z, Zhan Y, Lu J, Li Z. The enteric nervous system deficits in autism spectrum disorder. Front Neurosci 2023; 17:1101071. [PMID: 37694110 PMCID: PMC10484716 DOI: 10.3389/fnins.2023.1101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Gastrointestinal (GI) disorders are common comorbidities in individuals with autism spectrum disorder (ASD), and abnormalities in these issues have been found to be closely related to the severity of core behavioral deficits in autism. The enteric nervous system (ENS) plays a crucial role in regulating various aspects of gut functions, including gastrointestinal motility. Dysfunctional wiring in the ENS not only results in various gastrointestinal issues, but also correlates with an increasing number of central nervous system (CNS) disorders, such as ASD. However, it remains unclear whether the gastrointestinal dysfunctions are a consequence of ASD or if they directly contribute to its pathogenesis. This review focuses on the deficits in the ENS associated with ASD, and highlights several high-risk genes for ASD, which are expressed widely in the gut and implicated in gastrointestinal dysfunction among both animal models and human patients with ASD. Furthermore, we provide a brief overview of environmental factors associated with gastrointestinal tract in individuals with autism. This could offer fresh perspectives on our understanding of ASD.
Collapse
Affiliation(s)
- Xinnian Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Life Science, USTC Life Sciences and Medicine, Hefei, China
| | - Ruijin Tang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yang Zhan
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Zhiling Li
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
9
|
Zuffa S, Schimmel P, Gonzalez-Santana A, Belzer C, Knol J, Bölte S, Falck-Ytter T, Forssberg H, Swann J, Diaz Heijtz R. Early-life differences in the gut microbiota composition and functionality of infants at elevated likelihood of developing autism spectrum disorder. Transl Psychiatry 2023; 13:257. [PMID: 37443359 PMCID: PMC10344877 DOI: 10.1038/s41398-023-02556-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Evidence from cross-sectional human studies, and preliminary microbial-based intervention studies, have implicated the microbiota-gut-brain axis in the neurobiology of autism spectrum disorder (ASD). Using a prospective longitudinal study design, we investigated the developmental profile of the fecal microbiota and metabolome in infants with (n = 16) and without (n = 19) a family history of ASD across the first 36 months of life. In addition, the general developmental levels of infants were evaluated using the Mullen Scales of Early Learning (MSEL) test at 5 and 36 months of age, and with ADOS-2 at 36 months of age. At 5 months of age, infants at elevated-likelihood of ASD (EL) harbored less Bifidobacterium and more Clostridium and Klebsiella species compared to the low-likelihood infants (LL). Untargeted metabolic profiling highlighted that LL infants excreted a greater amount of fecal γ-aminobutyric acid (GABA) at 5 months, which progressively declined with age. Similar age-dependent patterns were not observed in the EL group, with GABA being consistently low across all timepoints. Integrated microbiome-metabolome analysis showed a positive correlation between GABA and Bifidobacterium species and negative associations with Clostridium species. In vitro experiments supported these observations demonstrating that bifidobacteria can produce GABA while clostridia can consume it. At the behavioral level, there were no significant differences between the EL and LL groups at 5 months. However, at 36 months of age, the EL group had significantly lower MSEL and ADOS-2 scores compared to the LL group. Taken together, the present results reveal early life alterations in gut microbiota composition and functionality in infants at elevated-likelihood of ASD. These changes occur before any behavioral impairments can be detected, supporting a possible role for the gut microbiota in emerging behavioral variability later in life.
Collapse
Affiliation(s)
- Simone Zuffa
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Patrick Schimmel
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | | | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Terje Falck-Ytter
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, 751 42, Uppsala, Sweden
| | - Hans Forssberg
- Department of Women's & Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
- School of Human Development and Health, Faculty of Medicine, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | | |
Collapse
|
10
|
Rukh S, Meechan DW, Maynard TM, Lamantia AS. Out of Line or Altered States? Neural Progenitors as a Target in a Polygenic Neurodevelopmental Disorder. Dev Neurosci 2023; 46:1-21. [PMID: 37231803 DOI: 10.1159/000530898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
The genesis of a mature complement of neurons is thought to require, at least in part, precursor cell lineages in which neural progenitors have distinct identities recognized by exclusive expression of one or a few molecular markers. Nevertheless, limited progenitor types distinguished by specific markers and lineal progression through such subclasses cannot easily yield the magnitude of neuronal diversity in most regions of the nervous system. The late Verne Caviness, to whom this edition of Developmental Neuroscience is dedicated, recognized this mismatch. In his pioneering work on the histogenesis of the cerebral cortex, he acknowledged the additional flexibility required to generate multiple classes of cortical projection and interneurons. This flexibility may be accomplished by establishing cell states in which levels rather than binary expression or repression of individual genes vary across each progenitor's shared transcriptome. Such states may reflect local, stochastic signaling via soluble factors or coincidence of cell surface ligand/receptor pairs in subsets of neighboring progenitors. This probabilistic, rather than determined, signaling could modify transcription levels via multiple pathways within an apparently uniform population of progenitors. Progenitor states, therefore, rather than lineal relationships between types may underlie the generation of neuronal diversity in most regions of the nervous system. Moreover, mechanisms that influence variation required for flexible progenitor states may be targets for pathological changes in a broad range of neurodevelopmental disorders, especially those with polygenic origins.
Collapse
Affiliation(s)
- Shah Rukh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Daniel W Meechan
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Thomas M Maynard
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Anthony-Samuel Lamantia
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
11
|
Gupta R, Raghuvanshi S. Human Microbiome and Autism-Spectrum Disorders. PROBIOTICS, PREBIOTICS, SYNBIOTICS, AND POSTBIOTICS 2023:347-360. [DOI: 10.1007/978-981-99-1463-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Molecular Characterization of Probiotics and Their Influence on Children with Autism Spectrum Disorder. Mol Neurobiol 2022; 59:6896-6902. [PMID: 36050597 DOI: 10.1007/s12035-022-02963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/14/2022] [Indexed: 10/14/2022]
Abstract
Children with autism spectrum disorder (ASD) are usually unable to express abdominal discomfort properly, and thus gastrointestinal symptoms (GIS) are sometimes shadowed by aggression, which is sometimes misunderstood as a behavioral characteristic of ASD. Several studies have reported interesting correlations between the severity of behavioral and gastrointestinal symptoms in ASD children. The present study aimed to investigate the potential effects of probiotics as an adjuvant therapy to modulate the clinical status of ASD children. This study included 40 children with ASD aged 2-5 years. The feeding product was prepared from whey powder (without casein) and some minced cooked yellow vegetables in adequate ratios fortified with the studied probiotic strains (Bifidobacterium spp. and Lactobacillus spp.). Bifidobacterium strains were assessed from stool samples of children with ASD. Bifidobacterium strains were analyzed in the stools of ASD children. Recruited ASD patients received 10 g of the nutritional supplement once a day for 3 months. Childhood Autism Rating Scale (CARS) and Autism Diagnostic Interview-Revised (ADIR) were reevaluated clinically. Questionnaire on Pediatric Gastrointestinal Symptoms-Rome III Version was used for all children with ASD before and after. There is a significant increase in the colony counts of both Bifidobacterium spp. and Lactobacillus spp., which present in the stool of ASD children after probiotic supplementation for 3 months. It was highly significant in the case of Bifidobacterium spp. (p value 0.000) and a significant increase in Lactobacillus spp. (p value 0.015). The present study showed reduced anxiety and observation of deep sleep for children with ASD (80%) after taking the supplementation. This indicates that probiotics may have a potential effect in reducing symptoms and severity of ASD and in correcting dysbiosis.
Collapse
|
13
|
Lu C, Rong J, Fu C, Wang W, Xu J, Ju XD. Overall Rebalancing of Gut Microbiota Is Key to Autism Intervention. Front Psychol 2022; 13:862719. [PMID: 35712154 PMCID: PMC9196865 DOI: 10.3389/fpsyg.2022.862719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with unclear etiology, and due to the lack of effective treatment, ASD patients bring enormous economic and psychological burden to families and society. In recent years, many studies have found that children with ASD are associated with gastrointestinal diseases, and the composition of intestinal microbiota (GM) is different from that of typical developing children. Thus, many researchers believe that the gut-brain axis may play an important role in the occurrence and development of ASD. Indeed, some clinical trials and animal studies have reported changes in neurological function, behavior, and comorbid symptoms of autistic children after rebalancing the composition of the GM through the use of antibiotics, prebiotics, and probiotics or microbiota transfer therapy (MMT). In view of the emergence of new therapies based on the modulation of GM, characterizing the individual gut bacterial profile evaluating the effectiveness of intervention therapies could help provide a better quality of life for subjects with ASD. This article reviews current studies on interventions to rebalance the GM in children with ASD. The results showed that Lactobacillus plantarum may be an effective strain for the probiotic treatment of ASD. However, the greater effectiveness of MMT treatment suggests that it may be more important to pay attention to the overall balance of the patient's GM. Based on these findings, a more thorough assessment of the GM is expected to contribute to personalized microbial intervention, which can be used as a supplementary treatment for ASD.
Collapse
Affiliation(s)
- Chang Lu
- School of Psychology, Northeast Normal University, Changchun, China
| | - Jiaqi Rong
- School of Psychology, Northeast Normal University, Changchun, China
| | - Changxing Fu
- School of Psychology, Northeast Normal University, Changchun, China
| | - Wenshi Wang
- School of Psychology, Northeast Normal University, Changchun, China
| | - Jing Xu
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xing-Da Ju
- School of Psychology, Northeast Normal University, Changchun, China
| |
Collapse
|
14
|
Shoubridge AP, Choo JM, Martin AM, Keating DJ, Wong ML, Licinio J, Rogers GB. The gut microbiome and mental health: advances in research and emerging priorities. Mol Psychiatry 2022; 27:1908-1919. [PMID: 35236957 DOI: 10.1038/s41380-022-01479-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
The gut microbiome exerts a considerable influence on human neurophysiology and mental health. Interactions between intestinal microbiology and host regulatory systems have now been implicated both in the development of psychiatric conditions and in the efficacy of many common therapies. With the growing acceptance of the role played by the gut microbiome in mental health outcomes, the focus of research is now beginning to shift from identifying relationships between intestinal microbiology and pathophysiology, and towards using this newfound insight to improve clinical outcomes. Here, we review recent advances in our understanding of gut microbiome-brain interactions, the mechanistic underpinnings of these relationships, and the ongoing challenge of distinguishing association and causation. We set out an overarching model of the evolution of microbiome-CNS interaction and examine how a growing knowledge of these complex systems can be used to determine disease susceptibility and reduce risk in a targeted manner.
Collapse
Affiliation(s)
- Andrew P Shoubridge
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jocelyn M Choo
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Alyce M Martin
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Damien J Keating
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.,Department of Psychiatry, Flinders University College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Geraint B Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. .,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
15
|
The Emerging Role of the Gut-Brain-Microbiota Axis in Neurodevelopmental Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:141-156. [PMID: 36587154 DOI: 10.1007/978-3-031-05843-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Autism spectrum disorder (ASD; autism) is a prevalent neurodevelopmental disorder associated with changes in gut-brain axis communication. Gastrointestinal (GI) symptoms are experienced by a large proportion of individuals diagnosed with autism. Several mutations associated with autism modify cellular communication via neuronal synapses. It has been suggested that modifications to the enteric nervous system, an intrinsic nervous system of the GI tract, could contribute to GI dysfunction. Changes in gut motility, permeability, and the mucosal barrier as well as shifts in the large population of microbes inhabiting the GI tract could contribute to GI symptoms. Preclinical research has demonstrated that mice expressing the well-studied R451C missense mutation in Nlgn3 gene, which encodes cell adhesion protein neuroligin-3 at neuronal synapses, exhibit GI dysfunction. Specifically, NL3R451C mice show altered colonic motility and faster small intestinal transit. As well as dysmotility, macrophages located within the gut-associated lymphoid tissue of the NL3R451C mouse caecum show altered morphology, suggesting that neuro-inflammation pathways are modified in this model. Interestingly, NL3R451C mice maintained in a shared environment demonstrate fecal microbial dysbiosis indicating a role for the nervous system in regulating gut microbial populations. To better understand host-microbe interactions, further clarification and comparison of clinical and animal model profiles of dysbiosis should be obtained, which in turn will provide better insights into the efforts taken to design personalized microbial therapies. In addition to changes in neurophysiological measures, the mucosal component of the GI barrier may contribute to GI dysfunction more broadly in individuals diagnosed with a wide range of neurological disorders. As the study of GI dysfunction advances to encompass multiple components of the gut-brain-microbiota axis, findings will help understand future directions such as microbiome engineering and optimisation of the mucosal barrier for health.
Collapse
|
16
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
17
|
Advances in autism research, 2021: continuing to decipher the secrets of autism. Mol Psychiatry 2021; 26:1426-1428. [PMID: 34045682 DOI: 10.1038/s41380-021-01168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022]
|
18
|
Reilly J, Gallagher L, Leader G, Shen S. Coupling of autism genes to tissue-wide expression and dysfunction of synapse, calcium signalling and transcriptional regulation. PLoS One 2020; 15:e0242773. [PMID: 33338084 PMCID: PMC7748153 DOI: 10.1371/journal.pone.0242773] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous disorder that is often accompanied with many co-morbidities. Recent genetic studies have identified various pathways from hundreds of candidate risk genes with varying levels of association to ASD. However, it is unknown which pathways are specific to the core symptoms or which are shared by the co-morbidities. We hypothesised that critical ASD candidates should appear widely across different scoring systems, and that comorbidity pathways should be constituted by genes expressed in the relevant tissues. We analysed the Simons Foundation for Autism Research Initiative (SFARI) database and four independently published scoring systems and identified 292 overlapping genes. We examined their mRNA expression using the Genotype-Tissue Expression (GTEx) database and validated protein expression levels using the human protein atlas (HPA) dataset. This led to clustering of the overlapping ASD genes into 2 groups; one with 91 genes primarily expressed in the central nervous system (CNS geneset) and another with 201 genes expressed in both CNS and peripheral tissues (CNS+PT geneset). Bioinformatic analyses showed a high enrichment of CNS development and synaptic transmission in the CNS geneset, and an enrichment of synapse, chromatin remodelling, gene regulation and endocrine signalling in the CNS+PT geneset. Calcium signalling and the glutamatergic synapse were found to be highly interconnected among pathways in the combined geneset. Our analyses demonstrate that 2/3 of ASD genes are expressed beyond the brain, which may impact peripheral function and involve in ASD co-morbidities, and relevant pathways may be explored for the treatment of ASD co-morbidities.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- * E-mail: (JR); (SS)
| | - Louise Gallagher
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences—Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- * E-mail: (JR); (SS)
| |
Collapse
|
19
|
Mederer T, Schmitteckert S, Volz J, Martínez C, Röth R, Thumberger T, Eckstein V, Scheuerer J, Thöni C, Lasitschka F, Carstensen L, Günther P, Holland-Cunz S, Hofstra R, Brosens E, Rosenfeld JA, Schaaf CP, Schriemer D, Ceccherini I, Rusmini M, Tilghman J, Luzón-Toro B, Torroglosa A, Borrego S, Sze-man Tang C, Garcia-Barceló M, Tam P, Paramasivam N, Bewerunge-Hudler M, De La Torre C, Gretz N, Rappold GA, Romero P, Niesler B. A complementary study approach unravels novel players in the pathoetiology of Hirschsprung disease. PLoS Genet 2020; 16:e1009106. [PMID: 33151932 PMCID: PMC7643938 DOI: 10.1371/journal.pgen.1009106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and database searches, in silico network analyses, and functional readouts using candidate gene-specific genome-edited cell clones. WES datasets of two patients with HSCR and their non-affected parents were analysed, and four novel HSCR candidate genes could be identified: ATP7A, SREBF1, ABCD1 and PIAS2. Further rare variants in these genes were identified in additional HSCR patients, suggesting disease relevance. Transcriptomics revealed that these genes are expressed in embryonic and fetal gastrointestinal tissues. Knockout of these genes in neuronal cells demonstrated impaired cell differentiation, proliferation and/or survival. Our approach identified and validated candidate HSCR genes and provided further insight into the underlying pathomechanisms of HSCR.
Collapse
Affiliation(s)
- Tanja Mederer
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Schmitteckert
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Volz
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristina Martínez
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ralph Röth
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Jutta Scheuerer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cornelia Thöni
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Carstensen
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Günther
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Robert Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Duco Schriemer
- Department of Neuroscience, University Medical Center, Groningen, The Netherlands
| | - Isabella Ceccherini
- UOSD Genetica e Genomica delle Malattie Rare, IRCCS, Instituto Giannina Gaslini, Genova, Italy
| | - Marta Rusmini
- UOSD Genetica e Genomica delle Malattie Rare, IRCCS, Instituto Giannina Gaslini, Genova, Italy
| | - Joseph Tilghman
- Center for Human Genetics and Genomics, New York University School of Medicine, United States of America
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Clara Sze-man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mercè Garcia-Barceló
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Norbert Gretz
- Center of Medical Research, Medical Faculty Mannheim, Mannheim, Germany
| | - Gudrun A. Rappold
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| | - Philipp Romero
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Garcia-Gutierrez E, Narbad A, Rodríguez JM. Autism Spectrum Disorder Associated With Gut Microbiota at Immune, Metabolomic, and Neuroactive Level. Front Neurosci 2020; 14:578666. [PMID: 33117122 PMCID: PMC7578228 DOI: 10.3389/fnins.2020.578666] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence suggesting a link between the autism spectrum disorder (ASD) and the gastrointestinal (GI) microbiome. Experimental and clinical studies have shown that patients diagnosed with ASD display alterations of the gut microbiota. These alterations do not only extend to the gut microbiota composition but also to the metabolites they produce, as a result of its connections with diet and the bidirectional interaction with the host. Thus, production of metabolites and neurotransmitters stimulate the immune system and influence the central nervous system (CNS) by stimulation of the vagal nerve, as an example of the gut-brain axis pathway. In this review we compose an overview of the interconnectivity of the different GI-related elements that have been associated with the development and severity of the ASD in patients and animal models. We review potential biomarkers to be used in future studies to unlock further connections and interventions in the treatment of ASD.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|