1
|
Zhong J, Wu F, Wu H, He H, Zhang Z, Fan N. Abnormal resting-state functional connectivity of the right anterior cingulate cortex in chronic ketamine users and its correlation with cognitive impairments. Asian J Psychiatr 2024; 102:104199. [PMID: 39298913 DOI: 10.1016/j.ajp.2024.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chronic ketamine use leads to cognitive impairments, however, the neural mechanisms underpinning these impairments are still unclear. AIMS Many studies showed Anterior cingulate cortex (ACC)is strongly involved in cognition and drug addiction, as supported by our previous studies. The objective of this study was to assess the variations in resting-state functional connectivity (FC) changes in the right anterior cingulate cortex (ACC) of chronic ketamine users (CKUs) and their relationship with cognitive performance. METHODS The study enrolled 28 chronic ketamine users (CKUs) and 30 healthy controls (HCs). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from both groups. Cognitive functions were evaluated using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS CKUs demonstrated significantly poorer cognitive performance than HCs in various cognitive domains, including Visual Learning, Speed of Processing, Working Memory, and the composite score of MCCB. Group-level comparisons revealed that CKUs exhibited enhanced functional connectivity between the right ACC and the right postcentral gyrus (PCG) compared to HCs. There was a positive relationship between the connectivity of right ACC-PCG and reasoning and problem-solving score, but there was no significant association with the characteristics of ketamine use. CONCLUSION CKUs showed enhanced connectivity between the right ACC and the right PCG. This enhanced functional connectivity may indicate functional compensation for cognitive deficits in CKUs, especially for reasoning and problem-solving impairments in CKUs.
Collapse
Affiliation(s)
- Jun Zhong
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Fengchun Wu
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Huawang Wu
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Hongbo He
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Zhaohua Zhang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Ni Fan
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China.
| |
Collapse
|
2
|
Xiao L, Wei Y, Yang H, Fan W, Jiang L, Ye Y, Qin Y, Wang X, Ma C, Liao L. Proteomic Characteristics of the Prefrontal Cortex and Hippocampus in Mice with Chronic Ketamine-Induced Anxiety and Cognitive Impairment. Neuroscience 2024; 541:23-34. [PMID: 38266908 DOI: 10.1016/j.neuroscience.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 01/26/2024]
Abstract
Schizophrenia, a complex psychiatric disorder with diverse symptoms, has been linked to ketamine, known for its N-methyl-D-aspartate (NMDA) receptor antagonistic properties. Understanding the distinct roles and mechanisms of ketamine is crucial, especially regarding its induction of schizophrenia-like symptoms. Recent research highlights the impact of ketamine on key brain regions associated with schizophrenia, specifically the prefrontal cortex (PFC) and hippocampus (Hip). This study focused on these regions to explore proteomic changes related to anxiety and cognitive impairment in a chronic ketamine-induced mouse model of schizophrenia. After twelve consecutive days of ketamine administration, brain tissues from these regions were dissected and analyzed. Using tandem mass tag (TMT) labeling quantitative proteomics techniques, 34,797 and 46,740 peptides were identified in PFC and Hip, corresponding to 5,668 and 6,463 proteins, respectively. In the PFC, a total of 113 proteins showed differential expression, primarily associated with the immuno-inflammatory process, calmodulin, postsynaptic density protein, and mitochondrial function. In the Hip, 129 differentially expressed proteins were screened, mainly related to synaptic plasticity proteins and mitochondrial respiratory chain complex-associated proteins. Additionally, we investigated key proteins within the glutamatergic synapse pathway and observed decreased expression levels of phosphorylated CaMKII and CREB. Overall, the study unveiled a significant proteomic signature in the chronic ketamine-induced schizophrenia mouse model, characterized by anxiety and cognitive impairment in both the PFC and Hip, and this comprehensive proteomic dataset may not only enhance our understanding of the molecular mechanisms underlying ketamine-related mental disorders but also offer valuable insights for future disease treatments.
Collapse
Affiliation(s)
- Li Xiao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ying Wei
- College of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hong Yang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Weihao Fan
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linzhi Jiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yongping Qin
- Clinical Pharmacology Laboratory, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China.
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Luo Y, Yu Y, He H, Fan N. Acute ketamine induces neuronal hyperexcitability and deficits in prepulse inhibition by upregulating IL-6. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110913. [PMID: 38103855 DOI: 10.1016/j.pnpbp.2023.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Acute ketamine administration results in psychotic symptoms similar to those observed in schizophrenia and is regarded as a pharmacological model of schizophrenia. Accumulating evidence suggests that patients with schizophrenia show increased IL-6 levels in the blood and cerebrospinal fluid and that IL-6 levels are associated with the severity of psychotic symptoms. In the present study, we found that a single ketamine exposure led to increased expression of IL-6 and IL-6Rα, decreased dendritic spine density, increased expression and currents of T-type calcium channels, and increased neuron excitability in the hippocampal CA1 area 12 h after exposure. Acute ketamine administration also led to impaired prepulse inhibition (PPI) 12 h after administration. Additionally, we found that the expression of signaling molecules IKKα/β, NF-κB, JAK2, and STAT3 was upregulated 12 h after a single ketamine injection. The decreases in dendritic spine density, the increases in calcium currents and neuron excitability, and the impairments in PPI were ameliorated by blocking IL-6 or IL-6Rα. Our findings show that blocking IL-6 or its receptor may protect hippocampal neurons from hyperexcitability, thereby ameliorating ketamine-induced psychotic effects. Our study provides additional evidence that targeting IL-6 and its receptor is a potential strategy for treating psychotic symptoms in acute ketamine-induced psychosis and schizophrenia.
Collapse
Affiliation(s)
- Yayan Luo
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yang Yu
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Hongbo He
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
4
|
Sokołowska P, Seweryn Karbownik M, Jóźwiak-Bębenista M, Dobielska M, Kowalczyk E, Wiktorowska-Owczarek A. Antidepressant mechanisms of ketamine's action: NF-κB in the spotlight. Biochem Pharmacol 2023; 218:115918. [PMID: 37952898 DOI: 10.1016/j.bcp.2023.115918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Ketamine recently approved for therapy of treatment-resistant depression shows a complex and not fully understood mechanism of action. Apart from its classical glutamatergic N-methyl-D-aspartate receptor antagonistic action, it is thought that anti-inflammatory properties of the drug are of clinical relevance due to the contribution of activated inflammatory mediators to the pathophysiology of depression and non-responsiveness of a group of patients to current antidepressant therapies. In a search of the mechanism underlying anti-inflammatory effects of ketamine, the nuclear factor kappa B transcription factor (NF-κB) has been proposed as a target for ketamine. The NF-κB forms precisely regulated protein signaling cascades enabling a rapid response to cellular stimuli. In the central nervous systems, NF-κB signaling appears to have pleiotropic but double-edged functions: on the one hand it participates in the regulation of processes that are crucial in the treatment of depression, such as neuroplasticity, neurogenesis or neuronal survival, on the other - in the activation of neuroinflammation and cell death. Ketamine has been found to reduce inflammation mediated by NF-κB, leading to decreased level of pro-inflammatory cytokines and other inflammatory or stress mediators. Therefore, this review presents recent data on the significance of the NF-κB cascade in the mechanism of ketamine's action and its future perspectives in designing new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Paulina Sokołowska
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland.
| | - Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Maria Dobielska
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| |
Collapse
|
5
|
Nuwer JL, Povysheva N, Jacob TC. Long-term α5 GABA A receptor negative allosteric modulator treatment reduces NMDAR-mediated neuronal excitation and maintains basal neuronal inhibition. Neuropharmacology 2023; 237:109587. [PMID: 37270156 PMCID: PMC10527172 DOI: 10.1016/j.neuropharm.2023.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
α5 subunit-containing GABA type-A receptors (α5 GABAARs) are enriched in the hippocampus and play critical roles in neurodevelopment, synaptic plasticity, and cognition. α5 GABAAR preferring negative allosteric modulators (α5 NAMs) show promise mitigating cognitive impairment in preclinical studies of conditions characterized by excess GABAergic inhibition, including Down syndrome and memory deficits post-anesthesia. However, previous studies have primarily focused on acute application or single-dose α5 NAM treatment. Here, we measured the effects of chronic (7-day) in vitro treatment with L-655,708 (L6), a highly selective α5 NAM, on glutamatergic and GABAergic synapses in rat hippocampal neurons. We previously showed that 2-day in vitro treatment with L6 enhanced synaptic levels of the glutamate NMDA receptor (NMDAR) GluN2A subunit without modifying surface α5 GABAAR expression, inhibitory synapse function, or L6 sensitivity. We hypothesized that chronic L6 treatment would further increase synaptic GluN2A subunit levels while maintaining GABAergic inhibition and L6 efficacy, thus increasing neuronal excitation and glutamate-evoked intracellular calcium responses. Immunofluorescence experiments revealed that 7-day L6 treatment slightly increased the synaptic levels of gephyrin and surface α5 GABAARs. Functional studies showed that chronic α5 NAM treatment did not alter inhibition or α5 NAM sensitivity. Surprisingly, chronic L6 exposure decreased surface levels of GluN2A and GluN2B subunits, concurrent with reduced NMDAR-mediated neuronal excitation as seen by faster synaptic decay rates and reduced glutamate-evoked calcium responses. Together, these results show that chronic in vitro treatment with an α5 NAM leads to subtle homeostatic changes in inhibitory and excitatory synapses that suggest an overall dampening of excitability.
Collapse
Affiliation(s)
- Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Toxicity patterns associated with chronic ketamine exposure. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2023. [DOI: 10.1016/j.toxac.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Could psychedelic drugs have a role in the treatment of schizophrenia? Rationale and strategy for safe implementation. Mol Psychiatry 2023; 28:44-58. [PMID: 36280752 DOI: 10.1038/s41380-022-01832-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a widespread psychiatric disorder that affects 0.5-1.0% of the world's population and induces significant, long-term disability that exacts high personal and societal cost. Negative symptoms, which respond poorly to available antipsychotic drugs, are the primary cause of this disability. Association of negative symptoms with cortical atrophy and cell loss is widely reported. Psychedelic drugs are undergoing a significant renaissance in psychiatric disorders with efficacy reported in several conditions including depression, in individuals facing terminal cancer, posttraumatic stress disorder, and addiction. There is considerable evidence from preclinical studies and some support from human studies that psychedelics enhance neuroplasticity. In this Perspective, we consider the possibility that psychedelic drugs could have a role in treating cortical atrophy and cell loss in schizophrenia, and ameliorating the negative symptoms associated with these pathological manifestations. The foremost concern in treating schizophrenia patients with psychedelic drugs is induction or exacerbation of psychosis. We consider several strategies that could be implemented to mitigate the danger of psychotogenic effects and allow treatment of schizophrenia patients with psychedelics to be implemented. These include use of non-hallucinogenic derivatives, which are currently the focus of intense study, implementation of sub-psychedelic or microdosing, harnessing of entourage effects in extracts of psychedelic mushrooms, and blocking 5-HT2A receptor-mediated hallucinogenic effects. Preclinical studies that employ appropriate animal models are a prerequisite and clinical studies will need to be carefully designed on the basis of preclinical and translational data. Careful research in this area could significantly impact the treatment of one of the most severe and socially debilitating psychiatric disorders and open an exciting new frontier in psychopharmacology.
Collapse
|
8
|
Chen Z, Wang S, Meng Z, Ye Y, Shan G, Wang X, Zhao X, Jin Y. Tau protein plays a role in the mechanism of cognitive disorders induced by anesthetic drugs. Front Neurosci 2023; 17:1145318. [PMID: 36937655 PMCID: PMC10015606 DOI: 10.3389/fnins.2023.1145318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Cognitive disorders are mental health disorders that can affect cognitive ability. Surgery and anesthesia have been proposed to increase the incidence of cognitive dysfunction, including declines in memory, learning, attention and executive function. Tau protein is a microtubule-associated protein located in the axons of neurons and is important for microtubule assembly and stability; its biological function is mainly regulated by phosphorylation. Phosphorylated tau protein has been associated with cognitive dysfunction mediated by disrupting the stability of the microtubule structure. There is an increasing consensus that anesthetic drugs can cause cognitive impairment. Herein, we reviewed the latest literature and compared the relationship between tau protein and cognitive impairment caused by different anesthetics. Our results substantiated that tau protein phosphorylation is essential in cognitive dysfunction caused by anesthetic drugs, and the possible mechanism can be summarized as "anesthetic drugs-kinase/phosphatase-p-Tau-cognitive impairment".
Collapse
|
9
|
Wang C, Zhu MH, Sun N, Shen W, Jiang N, Zhao QS, Zhang YX, Huang Y, Zhou WX. Isorhynchophylline ameliorates stress-induced emotional disorder and cognitive impairment with modulation of NMDA receptors. Front Neurosci 2022; 16:1071068. [PMID: 36590289 PMCID: PMC9797806 DOI: 10.3389/fnins.2022.1071068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Isorhynchophylline is one of the main active ingredients from Uncaria rhynchophylla, the effects and mechanisms of isorhynchophylline on stress-induced emotional disorders and cognitive impairment remain unclear. Methods Long-term potentiation (LTP) in vivo was used for synaptic plasticity evaluation; chronic unpredictable mild stress (CUMS) model was used to evaluate the effect of isorhynchophylline on stress induced emotional disorders and cognitive impairment; sucrose preference test (SPT), open field test (OFT), and elevated plus maze (EPM) were used to evaluate emotional disorders; morris water maze (MWM) test was used to evaluate cognitive impairment; Western blotting (WB) was used to the expression of proteins; high performance liquid chromatography (HPLC) was used to quantify neurotransmitters; Nissl staining was used to identify pathological changes induced by stress. Results In this study, we found that isorhynchophylline improved corticosterone-induced in vivo LTP impairment significantly, indicating positive effects on stress. Therefore, 28-day CUMS model was adopted to evaluate the anti-stress effects of isorhynchophylline. The results showed that isorhynchophylline improved CUMS-induced weight loss, anxiety- and depression-like behaviors, and spatial memory impairment. Isorhynchophylline reduced CUMS-induced corticosterone elevation. N-methyl-D-aspartic acid (NMDA) receptors play an important role in the process of emotion and memory. Glutamate and the expression of GluN2B increased in the CUMS mice, while D-serine and the expression of serine racemase (SR) decreased significantly, and isorhynchophylline restored these changes to normal level. Conclusion These results indicated that isorhynchophylline ameliorated stress-induced emotional disorders and cognitive impairment, modulating NMDA receptors might be one of the underlying mechanisms.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ming-Hao Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Na Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Jiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| | - Yong-Xiang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yan Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China,*Correspondence: Yan Huang,
| | - Wen-Xia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China,Wen-Xia Zhou,
| |
Collapse
|
10
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|
11
|
Lemarchant S, Sourioux M, Le Douce J, Henriques A, Callizot N, Hugues S, Farinelli M, Godfrin Y. NX210c Peptide Promotes Glutamatergic Receptor-Mediated Synaptic Transmission and Signaling in the Mouse Central Nervous System. Int J Mol Sci 2022; 23:8867. [PMID: 36012124 PMCID: PMC9408760 DOI: 10.3390/ijms23168867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
NX210c is a disease-modifying dodecapeptide derived from the subcommissural organ-spondin that is under preclinical and clinical development for the treatment of neurological disorders. Here, using whole-cell patch-clamp recordings, we demonstrate that NX210c increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and GluN2A-containing N-methyl-D-aspartate receptor (GluN2A-NMDAR)-mediated excitatory postsynaptic currents in the brain. Accordingly, using extracellular field excitatory postsynaptic potential recordings, an enhancement of synaptic transmission was shown in the presence of NX210c in two different neuronal circuits. Furthermore, the modulation of synaptic transmission and GluN2A-NMDAR-driven signaling by NX210c restored memory in mice chronically treated with the NMDAR antagonist phencyclidine. Overall, by promoting glutamatergic receptor-related neurotransmission and signaling, NX210c represents an innovative therapeutic opportunity for patients suffering from CNS disorders, injuries, and states with crippling synaptic dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | - Noëlle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France
| | - Sandrine Hugues
- E-Phy-Science, Bioparc, 2400 Routes de Colles, Sophia Antipolis, 06410 Biot, France
| | - Mélissa Farinelli
- E-Phy-Science, Bioparc, 2400 Routes de Colles, Sophia Antipolis, 06410 Biot, France
| | - Yann Godfrin
- Axoltis Pharma, 60 Avenue Rockefeller, 69008 Lyon, France
- Godfrin Life-Sciences, 8 Impasse de la Source, 69300 Caluire-et-Cuire, France
| |
Collapse
|
12
|
Effects of Chronic LY341495 on Hippocampal mTORC1 Signaling in Mice with Chronic Unpredictable Stress-Induced Depression. Int J Mol Sci 2022; 23:ijms23126416. [PMID: 35742857 PMCID: PMC9224204 DOI: 10.3390/ijms23126416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
In several rodent models, acute administration of the metabotropic glutamate 2/3 (mGlu2/3) receptor antagonist LY341495 induced antidepressant-like effects via a mechanism of action similar to that of ketamine. However, the effects of chronic mGlu2/3 antagonism have not yet been explored. Therefore, we investigated the effects of chronic LY341495 treatment on the mechanistic target of rapamycin complex 1 (mTORC1) signaling and the levels of synaptic proteins in mice subjected to chronic unpredictable stress (CUS). LY341495 (1 mg/kg) was administered daily for 4 weeks to mice with and without CUS exposure. After the final treatment, the forced swimming test (FST) was used to assess antidepressant-like effects. The hippocampal levels of mTORC1-related proteins were derived by Western blotting. Chronic LY341495 treatment reversed the CUS-induced behavioral effects of FST. CUS significantly reduced the phosphorylation of mTORC1 and downstream effectors [eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP-1) and small ribosomal protein 6 (S6)], as well as the expression of synaptic proteins postsynaptic density-95 (PSD-95) and AMPA receptor subunit GluR1 (GluA1) in the hippocampus. However, chronic LY341495 treatment rescued these deficits. Our results suggest that the activation of hippocampal mTORC1 signaling is related to the antidepressant effect of chronic LY341495 treatment in an animal model of CUS-induced depression.
Collapse
|
13
|
Chen C, Bu L, Liu H, Rang Y, Huang H, Xiao X, Ou G, Liu C. Learning and memory impairment induced by 1,4-butanediol is regulated by ERK1/2-CREB-BDNF signaling pathways in PC12 cells. Metab Brain Dis 2022; 37:1451-1463. [PMID: 35348994 DOI: 10.1007/s11011-022-00963-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/14/2022] [Indexed: 01/03/2023]
Abstract
1,4-butanediol (1,4-BD) is a known γ-hydroxybutyric acid (GHB) precursor which affects the nervous system after ingestion, leading to uncontrolled behavioral consequences. In the present study, we investigated whether 1,4-BD induces oxidative stress and inflammation in PC12 cells and evaluated the toxic effects of 1,4-BD associates with learning and memory. CCK-8 results revealed a dose-effect relationship between the cell viability of PC12 cells and 1,4-BD when the duration of action was 2 h or 4 h. Assay kits results showed that 1,4-BD decreased the levels of Glutathione (GSH), Glutathione peroxidase (GSH-px), Superoxide dismutase (SOD), Acetylcholine (Ach) and increased the levels of Malondialdehyde (MDA), Nitric oxide (NO) and Acetylcholinesterase (AchE). Elisa kits results indicated that 1,4-BD decreased the levels of synaptophysin I (SYN-1), Postsynaptic density protein-95 (PSD-95), Growth associated protein-43 (GAP-43) and increased the levels of Tumor necrosis factor alpha (TNF-α) and Interleukin- 6 (IL-6). RT-PCR results showed that the mRNA levels of PSD-95, SYN-1 and GAP-43 were significantly decreased. The expression of phosphorylation extracellular signal-regulated protein kinase 1/2 (p-ERK1/2), phosphorylation cAMP response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) proteins were significantly decreased in PC12 cells by protein blotting. Overall, these results suggest that 1,4-BD may affect synaptic plasticity via the ERK1/2-CREB-BDNF pathway, leading to Ach release reduction and ultimately to learning and memory impairment. Furthermore, oxidative stress and inflammation induced by 1,4-BD may also result in learning and memory deficits. These findings will enrich the toxicity data of 1.4-BD associated with learning and memory impairment.
Collapse
Affiliation(s)
- Congying Chen
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Lingling Bu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Huiying Huang
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Xueman Xiao
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Genghua Ou
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China.
| |
Collapse
|
14
|
Ketamine exerts its sustained antidepressant effects via cell-type-specific regulation of Kcnq2. Neuron 2022; 110:2283-2298.e9. [PMID: 35649415 DOI: 10.1016/j.neuron.2022.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022]
Abstract
A single sub-anesthetic dose of ketamine produces a rapid and sustained antidepressant response, yet the molecular mechanisms responsible for this remain unclear. Here, we identified cell-type-specific transcriptional signatures associated with a sustained ketamine response in mice. Most interestingly, we identified the Kcnq2 gene as an important downstream regulator of ketamine action in glutamatergic neurons of the ventral hippocampus. We validated these findings through a series of complementary molecular, electrophysiological, cellular, pharmacological, behavioral, and functional experiments. We demonstrated that adjunctive treatment with retigabine, a KCNQ activator, augments ketamine's antidepressant-like effects in mice. Intriguingly, these effects are ketamine specific, as they do not modulate a response to classical antidepressants, such as escitalopram. These findings significantly advance our understanding of the mechanisms underlying the sustained antidepressant effects of ketamine, with important clinical implications.
Collapse
|
15
|
Wang Y, Zhang JJ, Hou JG, Li X, Liu W, Zhang JT, Zheng SW, Su FY, Li W. Protective Effect of Ginsenosides from Stems and Leaves of Panax ginseng against Scopolamine-Induced Memory Damage via Multiple Molecular Mechanisms. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1113-1131. [PMID: 35475974 DOI: 10.1142/s0192415x22500458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although growing evidence has shown that ginsenosides from stems and leaves of Panax ginseng (GSLS) exercise a protective impact on the central nervous system, in the model of memory damage induced by scopolamine, it is still rarely reported. Thus, the mechanism of action needs to be further explored. This study was to investigate the effect of GSLS on scopolamine (SCOP)-induced memory damage and the underlying mechanism. Male ICR mice were treated with SCOP (3 mg/kg) for 7 days, with or without GSLS (75 and 150 mg/kg) treatment for 14 days. After GSLS treatment, the memory damage induced by SCOP was significantly ameliorated as shown by the improvement of cholinergic function (AChE and ChAT), brain tissue hippocampus morphology (H&E staining), and oxidative stress (MDA, GSH, and NO). Meanwhile, immunohistochemical assay suggested that GSLS increased the expression of brain-derived neurotrophic factor (BDNF) and Tyrosine Kinase receptor B (TrkB). Further mechanism research indicated that GSLS inhibited the Tau hyperphosphorylation and cell apoptosis by regulating the PI3K/AKT pathway and inhibited neuroinflammation by regulating the NF-κB pathway, thereby exerting a cognitive impairment improvement effect. This work suggested that GSLS could protect against SCOP-induced memory defects possibly through inhibiting oxidative stress, inhibiting neuroinflammation and cell apoptosis.
Collapse
Affiliation(s)
- Ying Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| | - Xin Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Wei Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Si-Wen Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Feng-Yan Su
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| |
Collapse
|
16
|
Strous JFM, Weeland CJ, van der Draai FA, Daams JG, Denys D, Lok A, Schoevers RA, Figee M. Brain Changes Associated With Long-Term Ketamine Abuse, A Systematic Review. Front Neuroanat 2022; 16:795231. [PMID: 35370568 PMCID: PMC8972190 DOI: 10.3389/fnana.2022.795231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
Recently, the abuse of ketamine has soared. Therefore, it is of great importance to study its potential risks. The effects of prolonged ketamine on the brain can be observationally studied in chronic recreational users. We performed a systematic review of studies reporting functional and structural brain changes after repeated ketamine abuse. We searched the following electronic databases: Medline, Embase and PsycINFO We screened 11,438 records and 16 met inclusion criteria, totaling 440 chronic recreational ketamine users (2–9.7 years; mean use 2.4 g/day), 259 drug-free controls and 44 poly-drug controls. Long-term recreational ketamine use was associated with lower gray matter volume and less white matter integrity, lower functional thalamocortical and corticocortical connectivity. The observed differences in both structural and functional neuroanatomy between ketamine users and controls may explain some of its long-term cognitive and psychiatric side effects, such as memory impairment and executive functioning. Given the effect that long-term ketamine exposure may yield, an effort should be made to curb its abuse.
Collapse
Affiliation(s)
- Jurriaan F. M. Strous
- Department of Psychiatry, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Jurriaan F. M. Strous
| | - Cees J. Weeland
- Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Joost G. Daams
- Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Damiaan Denys
- Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Anja Lok
- Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Robert A. Schoevers
- Department of Psychiatry, University Medical Center Groningen, Groningen, Netherlands
| | - Martijn Figee
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
17
|
Sim HI, Kim DH, Kim M. Cellular messenger molecules mediating addictive drug-induced cognitive impairment: cannabinoids, ketamine, methamphetamine, and cocaine. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00408-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cognitive impairment is a commonly reported symptom with increasing life spans. Numerous studies have focused on identifying precise targets to relieve or reduce cognitive impairment; however, its underlying mechanism remains elusive. Most patients or animals exposed to addictive drugs exhibit cognitive impairment. Accordingly, the present review discusses the molecular changes induced by addictive drugs to clarify potential mechanisms that mediate cognitive impairments.
Main body
We investigated changes in cognitive function using four drugs: cannabinoids, ketamine, methamphetamine, and cocaine. Chronic administration of most addictive drugs reduces overall cognitive functions, such as working, spatial, and long-term recognition memories. Levels of several transcription factors involved in neuronal differentiation, as well as functional components of neurotransmitter receptors in neuronal cells, are reportedly altered. In addition, inflammatory factors showed a generally increasing trend. These impairments could be mediated by neuroinflammation, synaptic activity, and neuronal plasticity.
Conclusion
This review outlines the effects of acute or chronic drug use and potential molecular alterations in the central nervous system. In the central nervous system, addictive drug-induced changes in molecular pathways associated with cognitive function might play a pivotal role in elucidating the pathogenesis of cognitive impairment.
Collapse
|
18
|
Poulia N, Delis F, Brakatselos C, Ntoulas G, Asprogerakas MZ, Antoniou K. CBD Effects on Motor Profile and Neurobiological Indices Related to Glutamatergic Function Induced by Repeated Ketamine Pre-Administration. Front Pharmacol 2021; 12:746935. [PMID: 34776964 PMCID: PMC8578683 DOI: 10.3389/fphar.2021.746935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Clinical evidence and experimental studies have shown the psychotomimetic properties induced by ketamine. Moreover, acute or chronic ketamine (KET) administration has been widely used for modeling schizophrenia-like symptomatology and pathophysiology. Several studies have reported the antipsychotic potential of cannabidiol (CBD), while there is limited information on the cannabidiol effect on KET-induced schizophrenia-like impairments. Therefore, the goal of the present study was to evaluate neuroplastic changes induced by repeated KET administration, which is used as an experimental model of schizophrenia—with a behavioral focus on positive-like symptomatology– and to assess the modulatory role of CBD treatment. The present findings have shown a robust increase in motor activity in KET-treated rats, following a 10-day period of chronic administration at the sub-anesthetic dose of 30 mg/kg (i.p), that was reversed to normal by subsequent chronic CBD treatment. Concerning the expression of glutamate receptors, the current findings have shown region-dependent KET-induced constitutional alterations in NMDA and AMPA receptors that were modified by subsequent CBD treatment. Additionally, repeated KET administration increased ERK1/2 phosphorylation state in all regions examined, apart from the ventral hippocampus that was modulated by subsequent CBD treatment. The present results show, for the first time, a stimulated motor output coupled with a specific glutamatergic-related status and ERK1/2 activation following chronic KET administration that were attenuated by CBD treatment, in a region-dependent manner. These findings provide novel information concerning the antipsychotic potential of CBD using a specific design of chronic KET administration, thus contributing to experimental approaches that mirror the symptomatology and pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Nafsika Poulia
- Department of Pharmacology, University of Ioannina, Ioannina, Greece
| | - Foteini Delis
- Department of Pharmacology, University of Ioannina, Ioannina, Greece
| | | | - George Ntoulas
- Department of Pharmacology, University of Ioannina, Ioannina, Greece
| | | | - Katerina Antoniou
- Department of Pharmacology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
19
|
Riggs LM, An X, Pereira EFR, Gould TD. (R,S)-ketamine and (2R,6R)-hydroxynorketamine differentially affect memory as a function of dosing frequency. Transl Psychiatry 2021; 11:583. [PMID: 34772915 PMCID: PMC8590048 DOI: 10.1038/s41398-021-01685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
A single subanesthetic infusion of ketamine can rapidly alleviate symptoms of treatment-resistant major depression. Since repeated administration is required to sustain symptom remission, it is important to characterize the potential untoward effects of prolonged ketamine exposure. While studies suggest that ketamine can alter cognitive function, it is unclear to what extent these effects are modulated by the frequency or chronicity of treatment. To test this, male and female adolescent (postnatal day [PD] 35) and adult (PD 60) BALB/c mice were treated for four consecutive weeks, either daily or thrice-weekly, with (R,S)-ketamine (30 mg/kg, intraperitoneal) or its biologically active metabolite, (2R,6R)-hydroxynorketamine (HNK; 30 mg/kg, intraperitoneal). Following drug cessation, memory performance was assessed in three operationally distinct tasks: (1) novel object recognition to assess explicit memory, (2) Y-maze to assess working memory, and (3) passive avoidance to assess implicit memory. While drug exposure did not influence working memory performance, thrice-weekly ketamine and daily (2R,6R)-HNK led to explicit memory impairment in novel object recognition independent of sex or age of exposure. Daily (2R,6R)-HNK impaired implicit memory in the passive-avoidance task whereas thrice-weekly (2R,6R)-HNK tended to improve it. These differential effects on explicit and implicit memory possibly reflect the unique mechanisms by which ketamine and (2R,6R)-HNK alter the functional integrity of neural circuits that subserve these distinct cognitive domains, a topic of clinical and mechanistic relevance to their antidepressant actions. Our findings also provide additional support for the importance of dosing frequency in establishing the cognitive effects of repeated ketamine exposure.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaoxian An
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Edna F R Pereira
- Department of Epidemiology and Public Health, Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
20
|
Xie Y, Zhi K, Meng X. Effects and Mechanisms of Synaptotagmin-7 in the Hippocampus on Cognitive Impairment in Aging Mice. Mol Neurobiol 2021; 58:5756-5771. [PMID: 34403042 DOI: 10.1007/s12035-021-02528-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/08/2021] [Indexed: 01/18/2023]
Abstract
Aging is an irreversible biological process that involves oxidative stress, neuroinflammation, and apoptosis, and eventually leads to cognitive dysfunction. However, the underlying mechanisms are not fully understood. In this study, we investigated the role and potential mechanisms of Synaptotagmin-7, a calcium membrane transporter in cognitive impairment in aging mice. Our results indicated that Synaptotagmin-7 expression significantly decreased in the hippocampus of D-galactose-induced or naturally aging mice when compared with healthy controls, as detected by western blot and quantitative reverse transcriptase-polymerase chain reaction analysis. Synaptotagmin-7 overexpression in the dorsal CA1 of the hippocampus reversed long-term potentiation and improved hippocampus-dependent spatial learning in D-galactose-induced aging mice. Synaptotagmin-7 overexpression also led to fully preserved learning and memory in 6-month-old mice. Mechanistically, we demonstrated that Synaptotagmin-7 improved learning and memory by elevating the level of fEPSP and downregulating the expression of aging-related genes such as p53 and p16. The results of our study provide new insights into the role of Synaptotagmin-7 in improving neuronal function and overcoming memory impairment caused by aging, suggesting that Synaptotagmin-7 overexpression may be an innovative therapeutic strategy for treating cognitive impairment.
Collapse
Affiliation(s)
- Yaru Xie
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaining Zhi
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
22
|
Yin Y, Qian S, Chen Y, Sun Y, Li Y, Yu Y, Li J, Wu Z, Yu X, Ge R, Han J, Sun D, Wu H, Liu L, Xue W, Wang W. Latent Sex Differences in CaMKII-nNOS Signaling That Underlie Antidepressant-Like Effects of Yueju-Ganmaidazao Decoction in the Hippocampus. Front Behav Neurosci 2021; 15:640258. [PMID: 34295228 PMCID: PMC8290083 DOI: 10.3389/fnbeh.2021.640258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Previous studies have demonstrated that Yueju-Ganmaidazao (YG) decoction induces rapid antidepressant-like effects, and the antidepressant response is mostly dependent on the suppression of nitric oxide-cyclic guanosine monophosphate signaling in male mice. This study aimed to investigate the sex difference mediated by calcium/calmodulin-dependent protein kinase II (CaMKII)-neuronal nitric oxide synthase (nNOS) signaling involved in the antidepressant-like effect of YG in mice. We found that the immobility times in the tail suspension test (TST) were found to be decreased after the single injection of YG in male and female mice with the same dosage. Additionally, chronic administration for 4 days of subthreshold dosage of YG and escitalopram (ES) also significantly decreased the immobility time in mice of both sexes. Chronic subthreshold dosage of YG and ES in LPS-treated mice and in chronic unpredictable stress (CUS) mice both decreased the immobility time, which was increased by stress. Meanwhile, in CUS-treated mice, sucrose preference test, forced swimming test, and open field test were applied to further confirm the antidepressant-like effects of YG and ES. Moreover, CUS significantly decreased the expression of nNOS and CaMKII, and both YG and ES could enhance the expression in the hippocampus of female mice, which was opposite to that in male mice, while endothelial nitric oxide synthase expression was not affected by stress or drug treatment neither in male mice nor in female mice. Finally, subthreshold dosage of YG combined with 7-nitroindazole (nNOS inhibitor) induced the antidepressant-like effects both in female and in male mice, while the single use of YG or 7-NI did not display any effect. However, pretreatment with KN-93 (CaMKII inhibitor) only blocked the antidepressant-like effect of high-dosage YG in female mice. Meanwhile, in CUS mice, chronic stress caused NR1 overexpression and inhibited cAMP response element binding protein action, which were both reversed by YG and ES in male and female mice, implying that YG and ES produced the same antidepressant-like effect in mice of both sexes. The study revealed that chronic treatment with a subthreshold dose of YG also produced antidepressant-like effects in female mice, and these effects depended on the regulation of the CaMKII-nNOS signaling pathway.
Collapse
Affiliation(s)
- Ying Yin
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyu Qian
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifan Chen
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Sun
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqiao Li
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongfei Yu
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianqing Li
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhangjie Wu
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinlang Yu
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Ge
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Han
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongdong Sun
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoxin Wu
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lanying Liu
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Mental Health Center of Zhejiang Province, Hangzhou, China
| | - Wenda Xue
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|