1
|
Chen Z, Ge R, Wang C, Elazab A, Fu X, Min W, Qin F, Jia G, Fan X. Identification of important gene signatures in schizophrenia through feature fusion and genetic algorithm. Mamm Genome 2024; 35:241-255. [PMID: 38512459 DOI: 10.1007/s00335-024-10034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Schizophrenia is a debilitating psychiatric disorder that can significantly affect a patient's quality of life and lead to permanent brain damage. Although medical research has identified certain genetic risk factors, the specific pathogenesis of the disorder remains unclear. Despite the prevalence of research employing magnetic resonance imaging, few studies have focused on the gene level and gene expression profile involving a large number of screened genes. However, the high dimensionality of genetic data presents a great challenge to accurately modeling the data. To tackle the current challenges, this study presents a novel feature selection strategy that utilizes heuristic feature fusion and a multi-objective optimization genetic algorithm. The goal is to improve classification performance and identify the key gene subset for schizophrenia diagnostics. Traditional gene screening techniques are inadequate for accurately determining the precise number of key genes associated with schizophrenia. Our innovative approach integrates a filter-based feature selection method to reduce data dimensionality and a multi-objective optimization genetic algorithm for improved classification tasks. By combining the filtering and wrapper methods, our strategy leverages their respective strengths in a deliberate manner, leading to superior classification accuracy and a more efficient selection of relevant genes. This approach has demonstrated significant improvements in classification results across 11 out of 14 relevant datasets. The performance on the remaining three datasets is comparable to the existing methods. Furthermore, visual and enrichment analyses have confirmed the practicality of our proposed method as a promising tool for the early detection of schizophrenia.
Collapse
Affiliation(s)
| | - Ruiquan Ge
- Hangzhou Dianzi University, Hangzhou, China.
- Hangzhou Institute of Advanced Technology, Hangzhou, China.
- Key Laboratory of Discrete Industrial Internet of Things of Zhejiang Province, Hangzhou, China.
| | - Changmiao Wang
- Shenzhen Research Institute of Big Data, Shenzhen, China
| | - Ahmed Elazab
- Computer Science Department, Misr Higher Institute for Commerce and Computers, Mansoura, Egypt
| | - Xianjun Fu
- School of Artificial Intelligence, Zhejiang College of Security Technology, Wenzhou, China
| | - Wenwen Min
- School of Information Science and Engineering, Yunnan University, Kunming, China
| | - Feiwei Qin
- Hangzhou Dianzi University, Hangzhou, China
| | | | - Xiaopeng Fan
- Hangzhou Institute of Advanced Technology, Hangzhou, China
| |
Collapse
|
2
|
Colijn MA, Carrion P, Poirier-Morency G, Rogic S, Torres I, Menon M, Lisonek M, Cook C, DeGraaf A, Thammaiah SP, Neelakant H, Willaeys V, Leonova O, White RF, Yip S, Mungall AJ, MacLeod PM, Gibson WT, Sullivan PF, Honer WG, Pavlidis P, Stowe RM. SETD1A variant-associated psychosis: A systematic review of the clinical literature and description of two new cases. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110888. [PMID: 37918557 DOI: 10.1016/j.pnpbp.2023.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE SETD1A encodes a histone methyltransferase involved in various cell cycle regulatory processes. Loss-of-function SETD1A variants have been associated with numerous neurodevelopmental phenotypes, including intellectual disability and schizophrenia. While the association between rare coding variants in SETD1A and schizophrenia has achieved genome-wide significance by rare variant burden testing, only a few studies have described the psychiatric phenomenology of such individuals in detail. This systematic review and case report aims to characterize the neurodevelopmental and psychiatric phenotypes of SETD1A variant-associated schizophrenia. METHODS A PubMed search was completed in July 2022 and updated in May 2023. Only studies that reported individuals with a SETD1A variant as well as a primary psychotic disorder were ultimately included. Additionally, another two previously unpublished cases of SETD1A variant-associated psychosis from our own sequencing cohort are described. RESULTS The search yielded 32 articles. While 15 articles met inclusion criteria, only five provided case descriptions. In total, phenotypic information was available for 11 individuals, in addition to our own two unpublished cases. Our findings suggest that although individuals with SETD1A variant-associated schizophrenia may share a number of common features, phenotypic variability nonetheless exists. Moreover, although such individuals may exhibit numerous other neurodevelopmental features suggestive of the syndrome, their psychiatric presentations appear to be similar to those of general schizophrenia populations. CONCLUSIONS Loss-of-function SETD1A variants may underlie the development of psychosis in a small percentage of individuals with schizophrenia. Identifying such individuals may become increasingly important, given the potential for advances in precision medicine treatment approaches.
Collapse
Affiliation(s)
- Mark A Colijn
- Department of Psychiatry, Hotchkiss Brain Institute, and Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.
| | - Prescilla Carrion
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Sanja Rogic
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Torres
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Courtney Cook
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ashley DeGraaf
- Heart Centre, St. Paul's Hospital and Providence Health, Vancouver, BC, Canada
| | | | - Harish Neelakant
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Veerle Willaeys
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada
| | - Olga Leonova
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Randall F White
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Patrick M MacLeod
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Patrick F Sullivan
- Psychiatry and Genetics, University of North Carolina at Chapel Hill, NC, USA; Karolinska Institut, Stockholm, Sweden
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry, Michael Smith Laboratories, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Robert M Stowe
- Departments of Psychiatry and Neurology (Medicine), BC Neuropsychiatry Program, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Kumar RD, Saba LF, Streff H, Shaw CA, Mizerik E, Snyder MT, Lopez-Terrada D, Scull J. Clinical genome sequencing: Three years' experience at a tertiary children's hospital. Genet Med 2023; 25:100916. [PMID: 37334785 DOI: 10.1016/j.gim.2023.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023] Open
Abstract
PURPOSE Genome sequencing (GS) may shorten the diagnostic odyssey for patients, but clinical experience with this assay in nonresearch settings remains limited. Texas Children's Hospital began offering GS as a clinical test to admitted patients in 2020, providing an opportunity to study GS utilization, possibilities for test optimization, and testing outcomes. METHODS We retrospectively reviewed GS orders for admitted patients for a nearly 3-year period from March 2020 through December 2022. We gathered anonymized clinical data from the electronic health record to answer the study questions. RESULTS The diagnostic yield over 97 admitted patients was 35%. The majority of GS clinical indications were neurologic or metabolic (61%) and most patients were in intensive care (58%). Tests were often characterized as candidates for intervention/improvement (56%), frequently because of redundancy with prior testing. Patients receiving GS without prior exome sequencing (ES) had higher diagnostic rates (45%) than the cohort as a whole. In 2 cases, GS revealed a molecular diagnosis that is unlikely to be detected by ES. CONCLUSION The performance of GS in clinical settings likely justifies its use as a first-line diagnostic test, but the incremental benefit for patients with prior ES may be limited.
Collapse
Affiliation(s)
- Runjun D Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX.
| | - Lisa F Saba
- Department of Pathology, Texas Children's Hospital, Houston, TX
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pathology, Texas Children's Hospital, Houston, TX
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Statistics, Rice University, Houston, TX
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Matthew T Snyder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; Department of Pathology, Texas Children's Hospital, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jennifer Scull
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; Department of Pathology, Texas Children's Hospital, Houston, TX.
| |
Collapse
|
4
|
Nakamura T, Takata A. The molecular pathology of schizophrenia: an overview of existing knowledge and new directions for future research. Mol Psychiatry 2023; 28:1868-1889. [PMID: 36878965 PMCID: PMC10575785 DOI: 10.1038/s41380-023-02005-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Despite enormous efforts employing various approaches, the molecular pathology in the schizophrenia brain remains elusive. On the other hand, the knowledge of the association between the disease risk and changes in the DNA sequences, in other words, our understanding of the genetic pathology of schizophrenia, has dramatically improved over the past two decades. As the consequence, now we can explain more than 20% of the liability to schizophrenia by considering all analyzable common genetic variants including those with weak or no statistically significant association. Also, a large-scale exome sequencing study identified single genes whose rare mutations substantially increase the risk for schizophrenia, of which six genes (SETD1A, CUL1, XPO7, GRIA3, GRIN2A, and RB1CC1) showed odds ratios larger than ten. Based on these findings together with the preceding discovery of copy number variants (CNVs) with similarly large effect sizes, multiple disease models with high etiological validity have been generated and analyzed. Studies of the brains of these models, as well as transcriptomic and epigenomic analyses of patient postmortem tissues, have provided new insights into the molecular pathology of schizophrenia. In this review, we overview the current knowledge acquired from these studies, their limitations, and directions for future research that may redefine schizophrenia based on biological alterations in the responsible organ rather than operationalized criteria.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
5
|
Alkelai A, Greenbaum L, Shohat S, Povysil G, Malakar A, Ren Z, Motelow JE, Schechter T, Draiman B, Chitrit-Raveh E, Hughes D, Jobanputra V, Shifman S, Goldstein DB, Kohn Y. Genetic insights into childhood-onset schizophrenia: The yield of clinical exome sequencing. Schizophr Res 2023; 252:138-145. [PMID: 36645932 DOI: 10.1016/j.schres.2022.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023]
Abstract
Childhood-onset schizophrenia (COS) is a rare form of schizophrenia with an onset prior to 13 years of age. Although genetic factors play a role in COS etiology, only a few causal variants have been reported to date. This study presents a diagnostic exome sequencing (ES) in 37 Israeli Jewish families with a proband diagnosed with COS. By implementing a trio/duo ES approach and applying a well-established diagnostic pipeline, we detected clinically significant variants in 7 probands (19 %). These single nucleotide variants and indels were mostly inherited. The implicated genes were ANKRD11, GRIA2, CHD2, CLCN3, CLTC, IGF1R and MICU1. In a secondary analysis that compared COS patients to 4721 healthy controls, we observed that patients had a significant enrichment of rare loss of function (LoF) variants in LoF intolerant genes associated with developmental diseases. Taken together, ES could be considered as a valuable tool in the genetic workup for COS patients.
Collapse
Affiliation(s)
- Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA; Regeneron Genetics Center, Tarrytown, NY, USA.
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tal Aviv University, Tel Aviv, Israel
| | - Shahar Shohat
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Ayan Malakar
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Joshua E Motelow
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA; Department of Pediatrics, Division of Critical Care and Hospital Medicine, Columbia University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital of New York, New York, NY, USA
| | - Tanya Schechter
- Department of Child and Adolescent Psychiatry, Jerusalem Mental Health Center, Eitanim Psychiatric Hospital, Israel
| | - Benjamin Draiman
- Department of Child and Adolescent Psychiatry, Jerusalem Mental Health Center, Eitanim Psychiatric Hospital, Israel
| | - Eti Chitrit-Raveh
- Department of Child and Adolescent Psychiatry, Jerusalem Mental Health Center, Eitanim Psychiatric Hospital, Israel
| | - Daniel Hughes
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA; New York Genome Center, New York, NY, USA
| | - Sagiv Shifman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Yoav Kohn
- Department of Child and Adolescent Psychiatry, Jerusalem Mental Health Center, Eitanim Psychiatric Hospital, Israel; Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| |
Collapse
|
6
|
The Effect of Menopause on Antipsychotic Response. Brain Sci 2022; 12:brainsci12101342. [PMID: 36291276 PMCID: PMC9599119 DOI: 10.3390/brainsci12101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background: It has been hypothesized that, whenever estrogen levels decline, psychosis symptoms in women increase. At menopause, this can happen in two main ways: (a) the loss of estrogen (mainly estradiol) can directly affect central neurotransmission, leading to increase in schizophrenia-related symptoms, and (b) the loss of estrogen can decrease the synthesis of enzymes that metabolize antipsychotic drugs, thus weakening their efficacy. Aims and Methods: The aim of this narrative review was to investigate the second possibility by searching PubMed and ClinicalTrials.gov for studies over the last two decades that investigated the metabolism of antipsychotics and their efficacy before and after menopause in women or that studied systemic and local estrogen level effects on the pharmacokinetics and pharmacodynamics of individual antipsychotic drugs. Results: The evidence suggests that symptom level in women with schizophrenia rises after menopause for many reasons beyond hormones but, importantly, there is an estrogen-dependent loss of efficacy related to antipsychotic treatment. Conclusion: Effective clinical intervention is challenging; nevertheless, several promising routes forward are suggested.
Collapse
|
7
|
Two Genetic Mechanisms in Two Siblings with Intellectual Disability, Autism Spectrum Disorder, and Psychosis. J Pers Med 2022; 12:jpm12061013. [PMID: 35743796 PMCID: PMC9224546 DOI: 10.3390/jpm12061013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are complex neurodevelopmental disorders with high heritability. To search for the genetic deficits in two siblings affected with ID and ASD in a family, we first performed a genome-wide copy number variation (CNV) analysis using chromosomal microarray analysis (CMA). We found a 3.7 Mb microdeletion at 22q13.3 in the younger sister. This de novo microdeletion resulted in the haploinsufficiency of SHANK3 and several nearby genes involved in neurodevelopment disorders. Hence, she was diagnosed with Phelan–McDermid syndrome (PMS, OMIM#606232). We further performed whole-genome sequencing (WGS) analysis in this family. We did not detect pathogenic mutations with significant impacts on the phenotypes of the elder brother. Instead, we identified several rare, likely pathogenic variants in seven genes implicated in neurodevelopmental disorders: KLHL17, TDO2, TRRAP, EIF3F, ATP10A, DICER1, and CDH15. These variants were transmitted from his unaffected parents, indicating these variants have only moderate clinical effects. We propose that these variants worked together and led to the clinical phenotypes in the elder brother. We also suggest that the combination of multiple genes with moderate effects is part of the genetic mechanism of neurodevelopmental disorders.
Collapse
|
8
|
Merino D, Fernandez A, Gérard AO, Ben Othman N, Rocher F, Askenazy F, Verstuyft C, Drici MD, Thümmler S. Adverse Drug Reactions of Olanzapine, Clozapine and Loxapine in Children and Youth: A Systematic Pharmacogenetic Review. Pharmaceuticals (Basel) 2022; 15:ph15060749. [PMID: 35745668 PMCID: PMC9230864 DOI: 10.3390/ph15060749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Children and youth treated with antipsychotic drugs (APs) are particularly vulnerable to adverse drug reactions (ADRs) and prone to poor treatment response. In particular, interindividual variations in drug exposure can result from differential metabolism of APs by cytochromes, subject to genetic polymorphism. CYP1A2 is pivotal in the metabolism of the APs olanzapine, clozapine, and loxapine, whose safety profile warrants caution. We aimed to shed some light on the pharmacogenetic profiles possibly associated with these drugs’ ADRs and loss of efficacy in children and youth. We conducted a systematic review relying on four databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 recommendations and checklist, with a quality assessment. Our research yielded 32 publications. The most frequent ADRs were weight gain and metabolic syndrome (18; 56.3%), followed by lack of therapeutic effect (8; 25%) and neurological ADRs (7; 21.8%). The overall mean quality score was 11.3/24 (±2.7). In 11 studies (34.3%), genotyping focused on the study of cytochromes. Findings regarding possible associations were sometimes conflicting. Nonetheless, cases of major clinical improvement were fostered by genotyping. Yet, CYP1A2 remains poorly investigated. Further studies are required to improve the assessment of the risk–benefit balance of prescription for children and youth treated with olanzapine, clozapine, and/or loxapine.
Collapse
Affiliation(s)
- Diane Merino
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Arnaud Fernandez
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
| | - Alexandre O. Gérard
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Nouha Ben Othman
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Fanny Rocher
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Florence Askenazy
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
| | - Céline Verstuyft
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, Groupe Hospitalier Paris Saclay, AP–HP, 94270 Le Kremlin-Bicêtre, France;
- CESP/UMR-S1178, Inserm, Université Paris-Sud, 92290 Paris, France
| | - Milou-Daniel Drici
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Susanne Thümmler
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
- Correspondence:
| |
Collapse
|
9
|
Morikawa R, Watanabe Y, Igeta H, Arta RK, Ikeda M, Okazaki S, Hoya S, Saito T, Otsuka I, Egawa J, Tanifuji T, Iwata N, Someya T. Novel missense SETD1A variants in Japanese patients with schizophrenia: Resequencing and association analysis. Psychiatry Res 2022; 310:114481. [PMID: 35235885 DOI: 10.1016/j.psychres.2022.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
SETD1A has been identified as a substantial risk gene for schizophrenia. To further investigate the role of SETD1A in the genetic etiology of schizophrenia in the Japanese population, we performed resequencing and association analyses. First, we resequenced the SETD1A coding regions of 974 patients with schizophrenia. Then, we genotyped variants, prioritized via resequencing, in 2,027 patients with schizophrenia and 2,664 controls. Next, we examined the association between SETD1A and schizophrenia in 3,001 patients with schizophrenia and 2,664 controls. Finally, we performed a retrospective chart review of patients with prioritized SETD1A variants. We identified two novel missense variants (p.Ser575Pro and p.Glu857Gln) via resequencing. We did not detect these variants in 4,691 individuals via genotyping. These variants were not significantly associated with schizophrenia in the association analysis. Additionally, we found that a schizophrenia patient with the p.Glu857Gln variant had developmental delays. In conclusion, novel SETD1A missense variants were exclusively identified in Japanese patients with schizophrenia. However, our study does not provide evidence for the contribution of these variants to the genetic etiology of schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan.
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Reza K Arta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| |
Collapse
|
10
|
|