1
|
Palladini M, Mazza MG, De Lorenzo R, Spadini S, Aggio V, Bessi M, Calesella F, Bravi B, Rovere-Querini P, Benedetti F. Circulating inflammatory markers predict depressive symptomatology in COVID-19 survivors. Cytokine 2025; 186:156839. [PMID: 39700666 DOI: 10.1016/j.cyto.2024.156839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Growing evidence suggests the neurobiological mechanism upholding post-COVID-19 depression mainly relates to immune response and subsequent unresolved low-grade inflammation. Herein we exploit a broad panel of cytokines serum levels measured in COVID-19 survivors at one- and three-month since infection to predict post-COVID-19 depression. 87 COVID survivors were screened for depressive symptomatology at one- and three-month after discharge through the Beck Depression Inventory (BDI-13) and the Zung Self-Rating Depression Scale (ZSDS) at San Raffaele Hospital. Blood samples were collected at both timepoints and analyzed through Luminex. We entered one-month 42 inflammatory compounds into two separate penalized logistic regression models to evaluate their reliability in identifying COVID-19 survivors suffering from clinical depression at the two timepoints, applied within a machine learning routine. Delta values of analytes lowering between timepoints were entered in a third model predicting presence long-term depression. 5000 bootstraps were computed to determine significance of predictors. The cross-sectional model reached a balance accuracy (BA) of 76 % and a sensitivity of 70 %. Post-COVID-19 depression was predicted by high levels of CCL17, CCL22. On the other hand, CXCL10, CCL2, CCL3, CCL8, CXCL5, CCL15, CCL23, CXCL13, and GM-CSF showed protective effects. The longitudinal model obtained good performance as well (BA = 74 % and sensitivity = 68 %), revealing CXCL16 and CCL25 as additional drivers of clinical depression. Moreover, dynamic changes of analytes over time accurately predicted long-term depression (BA = 76 % and sensitivity = 75 %). Our findings unveil a putative immune profile upholding post-COVID-19 depression, thus reinforcing the need to deepen molecular mechanisms to appropriately target depression.
Collapse
Affiliation(s)
- Mariagrazia Palladini
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy.
| | - Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- School of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sara Spadini
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Veronica Aggio
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | | | - Federico Calesella
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Beatrice Bravi
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Patrizia Rovere-Querini
- School of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy; Unit of Innate Immunity and Tissue Remodeling, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
2
|
Repetto L, Chen J, Yang Z, Zhai R, Timmers PRHJ, Feng X, Li T, Yao Y, Maslov D, Timoshchuk A, Tu F, Twait EL, May-Wilson S, Muckian MD, Prins BP, Png G, Kooperberg C, Johansson Å, Hillary RF, Wheeler E, Pan L, He Y, Klasson S, Ahmad S, Peters JE, Gilly A, Karaleftheri M, Tsafantakis E, Haessler J, Gyllensten U, Harris SE, Wareham NJ, Göteson A, Lagging C, Ikram MA, van Duijn CM, Jern C, Landén M, Langenberg C, Deary IJ, Marioni RE, Enroth S, Reiner AP, Dedoussis G, Zeggini E, Sharapov S, Aulchenko YS, Butterworth AS, Mälarstig A, Wilson JF, Navarro P, Shen X. The genetic landscape of neuro-related proteins in human plasma. Nat Hum Behav 2024; 8:2222-2234. [PMID: 39210026 DOI: 10.1038/s41562-024-01963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioural traits and the disease aetiology of neuropsychiatric disorders. Here the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,000 individuals for 184 neuro-related proteins in human plasma. The analysis identified 125 cis-regulatory protein quantitative trait loci (cis-pQTL) and 164 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. At the cis-pQTL, multiple proteins shared a genetic basis with human behavioural traits such as alcohol and food intake, smoking and educational attainment, as well as neurological conditions and psychiatric disorders such as pain, neuroticism and schizophrenia. Integrating with established drug information, the causal inference analysis validated 52 out of 66 matched combinations of protein targets and diseases or side effects with available drugs while suggesting hundreds of repurposing and new therapeutic targets.
Collapse
Affiliation(s)
- Linda Repetto
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Health Data Science Centre, Fondazione Human Technopole, Milan, Italy
| | - Jiantao Chen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhijian Yang
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ranran Zhai
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Xiao Feng
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Li
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Yao
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Denis Maslov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Timoshchuk
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Fengyu Tu
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Emma L Twait
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Sebastian May-Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Marisa D Muckian
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Bram P Prins
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Grace Png
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Lu Pan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou He
- Department of Epidemiology and Medical Statistics, Division of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Sofia Klasson
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - James E Peters
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sarah E Harris
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lagging
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | - Christina Jern
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Sodbo Sharapov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Biostatistics Unit-Population and Medical Genomics Programme, Genomics Research Centre, Fondazione Human Technopole, Milan, Italy
| | - Yurii S Aulchenko
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Adam S Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Emerging Science and Innovation, Pfizer Worldwide Research, Development and Medical, Cambridge, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Pau Navarro
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Xia Shen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Lengvenyte A, Cognasse F, Hamzeh-Cognasse H, Sénèque M, Strumila R, Olié E, Courtet P. Baseline circulating biomarkers, their changes, and subsequent suicidal ideation and depression severity at 6 months: A prospective analysis in patients with mood disorders. Psychoneuroendocrinology 2024; 168:107119. [PMID: 39003840 DOI: 10.1016/j.psyneuen.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Identifying circulating biomarkers associated with prospective suicidal ideation (SI) and depression could help better understand the dynamics of these phenomena and identify people in need of intense care. In this study, we investigated the associations between baseline peripheral biomarkers implicated in neuroplasticity, vascular homeostasis and inflammation, and prospective SI and depression severity during 6 months of follow-up in patients with mood disorders. METHODS 149 patients underwent a psychiatric evaluation and gave blood to measure 32 plasma soluble proteins. At follow-up, SI incidence over six months was measured with the Columbia Suicide Severity Rating Scale, and depressive symptoms were assessed with the Inventory for Depressive Symptomatology. Ninety-six patients provided repeated blood samples. Statistical analyses included Spearman partial correlation and Elastic Net regression, followed by the covariate-adjusted regression models. RESULTS 51.4 % (N = 71) of patients reported SI during follow-up. After adjustment for covariates, higher baseline levels of interferon-γ were associated with SI occurrence during follow-up. Higher baseline interferon-γ and lower orexin-A were associated with increased depression severity, and atypical and anxious, but not melancholic, symptoms. There was also a tendency for associations of elevated baseline levels of interferon-γ, interleukin-1β, and lower plasma serotonin levels with SI at the six-month follow-up time point. Meanwhile, reduction in transforming growth factor- β1 (TGF-β1) plasma concentration correlated with atypical symptoms reduction. CONCLUSION We identified interferon-γ and orexin-A as potential predictive biomarkers of SI and depression, whereas TGF-β1 was identified as a possible target of atypical symptoms.
Collapse
Affiliation(s)
- Aiste Lengvenyte
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania.
| | - Fabrice Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France; Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Hind Hamzeh-Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - Maude Sénèque
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Robertas Strumila
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania
| | - Emilie Olié
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Courtet
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
4
|
Schuermans A, Truong B, Ardissino M, Bhukar R, Slob EAW, Nakao T, Dron JS, Small AM, Cho SMJ, Yu Z, Hornsby W, Antoine T, Lannery K, Postupaka D, Gray KJ, Yan Q, Butterworth AS, Burgess S, Wood MJ, Scott NS, Harrington CM, Sarma AA, Lau ES, Roh JD, Januzzi JL, Natarajan P, Honigberg MC. Genetic Associations of Circulating Cardiovascular Proteins With Gestational Hypertension and Preeclampsia. JAMA Cardiol 2024; 9:209-220. [PMID: 38170504 PMCID: PMC10765315 DOI: 10.1001/jamacardio.2023.4994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024]
Abstract
Importance Hypertensive disorders of pregnancy (HDPs), including gestational hypertension and preeclampsia, are important contributors to maternal morbidity and mortality worldwide. In addition, women with HDPs face an elevated long-term risk of cardiovascular disease. Objective To identify proteins in the circulation associated with HDPs. Design, Setting, and Participants Two-sample mendelian randomization (MR) tested the associations of genetic instruments for cardiovascular disease-related proteins with gestational hypertension and preeclampsia. In downstream analyses, a systematic review of observational data was conducted to evaluate the identified proteins' dynamics across gestation in hypertensive vs normotensive pregnancies, and phenome-wide MR analyses were performed to identify potential non-HDP-related effects associated with the prioritized proteins. Genetic association data for cardiovascular disease-related proteins were obtained from the Systematic and Combined Analysis of Olink Proteins (SCALLOP) consortium. Genetic association data for the HDPs were obtained from recent European-ancestry genome-wide association study meta-analyses for gestational hypertension and preeclampsia. Study data were analyzed October 2022 to October 2023. Exposures Genetic instruments for 90 candidate proteins implicated in cardiovascular diseases, constructed using cis-protein quantitative trait loci (cis-pQTLs). Main Outcomes and Measures Gestational hypertension and preeclampsia. Results Genetic association data for cardiovascular disease-related proteins were obtained from 21 758 participants from the SCALLOP consortium. Genetic association data for the HDPs were obtained from 393 238 female individuals (8636 cases and 384 602 controls) for gestational hypertension and 606 903 female individuals (16 032 cases and 590 871 controls) for preeclampsia. Seventy-five of 90 proteins (83.3%) had at least 1 valid cis-pQTL. Of those, 10 proteins (13.3%) were significantly associated with HDPs. Four were robust to sensitivity analyses for gestational hypertension (cluster of differentiation 40, eosinophil cationic protein [ECP], galectin 3, N-terminal pro-brain natriuretic peptide [NT-proBNP]), and 2 were robust for preeclampsia (cystatin B, heat shock protein 27 [HSP27]). Consistent with the MR findings, observational data revealed that lower NT-proBNP (0.76- to 0.88-fold difference vs no HDPs) and higher HSP27 (2.40-fold difference vs no HDPs) levels during the first trimester of pregnancy were associated with increased risk of HDPs, as were higher levels of ECP (1.60-fold difference vs no HDPs). Phenome-wide MR analyses identified 37 unique non-HDP-related protein-disease associations, suggesting potential on-target effects associated with interventions lowering HDP risk through the identified proteins. Conclusions and Relevance Study findings suggest genetic associations of 4 cardiovascular disease-related proteins with gestational hypertension and 2 associated with preeclampsia. Future studies are required to test the efficacy of targeting the corresponding pathways to reduce HDP risk.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Buu Truong
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Maddalena Ardissino
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rohan Bhukar
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Eric A. W. Slob
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jacqueline S. Dron
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Aeron M. Small
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - So Mi Jemma Cho
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zhi Yu
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Tajmara Antoine
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Kim Lannery
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Darina Postupaka
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Kathryn J. Gray
- Division of Maternal-Fetal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| | - Adam S. Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- BHF Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Malissa J. Wood
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
- Lee Health, Fort Myers, Florida
| | - Nandita S. Scott
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Colleen M. Harrington
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Amy A. Sarma
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Emily S. Lau
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Jason D. Roh
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - James L. Januzzi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
- Baim Institute for Clinical Research, Boston, Massachusetts
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Michael C. Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| |
Collapse
|
5
|
Navarro D, Marín-Mayor M, Gasparyan A, García-Gutiérrez MS, Rubio G, Manzanares J. Molecular Changes Associated with Suicide. Int J Mol Sci 2023; 24:16726. [PMID: 38069051 PMCID: PMC10706600 DOI: 10.3390/ijms242316726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Suicide is a serious global public health problem, with a worrying recent increase in suicide rates in both adolescent and adult populations. However, it is essential to recognize that suicide is preventable. A myriad of factors contributes to an individual's vulnerability to suicide. These factors include various potential causes, from psychiatric disorders to genetic and epigenetic alterations. These changes can induce dysfunctions in crucial systems such as the serotonergic, cannabinoid, and hypothalamic-pituitary-adrenal axes. In addition, early life experiences of abuse can profoundly impact an individual's ability to cope with stress, ultimately leading to changes in the inflammatory system, which is a significant risk factor for suicidal behavior. Thus, it is clear that suicidal behavior may result from a confluence of multiple factors. This review examines the primary risk factors associated with suicidal behavior, including psychiatric disorders, early life adversities, and epigenetic modifications. Our goal is to elucidate the molecular changes at the genetic, epigenetic, and molecular levels in the brains of individuals who have taken their own lives and in the plasma and peripheral mononuclear cells of suicide attempters and how these changes may serve as predisposing factors for suicidal tendencies.
Collapse
Affiliation(s)
- Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Marta Marín-Mayor
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Gabriel Rubio
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
6
|
Lengvenyte A, Belzeaux R, Olié E, Hamzeh-Cognasse H, Sénèque M, Strumila R, Cognasse F, Courtet P. Associations of potential plasma biomarkers with suicide attempt history, current suicidal ideation and subsequent suicidal events in patients with depression: A discovery study. Brain Behav Immun 2023; 114:242-254. [PMID: 37648005 DOI: 10.1016/j.bbi.2023.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
A growing body of evidences suggests that suicidal ideation (SI) and suicidal behaviors have biological bases. However, no biological marker is currently available to evaluate the suicide risk in individuals with SI or suicide attempt (SA). Moreover, the current risk assessment techniques poorly predict future suicidal events. The aim of this study was to examine the association of 39 new and already described peripheral cells and proteins (implicated in the immune system, oxidative stress and plasticity) with lifetime SA, past month SA, current SI, and future suicidal events (visit to the Emergency Department for SI or SA) in 266 treatment-seeking individuals with mood disorders. Equal parts of patients with and without past history of SA were recruited. All individuals at inclusion gave blood, were evaluated for SA recency, current SI, and were followed for two years afterwards. The 39 peripheral blood cellular and protein markers were entered separately for each outcome in Elastic Net models with 10-fold cross-validation, followed by single-analyte covariate-adjusted regression analyses for pre-selected analytes. Past month SA was associated with increased plasma levels of thrombospondin-2 and C-reactive protein, whereas current SI was associated with lower plasma serotonin levels. These associations were robust to adjustments for key covariates and corrections for multiple testing. The Cox proportional hazards regression showed that higher levels of thrombospondin-1 and of platelet-derived growth factor-AB predicted a future suicidal event. These two associations remained after adjustment for sex, age, and SA history, and outperformed the predictive value of past SA. Thrombospondins and platelet-derived growth factors have never been investigated in the context of suicide. Altogether, our results highlight the involvement in the suicidal process of platelet biological response and plasticity modifiers and also of inflammatory factors. They also suggest that SI and SA may have different biological correlates and that biomarkers associated with past SA or current SI do not automatically also predict future events.
Collapse
Affiliation(s)
- Aiste Lengvenyte
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania.
| | - Raoul Belzeaux
- INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France; University Department of Adult Psychiatry, CHU Montpellier, Montpellier, France; Fondation Fondamental
| | - Emilie Olié
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Fondation Fondamental
| | - Hind Hamzeh-Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - Maude Sénèque
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Robertas Strumila
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania
| | - Fabrice Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France; Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Philippe Courtet
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Fondation Fondamental
| |
Collapse
|
7
|
Repetto L, Chen J, Yang Z, Zhai R, Timmers PRHJ, Li T, Twait EL, May-Wilson S, Muckian MD, Prins BP, Png G, Kooperberg C, Johansson Å, Hillary RF, Wheeler E, Pan L, He Y, Klasson S, Ahmad S, Peters JE, Gilly A, Karaleftheri M, Tsafantakis E, Haessler J, Gyllensten U, Harris SE, Wareham NJ, Göteson A, Lagging C, Ikram MA, van Duijn CM, Jern C, Landén M, Langenberg C, Deary IJ, Marioni RE, Enroth S, Reiner AP, Dedoussis G, Zeggini E, Butterworth AS, Mälarstig A, Wilson JF, Navarro P, Shen X. Unraveling Neuro-Proteogenomic Landscape and Therapeutic Implications for Human Behaviors and Psychiatric Disorders. RESEARCH SQUARE 2023:rs.3.rs-2720355. [PMID: 37034613 PMCID: PMC10081382 DOI: 10.21203/rs.3.rs-2720355/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioral traits and the disease etiology of neuropsychiatric disorders. Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,500 individuals for 184 neuro-related proteins in human plasma. The analysis identified 117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. Mendelian randomization analyses revealed multiple proteins showing potential causal effects on neuro-related traits such as sleeping, smoking, feelings, alcohol intake, mental health, and psychiatric disorders. Integrating with established drug information, we validated 13 out of 13 matched combinations of protein targets and diseases or side effects with available drugs, while suggesting hundreds of re-purposing and new therapeutic targets. This consortium effort provides a large-scale proteogenomic resource for biomedical research on human behaviors and other neuro-related phenotypes.
Collapse
Affiliation(s)
- Linda Repetto
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Jiantao Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhijian Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ranran Zhai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Paul R. H. J. Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ting Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Emma L. Twait
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrechtand Utrecht University, Utrecht, Netherlands
| | - Sebastian May-Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Marisa D. Muckian
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Bram P. Prins
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Grace Png
- Institute of Translational Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM), School of Medicine, 81675 Munich, Germany
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle USA
| | - Åsa Johansson
- Dept. Immunology, Genetics and Pathology, Science for life laboratory, Uppsala University, Sweden
| | - Robert F. Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Lu Pan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou He
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Sofia Klasson
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shahzad Ahmad
- Department of Epidemiology, ErasmusMC, Rotterdam, The Netherlands
| | - James E. Peters
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle USA
| | - Ulf Gyllensten
- Dept. Immunology, Genetics and Pathology, Science for life laboratory, Uppsala University, Sweden
| | - Sarah E. Harris
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Andreas Göteson
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lagging
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | | | | | - Christina Jern
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Germany
| | - Ian J. Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Stefan Enroth
- Dept. Immunology, Genetics and Pathology, Science for life laboratory, Uppsala University, Sweden
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center and Department of Epidemiology, University of Washington, Seattle USA
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
| | - Adam S. Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Emerging Science and Innovation, Pfizer Worldwide Research, Development and Medical, Cambridge, UK
| | - James F. Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Pau Navarro
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Xia Shen
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Repetto L, Chen J, Yang Z, Zhai R, Timmers PRHJ, Li T, Twait EL, May-Wilson S, Muckian MD, Prins BP, Png G, Kooperberg C, Johansson Å, Hillary RF, Wheeler E, Pan L, He Y, Klasson S, Ahmad S, Peters JE, Gilly A, Karaleftheri M, Tsafantakis E, Haessler J, Gyllensten U, Harris SE, Wareham NJ, Göteson A, Lagging C, Ikram MA, van Duijn CM, Jern C, Landén M, Langenberg C, Deary IJ, Marioni RE, Enroth S, Reiner AP, Dedoussis G, Zeggini E, Butterworth AS, Mälarstig A, Wilson JF, Navarro P, Shen X. Genetic mechanisms of 184 neuro-related proteins in human plasma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.10.23285650. [PMID: 36824751 PMCID: PMC9949195 DOI: 10.1101/2023.02.10.23285650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Understanding the genetic basis of neuro-related proteins is essential for dissecting the disease etiology of neuropsychiatric disorders and other complex traits and diseases. Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,500 individuals for 184 neuro-reiated proteins in human plasma. The analysis identified 117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. Mendelian randomization analyses revealed multiple proteins showing potential causal effects on neuro-reiated traits as well as complex diseases such as hypertension, high cholesterol, immune-related disorders, and psychiatric disorders. Integrating with established drug information, we validated 13 combinations of protein targets and diseases or side effects with available drugs, while suggesting hundreds of re-purposing and new therapeutic targets for diseases and comorbidities. This consortium effort provides a large-scale proteogenomic resource for biomedical research.
Collapse
Affiliation(s)
- Linda Repetto
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Jiantao Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhijian Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ranran Zhai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Paul R. H. J. Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ting Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Emma L. Twait
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Sebastian May-Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Marisa D. Muckian
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Bram P. Prins
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Grace Png
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM), School of Medicine, 81675 Munich, Germany
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle USA
| | - Åsa Johansson
- Dept. Immunology, Genetics and Pathology, Science for life laboratory, Uppsala University, Sweden
| | - Robert F. Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Lu Pan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou He
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Sofia Klasson
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shahzad Ahmad
- Department of Epidemiology, ErasmusMC, Rotterdam, The Netherlands
| | - James E. Peters
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle USA
| | - Ulf Gyllensten
- Dept. Immunology, Genetics and Pathology, Science for life laboratory, Uppsala University, Sweden
| | - Sarah E. Harris
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Andreas Göteson
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lagging
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | | | | | - Christina Jern
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Germany
| | - Ian J. Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Stefan Enroth
- Dept. Immunology, Genetics and Pathology, Science for life laboratory, Uppsala University, Sweden
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center and Department of Epidemiology, University of Washington, Seattle USA
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
| | - Adam S. Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Emerging Science and Innovation, Pfizer Worldwide Research, Development and Medical, Cambridge, UK
| | - James F. Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Pau Navarro
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Xia Shen
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Division of Public Health Sciences, Fred Hutchinson Cancer Center and Department of Epidemiology, University of Washington, Seattle USA
| |
Collapse
|