1
|
Wang W, Chang X, Lin F, Feng L, Wang M, Huang J, Wu T. Adding salt to foods and risk of incident depression and anxiety. BMC Med 2025; 23:32. [PMID: 39838382 PMCID: PMC11752635 DOI: 10.1186/s12916-025-03865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Diet is a well-known determinant of mental health outcomes. However, epidemiologic evidence on salt consumption with the risk of developing depression and anxiety is still very limited. This study aimed to examine the association between adding salt to foods and incident depression and anxiety longitudinally. METHODS This study used data from 444,787 adults who had never been diagnosed with depression or anxiety at baseline from the UK Biobank, a national community-based cohort from 2006 to 2010. Adding salt to foods was measured using a four-point Likert scale at baseline from a touch-screen questionnaire. The outcomes were incidents of diagnosed depression (F32-F33) and anxiety (F40-F48), defined by the International Statistical Classification of Diseases and Related Health Problems, 10th Revision codes. Cox proportional hazards models were used to investigate the association between the frequency of adding salt to foods and incident depression and anxiety. RESULTS During a mean follow-up period of 14.5 years, 16,319 incidents of depression and 18,959 incidents of anxiety were documented. A higher frequency of adding salt to foods was associated with elevated risk for depression and anxiety. Compared with the group of never/rarely adding salt to foods, the adjusted HRs of incident depression were 1.07 (95% CI: 1.02-1.12), 1.18 (95% CI: 1.10-1.26), and 1.29 (95% CI: 1.18-1.41) across the groups of sometimes, usually, and always, respectively (P trend < 0.001). Participants who reported always adding salt to foods had a 1.17-fold higher risk for developing anxiety (95% CI: 1.07-1.28) compared with those who never/rarely added salt to foods. CONCLUSIONS A higher frequency of adding salt to foods was independently associated with a higher hazard of depression and anxiety. Interventions such as public awareness campaigns promoting reduced salt consumption may be promising preventative measures to reduce the incidence of depression and anxiety.
Collapse
Affiliation(s)
- Weiwei Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Xicheng District, Beijing, 100088, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Xiaotian Chang
- Department of Counseling and Clinical Psychology, Teachers College, Columbia University, 525 West 120 Street, New York, 10027, USA
| | - Feifei Lin
- Institute of Epidemiology and Health Care, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lei Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Xicheng District, Beijing, 100088, China
| | - Mengying Wang
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China.
| | - Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
2
|
Zhu BL, Tang JY, Chen WJ, Qian JJ, Zhang F, Zhang XL, Chen TT, Jiang B, Zhao HY. Fluoxetine treatment reverses chronic stress-induced promotion on Fk506-binding protein 5 expression and multiple effects on glucocorticoid receptor phosphorylation in the paraventricular nucleus of mice. Pharmacol Biochem Behav 2025; 246:173916. [PMID: 39615557 DOI: 10.1016/j.pbb.2024.173916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Fluoxetine is widely used as a first-line antidepressant. However, the molecular mechanisms for its antidepressant effects are still not fully understood. Hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis is a core pathogenic mechanism contributing to depression, and fluoxetine treatment prevents this dysfunction. The glucocorticoid receptor (GR) is a major negative feedback regulator of the HPA axis, while Fk506-binding protein 5 (Fkbp5) is a negative regulator of the GR signaling. Therefore, we examined the effects of fluoxetine on Fkbp5 and the GR signaling in the hypothalamic paraventricular nucleus (PVN) of depressed mice. METHODS Mice were exposed to chronic social defeat stress (CSDS), chronic unpredictable mild stress (CUMS), or chronic restraint stress (CRS) with or without fluoxetine treatment (intraperitoneally injected, 20 mg/kg) and examined for changes in depression-like behaviors and HPA axis activity as well as Fkbp5 expression and GR phosphorylation in the PVN. We then examined if adeno-associated virus (AAV)-mediated Fkbp5 overexpression in the PVN affected the antidepressant actions of fluoxetine in mice. RESULTS Fluoxetine treatment significantly mitigated CSDS-, CUMS-, and CRS-induced depression-like behaviors and HPA axis hyperactivity in mice. Subsequent western blotting analyses showed that fluoxetine treatment fully reversed not only chronic stress-induced upregulation of Fkbp5 and CRH but also chronic stress-induced increase in Ser203 phosphorylation and decrease in Ser211 and Ser234 phosphorylation in GR in the PVN. Moreover, quantitative real-time reverse transcription PCR (qRT-PCR) analyses revealed that the enhanced mRNA levels of Fkbp5 and CRH in PVN neurons of mice subjected to CSDS/CUMS/CRS were also notably reversed by fluoxetine administration. Conversely, Fkbp5 overexpression in the PVN significantly eliminated the antidepressant effects of fluoxetine in mice without affecting their locomotor activity. CONCLUSION These results together suggest that fluoxetine treatment reverses chronic stress-induced promotion on Fkbp5 expression and multiple effects on GR phosphorylation in the PVN of mice. SIGNIFICANCE STATEMENT The selective serotonin reuptake inhibitor fluoxetine (sold as Prozac) is a widely used treatment for depression, but the full spectrum of therapeutic mechanisms is still debated. Recent evidence suggests that these therapeutic mechanisms include suppression of chronic stress-activated hypothalamus-pituitary-adrenal (HPA) axis. The current study presents the first in vivo evidence showing that suppression of HPA axis hyperactivity by fluoxetine treatment involves reversal of glucocorticoid receptor (GR) phosphorylation via modulation of the GR negative regulator Fk506-binding protein 5 (Fkbp5) in the hypothalamic paraventricular nucleus (PVN). Fluoxetine treatment not only inhibited chronic stress-induced depression-like behaviors and HPA axis hyperactivity but also reversed Fkbp5 upregulation and GR phosphorylation changes in the PVN, while adeno-associated virus (AAV)-based Fkbp5 overexpression in the PVN eliminated the antidepressant effects of fluoxetine. These findings may expand our understanding of the pharmacological effects of fluoxetine, and further identify Fkbp5 as a possible target for novel antidepressants.
Collapse
Affiliation(s)
- Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Department of Clinical Nursing, School of Nursing and Rehabilitation, Nantong University, Nantong 226001, Jiangsu, China
| | - Jin-Yan Tang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Department of Pharmacy, Rugao People's Hospital, Rugao 226500, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jun-Jie Qian
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiao-Ling Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ting-Ting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| | - He-Yan Zhao
- Department of Clinical Nursing, School of Nursing and Rehabilitation, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
3
|
Gu Y, Hu P, Ren H, Dai C, He X, Cheng W, Yu L, Fang A, Meng X, Lou M, Chen Y, Chi D, Zhou H, Chen Q, Ni S, Huang Q. The mediating effect of sleep quality on the relationship between social support and depressive symptoms among Chinese nurses during the omicron outbreak. BMC Psychiatry 2024; 24:915. [PMID: 39696053 DOI: 10.1186/s12888-024-06326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has led to increased depressive symptoms and diminished sleep quality among nurses. This study explores the relationships among social support, sleep quality, and depressive symptoms among Chinese nurses during the COVID-19 outbreak, with a focus on the mediating role of sleep quality. METHODS A cross-sectional study involving 2140 nurses was conducted from August to September 2022. The participants completed the Social Support Rating Scale, the Hospital Anxiety and Depression Scale, and the Pittsburgh Sleep Quality Index. The data were analyzed via serial multiple mediation analysis with the PROCESS macro in SPSS. RESULTS Depressive symptoms affected an estimated 40.4% of the participants, with 69.2% reporting poor sleep quality. The present study revealed a significant negative correlation between social support and sleep quality and depressive symptoms (r = -0.229, p < 0.001; r = -0.322, p < 0.001, respectively). Furthermore, a substantial positive correlation was observed between sleep quality and depressive symptoms (r = 0.514, p < 0.001). Additionally, social support had a significant indirect effect on depressive symptoms through sleep quality (standardized effect = -0.0535, 95% CI = [-0.0648, -0.0424]). Sleep quality was found to mediate the relationship between social support and depressive symptoms in all subgroups, with variations based on years of experience, education levels, and hospital type. CONCLUSION Depressive symptoms were inversely associated with social support, which was moderated by sleep quality. Interventions targeting social support provision and sleep quality promotion are suggested for managing depressive symptoms among nurses during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yingying Gu
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pinglang Hu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huanzeng Ren
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Caijun Dai
- Department of Pulmonary and Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, China
| | - Xuejiao He
- Department of Nursing, Zhejiang Jinhua Guangfu tumor Hospital, Jinhua, Zhejiang Province, China
| | - Weizhen Cheng
- Department of Nursing, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang Province, China
| | - Lihua Yu
- Department of Nursing, Jinhua Municipal People's Hospital, Jinhua, Zhejiang Province, China
| | - Achang Fang
- Department of Nursing, Pujiang County People's Hospital, Jinhua, Zhejiang Province, China
| | - Xiaoling Meng
- Department of Nursing, Pan'an County People's Hospital, Jinhua, Zhejiang Province, China
| | - Meiyang Lou
- Department of Nursing, Jinhua City Fifth Hospital, Jinhua, Zhejiang Province, China
| | - Youying Chen
- Department of Nursing, The Second Hospital of Pujiang, Jinhua, Zhejiang Province, China
| | - Danli Chi
- Department of Nursing, Wucheng People's Hospital, Jinhua, Zhejiang Province, China
| | - Huasu Zhou
- Department of Nursing, Pan'an County People's Hospital, Jinhua, Zhejiang Province, China
| | - Qiaoge Chen
- Department of Nursing, Jinhua City Maternal and Child Health Care Hospital, Jinhua, Zhejiang Province, China
| | - Shuhong Ni
- Department of Nursing, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, China.
| | - Qiqi Huang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Xu DW, Li WY, Shi TS, Wang CN, Zhou SY, Liu W, Chen WJ, Zhu BL, Fei H, Cheng DD, Cui ZM, Jiang B. MiR-184-3p in the paraventricular nucleus participates in the neurobiology of depression via regulation of the hypothalamus-pituitary-adrenal axis. Neuropharmacology 2024; 260:110129. [PMID: 39179173 DOI: 10.1016/j.neuropharm.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for the pathogenesis of depression, and increased activity of cAMP response element binding protein (CREB)-regulated transcription co-activator 1 (CRTC1) in the paraventricular nucleus (PVN) plays a critical role. As a well-investigated microRNA (miRNA), miR-184 has two forms, miR-184-3p and miR-184-5p. Recently, miRNAs target genes predictive analysis and dual-luciferase reporter assays identified an inhibitory role of miR-184-3p on CRTC1 expression. Therefore, we speculated that miR-184-3p regulation was responsible for the effects of chronic stress on CRTC1 in the PVN. Various methods, including the chronic social defeat stress (CSDS) model of depression, behavioral tests, Western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer, were used. CSDS evidently downregulated the level of miR-184-3p, but not miR-184-5p, in the PVN. Genetic knockdown and pharmacological inhibition of miR-184-3p in the PVN induced various depressive-like symptoms (e.g., abnormal behaviors, HPA hyperactivity, enhanced CRTC1 function in PVN neurons, downregulation of hippocampal neurogenesis, and decreased brain-derived neurotrophic factor (BDNF) signaling) in naïve male C57BL/6J mice. In contrast, genetic overexpression and pharmacological activation of miR-184-3p in the PVN produced significant beneficial effects against CSDS. MiR-184-3p in the PVN was necessary for the antidepressant actions of two well-known SSRIs, fluoxetine and paroxetine. Collectively. miR-184-3p was also implicated in the neurobiology of depression and may be a viable target for novel antidepressants.
Collapse
Affiliation(s)
- Da-Wei Xu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Si-Yi Zhou
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei Liu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Hao Fei
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Dong-Dong Cheng
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Zhi-Ming Cui
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China.
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
5
|
Xia Y, Xie M, Zhang R, Kong L, Yao L, Zhang L, Li Y. Effects of dexmedetomidine on depression-like behaviour in chronic restraint stress mice: Involvement of specific brain regions. Biochem Biophys Res Commun 2024; 734:150479. [PMID: 39088982 DOI: 10.1016/j.bbrc.2024.150479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
It is crucial to develop novel antidepressants. Dexmedetomidine (DEX) can exert antidepressant effects, but its underlying mechanism remains unclear. We used chronic restraint stress (CRS) to induce depression-like behaviour in mice and administered low-dose DEX (2 μg/kg per day) during CRS modelling or one injection of high-dose DEX (20 μg/kg) after CRS. The results of the behavioural tests revealed that both methods ameliorated CRS-induced depression. The brain slices of the mice were subjected to immunohistochemical staining for c-fos and phosphorylated ERK (pERK). Results showed that the continuous low-dose DEX-treated group, but not the single high-dose DEX-treated group expressed less c-fos in the nucleus locus coeruleus (LC) with a mean optical density (MOD) of 0.06. Other brain regions, including the dentate gyrus (DG), pyriform cortex (Pir), anterior part of paraventricular thalamic nucleus (PVA), arcuate nucleus (Arc), and core or shell of accumbens nucleus (Acbc or Acbs), presented differences in c-fos expression. In contrast, the low-dose DEX-treated group exhibited three-fold greater pERK expression in the LC of the CRS mice, with a MOD of 0.15. Pir, cingulate cortex (Cg) and, anterior and posterior part of paraventricular thalamic nucleus (PVA and PVP) exhibited pERK expression differences due to distinct reagent treatments. These changes indicate that the responses of brain regions to different DEX administration methods and doses vary. This study confirmed the ability of DEX to ameliorate CRS-induced depression and identified candidate target brain regions, thus providing new information for the antidepressant mechanism of DEX.
Collapse
Affiliation(s)
- Yin Xia
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China; Department of Anesthesiology, Anhui Provincial Children's Hospital, Hefei, Anhui, PR China
| | - Min Xie
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Ran Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Lingchao Kong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Lamei Yao
- Department of Anesthesiology, Hefei Maternal and Child Health Hospital, PR China
| | - Lesha Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Yuanhai Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
6
|
Tian K, He X, Lin X, Chen X, Su Y, Lu Z, Chen Z, Zhang L, Li P, Ma L, Lan Z, Zhao X, Fen G, Hai Q, Xue D, Jin Q. Unveiling the Role of Sik1 in Osteoblast Differentiation: Implications for Osteoarthritis. Mol Cell Biol 2024; 44:411-428. [PMID: 39169784 PMCID: PMC11485870 DOI: 10.1080/10985549.2024.2385633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease characterized by subchondral osteosclerosis, mainly due to osteoblast activity. This research investigates the function of Sik1, a member of the AMP-activated protein kinase family, in OA. Proteomic analysis was conducted on clinical samples from 30 OA patients, revealing a negative correlation between Sik1 expression and OA. In vitro experiments utilized BMSCs to examine the effect of Sik1 on osteogenic differentiation. BMSCs were cultured and induced toward osteogenesis with specific media. Sik1 overexpression was achieved through lentiviral transfection, followed by analysis of osteogenesis-associated proteins using Western blotting, RT-qPCR, and alkaline phosphate staining. In vivo experiments involved destabilizing the medial meniscus in mice to establish an OA model, assessing the therapeutic potential of Sik1. The CT scans and histological staining were used to analyze subchondral bone alterations and cartilage damage. The findings show that Sik1 downregulation correlates with advanced OA and heightened osteogenic differentiation in BMSCs. Sik1 overexpression inhibits osteogenesis-related markers in vitro and reduces cartilage damage and subchondral osteosclerosis in vivo. Mechanistically, Sik1 modulates osteogenesis and subchondral bone changes through Runx2 activity regulation. The research emphasizes Sik1 as a promising target for treating OA, suggesting its involvement in controlling bone formation and changes in the subchondral osteosclerosis.
Collapse
Affiliation(s)
- Kuanmin Tian
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaoxin He
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xue Lin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaolei Chen
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yajing Su
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhidong Lu
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Zhirong Chen
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Liang Zhang
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Peng Li
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Long Ma
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Zhibin Lan
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xin Zhao
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Gangning Fen
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qinqin Hai
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Di Xue
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qunhua Jin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| |
Collapse
|
7
|
Ngema M, Xulu ND, Ngubane PS, Khathi A. Pregestational Prediabetes Induces Maternal Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysregulation and Results in Adverse Foetal Outcomes. Int J Mol Sci 2024; 25:5431. [PMID: 38791468 PMCID: PMC11122116 DOI: 10.3390/ijms25105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Maternal type 2 diabetes mellitus (T2DM) has been shown to result in foetal programming of the hypothalamic-pituitary-adrenal (HPA) axis, leading to adverse foetal outcomes. T2DM is preceded by prediabetes and shares similar pathophysiological complications. However, no studies have investigated the effects of maternal prediabetes on foetal HPA axis function and postnatal offspring development. Hence, this study investigated the effects of pregestational prediabetes on maternal HPA axis function and postnatal offspring development. Pre-diabetic (PD) and non-pre-diabetic (NPD) female Sprague Dawley rats were mated with non-prediabetic males. After gestation, male pups born from the PD and NPD groups were collected. Markers of HPA axis function, adrenocorticotropin hormone (ACTH) and corticosterone, were measured in all dams and pups. Glucose tolerance, insulin and gene expressions of mineralocorticoid (MR) and glucocorticoid (GR) receptors were further measured in all pups at birth and their developmental milestones. The results demonstrated increased basal concentrations of ACTH and corticosterone in the dams from the PD group by comparison to NPD. Furthermore, the results show an increase basal ACTH and corticosterone concentrations, disturbed MR and GR gene expression, glucose intolerance and insulin resistance assessed via the Homeostasis Model Assessment (HOMA) indices in the pups born from the PD group compared to NPD group at all developmental milestones. These observations reveal that pregestational prediabetes is associated with maternal dysregulation of the HPA axis, impacting offspring HPA axis development along with impaired glucose handling.
Collapse
Affiliation(s)
| | | | | | - Andile Khathi
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4041, KwaZulu Natal, South Africa; (M.N.); (N.D.X.); (P.S.N.)
| |
Collapse
|
8
|
Xiao Y, Xia L, Jiang W, Qin J, Zhao L, Li Z, Huang L, Li K, Yu P, Wei L, Jiang X, Chen Z, Yu X. Cardiopulmonary progenitors facilitate cardiac repair via exosomal transfer of miR-27b-3p targeting the SIK1-CREB1 axis. Cell Prolif 2024; 57:e13593. [PMID: 38185757 PMCID: PMC11056695 DOI: 10.1111/cpr.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemic heart disease, especially myocardial infarction (MI), is one of the leading causes of death worldwide, and desperately needs effective treatments, such as cell therapy. Cardiopulmonary progenitors (CPPs) are stem cells for both heart and lung, but their repairing role in damaged heart is still unknown. Here, we obtained CPPs from E9.5 mouse embryos, maintained their stemness while expanding, and identified their characteristics by scRNA-seq, flow cytometry, quantitative reverse transcription-polymerase chain reaction, and differentiation assays. Moreover, we employed mouse MI model to investigate whether CPPs could repair the injured heart. Our data identified that CPPs exhibit hybrid fibroblastic, endothelial, and mesenchymal state, and they could differentiate into cell lineages within the cardiopulmonary system. Moreover, intramyocardial injection of CPPs improves cardiac function through CPPs exosomes (CPPs-Exo) by promotion of cardiomyocytic proliferation and vascularization. To uncover the underlying mechanism, we used miRNA-seq, bulk RNA-seq, and bioinformatic approaches, and found the highly expressed miR-27b-3p in CPPs-Exo and its target gene Sik1, which can influence the transcriptional activity of CREB1. Therefore, we postulate that CPPs facilitate cardiac repair partially through the SIK1-CREB1 axis via exosomal miR-27b-3p. Our study offers a novel insight into the role of CPPs-Exo in heart repair and highlights the potential of CPPs-Exo as a promising therapeutic strategy for MI.
Collapse
Affiliation(s)
- Ying‐Ying Xiao
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Luo‐Xing Xia
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wen‐Jing Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jian‐Feng Qin
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li‐Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhan Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li‐Juan Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Ke‐Xin Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Peng‐Jiu Yu
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li Wei
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xue‐Yan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Xi‐Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
9
|
Shi TS, Li WY, Chen YM, Huang J, Guan W, Xu DW, Jiang B. The antidepressant-like effects of escitalopram in mice require salt-inducible kinase 1 and CREB-regulated transcription co-activator 1 in the paraventricular nucleus of the hypothalamus. J Affect Disord 2023; 338:228-238. [PMID: 37257779 DOI: 10.1016/j.jad.2023.05.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND The salt-inducible kinase 1 (SIK1)-CREB-regulated transcription co-activator 1 (CRTC1) system in the paraventricular nucleus (PVN) of the hypothalamus has been demonstrated to participate in not only depression neurobiology but also the antidepressant mechanisms of fluoxetine, paroxetine, venlafaxine, and duloxetine. Like fluoxetine and paroxetine, escitalopram is also a well-known selective serotonin (5-HT) reuptake inhibitor (SSRI). However, recently it has been found that escitalopram can modulate a lot of targets other than the 5-HT system. Here, we speculate that escitalopram produces effects on the SIK1-CRTC1 system in the PVN. METHODS Two mice models of depression (chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS)), various behavioral tests, enzyme linked immunosorbent assay (ELISA), western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer were used together in the present study. RESULTS It was found that escitalopram administration not only significantly prevented the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis induced by CSDS and CUMS, but also notably reversed the effects of CSDS and CUMS on SIK1, CRTC1, and CRTC1-CREB binding in the PVN of mice. AAV-based genetic knock-down of SIK1 in PVN neurons evidently abolished the antidepressant-like effects of escitalopram in mice. LIMITATION A shortage of this study is that only rodent models of depression were used, while human samples were not included. CONCLUSIONS In summary, regulating the SIK1-CRTC1 system in the PVN participates in the antidepressant mechanism of escitalopram, which extends the knowledge of the pharmacological actions of escitalopram.
Collapse
Affiliation(s)
- Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Da-Wei Xu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong 226006, Jiangsu, China.
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
10
|
Kuehner JN, Walia NR, Seong R, Li Y, Martinez-Feduchi P, Yao B. Social defeat stress induces genome-wide 5mC and 5hmC alterations in the mouse brain. G3 (BETHESDA, MD.) 2023; 13:jkad114. [PMID: 37228107 PMCID: PMC10411578 DOI: 10.1093/g3journal/jkad114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Stress is adverse experience that require constant adaptation to reduce the emotional and physiological burden, or "allostatic load", of an individual. Despite their everyday occurrence, a subpopulation of individuals is more susceptible to stressors, while others remain resilient with unknown molecular signatures. In this study, we investigated the contribution of the DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), underlying the individual differences in stress susceptibility and resilience. Genome-wide 5mC and 5hmC profiles from 3- and 6-month adult male mice that underwent various durations of social defeat were generated. In 3-month animals, 5mC and 5hmC work in parallel and do not distinguish between stress-susceptible and resilient phenotypes, while in 6-month animals, 5mC and 5hmC show distinct enrichment patterns. Acute stress responses may epigenetically "prime" the animals to either increase or decrease their predisposition to depression susceptibility. In support of this, re-exposure studies reveal that the enduring effects of social defeat affect differential biological processes between susceptible and resilient animals. Finally, the stress-induced 5mC and 5hmC fluctuations across the acute-chronic-longitudinal time course demonstrate that the negative outcomes of chronic stress do not discriminate between susceptible and resilient animals. However, resilience is more associated with neuroprotective processes while susceptibility is linked to neurodegenerative processes. Furthermore, 5mC appears to be responsible for acute stress response, whereas 5hmC may function as a persistent and stable modification in response to stress. Our study broadens the scope of previous research offering a comprehensive analysis of the role of DNA modifications in stress-induced depression.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Nevin R Walia
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Rachel Seong
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Paula Martinez-Feduchi
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| |
Collapse
|