1
|
Lin Z, Ying C, Si X, Xue N, Liu Y, Zheng R, Chen Y, Pu J, Zhang B. NOX4 exacerbates Parkinson's disease pathology by promoting neuronal ferroptosis and neuroinflammation. Neural Regen Res 2025; 20:2038-2052. [PMID: 38993139 DOI: 10.4103/nrr.nrr-d-23-01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/18/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00026/figure1/v/2024-09-09T124005Z/r/image-tiff Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta. Ferroptosis, a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation, plays a vital role in the death of dopaminergic neurons. However, the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated. NADPH oxidase 4 is related to oxidative stress, however, whether it regulates dopaminergic neuronal ferroptosis remains unknown. The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis, and if so, by what mechanism. We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model. NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons. Moreover, NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals. Mechanistically, we found that NADPH oxidase 4 interacted with activated protein kinase C α to prevent ferroptosis of dopaminergic neurons. Furthermore, by lowering the astrocytic lipocalin-2 expression, NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation. These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation, which contribute to dopaminergic neuron death, suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhihao Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Yang Y, Li S, Liu K, Zhang Y, Zhu F, Ben T, Chen Z, Zhi F. Lipocalin-2-mediated intestinal epithelial cells pyroptosis via NF-κB/NLRP3/GSDMD signaling axis adversely affects inflammation in colitis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167279. [PMID: 38844113 DOI: 10.1016/j.bbadis.2024.167279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Ulcerative colitis (UC) is a major inflammatory bowel disease (IBD) characterized by intestinal epithelium damage. Recently, Lipocalin-2 (LCN2) has been identified as a potential fecal biomarker for patients with UC. However, further investigation is required to explore its pro-inflammatory role in UC and the underlying mechanism. The biological analysis revealed that Lcn2 serves as a putative signature gene in the colon mucosa of patients with UC and its association with the capsase/pyroptosis signaling pathway in UC. In wild-type mice with DSS-induced colitis, LCN2 overexpression in colon mucosa via in vivo administration of Lcn2 overexpression plasmid resulted in exacerbation of colitis symptoms and epithelium damage, as well as increased expression levels of pyroptosis markers (cleaved caspase1, GSDMD, IL-1β, HMGB1 and IL-18). Additionally, we observed downregulation in the expression levels of pyroptosis markers following in vivo silencing of LCN2. However, the pro-inflammatory effect of LCN2 overexpression was effectively restrained in GSDMD-KO mice. Moreover, single-cell RNA-sequencing analysis revealed that Lcn2 was predominantly expressed in the intestinal epithelial cells (IECs) within the colon mucosa of patients with UC. We found that LCN2 effectively regulated pyroptosis events by modulating the NF-κB/NLRP3/GSDMD signaling axis in NCM460 cells stimulated by LPS and ATP. These findings demonstrate the pro-inflammatory role of LCN2 in colon epithelium and provide a potential target for inhibiting pyroptosis in UC.
Collapse
Affiliation(s)
- Yuyi Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China; Department of Gastroenterology, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512026, China
| | - Ke Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Fangqing Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Teng Ben
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Zheng Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
3
|
Hebchen DM, Spaeth M, Müller N, Schröder K. NoxO1 Determines the Level of ROS Formation by the Nox1-Centered NADPH Oxidase. Antioxidants (Basel) 2024; 13:1113. [PMID: 39334772 PMCID: PMC11428687 DOI: 10.3390/antiox13091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The Nox1-centered NADPH oxidase complex facilitates the transfer of electrons from intracellular NADPH across the cell membrane to extracellular molecular oxygen, resulting in the formation of superoxide. The complex is comprised of two membrane-bound subunits, namely Nox1 and p22phox, and the cytosolic subunits, namely NoxA1 and NoxO1. The presence of NoxO1 facilitates the proximity of all components, thereby enabling the complex to exhibit constitutive activity. Despite the theoretical sufficiency of all subunits in a 1:1 ratio, the precise composition of the Nox1-centered NADPH oxidase remains unknown. Analyses of mRNA expression in different cell lines revealed an unequal expression of the components, with an excess of NoxO1. Furthermore, plasmid-based overexpression of individual components of the Nox1-centered NADPH oxidase resulted in an excess of NoxO1 mRNA. The objective of this study was to analyze the ability of NoxO1 to control the level of ROS formation by the Nox1 complex. To this end, we generated Hek293 cells for constitutive expression of Nox1 and NoxA1, which were then transfected with increasing concentrations of NoxO1. The data presented herein suggests that ROS formation by the Nox1-centered NADPH oxidase is dependent on the concentration of NoxO1. A surplus of NoxO1 has been observed to exert control over the activity of the complex in accordance with a dose-dependent mechanism. We thus conclude that the ratio of Nox1, NoxA1, and NoxO1 complexes does not adhere to a 1:1 ratio. Conversely, the availability of NoxO1 serves to regulate the formation of ROS by the Nox1-centered NADPH oxidase.
Collapse
Affiliation(s)
- Dana Maureen Hebchen
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60298 Frankfurt, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60298 Frankfurt, Germany
| | - Niklas Müller
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60298 Frankfurt, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60298 Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, 60596 Frankfurt, Germany
| |
Collapse
|
4
|
Yamazaki S. The Nuclear NF-κB Regulator IκBζ: Updates on Its Molecular Functions and Pathophysiological Roles. Cells 2024; 13:1467. [PMID: 39273036 PMCID: PMC11393961 DOI: 10.3390/cells13171467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
More than a decade after the discovery of the classical cytoplasmic IκB proteins, IκBζ was identified as an additional member of the IκB family. Unlike cytoplasmic IκB proteins, IκBζ has distinct features, including its nuclear localization, preferential binding to NF-κB subunits, unique expression properties, and specialized role in NF-κB regulation. While the activation of NF-κB is primarily controlled by cytoplasmic IκB members at the level of nuclear entry, IκBζ provides an additional layer of NF-κB regulation in the nucleus, enabling selective gene activation. Human genome-wide association studies (GWAS) and gene knockout experiments in mice have elucidated the physiological and pathological roles of IκBζ. Despite the initial focus to its role in activated macrophages, IκBζ has since been recognized as a key player in the IL-17-triggered production of immune molecules in epithelial cells, which has garnered significant clinical interest. Recent research has also unveiled a novel molecular function of IκBζ, linking NF-κB and the POU transcription factors through its N-terminal region, whose role had remained elusive for many years.
Collapse
Affiliation(s)
- Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
5
|
Huang Q, Xing J, Li G, Liu M, Gao M, Wang J, Tang F, Ren J, Zhao C, Wang X, Zhou X, Luo H, Yu Y, Zeng D, Dai J, Xue F. LCN2 regulates the gut microbiota and metabolic profile in mice infected with Mycobacterium bovis. mSystems 2024; 9:e0050124. [PMID: 39051782 PMCID: PMC11334432 DOI: 10.1128/msystems.00501-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Infection with Mycobacterium bovis precipitates a spectrum of pathologies in bovines, notably necrotic pneumonia, mastitis, and arthritis, impinging upon the health and nutritional assimilation of these animals. A pivotal factor, lipocalin 2 (Lcn2), is responsive to microbial invasion, inflammatory processes, and tissue damage, the extent of which Lcn2 modulates the gut environment, however, remains unclear in response to M. bovis-induced alterations. To explore the role of Lcn2 in shaping the gut milieu of mice during a 5-week period post-M. bovis infection, Lcn2 knockout Lcn2-/- mice were scrutinized for changes in the gut microbiota and metabolomic profiles. Results showed that Lcn2-/- mice infected with M. bovis exhibited notable shifts in the operational taxonomic units (OTUs) of gut microbiota, alongside significant disparities in α and β diversity. Concomitantly, a marked increase was observed during the 5-week period in the abundance of Akkermansia, Oscillospira, and Bacteroides, coupled with a substantial decrease in Ruminococcus within the microbiome of Lcn2 knockout mice. Notably, Akkermansia muciniphila was significantly enriched in the gut flora of Lcn2-/- mice. Furthermore, the absence of Lcn2 significantly altered the gut metabolomic landscape, evidenced by elevated levels of metabolites such as taurodeoxycholic acid, 10-undecenoic acid, azelaic acid, and dodecanedioic acid in Lcn2-/- mice. Our findings demonstrated that the lack of Lcn2 in the context of M. bovis infection profoundly affected the regulation of gut microbiota and metabolomic components, culminating in a transformed gut environment. Our results revealed that Lcn2 may regulate gut microbiota and metabolome components, changing the intestinal environment, thereby affecting the infection status of M. bovis. IMPORTANCE Our study addresses the critical knowledge gap regarding the specific influence of lipocalin 2 (LCN2) in the context of Mycobacterium bovis infection, particularly focusing on its role in the gut environment. Utilizing LCN2 knockout (Lcn2-/-) mice, we meticulously assessed changes in the gut microbiota and metabolic components following M. bovis infection. Our findings reveal alterations in the gut microbial community, emphasizing the potentially crucial role of LCN2 in maintaining stability. Furthermore, we observed significant shifts in specific microbial communities, including the enrichment of Akkermansia muciniphila, known for its positive impact on intestinal health and immune regulation. The implications of our study extend beyond understanding the dynamics of the gut microbiome, offering insights into the potential therapeutic strategies for gut-related health conditions and microbial dysbiosis.
Collapse
Affiliation(s)
- Quntao Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junhong Xing
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guoli Li
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Mengting Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengtian Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jingwen Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengzhu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinru Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haodong Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Youli Yu
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Dexin Zeng
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Yang L, Hu M, Shao J. Integration of Gut Mycobiota and Oxidative Stress to Decipher the Roles of C-Type Lectin Receptors in Inflammatory Bowel Diseases. Immunol Invest 2024:1-28. [PMID: 39115960 DOI: 10.1080/08820139.2024.2388164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) and Crohn's disease (CD) are two subtypes of inflammatory bowel disease (IBD) with rapidly increased incidence worldwide. Although multiple factors contribute to the occurrence and progression of IBD, the role of intestinal fungal species (gut mycobiota) in regulating the severity of these conditions has been increasingly recognized. C-type lectin receptors (CLRs) on hematopoietic cells, including Dectin-1, Dectin-2, Dectin-3, Mincle and DC-SIGN, are a group of pattern recognition receptors (PRRs) that primarily recognize fungi and mediate defense responses, such as oxidative stress. Recent studies have demonstrated the indispensable role of CLRs in protecting the colon from intestinal inflammation and mucosal damage. METHODS AND RESULTS This review provides a comprehensive overview of the role of CLRs in the pathogenesis of IBD. Given the significant impact of mycobiota and oxidative stress in IBD, this review also discusses recent advancements in understanding how these factors exacerbate or ameliorate IBD. Furthermore, the latest developments in CLR-guided IBD therapy are examined to highlight the modulation of CLRs in fungal recognition and oxidative burst during the IBD process. CONCLUSION This review emphasizes the importance of CLRs in IBD, offering new perspectives on the etiology and therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
| | - Min Hu
- Department of pathology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, P. R. China
| |
Collapse
|
7
|
Lv T, Hou Z, Yang K, Wang J. IL-17 Mildly Rescued the Impaired Proliferation of Alveolar Epithelial Cells Induced by LCN2 Overexpression. Can Respir J 2024; 2024:9284430. [PMID: 39139502 PMCID: PMC11321888 DOI: 10.1155/2024/9284430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The impaired proliferative capacity of alveolar epithelial cells after injury is an important factor causing epithelial repair dysfunction, leading to the occurrence of idiopathic pulmonary fibrosis (IPF). Alveolar type 2 (AT2) cells as the stem cells of alveolar epithelium participate in the repair process after alveolar injury. Lipocalin-2 (LCN2) participates in multiple processes regulating the pathological process of alveolar epithelial cells, but the mechanisms involved are still unclear. Method We used a BLM-treated mouse model to characterize the expression of LCN2 in lung fibrosis regions and analyzed the location of LCN2 in alveolar epithelial cells. Moreover, human pulmonary alveolar epithelial cells (HPAEpiCs) were transfected with the LCN2 overexpression plasmid vector in vitro. Recombinant human interleukin-17 (IL-17) protein (rhIL-17) at different concentrations was administered to intervene in HPAEpiCs, observing cell viability and analyzing the concentration-dependent effect of IL-17. Results LCN2 was increased in the alveolar epithelium post-BLM injury, and highly expressed LCN2 was mainly concentrated on AT2 cells in BLM-injured lungs. Meanwhile, LCN2-overexpressing HPAEpiCs showed impaired cell viability and cell growth. HPAEpiC intervention with rhIL-17 mildly rescued the impaired cell proliferation induced by LCN2 overexpression, and the effect of IL-17 intervention was partially concentration-dependent. Conclusions The results revealed the reversed effect of IL-17 on the impaired proliferative capacity of the alveolar epithelium induced by LCN2 overexpression. The target alveolar epithelial cells regulated by this process were AT2 cells, providing new clues for alveolar epithelium repair after injury and the treatment of lung injury diseases.
Collapse
Affiliation(s)
- Tingting Lv
- Department of Respiratory and Critical Care MedicineBeijing Luhe HospitalCapital Medical University, Beijing 101100, China
| | - Ziliang Hou
- Department of Respiratory and Critical Care MedicineBeijing Luhe HospitalCapital Medical University, Beijing 101100, China
| | - Kaiyuan Yang
- Department of Respiratory and Critical Care MedicineBeijing Luhe HospitalCapital Medical University, Beijing 101100, China
| | - Jinxiang Wang
- Department of Respiratory and Critical Care MedicineBeijing Luhe HospitalCapital Medical University, Beijing 101100, China
| |
Collapse
|
8
|
Jelinsky S, Lee I, Monetti M, Breitkopf S, Martz F, Kongala R, Culver J, Vo V, Xue L, Gieseck R, Dickinson C, Kasaian M, Lord JD. Proteomic Differences in Colonic Epithelial Cells in Ulcerative Colitis Have an Epigenetic Basis. GASTRO HEP ADVANCES 2024; 3:830-841. [PMID: 39280905 PMCID: PMC11401595 DOI: 10.1016/j.gastha.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/30/2024] [Indexed: 09/18/2024]
Abstract
Background and Aims The colonic epithelium serves as both a barrier to lumenal contents and a gatekeeper of inflammatory responses. In ulcerative colitis (UC), epithelial dysfunction is a core feature, but little is known about the cellular changes that may underlie disease pathology. We therefore evaluated how the chromatin epigenetics and proteome of epithelial cells differs between health and UC. Methods We sorted live CD326+ epithelial cells from colon biopsies of healthy control (HC) screening colonoscopy recipients and from inflamed or uninflamed colon segments of UC patients on no biologic nor immunomodulator therapy (n = 5-7 subjects per group). Cell lysates were analyzed by proteomic evaluation and nuclei were analyzed for open chromatin with assay for transposase-accessible chromatin using sequencing. Results Proteins most highly elevated in inflamed UC biopsies relative to HC were those encoded by the HLA-DRA (P = 3.1 × 10-33) and CD74 (P = 1.6 × 10-27), genes associated with antigen presentation, and the antimicrobial dual oxidase 2 (DUOX2) (P = 3.2 × 10-28) and lipocalin-2 (P = 2.2 × 10-26) genes. Conversely, the water channel aquaporin 8 was strikingly less common with inflammation (P = 1.9 × 10-18). Assay for transposase-accessible chromatin using sequencing revealed more open chromatin around the aquaporin 8 gene in HCs (P = 2.0 × 10-2) and more around the DUOX2/DUOXA2 locus in inflamed UC colon (P = 5.7 × 10-4), suggesting an epigenetic basis for differential protein expression by epithelial cells in health and disease. Conclusion Numerous differences exist between the proteome and chromatin of colonic epithelial cells in UC patients and HCs, some of which correlate to suggest specific epigenetic mechanisms regulating the epithelial proteome.
Collapse
Affiliation(s)
- Scott Jelinsky
- Department of Inflammation and Immunology, Pfizer, Cambridge, Massachusetts
| | - Isac Lee
- Department of Inflammation and Immunology, Pfizer, Cambridge, Massachusetts
| | - Mara Monetti
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts
| | | | - Flora Martz
- Translational Research Program, Benaroya Research Institute, Seattle, Washington
| | - Ramya Kongala
- Translational Research Program, Benaroya Research Institute, Seattle, Washington
| | - Jeffrey Culver
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts
| | - Vanessa Vo
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts
| | - Liang Xue
- Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, Massachusetts
| | - Richard Gieseck
- Department of Inflammation and Immunology, Pfizer, Cambridge, Massachusetts
| | - Caitlyn Dickinson
- Department of Inflammation and Immunology, Pfizer, Cambridge, Massachusetts
| | - Marion Kasaian
- Department of Inflammation and Immunology, Pfizer, Cambridge, Massachusetts
| | - James D Lord
- Translational Research Program, Benaroya Research Institute, Seattle, Washington
| |
Collapse
|
9
|
Lee JY, Ma HW, Kim JH, Park IS, Son M, Ryu KH, Shin J, Kim SW, Cheon JH. Novel Histone Deacetylase 6 Inhibitor Confers Anti-inflammatory Effects and Enhances Gut Barrier Function. Gut Liver 2023; 17:766-776. [PMID: 36167345 PMCID: PMC10502503 DOI: 10.5009/gnl220159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022] Open
Abstract
Background/Aims The purpose of the current study was to examine the anti-inflammatory effects of CKD-506, a novel histone deacetylase 6 inhibitor, on human peripheral blood mononuclear cells (PBMCs) and CD4+ T cells and to explore the relationship between CKD-506 and gut epithelial barrier function. Methods Lipopolysaccharide-stimulated human PBMCs from inflammatory bowel disease (IBD) patients were treated with CKD-506, and tumor necrosis factor (TNF)-α expression was measured using an enzyme-linked immunosorbent assay. The proliferation of CD4+ T cells from IBD patients was evaluated using flow cytometric analysis. The effects of CKD-506 on gut barrier function in a cell line and colon organoids, based on examinations of mRNA production, goblet cell differentiation, and E-cadherin recovery, were investigated using quantitative reverse transcription polymerase chain reaction, immunofluorescence, and a fluorescein isothiocyanate-dextran permeability assay. Results Secretion of TNF-α, a pivotal pro-inflammatory mediator in IBD, by lipopolysaccharide-triggered PBMCs was markedly decreased by CKD-506 treatment in a dose-dependent manner and to a greater extent than by tofacitinib or tubastatin A treatment. E-cadherin mRNA expression and goblet cell differentiation increased significantly and dose-dependently in HT-29 cells in response to CKD-506, and inhibition of E-cadherin loss after TNF-α stimulation was significantly reduced both in HT-29 cells and gut organoids. Caco-2 cells treated with CKD-506 showed a significant reduction in barrier permeability in a dose-dependent manner. Conclusions The present study demonstrated that CKD-506 has anti-inflammatory effects on PBMCs and CD4 T cells and improves gut barrier function, suggesting its potential as a small-molecule therapeutic option for IBD.
Collapse
Affiliation(s)
- Jae-Young Lee
- Department of Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Woo Ma
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyung Kim
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - I Seul Park
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Mijeong Son
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Keun Ho Ryu
- Department of Non-Clinical Study, CKD Research Institute, CKD Pharmaceutical Co., Yongin, Korea
| | - Jieun Shin
- Department of Non-Clinical Study, CKD Research Institute, CKD Pharmaceutical Co., Yongin, Korea
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Long H, Zhu W, Wei L, Zhao J. Iron homeostasis imbalance and ferroptosis in brain diseases. MedComm (Beijing) 2023; 4:e298. [PMID: 37377861 PMCID: PMC10292684 DOI: 10.1002/mco2.298] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
Brain iron homeostasis is maintained through the normal function of blood-brain barrier and iron regulation at the systemic and cellular levels, which is fundamental to normal brain function. Excess iron can catalyze the generation of free radicals through Fenton reactions due to its dual redox state, thus causing oxidative stress. Numerous evidence has indicated brain diseases, especially stroke and neurodegenerative diseases, are closely related to the mechanism of iron homeostasis imbalance in the brain. For one thing, brain diseases promote brain iron accumulation. For another, iron accumulation amplifies damage to the nervous system and exacerbates patients' outcomes. In addition, iron accumulation triggers ferroptosis, a newly discovered iron-dependent type of programmed cell death, which is closely related to neurodegeneration and has received wide attention in recent years. In this context, we outline the mechanism of a normal brain iron metabolism and focus on the current mechanism of the iron homeostasis imbalance in stroke, Alzheimer's disease, and Parkinson's disease. Meanwhile, we also discuss the mechanism of ferroptosis and simultaneously enumerate the newly discovered drugs for iron chelators and ferroptosis inhibitors.
Collapse
Affiliation(s)
- Haining Long
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| | - Wangshu Zhu
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| | - Liming Wei
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| | - Jungong Zhao
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| |
Collapse
|
11
|
Gao ZY, Jiang YJ, Wang J, Li C, Zhang DL. Inhibition of angiotensin II type 1 receptor reduces oxidative stress damage to the intestinal barrier in severe acute pancreatitis. Kaohsiung J Med Sci 2023; 39:824-833. [PMID: 37132556 DOI: 10.1002/kjm2.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023] Open
Abstract
Intestinal barrier injury is a common complication of severe acute pancreatitis (SAP), which is often accompanied by intestinal mucosal barrier injury and results in serious consequences. However, the exact mechanism remains unclear. We aimed to investigate whether angiotensin II type 1 receptor (AT1)-mediated oxidative stress is involved in SAP intestinal barrier injury and assessed the effects of inhibiting this pathway. The SAP model was established by retrograde bile duct injection of sodium taurocholate (5%). The rats were divided into three groups: the control group (SO), the SAP group (SAP), and the azilsartan intervention group (SAP + AZL). Serum amylase, lipase, and other indexes were measured to evaluate SAP severity in each group. Histopathological changes in the pancreas and intestine were evaluated by HE staining. The oxidative stress of intestinal epithelial cells was detected by superoxide dismutase and glutathione. We also detected the expression and distribution of intestinal barrier-related proteins. The results showed that the serum indexes, the severity of tissue damage, and the level of oxidative stress in the SAP + AZL group were significantly lower than in the SAP group. Our study provided hitherto undocumented evidence of AT1 expression in the intestinal mucosa, confirming that AT1-mediated oxidative stress is involved in SAP intestinal mucosal injury, and inhibiting this pathway could effectively reduce intestinal mucosal oxidative stress injury, providing a new and effective target for the treatment of SAP intestinal barrier injury.
Collapse
Affiliation(s)
- Zhao-Yu Gao
- Department of the First General Surgery, Qingdao University, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ying-Jian Jiang
- Department of the First General Surgery, Qingdao University, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jiang Wang
- Department of the First General Surgery, Qingdao University, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Chang Li
- Department of the First General Surgery, Qingdao University, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Dian-Liang Zhang
- Department of the First General Surgery, Qingdao University, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
12
|
Song XJ, Yang CL, Chen D, Yang Y, Mao Y, Cao P, Jiang A, Wang W, Zhang Z, Tao W. Up-regulation of LCN2 in the anterior cingulate cortex contributes to neural injury-induced chronic pain. Front Cell Neurosci 2023; 17:1140769. [PMID: 37362002 PMCID: PMC10285483 DOI: 10.3389/fncel.2023.1140769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic pain caused by disease or injury affects more than 30% of the general population. The molecular and cellular mechanisms underpinning the development of chronic pain remain unclear, resulting in scant effective treatments. Here, we combined electrophysiological recording, in vivo two-photon (2P) calcium imaging, fiber photometry, Western blotting, and chemogenetic methods to define a role for the secreted pro-inflammatory factor, Lipocalin-2 (LCN2), in chronic pain development in mice with spared nerve injury (SNI). We found that LCN2 expression was upregulated in the anterior cingulate cortex (ACC) at 14 days after SNI, resulting in hyperactivity of ACC glutamatergic neurons (ACCGlu) and pain sensitization. By contrast, suppressing LCN2 protein levels in the ACC with viral constructs or exogenous application of neutralizing antibodies leads to significant attenuation of chronic pain by preventing ACCGlu neuronal hyperactivity in SNI 2W mice. In addition, administering purified recombinant LCN2 protein in the ACC could induce pain sensitization by inducing ACCGlu neuronal hyperactivity in naïve mice. This study provides a mechanism by which LCN2-mediated hyperactivity of ACCGlu neurons contributes to pain sensitization, and reveals a new potential target for treating chronic pain.
Collapse
Affiliation(s)
- Xiang-Jie Song
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen-Ling Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Danyang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yumeng Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu Mao
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Cao
- Department of Neurology, Stroke Center, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aijun Jiang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjuan Tao
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Xu S, Li X, Zhang S, Qi C, Zhang Z, Ma R, Xiang L, Chen L, Zhu Y, Tang C, Bourgonje AR, Li M, He Y, Zeng Z, Hu S, Feng R, Chen M. Oxidative stress gene expression, DNA methylation, and gut microbiota interaction trigger Crohn's disease: a multi-omics Mendelian randomization study. BMC Med 2023; 21:179. [PMID: 37170220 PMCID: PMC10173549 DOI: 10.1186/s12916-023-02878-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Oxidative stress (OS) is a key pathophysiological mechanism in Crohn's disease (CD). OS-related genes can be affected by environmental factors, intestinal inflammation, gut microbiota, and epigenetic changes. However, the role of OS as a potential CD etiological factor or triggering factor is unknown, as differentially expressed OS genes in CD can be either a cause or a subsequent change of intestinal inflammation. Herein, we used a multi-omics summary data-based Mendelian randomization (SMR) approach to identify putative causal effects and underlying mechanisms of OS genes in CD. METHODS OS-related genes were extracted from the GeneCards database. Intestinal transcriptome datasets were collected from the Gene Expression Omnibus (GEO) database and meta-analyzed to identify differentially expressed genes (DEGs) related to OS in CD. Integration analyses of the largest CD genome-wide association study (GWAS) summaries with expression quantitative trait loci (eQTLs) and DNA methylation QTLs (mQTLs) from the blood were performed using SMR methods to prioritize putative blood OS genes and their regulatory elements associated with CD risk. Up-to-date intestinal eQTLs and fecal microbial QTLs (mbQTLs) were integrated to uncover potential interactions between host OS gene expression and gut microbiota through SMR and colocalization analysis. Two additional Mendelian randomization (MR) methods were used as sensitivity analyses. Putative results were validated in an independent multi-omics cohort from the First Affiliated Hospital of Sun Yat-sen University (FAH-SYS). RESULTS A meta-analysis from six datasets identified 438 OS-related DEGs enriched in intestinal enterocytes in CD from 817 OS-related genes. Five genes from blood tissue were prioritized as candidate CD-causal genes using three-step SMR methods: BAD, SHC1, STAT3, MUC1, and GPX3. Furthermore, SMR analysis also identified five putative intestinal genes, three of which were involved in gene-microbiota interactions through colocalization analysis: MUC1, CD40, and PRKAB1. Validation results showed that 88.79% of DEGs were replicated in the FAH-SYS cohort. Associations between pairs of MUC1-Bacillus aciditolerans and PRKAB1-Escherichia coli in the FAH-SYS cohort were consistent with eQTL-mbQTL colocalization. CONCLUSIONS This multi-omics integration study highlighted that OS genes causal to CD are regulated by DNA methylation and host-microbiota interactions. This provides evidence for future targeted functional research aimed at developing suitable therapeutic interventions and disease prevention.
Collapse
Affiliation(s)
- Shu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaozhi Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Cancan Qi
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenhua Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine & TWINCORE, Joint Ventures Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Ruiqi Ma
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liyuan Xiang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lianmin Chen
- Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yijun Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ce Tang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Miaoxin Li
- Zhongshan School of Medicine, Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yao He
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shixian Hu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Rui Feng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Department of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-Sen University, Nanning, Guangxi, China.
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Benssouina FZ, Parat F, Villard C, Leloup L, Garrouste F, Sabatier JM, Ferhat L, Kovacic H. Overexpression of a Novel Noxo1 Mutant Increases Ros Production and Noxo1 Relocalisation. Int J Mol Sci 2023; 24:ijms24054663. [PMID: 36902094 PMCID: PMC10003393 DOI: 10.3390/ijms24054663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Noxo1, the organizing element of the Nox1-dependent NADPH oxidase complex responsible for producing reactive oxygen species, has been described to be degraded by the proteasome. We mutated a D-box in Noxo1 to express a protein with limited degradation and capable of maintaining Nox1 activation. Wild-type (wt) and mutated Noxo1 (mut1) proteins were expressed in different cell lines to characterize their phenotype, functionality, and regulation. Mut1 increases ROS production through Nox1 activity affects mitochondrial organization and increases cytotoxicity in colorectal cancer cell lines. Unexpectedly the increased activity of Noxo1 is not related to a blockade of its proteasomal degradation since we were unable in our conditions to see any proteasomal degradation either for wt or mut1 Noxo1. Instead, D-box mutation mut1 leads to an increased translocation from the membrane soluble fraction to a cytoskeletal insoluble fraction compared to wt Noxo1. This mut1 localization is associated in cells with a filamentous phenotype of Noxo1, which is not observed with wt Noxo1. We found that mut1 Noxo1 associates with intermediate filaments such as keratin 18 and vimentin. In addition, Noxo1 D-Box mutation increases Nox1-dependent NADPH oxidase activity. Altogether, Nox1 D-box does not seem to be involved in Noxo1 degradation but rather related to the maintenance of the Noxo1 membrane/cytoskeleton balance.
Collapse
|
15
|
Yang WH, Chen PH, Chang HH, Kwok HL, Stern A, Soo PC, Chen JH, Yang HC. Impaired immune response and barrier function in GSPD-1-deficient C. elegans infected with Klebsiella pneumoniae. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100181. [PMID: 36798906 PMCID: PMC9926097 DOI: 10.1016/j.crmicr.2023.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
gspd-1-RNAi knockdown Caenorhabditis elegans was used as an immune-compromised model to investigate the role of G6PD in host-pathogen interactions. A shorted lifespan, increased bacterial burden and bacterial translocation were observed in gspd-1-knockdown C. elegans infected with Klebsiella pneumoniae (KP). RNAseq revealed that the innate immune pathway, including clc-1 and tsp-1, was affected by gspd-1 knockdown. qPCR confirmed that tight junction (zoo-1, clc-1) and immune-associated genes (tsp-1) were down-regulated in gspd-1-knockdown C. elegans and following infection with KP. The down-regulation of antimicrobial effector lysozymes, including lys-1, lys-2, lys-7, lys-8, ilys-2 and ilys-3, was found in gspd-1-knockdown C. elegans infected with KP. Deletion of clc-1, tsp-1, lys-7, and daf-2 in gspd-1-knockdown C. elegans infected with KP abolished the shorten lifespan seen in the Mock control. GSPD-1 deficiency in C. elegans resulted in bacterial accumulation and lethality, possibly due to a defective immune response. These findings indicate that GSPD-1 has a protective role in microbial defense in C. elegans by preventing bacterial colonization through bacterial clearance.
Collapse
Affiliation(s)
- Wan-Hua Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Po-Hsiang Chen
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Hung-Hsin Chang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30041, Taiwan
| | - Hong Luen Kwok
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30041, Taiwan
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, NY, USA
| | - Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jiun-Han Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30041, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30041, Taiwan,Corresponding author.
| |
Collapse
|
16
|
Role of Zerumbone, a Phytochemical Sesquiterpenoid from Zingiber zerumbet Smith, in Maintaining Macrophage Polarization and Redox Homeostasis. Nutrients 2022; 14:nu14245402. [PMID: 36558562 PMCID: PMC9783216 DOI: 10.3390/nu14245402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophages and microglia are highly versatile cells that can be polarized into M1 and M2 phenotypes in response to diverse environmental stimuli, thus exhibiting different biological functions. In the central nervous system, activated resident macrophages and microglial cells trigger the production of proinflammatory mediators that contribute to neurodegenerative diseases and psychiatric disorders. Therefore, modulating the activation of macrophages and microglia by optimizing the inflammatory environment is beneficial for disease management. Several naturally occurring compounds have been reported to have anti-inflammatory and neuroprotective properties. Zerumbone is a phytochemical sesquiterpenoid and also a cyclic ketone isolated from Zingiber zerumbet Smith. In this study, we found that zerumbone effectively reduced the expression of lipocalin-2 in macrophages and microglial cell lines. Lipocalin-2, also known as neutrophil gelatinase-associated lipocalin (NGAL), has been characterized as an adipokine/cytokine implicated in inflammation. Moreover, supplement with zerumbone inhibited reactive oxygen species production. Phagocytic activity was decreased following the zerumbone supplement. In addition, the zerumbone supplement remarkably reduced the production of M1-polarization-associated chemokines CXC10 and CCL-2, as well as M1-polarization-associated cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-α. Furthermore, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 and the production of NO were attenuated in macrophages and microglial cells supplemented with zerumbone. Notably, we discovered that zerumbone effectively promoted the production of the endogenous antioxidants heme oxygenase-1, glutamate-cysteine ligase modifier subunit, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinone oxidoreductase-1 and remarkably enhanced IL-10, a marker of M2 macrophage polarization. Endogenous antioxidant production and M2 macrophage polarization were increased through activation of the AMPK/Akt and Akt/GSK3 signaling pathways. In summary, this study demonstrated the protective role of zerumbone in maintaining M1 and M2 polarization homeostasis by decreasing inflammatory responses and enhancing the production of endogenous antioxidants in both macrophages and microglia cells. This study suggests that zerumbone can be used as a potential therapeutic drug for the supplement of neuroinflammatory diseases.
Collapse
|
17
|
Redox and Metabolic Regulation of Intestinal Barrier Function and Associated Disorders. Int J Mol Sci 2022; 23:ijms232214463. [PMID: 36430939 PMCID: PMC9699094 DOI: 10.3390/ijms232214463] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The intestinal epithelium forms a physical barrier assembled by intercellular junctions, preventing luminal pathogens and toxins from crossing it. The integrity of tight junctions is critical for maintaining intestinal health as the breakdown of tight junction proteins leads to various disorders. Redox reactions are closely associated with energy metabolism. Understanding the regulation of tight junctions by cellular metabolism and redox status in cells may lead to the identification of potential targets for therapeutic interventions. In vitro and in vivo models have been utilized in investigating intestinal barrier dysfunction and in particular the free-living soil nematode, Caenorhabditis elegans, may be an important alternative to mammalian models because of its convenience of culture, transparent body for microscopy, short generation time, invariant cell lineage and tractable genetics.
Collapse
|
18
|
Shimizu H, Katsurahara K, Inoue H, Shiozaki A, Kosuga T, Kudou M, Arita T, Konishi H, Komatsu S, Fujiwara H, Morinaga Y, Konishi E, Otsuji E. NADPH Oxidase 2 Has a Crucial Role in Cell Cycle Progression of Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2022; 29:8677-8687. [PMID: 35972670 DOI: 10.1245/s10434-022-12384-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND NADPH oxidases (NOXs) are transmembrane proteins that generate reactive oxygen species. Recent studies have reported that NOXs are involved in tumor progression in various cancers. However, the expression and role of NOX2 in esophageal squamous cell carcinoma (ESCC) remain unclear. This study aimed to clarify the pathophysiologic role of NOX2 in patients with ESCC and cell lines. METHODS Two human ESCC cell lines (TE5 and KYSE170) were used for NOX2 transfection experiments, and the effects on cell proliferation, cell cycle, cell motility, and cell survival were analyzed. An mRNA microarray analysis was also performed to assess gene expression profiles. Additionally, NOX2 immunohistochemistry was performed on 130 primary ESCC tumor samples to assess the prognostic value of NOX2 in patients with ESCC. RESULTS NOX2 depletion significantly inhibited cell proliferation with the G0/G1 arrest and resulted in apoptosis in two cell lines. Microarray analysis revealed a strong relationship between NOX2 gene expression and the signaling pathway of cell cycle regulation by the B-cell translocation gene 2 (BTG2) family, including BTG2, CCNE2, E2F1, and CDK2 genes. Immunohistochemical staining revealed that high NOX2 protein expression was significantly associated with deeper tumor invasion and selected as one of the independent prognostic factors associated with the 5-year OS rate in patients with ESCC. CONCLUSIONS NOX2 expression in ESCC cells affects tumorigenesis, especially cell cycle progression via the BTG2-related signaling pathway, as well as the prognosis of patients with ESCC. NOX2 may be a novel biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keita Katsurahara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyuki Inoue
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Morinaga
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Wei X, Xue M, Kang C, Gao L, Zhang M, Ma C, Jia W, Zheng Y, Cao L, Chen P, Jiang S, Chu FF, Gao Q. Increased NOX1 and DUOX2 expression in the colonic mucosa of patients with chronic functional constipation. Medicine (Baltimore) 2022; 101:e30028. [PMID: 35960091 PMCID: PMC9371511 DOI: 10.1097/md.0000000000030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To determine whether oxidative stress and inflammation are associated with constipation by examining the expression of the main producers of reactive oxygen species, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, and pro-inflammatory cytokines in the colon of patients with chronic functional constipation. The colonic biopsies were collected from 32 patients with chronic functional constipation and 30 healthy subjects who underwent colonoscopy. Colonic mucosal histology was observed. Interleukin (IL)-1β, IL-6, IL-8 messenger RNA (mRNA), and 4 members of NADPH oxidase (NOX1, NOX2, DUOX2, and NOX4) protein and mRNA were assessed by immunohistochemistry, western blotting, and reverse transcription polymerase chain reaction. The tissues from both patients and healthy subjects showed normal histological structure without increase of inflammatory cells. NOX1 protein and mRNA levels were significantly increased compared to controls (P < .05). DUOX2 protein, but not mRNA, was increased by 2-fold compared to controls (P < .05). The levels of NOX2 and NOX4 protein and mRNA demonstrated no significant difference between patients and control subjects. The levels of IL-1β and IL-6 mRNA were significantly higher in constipation patients (P < .05), while IL-8 mRNA level was no different between the 2 groups. NADPH oxidase and pro-inflammatory cytokine might be involved in the pathogeneses of chronic functional constipation.
Collapse
Affiliation(s)
- Xiuqin Wei
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Mei Xue
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Chunbo Kang
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lei Gao
- Center of Digestive Endoscopy, Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Mengqiao Zhang
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Chao Ma
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Wei Jia
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yufeng Zheng
- Center of Digestive Endoscopy, Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Lei Cao
- Center of Digestive Endoscopy, Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Pan Chen
- Center of Digestive Endoscopy, Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Shujing Jiang
- Department of Acute Medicine, Queen Elizabeth Hospital, London, United Kingdom
| | - Fong-Fong Chu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Center of Digestive Endoscopy, Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Qiang Gao, Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, 15 Xixiazhuangnan Road, Shijingshan District, Beijing, 100144, China (e-mail: )
| |
Collapse
|
20
|
Hong M, Yu J, Wang X, Liu Y, Zhan S, Wu Z, Zhang X. Tea Polyphenols as Prospective Natural Attenuators of Brain Aging. Nutrients 2022; 14:3012. [PMID: 35893865 PMCID: PMC9332553 DOI: 10.3390/nu14153012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022] Open
Abstract
No organism can avoid the process of aging, which is often accompanied by chronic disease. The process of biological aging is driven by a series of interrelated mechanisms through different signal pathways, including oxidative stress, inflammatory states, autophagy and others. In addition, the intestinal microbiota play a key role in regulating oxidative stress of microglia, maintaining homeostasis of microglia and alleviating age-related diseases. Tea polyphenols can effectively regulate the composition of the intestinal microbiota. In recent years, the potential anti-aging benefits of tea polyphenols have attracted increasing attention because they can inhibit neuroinflammation and prevent degenerative effects in the brain. The interaction between human neurological function and the gut microbiota suggests that intervention with tea polyphenols is a possible way to alleviate brain-aging. Studies have been undertaken into the possible mechanisms underpinning the preventative effect of tea polyphenols on brain-aging mediated by the intestinal microbiota. Tea polyphenols may be regarded as potential neuroprotective substances which can act with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Jing Yu
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Xuanpeng Wang
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| |
Collapse
|
21
|
Oyelakin A, Nayak KB, Glathar AR, Gluck C, Wrynn T, Tugores A, Romano RA, Sinha S. EHF is a novel regulator of cellular redox metabolism and predicts patient prognosis in HNSCC. NAR Cancer 2022; 4:zcac017. [PMID: 35664541 PMCID: PMC9155246 DOI: 10.1093/narcan/zcac017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous disease with relatively high morbidity and mortality rates. The lack of effective therapies, high recurrence rates and drug resistance driven in part, by tumor heterogeneity, contribute to the poor prognosis for patients diagnosed with this cancer. This problem is further exacerbated by the fact that key regulatory factors contributing to the disease diversity remains largely elusive. Here, we have identified EHF as an important member of the ETS family of transcription factors that is highly expressed in normal oral tissues, but lost during HNSCC progression. Interestingly, HNSCC tumors and cell lines exhibited a dichotomy of high and low EHF expression, and patients whose tumors retained EHF expression showed significantly better prognosis, suggesting a potential tumor suppressive role for EHF. To address this, we have performed gain and loss of function studies and leveraged bulk and single-cell cancer genomic datasets to identify global EHF targets by RNA-sequencing (RNA-seq) and Chromatin Immunoprecipitation and next generation sequencing (ChIP-seq) experiments of HNSCC cell lines. These mechanistic studies have revealed that EHF, acts as a regulator of a broad spectrum of metabolic processes, specifically targeting regulators of redox homeostasis such as NRF2 and SOX2. Our immunostaining results confirm the mutually exclusive expression patterns of EHF and SOX2 in HNSCC tumors and suggest a possible role for these two factors in establishing discrete metabolic states within the tumor microenvironment. Taken together, EHF may serve as a novel prognostic marker for classifying HNSCC patients for actionable and targeted therapeutic intervention.
Collapse
Affiliation(s)
- Akinsola Oyelakin
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kasturi Bala Nayak
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Alexandra Ruth Glathar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christian Gluck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Theresa Wrynn
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Antonio Tugores
- Unidad de Investigación, Complejo Hospitalario Universitario Insular Materno Infantil Avda Maritima del Sur, Las Palmas de Gran Canaria, Spain
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
22
|
Liu R, Wang J, Chen Y, Collier JM, Capuk O, Jin S, Sun M, Mondal SK, Whiteside TL, Stolz DB, Yang Y, Begum G. NOX activation in reactive astrocytes regulates astrocytic LCN2 expression and neurodegeneration. Cell Death Dis 2022; 13:371. [PMID: 35440572 PMCID: PMC9018876 DOI: 10.1038/s41419-022-04831-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 01/13/2023]
Abstract
Reactive astrocytes (RA) secrete lipocalin-2 (LCN2) glycoprotein that regulates diverse cellular processes including cell death/survival, inflammation, iron delivery and cell differentiation. Elevated levels of LCN2 are considered as a biomarker of brain injury, however, the underlying regulatory mechanisms of its expression and release are not well understood. In this study, we investigated the role of astrocytic Na+/H+ exchanger 1 (NHE1) in regulating reactive astrocyte LCN2 secretion and neurodegeneration after stroke. Astrocyte specific deletion of Nhe1 in Gfap-CreER+/-;Nhe1f/f mice reduced astrogliosis and astrocytic LCN2 and GFAP expression, which was associated with reduced loss of NeuN+ and GRP78+ neurons in stroke brains. In vitro ischemia in astrocyte cultures triggered a significant increase of secreted LCN2 in astrocytic exosomes, which caused neuronal cell death and neurodegeneration. Inhibition of NHE1 activity during in vitro ischemia with its potent inhibitor HOE642 significantly reduced astrocytic LCN2+ exosome secretion. In elucidating the cellular mechanisms, we found that stroke triggered activation of NADPH oxidase (NOX)-NF-κB signaling and ROS-mediated LCN2 expression. Inhibition of astrocytic NHE1 activity attenuated NOX signaling and LCN2-mediated neuronal apoptosis and neurite degeneration. Our findings demonstrate for the first time that RA use NOX signaling to stimulate LCN2 expression and secretion. Blocking astrocytic NHE1 activity is beneficial to reduce LCN2-mediated neurotoxicity after stroke.
Collapse
Affiliation(s)
- Ruijia Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Wang
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Chen
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenelle M Collier
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Okan Capuk
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shijie Jin
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Ming Sun
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sujan K Mondal
- Department of Pathology, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Gulnaz Begum
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Li T, Kim D, Lee J. NADPH Oxidase Gene, FgNoxD, Plays a Critical Role in Development and Virulence in Fusarium graminearum. Front Microbiol 2022; 13:822682. [PMID: 35308369 PMCID: PMC8928025 DOI: 10.3389/fmicb.2022.822682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
NADPH oxidase is an enzyme that generates reactive oxygen species from oxygen and NADPH and is highly conserved in eukaryotes. In Fusarium graminearum, a series of different Nox enzymes have been identified. NoxA is involved in sexual development and ascospore production and, like NoxB, also contributes to pathogenicity. Both NoxA and NoxB are regulated by the subunit NoxR, whereas NoxC is usually self-regulated by EF-hand motifs found on the enzyme. In this study, we characterized another NADPH oxidase in F. graminearum, FgNoxD. In the FgNoxD deletion mutant, vegetative growth and conidia production were reduced, while sexual development was totally abolished. The FgNoxD deletion mutant also showed reduced resistance to cell wall perturbing agents; cell membrane inhibitors; and osmotic, fungicide, cold, and extracellular oxidative stress, when compared to the wild type. Moreover, in comparison to the wild type, the FgNoxD deletion mutant exhibited reduced virulence against the host plant. The FgNoxD deletion mutant produced less deoxynivalenol than the wild type, and the Tri5 and Tri6 gene expression was also downregulated. In conclusion, our findings show that FgNoxD is involved in the survival against various stresses, conidiation, sexual development, and virulence, highlighting this enzyme as a new target to control the disease caused by F. graminearum.
Collapse
Affiliation(s)
- Taiying Li
- Department of Applied Biology, Dong-A University, Busan, South Korea
| | - Dohyun Kim
- Department of Applied Biology, Dong-A University, Busan, South Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, South Korea
| |
Collapse
|
24
|
The Antiemetic Mechanisms of Gingerols against Chemotherapy-Induced Nausea and Vomiting. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1753430. [PMID: 35251202 PMCID: PMC8893993 DOI: 10.1155/2022/1753430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
Abstract
Chemotherapy-induced nausea and vomiting (CINV) is a common and painful side effect that occurs in cancer patients receiving chemotherapeutic drugs. Although an abundance of agents are applied to prevent CINV, there is still lack of effective control in delayed nausea and vomiting. Ginger (Zingiber officinale Rosc.), a traditional antiemetic herb, draws attention due to its therapeutic effect in treating acute and delayed CINV. Its main bioactive pungent constituents, gingerols, contribute to the antiemetic effect against CINV primarily. A growing number of reports have made progress in investigating the mechanisms of gingerols and their single ingredients against CINV. In this review, we searched for relevant studies in PubMed database to summarize the mechanism of gingerols in the prevention of CINV and provided a preliminary prediction on the potential targets and signaling pathways using network pharmacology, laying a foundation for further researches.
Collapse
|
25
|
Zuo J, Zhang Z, Li M, Yang Y, Zheng B, Wang P, Huang C, Zhou S. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role. Mol Cancer 2022; 21:30. [PMID: 35081965 PMCID: PMC8790843 DOI: 10.1186/s12943-021-01488-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/26/2021] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress (OS), characterized by the excessive accumulation of reactive oxygen species (ROS), is an emerging hallmark of cancer. Tumorigenesis and development driven by ROS require an aberrant redox homeostasis, that activates onco-signaling and avoids ROS-induced programmed death by orchestrating antioxidant systems. These processes are revealed to closely associate with noncoding RNAs (ncRNAs). On the basis of the available evidence, ncRNAs have been widely identified as multifarious modulators with the involvement of several key redox sensing pathways, such as NF-κB and Nrf2 signaling, therefore potentially becoming effective targets for cancer therapy. Furthermore, the vast majority of ncRNAs with property of easy detected in fluid samples (e.g., blood and urine) facilitate clinicians to monitor redox homeostasis, indicating a novel method for cancer diagnosis. Herein, focusing on carcinoma initiation, metastasis and chemoradiotherapy resistance, we aimed to discuss the ncRNAs-ROS network involved in cancer progression, and the potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Yun Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| |
Collapse
|
26
|
Liu D, Marie JC, Pelletier AL, Song Z, Ben-Khemis M, Boudiaf K, Pintard C, Leger T, Terrier S, Chevreux G, El-Benna J, Dang PMC. Protein Kinase CK2 Acts as a Molecular Brake to Control NADPH Oxidase 1 Activation and Colon Inflammation. Cell Mol Gastroenterol Hepatol 2022; 13:1073-1093. [PMID: 35031518 PMCID: PMC8873962 DOI: 10.1016/j.jcmgh.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS NADPH oxidase 1 (NOX1) has emerged as a prime regulator of intestinal mucosa immunity and homeostasis. Dysregulation of NOX1 may cause inflammatory bowel disease (IBD). It is not clear how NOX1 is regulated in vivo under inflammatory conditions. We studied the role of CK2 in this process. METHODS The NOX1 organizer subunit, NADPH oxidase organizer 1 (NOXO1), was immunoprecipitated from cytokine-treated colon epithelial cells, and bound proteins were identified by mass spectrometry analysis. Sites on NOXO1 phosphorylated by CK2 were identified by nanoscale liquid chromatography coupled to tandem mass spectrometry. NOX1 activity was determined in colon epithelial cells and colonoids in the presence or absence of CX-4945, a CK2 specific inhibitor. Acute colitis was induced by administration of trinitrobenzenesulfonic acid in mice treated or not with CX-4945. Colon tissues were analyzed by histologic examination, quantitative polymerase chain reaction, and Western blots. CK2 activity, markers of inflammation, and oxidative stress were assessed. RESULTS We identified CK2 as a major partner of NOXO1 in colon epithelial cells under inflammatory conditions. CK2 directly binds NOXO1 at the C-terminus containing the Phox homology domain and phosphorylates NOXO1 on several sites. CX-4945 increased ROS generation by NOX1 in human colon epithelial cells and organoids. Strikingly, CK2 activity was reduced in trinitrobenzenesulfonic acid-induced acute colitis, and CX-4945 exacerbated colitis inflammation as shown by increased levels of CXCL1, ROS generation, lipid peroxidation, and colon damage. CONCLUSIONS The ubiquitous protein kinase CK2 limits NOX1 activity via NOXO1 binding and phosphorylation in colonic epithelial cells and lessens experimental colitis. Loss of CK2 activity during acute colitis results in excessive ROS production, contributing to the pathogenesis. Strategies to activate CK2 could be an effective novel therapeutic approach in IBD.
Collapse
Affiliation(s)
- Dan Liu
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Jean-Claude Marie
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Anne-Laure Pelletier
- Service d'Hépato-Gastroentérologie et Cancérologie Digestive, Hôpital Bichat-Claude Bernard, Paris
| | - Zhuoyao Song
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Marwa Ben-Khemis
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Kaouthar Boudiaf
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Coralie Pintard
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Thibaut Leger
- Proteoseine@IJM, Institut Jacques Monod - Université Paris, Paris, France; Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères CEDEX, France
| | - Samuel Terrier
- Proteoseine@IJM, Institut Jacques Monod - Université Paris, Paris, France
| | - Guillaume Chevreux
- Proteoseine@IJM, Institut Jacques Monod - Université Paris, Paris, France
| | - Jamel El-Benna
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Pham My-Chan Dang
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris.
| |
Collapse
|
27
|
Effects of ShenLing BaiZhu San Supplementation on Gut Microbiota and Oxidative Stress in Rats with Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3960989. [PMID: 34630607 PMCID: PMC8500740 DOI: 10.1155/2021/3960989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 01/22/2023]
Abstract
The aim of this study was to evaluate the effect of gut microbiota and antioxidation of Shenling Baizhu San (SLBZS) as a supplement in a rat model of ulcerative colitis (UC) induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). Acute intestinal inflammation was induced in 40 male SD rats aged 4 weeks with 100 mg/kg TNBS, and then three dosages of SLBZS (0.5 g/kg, 1 g/kg, and 1.5 g/kg) were administered for eight days, respectively. Faecal microbiome composition was assessed by 16S rRNA high-throughput sequencing. The result indicated that SLBZS could reduce the diversity of gut microbiota and increased its abundance. At the genus level, the relative abundance of SCFAs producing bacteria including Prevotella and Oscillospira increased, while the relative abundance of opportunistic pathogens including Desulfovibrio and Bilophila decreased. Meanwhile, SLBZS could improve the lesions of colon and significantly reduce the level of MPO, increase the levels of SOD and CAT in rats' serum. These findings revealed that SLBZS was effective and possessed anticolitic activities in a rat model of UC by reducing macroscopical and microscopical colon injury, enhancing antioxidant capacity, and regulating gut microbiota.
Collapse
|
28
|
Petkov S, Chiodi F. Distinct transcriptomic profiles of naïve CD4+ T cells distinguish HIV-1 infected patients initiating antiretroviral therapy at acute or chronic phase of infection. Genomics 2021; 113:3487-3500. [PMID: 34425224 DOI: 10.1016/j.ygeno.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
We analyzed the whole transcriptome characteristics of blood CD4+ T naïve (TN) cells isolated from HIV-1 infected patients starting ART at acute (early ART = EA; n = 13) or chronic (late ART = LA; n = 11) phase of infection and controls (C; n = 15). RNA sequencing revealed 389 differentially expressed genes (DEGs) in EA and 810 in LA group in relation to controls. Comparison of the two groups of patients showed 183 DEGs. We focused on DEGs involved in apoptosis, inflammation and immune response. Clustering showed a poor separation of EA from C suggesting that these two groups present a similar transcriptomic profile of CD4+ TN cells. The comparison of EA and LA patients resulted in a high cluster purity revealing that different biological dysfunctions characterize EA and LA patients. The upregulated expression of several inflammatory chemokine genes distinguished the patient groups from C; CCL2 and CCL7, however, were downregulated in EA compared to LA patients. BCL2, an anti-apoptotic factor pivotal for naïve T cell homeostasis, distinguished both EA and LA from C. The expression of several DEGs involved in different inflammatory processes (TLR4, PTGS2, RAG1, IFNA16) was lower in EA compared LA. We conclude that although the transcriptome of CD4+ TN cells isolated from patients initiating ART at acute infection reveals a more quiescent phenotype, the survival profile of these cells still appears to be affected. Our results show that the detrimental process of inflammation is under more efficient control in EA patients.
Collapse
Affiliation(s)
- Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology at Biomedicum, Karolinska Institutet, Solna, Sweden.
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology at Biomedicum, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
29
|
Probiotics Prevent Hypertension in a Murine Model of Systemic Lupus Erythematosus Induced by Toll-Like Receptor 7 Activation. Nutrients 2021; 13:nu13082669. [PMID: 34444829 PMCID: PMC8399640 DOI: 10.3390/nu13082669] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Abstract
Our group tested the effects of Lactobacillus fermentum CECT5716 (LC40) and/or Bifidobacterium breve CECT7263 (BFM) in the prevention of gut dysbiosis, hypertension and endothelial dysfunction in a pharmacologically-induced model of systemic lupus erythematosus (SLE). We treated eight-week-old BALB/cByJRj mice without (Ctrl) or with the agonist of TLR-7 Imiquimod (IMQ) for 8 weeks. Concomitantly, LC40 (109 CFU/mL) and BFM (109 CFU/mL) were administered through oral gavage once a day. IMQ induced intestinal dysbiosis consisting of a decrease in the α-diversity measured with Chao-richness and numbers of species. LC40 and BFM did not restore these parameters. The three-dimensional principal component analysis of bacterial taxa in stool samples presented perfect clustering between Ctrl and IMQ groups. Clusters corresponding to LC40 and BFM were more akin to IMQ. BFM and LC40 were detected colonizing the gut microbiota of mice treated respectively. LC40 and BFM decreased plasma double-stranded DNA autoantibodies, and B cells in spleen, which were increased in the IMQ group. Also, LC40 and BFM treatments activated TLR9, reduced T cells activation, and Th17 polarization in mesenteric lymph nodes. Aortae from IMQ mice displayed a decreased endothelium-dependent vasodilator response to acetylcholine linked to pro-inflammatory and pro-oxidative status, which were normalized by both BFM and LC40. In conclusion, we demonstrate for the first time that the chronic treatment with LC40 or BFM prevented hypertension and endothelial dysfunction in a mouse lupus model induced by TLR-7 activation.
Collapse
|
30
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Jia J, Yang L, Cao Z, Wang M, Ma Y, Ma X, Liu Q, Teng J, Shi H, Liu H, Cheng X, Ye J, Su Y, Sun Y, Chi H, Liu T, Wang Z, Wan L, Yang C, Hu Q. Neutrophil-derived lipocalin-2 in adult-onset Still's disease: a novel biomarker of disease activity and liver damage. Rheumatology (Oxford) 2021; 60:304-315. [PMID: 32766690 PMCID: PMC7785307 DOI: 10.1093/rheumatology/keaa368] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Liver damage is a common manifestation and can be life-threatening in adult-onset Still's disease (AOSD), an autoinflammatory disease. The hallmark of AOSD is activation of neutrophils, whose infiltration in liver is suspected to promote tissue injury. Here we aimed to identify a candidate biomarker and to validate its association with liver damage in AOSD. METHODS Transcriptome analysis of neutrophils from treatment-naïve active AOSD patients and healthy donors was performed. Lipocalin-2 (LCN2) expression was assessed in neutrophils, plasma and liver biopsies of AOSD. The correlations of LCN2 with different variables and its ability to identify liver damage from AOSD patients were analysed. RESULTS LCN2, a novel biomarker in hepatic inflammation, was found to be upregulated in AOSD neutrophils by RNA sequencing and confirmed at the mRNA and protein levels. Plasma levels of LCN2 were significantly higher in AOSD patients than healthy controls, RA and SLE patients. Plasma LCN2 levels were closely correlated with inflammatory markers, systemic score, HScore and cytokines. Moreover, LCN2 levels were increased in active AOSD with liver involvement and independently associated with liver dysfunction. Enhanced expression of LCN2 was detected in liver biopsies from three patients with ongoing liver injury. Furthermore, the area under the curve value of LCN2 for identifying AOSD with liver injury from other liver diseases was 0.9694. CONCLUSION Our results reveal that neutrophils-derived LCN2 is higher in plasma and liver tissue in AOSD patients than in healthy controls, and it could serve as a potent biomarker for identifying AOSD with systemic inflammation, especially liver damage caused by hyperinflammation.
Collapse
Affiliation(s)
- Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Luyu Yang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University
| | - Zhujun Cao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Mengyan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yuning Ma
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiaoyan Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhihong Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Liyan Wan
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
32
|
Zhang Y, Chandra V, Riquelme Sanchez E, Dutta P, Quesada PR, Rakoski A, Zoltan M, Arora N, Baydogan S, Horne W, Burks J, Xu H, Hussain P, Wang H, Gupta S, Maitra A, Bailey JM, Moghaddam SJ, Banerjee S, Sahin I, Bhattacharya P, McAllister F. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med 2021; 217:152058. [PMID: 32860704 PMCID: PMC7953739 DOI: 10.1084/jem.20190354] [Citation(s) in RCA: 239] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy with an immunosuppressive microenvironment that is resistant to most therapies. IL17 is involved in pancreatic tumorigenesis, but its role in invasive PDAC is undetermined. We hypothesized that IL17 triggers and sustains PDAC immunosuppression. We inhibited IL17/IL17RA signaling using pharmacological and genetic strategies alongside mass cytometry and multiplex immunofluorescence techniques. We uncovered that IL17 recruits neutrophils, triggers neutrophil extracellular traps (NETs), and excludes cytotoxic CD8 T cells from tumors. Additionally, IL17 blockade increases immune checkpoint blockade (PD-1, CTLA4) sensitivity. Inhibition of neutrophils or Padi4-dependent NETosis phenocopies IL17 neutralization. NMR spectroscopy revealed changes in tumor lactate as a potential early biomarker for IL17/PD-1 combination efficacy. Higher expression of IL17 and PADI4 in human PDAC corresponds with poorer prognosis, and the serum of patients with PDAC has higher potential for NETosis. Clinical studies with IL17 and checkpoint blockade represent a novel combinatorial therapy with potential efficacy for this lethal disease.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erick Riquelme Sanchez
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX.,Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Prasanta Dutta
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pompeyo R Quesada
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amanda Rakoski
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michelle Zoltan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Seyda Baydogan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Jared Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hanwen Xu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Perwez Hussain
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sonal Gupta
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anirban Maitra
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer M Bailey
- Department of Gastroenterology, University of Texas Health Sciences Center, Houston, TX
| | - Seyed J Moghaddam
- Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sulagna Banerjee
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL
| | - Ismet Sahin
- Department of Engineering, Texas Southern University, Houston, TX
| | - Pratip Bhattacharya
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX.,Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
33
|
Lin J, Li G, Xu C, Lu H, Zhang C, Pang Z, Liu Z. Monocyte Chemotactic Protein 1-Induced Protein 1 Is Highly Expressed in Inflammatory Bowel Disease and Negatively Regulates Neutrophil Activities. Mediators Inflamm 2020; 2020:8812020. [PMID: 33488293 PMCID: PMC7803109 DOI: 10.1155/2020/8812020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Monocyte chemotactic protein 1-induced protein 1 (MCPIP-1) is highly expressed in activated immune cells and plays an important role in negatively regulating immune responses. However, its role in regulating neutrophil functions in the pathogenesis of inflammatory bowel disease (IBD) is still unclear. Here, we found that MCPIP-1 was markedly increased at both the transcriptional and translational levels in inflamed mucosa of IBD patients compared with healthy controls, which was mainly expressed in neutrophils. Interestingly, MG-132, a proteasome inhibitor reducing the degradation of MCPIP-1, further facilitated neutrophils to express MCPIP-1 in vitro. Importantly, MCPIP-1 markedly downregulated the production of ROS, MPO, and proinflammatory cytokines (e.g., interleukin-1β, interleukin-6, tumor necrosis factor-α, interleukin-8, and interferon-γ) and suppressed the migration of IBD neutrophils. Consistently, the same functional changes were observed in neutrophils from mice with myeloid-targeted overexpression of MCPIP-1 as MG-132 did. Altogether, these findings suggest that MCPIP-1 plays a negative role in regulating neutrophil activities through suppressing the production of ROS, MPO, and proinflammatory cytokines and inhibiting the migration. MG-132 may partially modulate the function of neutrophils via the induction of MCPIP-1. Therefore, targeting MCPIP-1 or exogenous supplementation of MG-132 may provide a therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Jian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, Affiliated Hospital of Putian University, Putian, China
| | - Gengfeng Li
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Chunjin Xu
- Department of Gastroenterology, The First People's Hospital of Shangqiu City Affiliated to Xinxiang Medical University, Shangqiu, China
| | - Huiying Lu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Cui Zhang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhi Pang
- Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Ledwaba SE, Costa DVS, Bolick DT, Giallourou N, Medeiros PHQS, Swann JR, Traore AN, Potgieter N, Nataro JP, Guerrant RL. Enteropathogenic Escherichia coli Infection Induces Diarrhea, Intestinal Damage, Metabolic Alterations, and Increased Intestinal Permeability in a Murine Model. Front Cell Infect Microbiol 2020; 10:595266. [PMID: 33392105 PMCID: PMC7773950 DOI: 10.3389/fcimb.2020.595266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Enteropathogenic E. coli (EPEC) are recognized as one of the leading bacterial causes of infantile diarrhea worldwide. Weaned C57BL/6 mice pretreated with antibiotics were challenged orally with wild-type EPEC or escN mutant (lacking type 3 secretion system) to determine colonization, inflammatory responses and clinical outcomes during infection. Antibiotic disruption of intestinal microbiota enabled efficient colonization by wild-type EPEC resulting in growth impairment and diarrhea. Increase in inflammatory biomarkers, chemokines, cellular recruitment and pro-inflammatory cytokines were observed in intestinal tissues. Metabolomic changes were also observed in EPEC infected mice with changes in tricarboxylic acid (TCA) cycle intermediates, increased creatine excretion and shifts in gut microbial metabolite levels. In addition, by 7 days after infection, although weights were recovering, EPEC-infected mice had increased intestinal permeability and decreased colonic claudin-1 levels. The escN mutant colonized the mice with no weight loss or increased inflammatory biomarkers, showing the importance of the T3SS in EPEC virulence in this model. In conclusion, a murine infection model treated with antibiotics has been developed to mimic clinical outcomes seen in children with EPEC infection and to examine potential roles of selected virulence traits. This model can help in further understanding mechanisms involved in the pathogenesis of EPEC infections and potential outcomes and thus assist in the development of potential preventive or therapeutic interventions.
Collapse
Affiliation(s)
- Solanka E. Ledwaba
- Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Deiziane V. S. Costa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - David T. Bolick
- Center for Global Health, Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Natasa Giallourou
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, London, England
| | | | - Jonathan R. Swann
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, London, England
| | - Afsatou N. Traore
- Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Natasha Potgieter
- Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Richard L. Guerrant
- Center for Global Health, Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
35
|
Hertati A, Hayashi S, Ogawa Y, Yamamoto T, Kadowaki M. Interleukin-4 Receptor α Subunit Deficiency Alleviates Murine Intestinal Inflammation In Vivo Through the Enhancement of Intestinal Mucosal Barrier Function. Front Pharmacol 2020; 11:573470. [PMID: 33192516 PMCID: PMC7656058 DOI: 10.3389/fphar.2020.573470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
Disturbance of epithelial barrier function causes chronic intestinal inflammation such as inflammatory bowel disease. Several studies have reported that Th2 cytokines such as interleukin (IL)-4 and IL-13 play an important role in the regulation of intestinal barrier function. However, the precise role of the IL-4 receptor α subunit (IL-4Rα) in intestinal inflammation remains unclear. Thus, we used an experimental colitis model to investigate the role of IL-4Rα in intestinal inflammation. IL-4Rα-deficient (IL-4Rα-/-) mice and their littermate wild-type (WT) mice were used. Experimental colitis was induced by administration of 3% dextran sulfate sodium (DSS) in the drinking water for seven days. Treatment with DSS caused body weight loss, an increase in the disease activity index and histological abnormalities in WT colitis mice, all of which were significantly attenuated in IL-4Rα-/- colitis mice. Neutrophil infiltration in the colonic mucosa was reduced in IL-4Rα-/- colitis mice compared with WT colitis mice. NADPH oxidase 1 expression and reactive oxygen species production were increased in the colons of IL-4Rα-/- mice. Furthermore, elevated intestinal permeability induced by DSS treatment was suppressed in IL-4Rα-/- colitis mice. These results demonstrate that IL-4Rα-/- mice exhibit reduced susceptibility to DSS-induced colitis. Our present findings suggest that IL-4Rα deficiency enhances intestinal mucosal barrier function through the upregulation of NADPH oxidase 1-dependent reactive oxygen species production, thereby suppressing the development of intestinal inflammation.
Collapse
Affiliation(s)
- Ai Hertati
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan.,Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Yudai Ogawa
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
36
|
Basak D, Uddin MN, Hancock J. The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC). Cancers (Basel) 2020; 12:E3336. [PMID: 33187272 PMCID: PMC7698080 DOI: 10.3390/cancers12113336] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
An altered redox status accompanied by an elevated generation of reactive oxygen/nitrogen species (ROS/RNS) has been implicated in a number of diseases including colorectal cancer (CRC). CRC, being one of the most common cancers worldwide, has been reported to be associated with multiple environmental and lifestyle factors (e.g., dietary habits, obesity, and physical inactivity) and harboring heightened oxidative stress that results in genomic instability. Although under normal condition ROS regulate many signal transduction pathways including cell proliferation and survival, overwhelming of the antioxidant capacity due to metabolic abnormalities and oncogenic signaling leads to a redox adaptation response that imparts drug resistance. Nevertheless, excessive reliance on elevated production of ROS makes the tumor cells increasingly vulnerable to further ROS insults, and the abolition of such drug resistance through redox perturbation could be instrumental to preferentially eliminate them. The goal of this review is to demonstrate the evidence that links redox stress to the development of CRC and assimilate the most up-to-date information that would facilitate future investigation on CRC-associated redox biology. Concomitantly, we argue that the exploitation of this distinct biochemical property of CRC cells might offer a fresh avenue to effectively eradicate these cells.
Collapse
Affiliation(s)
- Debasish Basak
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| | | | - Jake Hancock
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| |
Collapse
|
37
|
Khajah MA, EL-Hashim AZ, Orabi KY, Hawai S, Sary HG. Onion bulb extract can both reverse and prevent colitis in mice via inhibition of pro-inflammatory signaling molecules and neutrophil activity. PLoS One 2020; 15:e0233938. [PMID: 33095803 PMCID: PMC7584208 DOI: 10.1371/journal.pone.0233938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Background Onion is one of the most commonly used plants in the traditional medicine for the treatment of various diseases. We recently demonstrated the anti-inflammatory properties of onion bulb extract (OBE) in reducing colitis severity in mice when administered at the same time of colitis induction. However, whether onion can reverse established colitis or even prevent its development has not been investigated. Hypothesis To test 1. whether OBE can reduce colitis severity when given either before (preventative approach) or after (treatment approach) colitis induction and if so, 2. what are the mechanisms by which onion can achieve these effects. Methods Colitis was induced by dextran sulfate sodium (DSS) administration using treatment and preventative approaches. The severity of the inflammation was determined by the gross and histological assessments. The colonic level/activity of pro-inflammatory molecules and immune cell markers was assessed by immunofluorescence and western blotting analysis. In vitro neutrophil superoxide release and survival was assessed by chemilumenecense and Annexin-V/7AAD assays respectively. Results OBE treatment significantly reduced colitis severity in both approaches, the colonic expression/activity profile of pro-inflammatory molecules, inhibited WKYMVm-induced superoxide release, and increased spontaneous apoptosis of neutrophils in vitro. Conclusions OBE can be used as an effective option in the prevention and/or the treatment of established colitis.
Collapse
Affiliation(s)
- Maitham A. Khajah
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Kuwait University, Safat, Kuwait
- * E-mail: ,
| | - Ahmed Z. EL-Hashim
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Kuwait University, Safat, Kuwait
| | - Khaled Y. Orabi
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kuwait University, Safat, Kuwait
| | - Sanaa Hawai
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Kuwait University, Safat, Kuwait
| | - Hanan G. Sary
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kuwait University, Safat, Kuwait
| |
Collapse
|
38
|
Madreiter-Sokolowski CT, Thomas C, Ristow M. Interrelation between ROS and Ca 2+ in aging and age-related diseases. Redox Biol 2020; 36:101678. [PMID: 32810740 PMCID: PMC7451758 DOI: 10.1016/j.redox.2020.101678] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca2+) and reactive oxygen species (ROS) are versatile signaling molecules coordinating physiological and pathophysiological processes. While channels and pumps shuttle Ca2+ ions between extracellular space, cytosol and cellular compartments, short-lived and highly reactive ROS are constantly generated by various production sites within the cell. Ca2+ controls membrane potential, modulates mitochondrial adenosine triphosphate (ATP) production and affects proteins like calcineurin (CaN) or calmodulin (CaM), which, in turn, have a wide area of action. Overwhelming Ca2+ levels within mitochondria efficiently induce and trigger cell death. In contrast, ROS comprise a diverse group of relatively unstable molecules with an odd number of electrons that abstract electrons from other molecules to gain stability. Depending on the type and produced amount, ROS act either as signaling molecules by affecting target proteins or as harmful oxidative stressors by damaging cellular components. Due to their wide range of actions, it is little wonder that Ca2+ and ROS signaling pathways overlap and impact one another. Growing evidence suggests a crucial implication of this mutual interplay on the development and enhancement of age-related disorders, including cardiovascular and neurodegenerative diseases as well as cancer.
Collapse
Affiliation(s)
- Corina T Madreiter-Sokolowski
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland; Holder of an Erwin Schroedinger Abroad Fellowship, Austrian Science Fund (FWF), Austria.
| | - Carolin Thomas
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| |
Collapse
|
39
|
Dang PMC, Rolas L, El-Benna J. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives. Antioxid Redox Signal 2020; 33:354-373. [PMID: 31968991 DOI: 10.1089/ars.2020.8018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite their intrinsic cytotoxic properties, mounting evidence indicates that reactive oxygen species (ROS) physiologically produced by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) of epithelial cells (NOX1, dual oxidase [DUOX]2) and phagocytes (NOX2) are critical for innate immune response and homeostasis of the intestinal mucosa. However, dysregulated ROS production could be a driving factor in inflammatory bowel diseases (IBDs). Recent Advances: In addition to NOX2, recent studies have demonstrated that NOX1- and DUOX2-derived ROS can regulate intestinal innate immune defense and homeostasis by impacting many processes, including bacterial virulence, expression of bacteriostatic proteins, epithelial renewal and restitution, and microbiota composition. Moreover, the antibacterial role of DUOX2 is a function conserved in evolution as it has been described in invertebrates, and lower and higher vertebrates. In humans, variants of the NOX2, NOX1, and DUOX2 genes, which are associated with impaired ROS production, have been identified in very early onset IBD, but overexpression of NOX/DUOX, especially DUOX2, has also been described in IBD, suggesting that loss-of-function or excessive activity of the ROS-generating enzymes could contribute to disease progression. Critical Issues: Therapeutic perspectives aiming at targeting NOX/DUOX in IBD should take into account the two sides of NOX/DUOX-derived ROS in intestinal inflammation. Hence, NOX/DUOX inhibitors or ROS inducers should be considered as a function of the disease context. Future Directions: A thorough understanding of the physiological and pathological regulation of NOX/DUOX in the gastrointestinal tract is an absolute pre-requisite for the development of therapeutic strategies that can modulate ROS levels in space and time.
Collapse
Affiliation(s)
- Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| | - Loïc Rolas
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| |
Collapse
|
40
|
Zhu L, Xu LZ, Zhao S, Shen ZF, Shen H, Zhan LB. Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis. Appl Microbiol Biotechnol 2020; 104:5449-5460. [PMID: 32322944 DOI: 10.1007/s00253-020-10527-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
Abstract
Baicalin is reported as an effective drug for ulcerative colitis (UC). However, its effect on gut microbiota and short-chain fatty acids (SCFAs) remains unknown. In this study, we investigated the role of baicalin on Th17/Treg balance, gut microbiota community, and SCFAs levels in trinitrobenzene sulphonic acid (TNBS)-induced UC rat model. We found the DAI scores were significantly increased in the TNBS-treated rats, while reduced in the baicalin-treated group in a dose-dependent manner, accompanied with the alleviation of mucosal injury, the reduction of ZO-1, Occludin, and MUC2 expression. At the meanwhile, baicalin repressed the increased levels of reactive oxygen species (ROS) and MDA, while deceased the GSH and SOD levels in colon tissue of rats treated with TNBS. On the other hand, administration of baicalin attenuated the TNBS-induced upregulations of Th17/Treg ratio, indicating a strong amelioration in the colorectal inflammation. More importantly, pyrosequencing of the V4 regions of 16S rRNA genes in rat feces revealed a deviation of the gut microbiota in response to baicalin treatment. In particular, the decreased Firmicutes-to-Bacteroidetes ratios and endotoxin-bearing Proteobacteria levels indicated that baicalin reversed TNBS-induced gut dysbiosis OTUs. In addition, we further investigated the fecal levels of major SCFAs in rats and found that baicalin significantly resorted the fecal butyrate levels in rats treated with TNBS. The increased butyrate levels were in consistent with the higher abundance of butyrate-producing species such as Butyricimonas spp., Roseburia spp., Subdoligranulum spp., and Eubacteriu spp. in baicalin-treated group. In conclusion, our findings suggest that baicalin possibly protected rats against ulcerative colitis by regulation of Th17/Treg balance, and modulation of both gut microbiota and SCFAs. Baicalin may be used as a prebiotic agent to treat ulcerative colitis-associated inflammation and gut dysbiosis.
Collapse
Affiliation(s)
- Lei Zhu
- Nanjing University of Chinese Medicine, No.138, Xianlin Road, Nanjing, 210029, Jiangsu, China.,Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Lu-Zhou Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Song Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Zhao-Feng Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| | - Li-Bin Zhan
- Nanjing University of Chinese Medicine, No.138, Xianlin Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
41
|
Wu S, Pan L, Liao H, Yao W, Shen N, Chen C, Liu D, Ge M. High-fat diet increased NADPH-oxidase-related oxidative stress and aggravated LPS-induced intestine injury. Life Sci 2020; 253:117539. [PMID: 32165213 DOI: 10.1016/j.lfs.2020.117539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
AIMS Lipopolysaccharide (LPS)-induced intestinal injury is a common clinical feature of sepsis. Aggravated inflammation and higher sensitivity to infection are associated with high-fat diet (HFD) in patients with type 2 diabetes and/or obesity. However, the mechanism by which HFD exacerbates LPS-induced intestinal injury has not been elucidated. This study aims to examine the effects of HFD on intestinal injury induced by LPS and the underlying mechanism. MAIN METHODS Mice were fed with HFD or regular chow for 12weeks and were then challenged with LPS. Vas2870 was administered to mice that received HFD before the initiation of the diet. The levels of tight junction protein expression, oxidative stress, organ injury, and nicotinamide adenine dinucleotide phosphate (NADPH)-associated proteins were assessed periodically. KEY FINDINGS LPS treatment resulted in severe intestinal pathological injury and increased oxidative stress, evidenced by significantly increased serum diamine oxidase, reactive oxygen species, malondialdehyde, and intestinal fatty acid binding protein contents. Additionally, a decrease in tight junction protein expression was observed, indicating a loss of tight junction integrity. LPS treatment induced the expression of Nox2 and Nox4. All the effects were more severe in HFD mice. Treatment with vas2870 conferred protection against LPS-induced intestinal injury in HFD-fed mice, partially reduced oxidative stress, and rescued the expression of tight junction proteins. CONCLUSION HFD aggravated LPS-induced intestine injury through exacerbating intestinal Nox-related oxidative stress, which led to a loss of the integrity of tight junctions and consequently increased intestinal permeability.
Collapse
Affiliation(s)
- Shan Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Lijie Pan
- Vaccine Research Institute of Sun Yat-sen University, Guangzhou 510630, China
| | - Haofeng Liao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ning Shen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Dezhao Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Mian Ge
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
42
|
Ghosh S, Stepicheva N, Yazdankhah M, Shang P, Watson AM, Hose S, Liu H, Weiss J, Zigler JS, Valapala M, Watkins SC, Sinha D. The role of lipocalin-2 in age-related macular degeneration (AMD). Cell Mol Life Sci 2020; 77:835-851. [PMID: 31901947 PMCID: PMC7079812 DOI: 10.1007/s00018-019-03423-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Lipocalins are a family of secreted adipokines which play important roles in various biological processes. Lipocalin-2 (LCN-2) has been shown to be involved in acute and chronic inflammation. This particular protein is critical in the pathogenesis of several diseases including cancer, diabetes, obesity, and multiple sclerosis. Herein, we discuss the general molecular basis for the involvement of LCN-2 in acute infections and chronic disease progression and also ascertain the probable role of LCN-2 in ocular diseases, particularly in age-related macular degeneration (AMD). We elaborate on the signaling cascades which trigger LCN-2 upregulation in AMD and suggest therapeutic strategies for targeting such pathways.
Collapse
Affiliation(s)
- Sayan Ghosh
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - Nadezda Stepicheva
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Meysam Yazdankhah
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Peng Shang
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Alan M Watson
- Center for Biologic Imaging and Department of Cellular Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Haitao Liu
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Joseph Weiss
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - J Samuel Zigler
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Simon C Watkins
- Center for Biologic Imaging and Department of Cellular Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Cell Biology and Developmental Biology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
43
|
Shamoon M, Martin NM, O'Brien CL. Recent advances in gut Microbiota mediated therapeutic targets in inflammatory bowel diseases: Emerging modalities for future pharmacological implications. Pharmacol Res 2019; 148:104344. [PMID: 31400403 DOI: 10.1016/j.phrs.2019.104344] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 02/09/2023]
Abstract
The inflammatory bowel diseases (IBDs) are chronic inflammatory conditions, which are increasing in prevalence worldwide. The IBDs are thought to result from an aberrant immune response to gut microbes in genetically susceptible individuals. Dysbiosis of the gut microbiome, both functional and compositional, promotes patient susceptibility to colonization by pathobionts. Manipulating gut microbial communities and gut microbiota-immune system interactions to restore gut homeostasis or reduce inflammation are appealing therapeutic models. We discuss the therapeutic potential of precision microbiota editing, natural and engineered probiotics, the use of gut microbiota-derived metabolites in colitogenic phenotypes, and intestinal stem cells, in maintaining gut microbiota balance, restoring the mucosal barrier, and having positive immunomodulatory effects in experimental IBD. This review highlights that we are only just beginning to understand the complexity of the microbiota and how it can be manipulated for health benefits, including treatment and prevention of the clinical IBDs in future.
Collapse
Affiliation(s)
- Muhammad Shamoon
- Biology Section, Shandong Normal University Affiliated Senior School, Jinan 250001, PR China
| | - Natalia M Martin
- Medical School, The Australian National University, Canberra ACT 2600, Australia
| | - Claire L O'Brien
- Medical School, The Australian National University, Canberra ACT 2600, Australia; IBD Research Group, Canberra Hospital, Canberra, Australia.
| |
Collapse
|
44
|
He Y, Sang Z, Zhuo Y, Wang X, Guo Z, He L, Zeng C, Dai H. Transport stress induces pig jejunum tissue oxidative damage and results in autophagy/mitophagy activation. J Anim Physiol Anim Nutr (Berl) 2019; 103:1521-1529. [DOI: 10.1111/jpn.13161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/20/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Yulong He
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Zhan Sang
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Yisha Zhuo
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Xueyi Wang
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Zeheng Guo
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Lihua He
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Cuiping Zeng
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Hanchuan Dai
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| |
Collapse
|