1
|
Chuhma N, Rayport S. Regional heterogeneity in the membrane properties of mouse striatal neurons. Front Cell Neurosci 2024; 18:1412897. [PMID: 39144155 PMCID: PMC11321984 DOI: 10.3389/fncel.2024.1412897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 08/16/2024] Open
Abstract
The cytoarchitecture of the striatum is remarkably homogeneous, in contrast to the regional variation in striatal functions. Whether differences in the intrinsic membrane properties of striatal neurons contribute to regional heterogeneity has not been addressed systematically. We made recordings throughout the young adult mouse striatum under identical conditions, with synaptic input blocked, from four major striatal neuron types, namely, the two subtypes of spiny projection neurons (SPNs), cholinergic interneurons (ChIs), and fast-spiking GABAergic interneurons (FSIs), sampling at least 100 cells per cell type. Regional variation manifested across all cell types. All cell types in the nucleus accumbens (NAc) shell had higher input impedance and increased excitability. Cells in the NAc core were differentiated from the caudate-putamen (CPu) for both SPN subtypes by smaller action potentials and increased excitability. Similarity between the two SPN subtypes showed regional variation, differing more in the NAc than in the CPu. So, in the Str, both the intrinsic properties of interneurons and projection neurons are regionally heterogeneous, with the greatest difference between the NAc and CPu; greater excitability of NAc shell neurons may make the region more susceptible to activity-dependent plasticity.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Pochapski JA, Gómez-A A, Stringfield SJ, Jaggers H, Boettiger CA, Da Cunha C, Robinson DL. Adolescent alcohol exposure persistently alters orbitofrontal cortical encoding of Pavlovian conditional stimulus components in female rats. Sci Rep 2024; 14:13775. [PMID: 38877100 PMCID: PMC11178901 DOI: 10.1038/s41598-024-64036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Exposure to alcohol during adolescence impacts cortical and limbic brain regions undergoing maturation. In rodent models, long-term effects on behavior and neurophysiology have been described after adolescent intermittent ethanol (AIE), especially in males. We hypothesized that AIE in female rats increases conditional approach to a reward-predictive cue and corresponding neuronal activity in the orbitofrontal cortex (OFC) and nucleus accumbens (NAc). We evaluated behavior and neuronal firing after AIE (5 g/kg intragastric) or water (CON) in adult female rats. Both AIE and CON groups expressed a ST phenotype, and AIE marginally increased sign-tracking (ST) and decreased goal-tracking (GT) metrics. NAc neurons exhibited phasic firing patterns to the conditional stimulus (CS), with no differences between groups. In contrast, neuronal firing in the OFC of AIE animals was greater at CS onset and offset than in CON animals. During reward omission, OFC responses to CS offset normalized to CON levels, but enhanced OFC firing to CS onset persisted in AIE. We suggest that the enhanced OFC neural activity observed in AIE rats to the CS could contribute to behavioral inflexibility. Ultimately, AIE persistently impacts the neurocircuitry of reward-motivated behavior in female rats.
Collapse
Affiliation(s)
- Jose A Pochapski
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, PR, Brazil
| | - Alexander Gómez-A
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Hannah Jaggers
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charlotte A Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Claudio Da Cunha
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, PR, Brazil
- Department of Biochemistry, Universidade Federal do Parana, Curitiba, PR, Brazil
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Chen Y, Fu H, Korada A, Lange MA, Rayanki C, Montgomery JMF, Lu T, Lai D, Fang S, Guo C, Ma YY. Decoding the Role of Secondary Motor Cortex Neuronal Ensembles during Cocaine Self-Administration: Insights from Longitudinal in vivo Calcium Imaging via Miniscopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594996. [PMID: 38826399 PMCID: PMC11142101 DOI: 10.1101/2024.05.20.594996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Recent findings in our lab demonstrated that the risk of cocaine relapse is closely linked to the hyperexcitability of cortical pyramidal neurons in the secondary motor cortex (M2), noticeable 45 days after cocaine intravenous self-administration (IVSA). The present study was designed to explore the underlying mechanisms of neuronal alterations in M2. Our hypothesis was that M2 neurons were affected directly by cocaine taking behaviors. This hypothesis was tested by monitoring individual neuronal activity in M2 using MiniScopes for in vivo Ca 2+ imaging in C57BL/6J mice when they had access to cocaine IVSA as a reinforcement (RNF) contingent to active lever press (ALP) but not to inactive lever press (ILP). With support of our established pipeline to processing Ca 2+ imaging data, the current study was designed to monitor M2 neuronal ensembles at the single-neuron level in real time with high temporal resolution and high throughput in each IVSA session and longitudinally among multiple IVSA sessions. Specifically, five consecutive 1-hr daily IVSA sessions were used to model the initial cocaine taking behaviors. Besides detailed analyses of IVSA events (ALP, ILP, and RNF), the data from Ca 2+ imaging recordings in M2 were analyzed by (1) comparing neuronal activation within a daily IVSA session (i.e., the first vs. the last 15 min) and between different daily sessions (i.e., the first vs. the last IVSA day), (2) associating Ca 2+ transients with individual IVSA events, and (3) correlating Ca 2+ transients with the cumulative effects of IVSA events. Our data demonstrated that M2 neurons are exquisitely sensitive to and significantly affected by concurrent operant behaviors and the history of drug exposure, which in turn sculpt the upcoming operant behaviors and the response to drugs. As critical nodes of the reward loop, M2 neurons appear to be the governing center orchestrating the establishment of addiction-like behaviors.
Collapse
|
4
|
Zhang M, Luo Y, Wang J, Sun Y, Xie B, Zhang L, Cong B, Ma C, Wen D. Roles of nucleus accumbens shell small-conductance calcium-activated potassium channels in the conditioned fear freezing. J Psychiatr Res 2023; 163:180-194. [PMID: 37216772 DOI: 10.1016/j.jpsychires.2023.05.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD), a psychiatric disorder caused by stressful events, is characterized by long-lasting fear memory. The nucleus accumbens shell (NAcS) is a key brain region that regulates fear-associated behavior. Small-conductance calcium-activated potassium channels (SK channels) play a key role in regulating the excitability of NAcS medium spiny neurons (MSNs) but their mechanisms of action in fear freezing are unclear. METHOD We established an animal model of traumatic memory using conditioned fear freezing paradigm, and investigated the alterations in SK channels of NAc MSNs subsequent to fear conditioning in mice. We then utilized an adeno-associated virus (AAV) transfection system to overexpress the SK3 subunit and explore the function of the NAcS MSNs SK3 channel in conditioned fear freezing. RESULTS Fear conditioning activated NAcS MSNs with enhanced excitability and reduced the SK channel-mediated medium after-hyperpolarization (mAHP) amplitude. The expression of NAcS SK3 were also reduced time-dependently. The overexpression of NAcS SK3 impaired conditioned fear consolidation without affecting conditioned fear expression, and blocked fear conditioning-induced alterations in NAcS MSNs excitability and mAHP amplitude. Additionally, the amplitudes of mEPSC, AMPAR/NMDAR ratio, and membrane surface GluA1/A2 expression in NAcS MSNs was increased by fear conditioning and returned to normal levels upon SK3 overexpression, indicating that fear conditioning-induced decrease of SK3 expression caused postsynaptic excitation by facilitating AMPAR transmission to the membrane. CONCLUSION These findings show that the NAcS MSNs SK3 channel plays a critical role in conditioned fear consolidation and that it may influence PTSD pathogenesis, making it a potential therapeutic target against PTSD.
Collapse
Affiliation(s)
- Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yixiao Luo
- Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410081, PR China
| | - Jian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yufei Sun
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| |
Collapse
|
5
|
Ru Q, Wang Y, Zhou E, Chen L, Wu Y. The potential therapeutic roles of Rho GTPases in substance dependence. Front Mol Neurosci 2023; 16:1125277. [PMID: 37063367 PMCID: PMC10097952 DOI: 10.3389/fnmol.2023.1125277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Rho GTPases family are considered to be molecular switches that regulate various cellular processes, including cytoskeleton remodeling, cell polarity, synaptic development and maintenance. Accumulating evidence shows that Rho GTPases are involved in neuronal development and brain diseases, including substance dependence. However, the functions of Rho GTPases in substance dependence are divergent and cerebral nuclei-dependent. Thereby, comprehensive integration of their roles and correlated mechanisms are urgently needed. In this review, the molecular functions and regulatory mechanisms of Rho GTPases and their regulators such as GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs) in substance dependence have been reviewed, and this is of great significance for understanding their spatiotemporal roles in addictions induced by different addictive substances and in different stages of substance dependence.
Collapse
Affiliation(s)
| | | | | | - Lin Chen
- *Correspondence: Lin Chen, ; Yuxiang Wu,
| | - Yuxiang Wu
- *Correspondence: Lin Chen, ; Yuxiang Wu,
| |
Collapse
|
6
|
Downs AM, Catavero CM, Kasten MR, McElligott ZA. Tauopathy and alcohol consumption interact to alter locus coeruleus excitatory transmission and excitability in male and female mice. Alcohol 2023; 107:97-107. [PMID: 36150608 DOI: 10.1016/j.alcohol.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/23/2022]
Abstract
Alcohol use disorder is a major public health concern in the United States. Recent work has suggested a link between chronic alcohol consumption and the development of tauopathy disorders, such as Alzheimer's disease and frontotemporal dementia. However, relatively little work has investigated changes in neural circuitry involved in both tauopathy disorders and alcohol use disorder. The locus coeruleus (LC) is the major noradrenergic nucleus in the brain and is one of the earliest sites to be affected by tau lesions. The LC is also implicated in the rewarding effects of ethanol and alcohol withdrawal. In this study we assessed effects of long-term ethanol consumption and tauopathy on the physiology of LC neurons. Male and female P301S mice, a humanized transgenic mouse model of tauopathy, underwent 16 weeks of intermittent access to 20% ethanol from 3 to 7 months of age. We observed higher total alcohol consumption in female mice regardless of genotype. Male P301S mice consumed more ethanol and had a greater preference for ethanol than wild-type (WT) males. At the end of the drinking study, LC function was assessed using ex vivo whole cell electrophysiology. We found significant changes in excitatory inputs to the LC due to both ethanol and genotype. We found significantly increased excitability of the LC due to ethanol with greater effects in female P301S mice than in female WT mice. Our study identifies significant changes in the LC due to interactions between tauopathy and long-term ethanol use. These findings could have important implications regarding LC activity and changes in behavior due to both ethanol- and tauopathy-related dementia.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Christina M Catavero
- Graduate Program in Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Michael R Kasten
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
7
|
Price ME, McCool BA. Chronic Alcohol Dysregulates Glutamatergic Function in the Basolateral Amygdala in a Projection-and Sex-Specific Manner. Front Cell Neurosci 2022; 16:857550. [PMID: 35496915 PMCID: PMC9050109 DOI: 10.3389/fncel.2022.857550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic intermittent ethanol and withdrawal (CIE/WD) produces alcohol dependence, facilitates anxiety-like behavior, and increases post-CIE alcohol intake. The basolateral amygdala (BLA) is one of several brain regions that regulates anxiety-like behavior and alcohol intake through downstream projections to the nucleus accumbens (NAC) and bed nucleus of the stria terminalis (BNST), respectively. Previous studies revealed that CIE/WD induces input- and sex-specific adaptations to glutamatergic function in the BLA. The BLA receives information from two distinct input pathways. Glutamatergic afferents from medial structures like the thalamus and prefrontal cortex enter the BLA through the stria terminalis whereas lateral cortical structures like the anterior insula cortex enter the BLA through the external capsule. CIE/WD increases presynaptic glutamatergic function at stria terminalis synapses and postsynaptic function at external capsule synapses. Previous studies sampled neurons throughout the BLA, but did not distinguish between projection-specific populations. The current study investigated BLA neurons that project to the NAC (BLA-NAC neurons) or the BNST (BLA-BNST neurons) as representative “reward” and “aversion” BLA neurons, and showed that CIE/WD alters glutamatergic function and excitability in a projection- and sex-specific manner. CIE/WD increases glutamate release from stria terminalis inputs only onto BLA-BNST neurons. At external capsule synapses, CIE/WD increases postsynaptic glutamatergic function in male BLA-NAC neurons and female BLA-BNST neurons. Subsequent experiments demonstrated that CIE/WD enhanced the excitability of male BLA-NAC neurons and BLA-BNST neurons in both sexes when glutamatergic but not GABAergic function was intact. Thus, CIE/WD-mediated increased glutamatergic function facilitates hyperexcitability in male BLA-NAC neurons and BLA-BNST neurons of both sexes.
Collapse
Affiliation(s)
- Michaela E. Price
- Neuroscience and Alcohol Research Training Programs, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Brian A. McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Brian A. McCool,
| |
Collapse
|
8
|
Guo C, Wen D, Zhang Y, Mustaklem R, Mustaklem B, Zhou M, Ma T, Ma YY. Amyloid-β oligomers in the nucleus accumbens decrease motivation via insertion of calcium-permeable AMPA receptors. Mol Psychiatry 2022; 27:2146-2157. [PMID: 35105968 PMCID: PMC9133055 DOI: 10.1038/s41380-022-01459-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
It is essential to identify the neuronal mechanisms of Alzheimer's Disease (AD)-associated neuropsychiatric symptoms, e.g., apathy, before improving the life quality of AD patients. Here, we focused on the nucleus accumbens (NAc), a critical brain region processing motivation, also known to display AD-associated pathological changes in human cases. We found that the synaptic calcium permeable (CP)-AMPA receptors (AMPARs), which are normally absent in the NAc, can be revealed by acute exposure to Aβ oligomers (AβOs), and play a critical role in the emergence of synaptic loss and motivation deficits. Blockade of NAc CP-AMPARs can effectively prevent AβO-induced downsizing and pruning of spines and silencing of excitatory synaptic transmission. We conclude that AβO-triggered synaptic insertion of CP-AMPARs is a key mechanism mediating synaptic degeneration in AD, and preserving synaptic integrity may prevent or delay the onset of AD-associated psychiatric symptoms.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Di Wen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yihong Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richie Mustaklem
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Basil Mustaklem
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine; Department of Physiology and Pharmacology; Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
Acute stress and alcohol exposure during adolescence result in an anxious phenotype in adulthood: Role of altered glutamate/endocannabinoid transmission mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110460. [PMID: 34695542 DOI: 10.1016/j.pnpbp.2021.110460] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Stressful episodes and high alcohol consumption during adolescence are considered major risk factors for the development of psychiatric disorders in adulthood. Identification of mechanisms underlying these early events, which enhanced vulnerability to mental illness, is essential for both their prevention and treatment. METHODS Male Wistar rats were used to investigate the long-term effects of early restraint stress and intermittent alcohol exposure (intragastric administration of 3 g/kg ethanol; 4 days/week for 4 weeks during adolescence) on anxiety-like behavior and the expression of signaling systems associated with emotional behaviors [e.g., corticosterone, fatty acid-derived molecules and endocannabinoid enzymes, glutamate receptor subunits, corticotropin releasing hormone receptors (CRHR1 and CRHR2) and neuropeptide Y receptors (NPY1R and NPYR2)] in the blood and amygdala. RESULTS Overall, both stress and alcohol exposure during adolescence induced anxiogenic-like behaviors, increased plasma levels of corticosterone and increases in the amygdalar expression of the cannabinoid CB2 receptor and certain subunits of glutamate receptors (i.e., mGluR1, mGluR5 and NMDAR1) in young adult rats. In addition, there were specific main effects of alcohol exposure on the expression of the cannabinoid CB1 receptor, monoacylglycerol lipase (MAGL) and NPY2R in the amygdala, and significant increases were observed in rats exposed to alcohol. Interestingly, there were significant interaction effects between restraint stress and alcohol exposure on the expression of plasma 2-arachidonoyl glycerol (2-AG), and both CRHR1,2 and NPY1R in the amygdala. Thus, the restraint stress was associated with increased 2-AG levels, which was not observed in rats exposed to alcohol. The alcohol exposure was associated with an increased expression of CRHR1,2 but the restraint stress prevented these increases (stress alcohol rats). In contrast, NPY1R was only increased in rats exposed to stress and alcohol. Finally, we did not observe any potentiation of the behavioral and molecular effects by the combination of stress and alcohol, which is concordant with an overall ceiling effect on some of the variables. CONCLUSION Separate and combined early stress and alcohol induced a common anxious phenotype with increased corticosterone in adulthood. However, there were differences in the amygdalar expression of signaling systems involved in maladaptive changes in emotional behavior. Therefore, our results suggest the existence of partially different mechanisms for stress and alcohol exposures.
Collapse
|
10
|
He L, Wang P, Schick SF, Huang A, Jacob P, Yang X, Xia Y, Snijders AM, Mao JH, Chang H, Hang B. Genetic background influences the effect of thirdhand smoke exposure on anxiety and memory in Collaborative Cross mice. Sci Rep 2021; 11:13285. [PMID: 34168244 PMCID: PMC8225773 DOI: 10.1038/s41598-021-92702-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
Growing evidence indicates that thirdhand smoke (THS) exposure induces many adverse health effects. However, it is unclear how THS exposure affects behavior and how host genetic background modulates phenotypic changes. Here we used the Collaborative Cross (CC) mouse population-based model to assess behavioral alterations immediately after THS exposure from 4 to 9 weeks of age. We first measured anxiety-like behavior in six strains using light/dark box combined with a custom multivariate mouse tracking system. We developed an anxiety risk scoring system based on anxiety-related traits and then evaluated the THS impact on them. THS exposure significantly decreased anxiety risk in CC019 (P = 0.002) and CC051 (P = 0.009), but increased anxiety risk in CC036 (P < 0.001), while the other three strains did not show significant changes in anxiety-related traits. Such differences were driven by female mice for the six measures of anxiety-like behavior. Memory potential was measured in the same cohort of mice using the passive avoidance assay. Both THS-exposed male and female CC019 mice displayed significant memory loss compared to controls while no significant changes were found in the other five strains. This study provides strong evidence that THS exposure leads to strain-dependent changes in anxiety-like behavior and memory, suggesting that host genetic variations play a critical role in individual susceptibility to THS-induced effects.
Collapse
Affiliation(s)
- Li He
- Department of Internal Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Suzyann F Schick
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Abel Huang
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Peyton Jacob
- Division of Cardiology, Department of Medicine, Clinical Pharmacology Program, University of California, San Francisco, CA, 94143, USA
| | - Xu Yang
- School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yankai Xia
- School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
11
|
Manz KM, Siemann JK, McMahon DG, Grueter BA. Patch-clamp and multi-electrode array electrophysiological analysis in acute mouse brain slices. STAR Protoc 2021; 2:100442. [PMID: 33899023 PMCID: PMC8056272 DOI: 10.1016/j.xpro.2021.100442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Patch-clamp and multi-electrode array electrophysiology techniques are used to measure dynamic functional properties of neurons. Whole-cell and cell-attached patch-clamp recordings in brain slices can be performed in voltage-clamp and current-clamp configuration to reveal cell-type-specific synaptic and cellular parameters governing neurotransmission. Multi-electrode array electrophysiology can provide spike activity recordings from multiple neurons, enabling larger sample sizes, and long-term recordings. We provide our guide to preparing acute rodent brain slices with example experiments and analyses intended for novice and expert electrophysiologists. For complete details on the use and execution of this protocol, please refer to Manz et al. (2020b).
Collapse
Affiliation(s)
- Kevin M. Manz
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin K. Siemann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 3732, USA
| | - Douglas G. McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 3732, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brad A. Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Anesthesiology Research Division, Vanderbilt University School of Medicine, 2213 Garland Avenue, P435H MRB IV, Nashville, TN 37232-0413, USA
| |
Collapse
|
12
|
Jin X, Zhang Y, Celniker SE, Xia Y, Mao JH, Snijders AM, Chang H. Gut microbiome partially mediates and coordinates the effects of genetics on anxiety-like behavior in Collaborative Cross mice. Sci Rep 2021; 11:270. [PMID: 33431988 PMCID: PMC7801399 DOI: 10.1038/s41598-020-79538-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Growing evidence suggests that the gut microbiome (GM) plays a critical role in health and disease. However, the contribution of GM to psychiatric disorders, especially anxiety, remains unclear. We used the Collaborative Cross (CC) mouse population-based model to identify anxiety associated host genetic and GM factors. Anxiety-like behavior of 445 mice across 30 CC strains was measured using the light/dark box assay and documented by video. A custom tracking system was developed to quantify seven anxiety-related phenotypes based on video. Mice were assigned to a low or high anxiety group by consensus clustering using seven anxiety-related phenotypes. Genome-wide association analysis (GWAS) identified 141 genes (264 SNPs) significantly enriched for anxiety and depression related functions. In the same CC cohort, we measured GM composition and identified five families that differ between high and low anxiety mice. Anxiety level was predicted with 79% accuracy and an AUC of 0.81. Mediation analyses revealed that the genetic contribution to anxiety was partially mediated by the GM. Our findings indicate that GM partially mediates and coordinates the effects of genetics on anxiety.
Collapse
Affiliation(s)
- X Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Y Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - S E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Y Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - J-H Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - A M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - H Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
13
|
Padula AE, Rinker JA, Lopez MF, Mulligan MK, Williams RW, Becker HC, Mulholland PJ. Bioinformatics identification and pharmacological validation of Kcnn3/K Ca2 channels as a mediator of negative affective behaviors and excessive alcohol drinking in mice. Transl Psychiatry 2020; 10:414. [PMID: 33247097 PMCID: PMC7699620 DOI: 10.1038/s41398-020-01099-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mood disorders are often comorbid with alcohol use disorder (AUD) and play a considerable role in the development and maintenance of alcohol dependence and relapse. Because of this high comorbidity, it is necessary to determine shared and unique genetic factors driving heavy drinking and negative affective behaviors. In order to identify novel pharmacogenetic targets, a bioinformatics analysis was used to quantify the expression of amygdala K+ channel genes that covary with anxiety-related phenotypes in the well-phenotyped and fully sequenced family of BXD strains. We used a model of stress-induced escalation of drinking in alcohol-dependent mice to measure negative affective behaviors during abstinence. A pharmacological approach was used to validate the key bioinformatics findings in alcohol-dependent, stressed mice. Amygdalar expression of Kcnn3 correlated significantly with 40 anxiety-associated phenotypes. Further examination of Kcnn3 expression revealed a strong eigentrait for anxiety-like behaviors and negative correlations with binge-like and voluntary alcohol drinking. Mice treated with chronic intermittent alcohol exposure and repeated swim stress consumed more alcohol in their home cages and showed hypophagia on the novelty-suppressed feeding test during abstinence. Pharmacologically targeting Kcnn gene products with the KCa2 (SK) channel-positive modulator 1-EBIO decreased drinking and reduced feeding latency in alcohol-dependent, stressed mice. Collectively, these validation studies provide central nervous system links into the covariance of stress, negative affective behaviors, and AUD in the BXD strains. Further, the bioinformatics discovery tool is effective in identifying promising targets (i.e., KCa2 channels) for treating alcohol dependence exacerbated by comorbid mood disorders.
Collapse
Affiliation(s)
- Audrey E Padula
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
14
|
Galaj E, Guo C, Huang D, Ranaldi R, Ma YY. Contrasting effects of adolescent and early-adult ethanol exposure on prelimbic cortical pyramidal neurons. Drug Alcohol Depend 2020; 216:108309. [PMID: 32998090 PMCID: PMC7814343 DOI: 10.1016/j.drugalcdep.2020.108309] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Adolescence and early-adulthood are vulnerable developmental periods during which binge drinking can have long-lasting effects on brain function. However, little is known about the effects of binge drinking on the pyramidal cells of the prelimbic cortex (PrL) during early and protracted withdrawal periods. METHODS In the present study, we performed whole-cell patch clamp recordings and dendritic spine staining to examine the intrinsic excitability, spontaneous excitatory post-synaptic currents (sEPSCs), and spine morphology of pyramidal cells in the PrL from rats exposed to chronic intermittent ethanol (CIE) during adolescence or early-adulthood. RESULTS Compared to chronic intermittent water (CIW)-treated controls, the excitability of PrL-L5 pyramidal neurons was significantly increased 21 days after adolescent CIE but decreased 21 days after early-adult CIE. No changes of excitability in PrL Layer (L) 5 were detected 2 days after either adolescent or early-adulthood CIE. Interestingly, decreases in sEPSC amplitude and increases in thin spines ratio were detected 2 days after adolescent CIE. Furthermore, decreased frequency and amplitude of sEPSCs, accompanied by a decrease in the density of total spines and non-thin spines were observed 21 days after adolescent CIE. In contrast, increased frequency and amplitude of sEPSCs, accompanied by increased densities of total spines and non-thin spines were found 21 days after early adult CIE. CONCLUSION CIE produced prolonged neuronal and synaptic alterations in PrL-L5, and the developmental stage, i.e., adolescence vs. early-adulthood when subjects receive CIE, is a key factor in determining the direction of these changes.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, 13902, USA
| | - Changyong Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Donald Huang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert Ranaldi
- Department of Psychology, Queens College, City University of New York, Flushing, NY, 11367, USA
| | - Yao-Ying Ma
- Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, 13902, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
Luo YX, Galaj E, Ma YY. Differential alterations of insular cortex excitability after adolescent or adult chronic intermittent ethanol administration in male rats. J Neurosci Res 2020; 99:649-661. [PMID: 33094531 DOI: 10.1002/jnr.24737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022]
Abstract
Adolescent alcohol drinking, primarily in the form of binge-drinking episodes, is a serious public health concern. Binge drinking in laboratory animals has been modeled by a procedure involving chronic intermittent ethanol (CIE) administration, as compared with chronic intermittent water (CIW). The prolonged effects of adolescent binge alcohol exposure in adults, such as high risk of developing alcohol use disorder, are severe but available treatments in the clinic are limited. One reason is the lack of sufficient understanding about the associated neuronal alterations. The involvement of the insular cortex, particularly the anterior agranular insula (AAI), has emerged as a critical region to explain neuronal mechanisms of substance abuse. This study was designed to evaluate the functional output of the AAI by measuring the intrinsic excitability of pyramidal neurons from male rats 2 or 21 days after adolescent or adult CIE treatment. Decreases in intrinsic excitability in AAI pyramidal neurons were detected 21 days, relative to 2 days, after adolescent CIE. Interestingly, the decreased intrinsic excitability in the AAI pyramidal neurons was observed 2 days after adult CIE, compared to adult CIW, but no difference was found between 2 versus 21 days after adult CIE. These data indicate that, although the AAI is influenced within a limited period after adult but not adolescent CIE, neuronal alterations in AAI are affected during the prolonged period of withdrawal from adolescent but not adult CIE. This may explain the prolonged vulnerability to mental disorders of subjects with an alcohol binge history during their adolescent stage.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA
| | - Ewa Galaj
- Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Roselli V, Guo C, Huang D, Wen D, Zona D, Liang T, Ma YY. Prenatal alcohol exposure reduces posterior dorsomedial striatum excitability and motivation in a sex- and age-dependent fashion. Neuropharmacology 2020; 180:108310. [PMID: 32950559 DOI: 10.1016/j.neuropharm.2020.108310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
Prenatal alcohol exposure (PAE)-induced clinical symptoms have been widely reported but effective treatments are not yet available due to our limited knowledge of the neuronal mechanisms underlying behavioral outputs. Operant behaviors, including both goal-directed and habitual actions, are essential for everyday life. The dorsomedial striatum (DMS) and the dorsolateral striatum (DLS) have been identified as mediating each type of instrumental behavior, respectively. The current studies were designed to evaluate the effects of PAE (i.e., 3 g/kg, twice a day on gestational days 17-20) on goal-directed vs. habitual behaviors in both females and males during their adolescent and adult stages. We found that PAE-treated adult, but not adolescent, males display similar habitual oral sucrose self-administration but reduced goal-directed sucrose self-administration, compared to those treated by prenatal control (water) exposure (PCE). There were no differences in either habitual or goal-directed sucrose taking between PCE- vs. PAE-treated adolescent and adult females. These results indicate sex- and age-specific effects of PAE on operant behaviors. Further, whole-cell patch clamp recordings showed that the excitability of medium-sized spiny neurons (MSNs) in the posterior DMS (pDMS), but not the anterior DMS (aDMS), was significantly decreased in PAE-treated adult male rats. Notably, chemogenetic enhancement of MSN excitability in the pDMS by the DREADD agonist, compound 21, rescued the motivation of PAE-treated male adult rats. These data suggest that the pDMS may be a key neuronal substrate mediating the PAE-induced low motivation in male adults.
Collapse
Affiliation(s)
- Victoria Roselli
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, NY, 13902, USA
| | - Changyong Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Donald Huang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Di Wen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Daniel Zona
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, NY, 13902, USA
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, NY, 13902, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
17
|
Hu T, Li S, Liang WQ, Li SS, Lu MN, Chen B, Zhang L, Mao R, Ding WH, Gao WW, Chen SW, XiYang YB, Zhang J, Wang XY. Notoginsenoside R1-Induced Neuronal Repair in Models of Alzheimer Disease Is Associated With an Alteration in Neuronal Hyperexcitability, Which Is Regulated by Nav. Front Cell Neurosci 2020; 14:280. [PMID: 33088260 PMCID: PMC7500285 DOI: 10.3389/fncel.2020.00280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer disease is characterized by a progressive cognitive deficit and may be associated with an aberrant hyperexcitability of the neuronal network. Notoginsenoside R1 (R1), a major activity ingredient from Panax notoginseng, has demonstrated favorable changes in neuronal plasticity and induced neuroprotective effects in brain injuries, resulting from various disorders, however, the underlying mechanisms are still not well understood. In the present study, we aimed to explore the possible neuroprotective effects induced by R1 in a mouse model of AD and the mechanisms underlying these effects. Treatment with R1 significantly improved learning and memory functions and redressed neuronal hyperexcitability in amyloid precursor protein/presenilin-1 mice by altering the numbers and/or distribution of the members of voltage-gated sodium channels (Nav). Moreover, we determined whether R1 contributed to the regulation of neuronal excitability in Aβ-42–injured cells. Results of our study demonstrated that treatment with R1 rescued Aβ1-42–induced injured neurons by increasing cell viability. R1-induced alleviation in neuronal hyperexcitability might be associated with reduced Navβ2 cleavage, which partially reversed the abnormal distribution of Nav1.1α. These results suggested that R1 played a vital role in the recovery of Aβ1-42–induced neuronal injury and hyperexcitability, which is regulated by Nav proteins. Therefore, R1 may be a promising candidate in the treatment of AD.
Collapse
Affiliation(s)
- Tao Hu
- Department of Laboratory Medicine, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Shan Li
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Wen-Qi Liang
- Department of Emergency, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shan-Shan Li
- Basic Medical College, Experimental Teaching Center, Kunming Medical University, Kunming, China
| | - Min-Nan Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Bo Chen
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Li Zhang
- Editorial Department of Journal of Kunming Medical University, Kunming, China
| | - Rui Mao
- School of Stomatology, Kunming Medicine University, Kunming, China
| | - Wan-Hai Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China
| | - Wen-Wei Gao
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China
| | - Shi-Wen Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China
| | - Yan-Bin XiYang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Jie Zhang
- Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, China.,Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xu-Yang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China
| |
Collapse
|
18
|
Qu L, Wang Y, Li Y, Wang X, Li N, Ge S, Wang J, Wang GJ, Volkow ND, Lang B, Wang P, Wu H, Zeng J, Fu J, Li J, Zhang Y, Wang X. Decreased Neuronal Excitability in Medial Prefrontal Cortex during Morphine Withdrawal is associated with enhanced SK channel activity and upregulation of small GTPase Rac1. Am J Cancer Res 2020; 10:7369-7383. [PMID: 32641997 PMCID: PMC7330845 DOI: 10.7150/thno.44893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Neuroadaptations in the medial prefrontal cortex (mPFC) and Nucleus Accumbens (NAc) play a role in the disruption of control-reward circuits in opioid addiction. Small Conductance Calcium-Activated Potassium (SK) channels in the mPFC have been implicated in neuronal excitability changes during morphine withdrawal. However, the mechanism that modulates SK channels during withdrawal is still unknown. Methods: Rats were exposed for one week to daily morphine injections (10 mg·kg-1 s.c.) followed by conditional place preference (CPP) assessment. One week after withdrawal, electrophysiological, morphological and molecular biological methods were applied to investigate the effects of morphine on SK channels in mPFC, including infralimbic (IL), prelimbic (PrL) cortices and NAc (core and shell). We verified the hypothesis that Rac1, a member of Rho family of small GTPases, implicated in SK channel regulation, modulate SK channel neuroadaptations during opiate withdrawal. Results: One week after morphine withdrawal, the neuronal excitability of layer 5 pyramidal neurons in IL was decreased, but not in PrL. Whereas, the excitability was increased in NAc-shell, but not in NAc-core. In mPFC, the expression of the SK3 subunit was enhanced after one-week of withdrawal compared to controls. In the IL, Rac1 signaling was increased during withdrawal, and the Rac1 inhibitor NSC23766 disrupted SK current, which increased neuronal firing. Suppression of Rac1 inhibited morphine-induced CPP and expression of SK channels in IL. Conclusions: These findings highlight the potential value of SK channels and the upstream molecule Rac1, which may throw light on the therapeutic mechanism of neuromodulation treatment for opioid dependence.
Collapse
|
19
|
Galaj E, Barrera E, Morris D, Ma YY, Ranaldi R. Aberrations in Incentive Learning and Responding to Heroin in Male Rats After Adolescent or Adult Chronic Binge-Like Alcohol Exposure. Alcohol Clin Exp Res 2020; 44:1214-1223. [PMID: 32311102 PMCID: PMC7313436 DOI: 10.1111/acer.14341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Binge drinking is a serious problem among adolescents and young adults despite its adverse consequences on the brain and behavior. One area that remains poorly understood concerns the impact of chronic intermittent ethanol (CIE) exposure on incentive learning. METHODS Here, we examined the effects of CIE exposure during different developmental stages on conditioned approach and conditioned reward learning in rats experiencing acute or protracted withdrawal from alcohol. Two or 21 days after adolescent or adult CIE exposure, male rats were exposed to pairings of a light stimulus (CS) and food pellets for 3 consecutive daily sessions (30 CS-food pellet pairings per session). This was followed by conditioned approach testing measuring responses (food trough head entries) to the CS-only presentations and by conditioned reward testing measuring responses on a lever producing the CS and on another producing a tone. We then measured behavioral sensitization to repeated injections of heroin (2 mg/kg/d for 9 days). RESULTS Adolescent and adult alcohol-treated rats showed significantly impaired conditioned reward learning regardless of withdrawal period (acute or prolonged). We found no evidence of changes to conditioned approach learning after adolescent or adult exposure to CIE. Finally, in addition to producing long-term impairments in incentive learning, CIE exposure enhanced locomotor activity in response to heroin and had no effect on behavioral sensitization to heroin regardless of age and withdrawal period. CONCLUSIONS Our work sets a framework for identifying CIE-induced alterations in incentive learning and inducing susceptibility to subsequent opioid effects.
Collapse
Affiliation(s)
- Ewa Galaj
- National Institute on Drug Abuse Intramural Research Program, Molecular Targets and Medication Discovery Branch, 251 Bayview Blvd, Baltimore, MD, 21224, US
| | - Eddy Barrera
- Queens College, City University of New York, Department of Psychology, 65-30 Kissena Blvd., Flushing, NY, 11367, US
| | - Debra Morris
- Queens College, City University of New York, Department of Psychology, 65-30 Kissena Blvd., Flushing, NY, 11367, US
| | - Yao-Ying Ma
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, 635 Barnhill Drive, Indianapolis, IN, 46202, US
| | - Robert Ranaldi
- Queens College, City University of New York, Department of Psychology, 65-30 Kissena Blvd., Flushing, NY, 11367, US
| |
Collapse
|
20
|
Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020; 156:105-117. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse. These studies on adolescent exposure to alcohol, nicotine, opioids, cannabinoids and psychostimulant drugs, such as cocaine and amphetamine, reveal a variety of long-lasting behavioral and neurobiological consequences. These agents can affect development of the prefrontal cortex and mesolimbic dopamine pathways and modify the reward systems, socio-emotional processing and cognition. Other consequences include disruption in working memory, anxiety disorders and an increased risk of subsequent drug abuse in adult life. Although preventive and control policies are a valuable approach to reduce the detrimental effects of drugs-of-abuse on the adolescent brain, a more profound understanding of their neurobiological impact can lead to improved strategies for the treatment and attenuation of the detrimental neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | | | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert F Halliwell
- TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
21
|
Jayanthi S, Torres OV, Ladenheim B, Cadet JL. A Single Prior Injection of Methamphetamine Enhances Methamphetamine Self-Administration (SA) and Blocks SA-Induced Changes in DNA Methylation and mRNA Expression of Potassium Channels in the Rat Nucleus Accumbens. Mol Neurobiol 2019; 57:1459-1472. [PMID: 31758400 PMCID: PMC7060962 DOI: 10.1007/s12035-019-01830-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
The transition from occasional to escalated psychostimulant use is accelerated by prior drug exposure. These behavioral observations may be related to long-lasting transcriptional and/or epigenetic changes induced by the drug pre-exposure. Herein, we investigated if a single methamphetamine (METH) injection would enhance METH self-administration (SA) and impact any METH SA-induced epigenetic or transcriptional alterations. We thus injected a single METH dose (10 mg/kg) or saline to rats before training them to self-administer METH or saline. There were three experimental groups in SA experiments: (1) a single saline injection followed by saline SA (SS); (2) a single saline injection followed by METH SA (SM); and (3) a single METH injection followed by METH SA (MM). METH-pretreated rats escalated METH SA earlier and took more METH than saline-pretreated animals. Both groups showed similar incubation of cue-induced METH craving. Because compulsive METH takers and METH-abstinent rats show differences in potassium (K+) channel mRNA levels in their nucleus accumbens (NAc), we wondered if K+ channel expression might also help to distinguish between SM and MM groups. We found increases in mRNA and protein expression of shaker-related voltage-gated K+ channels (Kv1: Kcna1, Kcna3, and Kcna6) and calcium-activated K+ channels (Kcnn1) in the SM compared to MM rats. SM rats also showed decreased DNA methylation at the CpG-rich sites near the promoter region of Kcna1, Kcna3 and Kcnn1 genes in comparison to MM rats. Together, these results provide additional evidence for potentially using K+ channels as therapeutic targets against METH use disorder.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Oscar V Torres
- Department of Behavioral Sciences, San Diego Mesa College, San Diego, CA, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|