1
|
Glickman B, LaLumiere RT. Theoretical Considerations for Optimizing the Use of Optogenetics with Complex Behavior. Curr Protoc 2023; 3:e836. [PMID: 37439512 PMCID: PMC10406170 DOI: 10.1002/cpz1.836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Optogenetic approaches have allowed researchers to address complex questions about behavior that were previously unanswerable. However, as optogenetic procedures involve a large parameter space across multiple dimensions, it is crucial to consider such parameters in conjunction with the behaviors under study. Here, we discuss strategies to optimize optogenetic approaches with complex behavior by identifying critical experimental design considerations, including frequency specificity, temporal precision, activity-controlled optogenetics, stimulation pattern, and cell-type specificity. We highlight potential limitations or theoretical considerations to be made when manipulating each of these factors of optogenetic experiments. This overview emphasizes the importance of optimizing optogenetic study design to enhance the conclusions that can be drawn about the neuroscience of behavior. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Bess Glickman
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
| | - Ryan T. LaLumiere
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
2
|
Qi S, Tan SM, Wang R, Higginbotham JA, Ritchie JL, Ibarra CK, Arguello AA, Christian RJ, Fuchs RA. Optogenetic inhibition of the dorsal hippocampus CA3 region during early-stage cocaine-memory reconsolidation disrupts subsequent context-induced cocaine seeking in rats. Neuropsychopharmacology 2022; 47:1473-1483. [PMID: 35581381 PMCID: PMC9205994 DOI: 10.1038/s41386-022-01342-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/11/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022]
Abstract
The dorsal hippocampus (DH) is key to the maintenance of cocaine memories through reconsolidation into long-term memory stores after retrieval-induced memory destabilization. Here, we examined the time-dependent role of the cornu ammonis 3 DH subregion (dCA3) in cocaine-memory reconsolidation by utilizing the temporal and spatial specificity of optogenetics. eNpHR3.0-eYFP- or eYFP-expressing male Sprague-Dawley rats were trained to lever press for cocaine infusions in a distinct context and received extinction training in a different context. Rats were then re-exposed to the cocaine-paired context for 15 min to destabilize cocaine memories (memory reactivation) or remained in their home cages (no-reactivation). Optogenetic dCA3 inhibition for one hour immediately after memory reactivation reduced c-Fos expression (index of neuronal activation) in dCA3 stratum pyramidale (SP) glutamatergic and GABAergic neurons and in stratum lucidum (SL) GABAergic neurons during reconsolidation. Furthermore, dCA3 inhibition attenuated drug-seeking behavior (non-reinforced lever presses) selectively in the cocaine-paired context three days later (recall test), relative to no photoinhibition. This behavioral effect was eNpHR3.0-, memory-reactivation, and time-dependent, indicating a memory-reconsolidation deficit. Based on this observation and our previous finding that protein synthesis in the DH is not necessary for cocaine-memory reconsolidation, we postulate that recurrent pyramidal neuronal activity in the dCA3 may maintain labile cocaine memories prior to protein synthesis-dependent reconsolidation elsewhere, and SL/SP interneurons may facilitate this process by limiting extraneous neuronal activity. Interestingly, SL c-Fos expression was reduced at recall concomitant with impairment in cocaine-seeking behavior, suggesting that SL neurons may also facilitate cocaine-memory retrieval by inhibiting non-engram neuronal activity.
Collapse
Affiliation(s)
- Shuyi Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Shi Min Tan
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Rong Wang
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Jessica A Higginbotham
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Jobe L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Christopher K Ibarra
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Amy A Arguello
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Robert J Christian
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Rita A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA.
- Alcohol and Drug Abuse Research Program, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
3
|
Fitzgerald J, Houle S, Cotter C, Zimomra Z, Martens KM, Vonder Haar C, Kokiko-Cochran ON. Lateral Fluid Percussion Injury Causes Sex-Specific Deficits in Anterograde but Not Retrograde Memory. Front Behav Neurosci 2022; 16:806598. [PMID: 35185489 PMCID: PMC8854992 DOI: 10.3389/fnbeh.2022.806598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairment is a common symptom after traumatic brain injury (TBI). Memory, in particular, is often disrupted during chronic post-injury recovery. To understand the sex-specific effects of brain injury on retrograde and anterograde memory, we examined paired associate learning (PAL), spatial learning and memory, and fear memory after lateral fluid percussion TBI. We hypothesized that male and female mice would display unique memory deficits after TBI. PAL task acquisition was initiated via touchscreen operant conditioning 22 weeks before sham injury or TBI. Post-injury PAL testing occurred 7 weeks post-injury. Barnes maze and fear conditioning were completed at 14- and 15-weeks post-injury, respectively. Contrary to our expectations, behavioral outcomes were not primarily influenced by TBI. Instead, sex-specific differences were observed in all tasks which exposed task-specific trends in male TBI mice. Male mice took longer to complete the PAL task, but this was not affected by TBI and did not compromise the ability to make a correct choice. Latency to reach the goal box decreased across testing days in Barnes maze, but male TBI mice lagged in improvement compared to all other groups. Use of two learning indices revealed that male TBI mice were deficient in transferring information from 1 day to the next. Finally, acquisition and contextual retention of fear memory were similar between all groups. Cued retention of the tone-shock pairing was influenced by both injury and sex. Male sham mice displayed the strongest cued retention of fear memory, evidenced by increased freezing behavior across the test trial. In contrast, male TBI mice displayed reduced freezing behavior with repetitive tone exposure. An inverse relationship in freezing behavior to tone exposure was detected between female sham and TBI mice, although the difference was not as striking. Together, these studies show that retrograde memory is intact after lateral TBI. However, male mice are more vulnerable to post-injury anterograde memory deficits. These behaviors were not associated with gross pathological change near the site injury or in subcortical brain regions associated with memory formation. Future studies that incorporate pre- and post-injury behavioral analysis will be integral in defining sex-specific memory impairment after TBI.
Collapse
Affiliation(s)
- Julie Fitzgerald
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Samuel Houle
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Christopher Cotter
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Zachary Zimomra
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Kris M. Martens
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cole Vonder Haar
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Olga N. Kokiko-Cochran,
| |
Collapse
|
4
|
The Entorhinal Cortex as a Gateway for Amygdala Influences on Memory Consolidation. Neuroscience 2022; 497:86-96. [PMID: 35122874 DOI: 10.1016/j.neuroscience.2022.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/16/2022]
Abstract
The amygdala, specifically its basolateral nucleus (BLA), is a critical site integrating neuromodulatory influences on memory consolidation in other brain areas. Almost 20 years ago, we reported the first direct evidence that BLA activity is required for modulatory interventions in the entorhinal cortex (EC) to affect memory consolidation (Roesler, Roozendaal, and McGaugh, 2002). Since then, significant advances have been made in our understanding of how the EC participates in memory. For example, the characterization of grid cells specialized in processing spatial information in the medial EC (mEC) that act as major relayers of information to the hippocampus (HIP) has changed our view of memory processing by the EC; and the development of optogenetic technologies for manipulation of neuronal activity has recently enabled important new discoveries on the role of the BLA projections to the EC in memory. Here, we review the current evidence on interactions between the BLA and EC in synaptic plasticity and memory formation. The findings suggest that the EC may function as a gateway and mediator of modulatory influences from the BLA, which are then processed and relayed to the HIP. Through extensive reciprocal connections among the EC, HIP, and several cortical areas, information related to new memories is then consolidated by these multiple brain systems, through various molecular and cellular mechanisms acting in a distributed and highly concerted manner, during several hours after learning. A special note is made on the contribution by Ivan Izquierdo to our understanding of memory consolidation at the brain system level.
Collapse
|
5
|
McReynolds JR, Carreira MB, McIntyre CK. Post-training intra-basolateral complex of the amygdala infusions of clenbuterol enhance memory for conditioned place preference and increase ARC protein expression in dorsal hippocampal synaptic fractions. Neurobiol Learn Mem 2021; 185:107539. [PMID: 34648950 DOI: 10.1016/j.nlm.2021.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022]
Abstract
The basolateral complex of the amygdala (BLA) is critically involved in modulation of memory by stress hormones. Noradrenergic activation of the BLA enhances memory consolidation and plays a necessary role in the enhancing or impairing effects of stress hormones on memory. The BLA is not only involved in the consolidation of aversive memories but can regulate appetitive memory formation as well. Extensive evidence suggests that the BLA is a modulatory structure that influences consolidation of arousing memories through modulation of plasticity and expression of plasticity-related genes, such as the activity regulated cytoskeletal-associated (Arc/Arg 3.1) protein, in efferent brain regions. ARC is an immediate early gene whose mRNA is localized to the dendrites and is necessary for hippocampus-dependent long-term potentiation and long-term memory formation. Post-training intra-BLA infusions of the β-adrenoceptor agonist, clenbuterol, enhances memory for an aversive task and increases dorsal hippocampus ARC protein expression following training on that task. To examine whether this function of BLA noradrenergic signaling extends to the consolidation of appetitive memories, the present studies test the effect of post-training intra-BLA infusions of clenbuterol on memory for the appetitive conditioned place preference (CPP) task and for effects on ARC protein expression in hippocampal synapses. Additionally, the necessity of increased hippocampal ARC protein expression was also examined for long-term memory formation of the CPP task. Immediate post-training intra-BLA infusions of clenbuterol (4 ng/0.2 µL) significantly enhanced memory for the CPP task. This same memory enhancing treatment significantly increased ARC protein expression in dorsal, but not ventral, hippocampal synaptic fractions. Furthermore, immediate post-training intra-dorsal hippocampal infusions of Arc antisense oligodeoxynucleotides (ODNs), which reduce ARC protein expression, prevented long-term memory formation for the CPP task. These results suggest that noradrenergic activity in the BLA influences long-term memory for aversive and appetitive events in a similar manner and the role of the BLA is conserved across classes of memory. It also suggests that the influence of the BLA on hippocampal ARC protein expression and the role of hippocampal ARC protein expression are conserved across classes of emotionally arousing memories.
Collapse
Affiliation(s)
- Jayme R McReynolds
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States.
| | - Maria B Carreira
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States.
| | - Christa K McIntyre
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States.
| |
Collapse
|
6
|
Gerlei KZ, Brown CM, Sürmeli G, Nolan MF. Deep entorhinal cortex: from circuit organization to spatial cognition and memory. Trends Neurosci 2021; 44:876-887. [PMID: 34593254 DOI: 10.1016/j.tins.2021.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
The deep layers of the entorhinal cortex are important for spatial cognition, as well as memory storage, consolidation and retrieval. A long-standing hypothesis is that deep-layer neurons relay spatial and memory-related signals between the hippocampus and telencephalon. We review the implications of recent circuit-level analyses that suggest more complex roles. The organization of deep entorhinal layers is consistent with multi-stage processing by specialized cell populations; in this framework, hippocampal, neocortical, and subcortical inputs are integrated to generate representations for use by targets in the telencephalon and for feedback to the superficial entorhinal cortex and hippocampus. Addressing individual sublayers of the deep entorhinal cortex in future experiments and models will be important for establishing systems-level mechanisms for spatial cognition and episodic memory.
Collapse
Affiliation(s)
- Klára Z Gerlei
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Christina M Brown
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Gülşen Sürmeli
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
7
|
Roesler R, Parent MB, LaLumiere RT, McIntyre CK. Amygdala-hippocampal interactions in synaptic plasticity and memory formation. Neurobiol Learn Mem 2021; 184:107490. [PMID: 34302951 DOI: 10.1016/j.nlm.2021.107490] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Memories of emotionally arousing events tend to endure longer than other memories. This review compiles findings from several decades of research investigating the role of the amygdala in modulating memories of emotional experiences. Episodic memory is a kind of declarative memory that depends upon the hippocampus, and studies suggest that the basolateral complex of the amygdala (BLA) modulates episodic memory consolidation through interactions with the hippocampus. Although many studies in rodents and imaging studies in humans indicate that the amygdala modulates memory consolidation and plasticity processes in the hippocampus, the anatomical pathways through which the amygdala affects hippocampal regions that are important for episodic memories were unresolved until recent optogenetic advances made it possible to visualize and manipulate specific BLA efferent pathways during memory consolidation. Findings indicate that the BLA influences hippocampal-dependent memories, as well as synaptic plasticity, histone modifications, gene expression, and translation of synaptic plasticity associated proteins in the hippocampus. More recent findings from optogenetic studies suggest that the BLA modulates spatial memory via projections to the medial entorhinal cortex, and that the frequency of activity in this pathway is a critical element of this modulation.
Collapse
Affiliation(s)
- Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), 90050-170 Porto Alegre, RS, Brazil.
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
| | - Christa K McIntyre
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021, USA.
| |
Collapse
|
8
|
Gonzales MM, Samra J, O’Donnell A, Mackin RS, Salinas J, Jacob M, Satizabal CL, Aparicio HJ, Thibault EG, Sanchez JS, Finney R, Rubinstein ZB, Mayblyum DV, Killiany RJ, Decarli CS, Johnson KA, Beiser AS, Seshadri S. Association of Midlife Depressive Symptoms with Regional Amyloid-β and Tau in the Framingham Heart Study. J Alzheimers Dis 2021; 82:249-260. [PMID: 34024836 PMCID: PMC8900661 DOI: 10.3233/jad-210232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Depressive symptoms predict increased risk for dementia decades before the emergence of cognitive symptoms. Studies in older adults provide preliminary evidence for an association between depressive symptoms and amyloid-β (Aβ) and tau accumulation. It is unknown if similar alterations are observed in midlife when preventive strategies may be most effective. OBJECTIVE The study aim was to evaluate the association between depressive symptoms and cerebral Aβ and tau in a predominately middle-aged cohort with examination of the apolipoprotein (APOE) ɛ4 allele as a moderator. METHODS Participants included 201 adults (mean age 53±8 years) who underwent 11C-Pittsburgh Compound B amyloid and 18F-Flortaucipir tau positron emission tomography (PET) imaging. Depressive symptoms were evaluated with the Center for Epidemiological Studies Depression Scale (CES-D) at the time of PET imaging, as well as eight years prior. Associations between depressive symptoms at both timepoints, as well as depression (CES-D≥16), with regional Aβ and tau PET retention were evaluated with linear regression adjusting for age and sex. Interactions with the APOE ɛ4 allele were explored. RESULTS Depressive symptoms and depression were not associated with PET outcomes in the overall sample. However, among APOE ɛ4 allele carriers, there was a significant cross-sectional association between depressive symptoms and increased tau PET uptake in the entorhinal cortex (β= 0.446, SE = 0.155, p = 0.006) and amygdala (β= 0.350, SE = 0.133, p = 0.012). CONCLUSION Although longitudinal studies are necessary, the results suggest that APOE ɛ4 carriers with depressive symptoms may present with higher susceptibility to early tau accumulation in regions integral to affective regulation and memory consolidation.
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jasmeet Samra
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Adrienne O’Donnell
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - R. Scott Mackin
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
- Center for Imaging of Neurodegenerative Disease, Veteran Affairs Administration, San Francisco, CA, USA
| | - Joel Salinas
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Mini Jacob
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- The Framingham Heart Study, Framingham, MA, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- The Framingham Heart Study, Framingham, MA, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Hugo J. Aparicio
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Emma G. Thibault
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Justin S. Sanchez
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Zoe B. Rubinstein
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle V. Mayblyum
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ron J. Killiany
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Charlie S. Decarli
- Department of Neurology, University of California Davis, Davis, CA, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Keith A. Johnson
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexa S. Beiser
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, TX, USA
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|