1
|
Bonomi RE, Riordan W, Gelovani JG. The Structures, Functions, and Roles of Class III HDACs (Sirtuins) in Neuropsychiatric Diseases. Cells 2024; 13:1644. [PMID: 39404407 PMCID: PMC11476333 DOI: 10.3390/cells13191644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Over the past two decades, epigenetic regulation has become a rapidly growing and influential field in biology and medicine. One key mechanism involves the acetylation and deacetylation of lysine residues on histone core proteins and other critical proteins that regulate gene expression and cellular signaling. Although histone deacetylases (HDACs) have received significant attention, the roles of individual HDAC isoforms in the pathogenesis of psychiatric diseases still require further research. This is particularly true with regard to the sirtuins, class III HDACs. Sirtuins have unique functional activity and significant roles in normal neurophysiology, as well as in the mechanisms of addiction, mood disorders, and other neuropsychiatric abnormalities. This review aims to elucidate the differences in catalytic structure and function of the seven sirtuins as they relate to psychiatry.
Collapse
Affiliation(s)
- Robin E. Bonomi
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - William Riordan
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - Juri G. Gelovani
- College of Medicine and Health Sciences, Office of the Provost, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Radiology, Division of Nuclear Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
2
|
Bekhbat M. Glycolytic metabolism: Food for immune cells, fuel for depression? Brain Behav Immun Health 2024; 40:100843. [PMID: 39263313 PMCID: PMC11387811 DOI: 10.1016/j.bbih.2024.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
Inflammation is one biological pathway thought to impact the brain to contribute to major depressive disorder (MDD) and is reliably associated with resistance to standard antidepressant treatments. While peripheral immune cells, particularly monocytes, have been associated with aspects of increased inflammation in MDD and symptom severity, significant gaps in knowledge exist regarding the mechanisms by which these cells are activated to contribute to behavioral symptoms in MDD. One concept that has gained recent appreciation is that metabolic rewiring to glycolysis in activated myeloid cells plays a crucial role in facilitating these cells' pro-inflammatory functions, which may underlie myeloid contribution to systemic inflammation and its effects on the brain. Given emerging evidence from translational studies of depression that peripheral monocytes exhibit signs of glycolytic activation, better understanding the immunometabolic phenotypes of monocytes which are known to be elevated in MDD with high inflammation is a critical step toward comprehending and treating the impact of inflammation on the brain. This narrative review examines the extant literature on glycolytic metabolism of circulating monocytes in depression and discusses the functional implications of immunometabolic shifts at both cellular and systemic levels. Additionally, it proposes potential therapeutic applications of existing immunomodulators that target glycolysis and related metabolic pathways in order to reverse the impact of elevated inflammation on the brain and depressive symptoms.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Quintanilla B, Zarate CA, Pillai A. Ketamine's mechanism of action with an emphasis on neuroimmune regulation: can the complement system complement ketamine's antidepressant effects? Mol Psychiatry 2024; 29:2849-2858. [PMID: 38575806 DOI: 10.1038/s41380-024-02507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Over 300 million people worldwide suffer from major depressive disorder (MDD). Unfortunately, only 30-40% of patients with MDD achieve complete remission after conventional monoamine antidepressant therapy. In recent years, ketamine has revolutionized the treatment of MDD, with its rapid antidepressant effects manifesting within a few hours as opposed to weeks with conventional antidepressants. Many research endeavors have sought to identify ketamine's mechanism of action in mood disorders; while many studies have focused on ketamine's role in glutamatergic modulation, several studies have implicated its role in regulating neuroinflammation. The complement system is an important component of the innate immune response vital for synaptic plasticity. The complement system has been implicated in the pathophysiology of depression, and studies have shown increases in complement component 3 (C3) expression in the prefrontal cortex of suicidal individuals with depression. Given the role of the complement system in depression, ketamine and the complement system's abilities to modulate glutamatergic transmission, and our current understanding of ketamine's anti-inflammatory properties, there is reason to suspect a common link between the complement system and ketamine's mechanism of action. This review will summarize ketamine's anti- inflammatory roles in the periphery and central nervous system, with an emphasis on complement system regulation.
Collapse
Affiliation(s)
- Brandi Quintanilla
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
4
|
Wang C, Lan X, Liu W, Zhan Y, Zheng W, Chen X, Liu G, Mai S, Lu H, McIntyre RS, Zhou Y, Ning Y. Non-improvement predicts subsequent non-response to repeated-dose intravenous ketamine for depression: a re-analysis of a 2-week open-label study in patients with unipolar and bipolar depression. Transl Psychiatry 2024; 14:324. [PMID: 39107286 PMCID: PMC11303529 DOI: 10.1038/s41398-024-03027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
There is insufficient evidence to guide dose and frequency optimization with repeated-dose ketamine for depression. This study assessed the value of symptomatic non-improvement after the first few ketamine infusions as a predictor of overall non-response in depression for early decision-making to discontinue treatment. A total of 135 individuals with major depressive disorder or bipolar disorder experiencing a current major depressive episode were administered six repeated doses of intravenous ketamine. Depressive symptoms were assessed using the Montgomery-Åsberg Depression Rating Scale (MADRS) at baseline, 4 h after the first infusion, and 24 h after each infusion. Improvement, partial response, and response were defined as a reduction rate of ≥ 20%, 30%, and 50% in MADRS scores, respectively. This study examined the relationship between improvement (as opposed to non-improvement after each infusion or consecutive non-improvements after the first few infusions) and partial response and response after the sixth infusion. This analysis was summarized using sensitivity, specificity, and other diagnostic test parameters. The sensitivities of improvement at 24 h post-infusion 4 and improvement at 24 h post-infusion 3, vs. three consecutive non-improvements, as predictors for overall partial response and response exceeded 90%. No significant reduction in depressive symptoms was seen in non-improvers following the remaining infusions after the above-identified point. Our study suggests that non-improvement after four infusions, or more conservatively three consecutive non-improvements after three infusions, could serve as a signal of overall non-response to repeated-dose intravenous ketamine for depression and that subsequent treatments would not be warranted.
Collapse
Affiliation(s)
- Chengyu Wang
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Weijian Liu
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Yanni Zhan
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Chen
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Guanxi Liu
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Siming Mai
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Hanna Lu
- Department of Psychiatry, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yanling Zhou
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| | - Yuping Ning
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Deyama S, Sugie R, Tabata M, Kaneda K. Antidepressant-like effects of tomatidine and tomatine, steroidal alkaloids from unripe tomatoes, via activation of mTORC1 in the medial prefrontal cortex in lipopolysaccharide-induced depression model mice. Nutr Neurosci 2024; 27:795-808. [PMID: 37704369 DOI: 10.1080/1028415x.2023.2254542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACTKetamine, an N-methyl-D-aspartate receptor antagonist, produces rapid antidepressant effects in patients with treatment-resistant depression. However, owing to the undesirable adverse effects of ketamine, there is an urgent need for developing safer and more effective prophylactic and therapeutic interventions for depression. Preclinical studies have demonstrated that activation of the mechanistic target of rapamycin complex 1 (mTORC1) in the medial prefrontal cortex (mPFC) mediates the rapid antidepressant effects of ketamine. The steroidal alkaloid tomatidine and its glycoside α-tomatine (tomatine) can activate mTORC1 signaling in peripheral tissues/cells. We examined whether tomatidine and tomatine exerted prophylactic and therapeutic antidepressant-like actions via mPFC mTORC1 activation using a mouse model of lipopolysaccharide (LPS)-induced depression. Male mice were intraperitoneally (i.p.) administered tomatidine/tomatine before and after the LPS challenge to test their prophylactic and therapeutic effects, respectively. LPS-induced depression-like behaviors in the tail suspension test (TST) and forced swim test (FST) were significantly reversed by prophylactic and therapeutic tomatidine/tomatine administration. LPS-induced anhedonia in the female urine sniffing test was reversed by prophylactic, but not therapeutic, injection of tomatidine, and by prophylactic and therapeutic administration of tomatine. Intra-mPFC infusion of rapamycin, an mTORC1 inhibitor, blocked the prophylactic and therapeutic antidepressant-like effects of tomatidine/tomatine in TST and FST. Moreover, both tomatidine and tomatine produced antidepressant-like effects in ovariectomized female mice, a model of menopause-associated depression. These results indicate that tomatidine and tomatine exert prophylactic and therapeutic antidepressant-like effects via mTORC1 activation in the mPFC and suggest these compounds as promising candidates for novel prophylactic and therapeutic agents for depression.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Rinako Sugie
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaki Tabata
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Patarroyo-Rodriguez L, Cavalcanti S, Vande Voort JL, Singh B. The Use of Ketamine for the Treatment of Anhedonia in Depression. CNS Drugs 2024; 38:583-596. [PMID: 38910222 DOI: 10.1007/s40263-024-01099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
Anhedonia, a complex symptom rooted in deficits across reward processes, is primarily linked to depression and schizophrenia but transcends diagnostic boundaries across various mental disorders. Its presence correlates with poorer clinical outcomes, including an increased risk of suicide and diminished response to treatment. The neurobiological underpinnings of anhedonia remain incompletely understood despite advancements in biomarkers and imaging that contribute to deeper insights. Ketamine, known for its rapid-acting antidepressant properties, appears to possess antianhedonic effects through a mechanism of action not fully elucidated. This effect appears to be independent of its antidepressant properties. Explorations into alternative antianhedonic treatments have been underway, yet lingering questions persist, underscoring the imperative need for ongoing research to advance the field.
Collapse
Affiliation(s)
| | - Stefanie Cavalcanti
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jennifer L Vande Voort
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Aouci R, Fontaine A, Vion A, Belz L, Levi G, Narboux-Nême N. The Antidepressant Action of Fluoxetine Involves the Inhibition of Dlx5/6 in Cortical GABAergic Neurons through a TrkB-Dependent Pathway. Cells 2024; 13:1262. [PMID: 39120293 PMCID: PMC11311550 DOI: 10.3390/cells13151262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Major depressive disorder (MDD) is a complex and devastating illness that affects people of all ages. Despite the large use of antidepressants in current medical practice, neither their mechanisms of action nor the aetiology of MDD are completely understood. Experimental evidence supports the involvement of Parvalbumin-positive GABAergic neurons (PV-neurons) in the pathogenesis of MDD. DLX5 and DLX6 (DLX5/6) encode two homeodomain transcription factors involved in cortical GABAergic differentiation and function. In the mouse, the level of expression of these genes is correlated with the cortical density of PV-neurons and with anxiety-like behaviours. The same genomic region generates the lncRNA DLX6-AS1, which, in humans, participates in the GABAergic regulatory module downregulated in schizophrenia and ASD. Here, we show that the expression levels of Dlx5/6 in the adult mouse brain are correlated with the immobility time in the forced swim test, which is used to measure depressive-like behaviours. We show that the administration of the antidepressant fluoxetine (Flx) to normal mice induces, within 24 h, a rapid and stable reduction in Dlx5, Dlx6 and Dlx6-AS1 expression in the cerebral cortex through the activation of the TrkB-CREB pathway. Experimental Dlx5 overexpression counteracts the antidepressant effects induced by Flx treatment. Our findings show that one of the short-term effects of Flx administration is the reduction in Dlx5/6 expression in GABAergic neurons, which, in turn, has direct consequences on PV expression and on behavioural profiles. Variants in the DLX5/6 regulatory network could be implicated in the predisposition to depression and in the variability of patients' response to antidepressant treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolas Narboux-Nême
- Molecular Physiology and Adaption, UMR7221 CNRS, Museum National d’Histoire Naturelle, 75005 Paris, France; (R.A.); (A.F.); (L.B.); (G.L.)
| |
Collapse
|
8
|
Berner K, Oz N, Kaya A, Acharjee A, Berner J. mTORC1 activation in presumed classical monocytes: observed correlation with human size variation and neuropsychiatric disease. Aging (Albany NY) 2024; 16:11134-11150. [PMID: 39068671 PMCID: PMC11315394 DOI: 10.18632/aging.206033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Gain of function disturbances in nutrient sensing are likely the largest component in human age-related disease. Mammalian target of rapamycin complex 1 (mTORC1) activity affects health span and longevity. The drugs ketamine and rapamycin are effective against chronic pain and depression, and both affect mTORC1 activity. Our objective was to measure phosphorylated p70S6K, a marker for mTORC1 activity, in individuals with psychiatric disease to determine whether phosphorylated p70S6K could predict medication response. METHODS Twenty-seven females provided blood samples in which p70S6K and phosphorylated p70S6K were analyzed. Chart review gathered biometric measurements, clinical phenotypes, and medication response. Questionnaires assessed anxiety, depression, autism traits, and mitochondrial dysfunction, to determine neuropsychiatric disease profiles. Univariate and multivariate statistical analyses were used to identify predictors of medication response. RESULTS mTORC1 activity correlated highly with both classical biometrics (height, macrocephaly, pupil distance) and specific neuropsychiatric disease profiles (anxiety and autism). Across all cases, phosphorylated p70S6K was the best predictor for ketamine response, and also the best predictor for rapamycin response in a single instance. CONCLUSIONS The data illustrate the importance of mTORC1 activity in both observable body structure and medication response. This report suggests that a simple assay may allow cost-effective prediction of medication response.
Collapse
Affiliation(s)
- Karl Berner
- Woodinville Psychiatric Associates, Woodinville, WA 98072, USA
| | - Naci Oz
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
- Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Animesh Acharjee
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- MRC Health Data Research UK (HDR UK), London, UK
| | - Jon Berner
- Woodinville Psychiatric Associates, Woodinville, WA 98072, USA
| |
Collapse
|
9
|
Johnston JN, Zarate CA, Kvarta MD. Esketamine in depression: putative biomarkers from clinical research. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01865-1. [PMID: 38997425 DOI: 10.1007/s00406-024-01865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
The discovery of racemic (R, S)-ketamine as a rapid-acting antidepressant and the subsequent FDA approval of its (S)-enantiomer, esketamine, for treatment-resistant depression (TRD) are significant advances in the development of novel neuropsychiatric therapeutics. Esketamine is now recognized as a powerful tool for addressing persistent symptoms of TRD compared to traditional oral antidepressants. However, research on biomarkers associated with antidepressant response to esketamine has remained sparse and, to date, has been largely extrapolated from racemic ketamine studies. Genetic, proteomic, and metabolomic profiles suggest that inflammation and mitochondrial function may play a role in esketamine's antidepressant effects, though these preliminary results require verification. In addition, neuroimaging research has consistently implicated the prefrontal cortex, striatum, and anterior cingulate cortex in esketamine's effects. Esketamine also shows promise in perioperative settings for reducing depression and anxiety, and these effects appear to correlate with increased peripheral biomarkers such as brain-derived neurotrophic factor and serotonin. Further indications are likely to be identified with the continued repurposing of racemic ketamine, providing further opportunity for biomarker study and mechanistic understanding of therapeutic effects. Novel methodologies and well-designed biomarker-focused clinical research trials are needed to more clearly elucidate esketamine's therapeutic actions as well as biologically identify those most likely to benefit from this agent, allowing for the improved personalization of antidepressant treatment.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Mark D Kvarta
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Zhou L, Duan J. The role of NMDARs in the anesthetic and antidepressant effects of ketamine. CNS Neurosci Ther 2024; 30:e14464. [PMID: 37680076 PMCID: PMC11017467 DOI: 10.1111/cns.14464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND As a phencyclidine (PCP) analog, ketamine can generate rapid-onset and substantial anesthetic effects. Contrary to traditional anesthetics, ketamine is a dissociative anesthetic and can induce loss of consciousness in patients. Recently, the subanaesthetic dose of ketamine was found to produce rapid-onset and lasting antidepressant effects. AIM However, how different concentrations of ketamine can induce diverse actions remains unclear. Furthermore, the molecular mechanisms underlying the NMDAR-mediated anesthetic and antidepressant effects of ketamine are not fully understood. METHOD In this review, we have introduced ketamine and its metabolism, summarized recent advances in the molecular mechanisms underlying NMDAR inhibition in the anesthetic and antidepressant effects of ketamine, explored the possible functions of NMDAR subunits in the effects of ketamine, and discussed the future directions of ketamine-based anesthetic and antidepressant drugs. RESULT Both the anesthetic and antidepressant effects of ketamine were thought to be mediated by N-methyl-D-aspartate receptor (NMDAR) inhibition. CONCLUSION The roles of NMDARs have been extensively studied in the anaesthetic effects of ketamine. However, the roles of NMDARs in antidepressant effects of ketamine are complicated and controversial.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of MedicineSunYat‐sen UniversityGuangzhouChina
| |
Collapse
|
11
|
Pomrenze MB, Vaillancourt S, Llorach P, Rijsketic DR, Casey AB, Gregory N, Salgado JS, Malenka RC, Heifets BD. Opioid receptor expressing neurons of the central amygdala gate behavioral effects of ketamine in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583196. [PMID: 38496451 PMCID: PMC10942405 DOI: 10.1101/2024.03.03.583196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Ketamine has anesthetic, analgesic, and antidepressant properties which may involve multiple neuromodulatory systems. In humans, the opioid receptor (OR) antagonist naltrexone blocks the antidepressant effect of ketamine. It is unclear whether naltrexone blocks a direct effect of ketamine at ORs, or whether normal functioning of the OR system is required to realize the full antidepressant effects of treatment. In mice, the effect of ketamine on locomotion, but not analgesia or the forced swim test, was sensitive to naltrexone and was therefore used as a behavioral readout to localize the effect of naltrexone in the brain. We performed whole-brain imaging of cFos expression in ketamine-treated mice, pretreated with naltrexone or vehicle, and identified the central amygdala (CeA) as the area with greatest difference in cFos intensity. CeA neurons expressing both μOR (MOR) and PKCμ were strongly activated by naltrexone but not ketamine, and selectively interrupting MOR function in the CeA either pharmacologically or genetically blocked the locomotor effects of ketamine. These data suggest that MORs expressed in CeA neurons gate behavioral effects of ketamine but are not direct targets of ketamine.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Sam Vaillancourt
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Pierre Llorach
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel Ryskamp Rijsketic
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Austen B. Casey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Nicholas Gregory
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Juliana S. Salgado
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Boris D. Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
12
|
Nasser A, Randall Owen J, Gomeni R, Kosheleff AR, Portelli J, Adeojo LW, Hughes TE. Advanced Model-based Approach to Evaluate Human Plasma, Cerebrospinal Fluid, and Neuronal mTORC1 Activation Biomarkers After NV-5138 Administration in Healthy Volunteers. Clin Ther 2024; 46:217-227. [PMID: 38485588 DOI: 10.1016/j.clinthera.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 04/13/2024]
Abstract
PURPOSE NV-5138 ([S]-2-amino-5,5-difluoro-4,4-dimethylpentanoic acid) is an orally bioavailable, small-molecule activator of the mechanistic target of rapamycin complex 1 (mTORC1) pathway in development for treatment-resistant depression. The authors established a model to describe the relationship between plasma and cerebrospinal fluid (CSF) concentrations of NV-5138 and between CSF concentrations and potential biomarkers thought to be associated with mTORC1 activity (ie, orotic acid, N-acetylmethionine, and N-formylmethionine). METHODS Data were collected from a randomized, double-blind, placebo-controlled, tolerability, and pharmacokinetic (PK) parameter study of 5 ascending (400, 800, 1600, 2400, and 3000 mg), once-daily oral doses of NV-5138 in healthy subjects. NV-5138 plasma PK parameter samples were collected at 15 time points over 24 hours on days 1 and 7, and at pre dose on days 2-6 for all doses. NV-5138 CSF PK parameter and CSF biomarker samples were collected on days 1 and 7 at pre dose and 4, 8, and 12 hours post dose for all doses except 3000 mg. A model-based approach was used to develop and validate a model that describes the relationship between NV-5138 in CSF and biomarker concentrations. FINDINGS Twenty-four of the 42 enrolled subjects had simultaneous plasma and CSF measurements of NV-5138 and CSF biomarker concentrations and were included in the PK parameter and pharmacodynamic (PD) analyses. A 2-compartment plasma and CSF PK parameter, with indirect PD effects, model was developed and validated. NV-5138 plasma concentrations were positively correlated with those in CSF, although CSF concentrations lagged slightly behind those in plasma, as indicated by a counterclockwise hysteresis effect. Similarly, the relationship between the PD measures of mTORC1 activation and NV-5138 was also characterized by counterclockwise hysteresis, when the increase in CSF biomarker concentrations lagged behind those of NV-5138, consistent with a signaling intermediary/cascade, such as mTORC1. Maximal biomarker activation was achieved at NV-5138 CSF concentrations of approximately 3 µg/mL, which were associated with daily doses of 1600 mg NV-5138. The safety profile analysis (n = 42) found that most of the reported adverse events were mild in severity, with no severe, serious, unusual, or unexpected adverse events or any dissociative effects; 2 subjects (400-mg cohort) discontinued due to adverse events that were judged to be unrelated to study medication. IMPLICATIONS The model will be used for designing future efficacy and tolerability studies. Consecutive daily doses of NV-5138 were well tolerated in this healthy volunteer study.
Collapse
Affiliation(s)
- Azmi Nasser
- Supernus Pharmaceuticals, Inc., Rockville, Maryland
| | | | | | | | | | | | | |
Collapse
|
13
|
Lewis V, Rurak G, Salmaso N, Aguilar-Valles A. An integrative view on the cell-type-specific mechanisms of ketamine's antidepressant actions. Trends Neurosci 2024; 47:195-208. [PMID: 38220554 DOI: 10.1016/j.tins.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Over the past six decades, the use of ketamine has evolved from an anesthetic and recreational drug to the first non-monoaminergic antidepressant approved for treatment-resistant major depressive disorder (MDD). Subanesthetic doses of ketamine and its enantiomer (S)-ketamine (esketamine) directly bind to several neurotransmitter receptors [including N-methyl-d-aspartic acid receptor (NMDAR), κ and μ opioid receptor (KOR and MOR)] widely distributed in the brain and across different cell types, implicating several potential molecular mechanisms underlying the action of ketamine as an antidepressant. This review examines preclinical studies investigating cell-type-specific mechanisms underlying the effects of ketamine on behavior and synapses. Cell-type-specific approaches are crucial for disentangling the critical mechanisms involved in the therapeutic effect of ketamine.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Gareth Rurak
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Argel Aguilar-Valles
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
14
|
Ren L. The mechanistic basis for the rapid antidepressant-like effects of ketamine: From neural circuits to molecular pathways. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110910. [PMID: 38061484 DOI: 10.1016/j.pnpbp.2023.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Conventional antidepressants that target monoaminergic receptors require several weeks to be efficacious. This lag represents a significant problem in the currently available treatments for serious depression. Ketamine, acting as an N-methyl-d-aspartate receptor antagonist, was shown to have rapid antidepressant-like effects, marking a significant advancement in the study of mood disorders. However, serious side effects and adverse reactions limit its clinical use. Considering the limitations of ketamine, it is crucial to further define the network targets of ketamine. The rapid action of ketamine an as antidepressant is thought to be mediated by the glutamate system. It is believed that synaptic plasticity is essential for the rapid effects of ketamine as an antidepressant. Other mechanisms include the involvement of the γ-aminobutyric acidergic (GABAergic), 5-HTergic systems, and recent studies have linked astrocytes to ketamine's rapid antidepressant-like effects. The interactions between these systems exert a synergistic rapid antidepressant effect through neural circuits and molecular mechanisms. Here, we discuss the neural circuits and molecular mechanisms underlying the action of ketamine. This work will help explain how molecular and neural targets are responsible for the effects of rapidly acting antidepressants and will aid in the discovery of new therapeutic approaches for major depressive disorder.
Collapse
Affiliation(s)
- Li Ren
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu 611137, China.
| |
Collapse
|
15
|
Chen Y, Guan W, Wang ML, Lin XY. PI3K-AKT/mTOR Signaling in Psychiatric Disorders: A Valuable Target to Stimulate or Suppress? Int J Neuropsychopharmacol 2024; 27:pyae010. [PMID: 38365306 PMCID: PMC10888523 DOI: 10.1093/ijnp/pyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Economic development and increased stress have considerably increased the prevalence of psychiatric disorders in recent years, which rank as some of the most prevalent diseases globally. Several factors, including chronic social stress, genetic inheritance, and autogenous diseases, lead to the development and progression of psychiatric disorders. Clinical treatments for psychiatric disorders include psychotherapy, chemotherapy, and electric shock therapy. Although various achievements have been made researching psychiatric disorders, the pathogenesis of these diseases has not been fully understood yet, and serious adverse effects and resistance to antipsychotics are major obstacles to treating patients with psychiatric disorders. Recent studies have shown that the mammalian target of rapamycin (mTOR) is a central signaling hub that functions in nerve growth, synapse formation, and plasticity. The PI3K-AKT/mTOR pathway is a critical target for mediating the rapid antidepressant effects of these pharmacological agents in clinical and preclinical research. Abnormal PI3K-AKT/mTOR signaling is closely associated with the pathogenesis of several neurodevelopmental disorders. In this review, we focused on the role of mTOR signaling and the related aberrant neurogenesis in psychiatric disorders. Elucidating the neurobiology of the PI3K-AKT/mTOR signaling pathway in psychiatric disorders and its actions in response to antidepressants will help us better understand brain development and quickly identify new therapeutic targets for the treatment of these mental illnesses.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| | - Mei-Lan Wang
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xiao-Yun Lin
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
16
|
Abstract
Major depressive disorder (MDD) is a leading cause of suicide in the world. Monoamine-based antidepressant drugs are a primary line of treatment for this mental disorder, although the delayed response and incomplete efficacy in some patients highlight the need for improved therapeutic approaches. Over the past two decades, ketamine has shown rapid onset with sustained (up to several days) antidepressant effects in patients whose MDD has not responded to conventional antidepressant drugs. Recent preclinical studies have started to elucidate the underlying mechanisms of ketamine's antidepressant properties. Herein, we describe and compare recent clinical and preclinical findings to provide a broad perspective of the relevant mechanisms for the antidepressant action of ketamine.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Kanzo Suzuki
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Ege T Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
| | - Lisa M Monteggia
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
| |
Collapse
|
17
|
Hovda N, Gerrish W, Frizzell W, Shackelford R. A systematic review of the incidence of medical serious adverse events in sub-anesthetic ketamine treatment of psychiatric disorders. J Affect Disord 2024; 345:262-271. [PMID: 37875227 DOI: 10.1016/j.jad.2023.10.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/04/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Limited published data exists that collates serious adverse outcomes involving ketamine as a psychiatric intervention. This systematic review assesses the reported incidence of medical serious adverse events (MSAEs), including but not limited to cardiovascular events, in patients receiving sub-anesthetic doses of ketamine for psychiatric disorders to guide practitioners during treatment planning, risk-benefit analyses, and the informed consent process. METHODS Pubmed database was searched for clinical trials of sub-anesthetic ketamine for psychiatric disorders in non-pregnant adult patients. Of the 2275 articles identified, 93 met inclusion criteria, over half of which were published in 2017 or later. Only studies that reported adverse events were included, and the incidence of MSAEs was calculated. RESULTS Of the 3756 participants who received at least one sub-anesthetic dose of ketamine, four participants experienced a MSAE, resulting in an incidence of approximately 0.1 % of individuals. The four MSAEs resolved without reported sequelae. Eighty-three percent of studies reported screening for medical illness and exclusion of high-risk patients. There were no serious cardiac adverse events or deaths observed in any participants; however, most trials' study designs excluded those with high cardiovascular complication risk. LIMITATIONS Most studies were small, underpowered for detecting rare MSAEs, at potential high-risk of bias of non-report of MSAEs, and limited mostly to intranasal and intravenous routes. CONCLUSIONS Findings suggest that with basic medical screening there is a very low incidence of MSAEs including adverse cardiac or cerebrovascular events in individuals receiving sub-anesthetic ketamine for psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas Hovda
- Sojourn Psychotherapy, Boise, United States of America; University of Washington School of Medicine, Department of Psychiatry & Behavioral Sciences, United States of America; Boise VAMC, Psychiatry & Behavioral Sciences Department, United States of America.
| | - Winslow Gerrish
- University of Washington School of Medicine, Department of Psychiatry & Behavioral Sciences, United States of America; Family Medicine Residency of Idaho - Boise, Full Circle Health, United States of America.
| | - William Frizzell
- University of Washington School of Medicine, Department of Psychiatry & Behavioral Sciences, United States of America; Boise VAMC, Psychiatry & Behavioral Sciences Department, United States of America.
| | - Ryan Shackelford
- Sojourn Psychotherapy, Boise, United States of America; University of Washington School of Medicine, Department of Psychiatry & Behavioral Sciences, United States of America; Family Medicine Residency of Idaho - Boise, Full Circle Health, United States of America.
| |
Collapse
|
18
|
Salvatore SV, Ilagan MXG, Shu H, Lambert PM, Benz A, Qian M, Covey DF, Zorumski CF, Mennerick S. Neuroactive steroid effects on autophagy in a human embryonic kidney 293 (HEK) cell model. Sci Rep 2024; 14:1042. [PMID: 38200205 PMCID: PMC10781668 DOI: 10.1038/s41598-024-51582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024] Open
Abstract
Neuropsychiatric and neurodegenerative disorders are correlated with cellular stress. Macroautophagy (autophagy) may represent an important protective pathway to maintain cellular homeostasis and functionality, as it targets cytoplasmic components to lysosomes for degradation and recycling. Given recent evidence that some novel psychiatric treatments, such as the neuroactive steroid (NAS) allopregnanolone (AlloP, brexanolone), may induce autophagy, we stably transfected human embryonic kidney 293 (HEK) cells with a ratiometric fluorescent probe to assay NAS effects on autophagy. We hypothesized that NAS may modulate autophagy in part by the ability of uncharged NAS to readily permeate membranes. Microscopy revealed a weak effect of AlloP on autophagic flux compared with the positive control treatment of Torin1. In high-throughput microplate experiments, we found that autophagy induction was more robust in early passages of HEK cells. Despite limiting studies to early passages for maximum sensitivity, a range of NAS structures failed to reliably induce autophagy or interact with Torin1 or starvation effects. To probe NAS in a system where AlloP effects have been shown previously, we surveyed astrocytes and again saw minimal autophagy induction by AlloP. Combined with other published results, our results suggest that NAS may modulate autophagy in a cell-specific or context-specific manner. Although there is merit to cell lines as a screening tool, future studies may require assaying NAS in cells from brain regions involved in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sofia V Salvatore
- Departments of Psychiatry, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Ma Xenia G Ilagan
- High-Throughput Screening Core, Center for Drug Discovery, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Hongjin Shu
- Departments of Psychiatry, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Peter M Lambert
- Departments of Psychiatry, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Ann Benz
- Departments of Psychiatry, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Mingxing Qian
- Developmental Biology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Douglas F Covey
- Developmental Biology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Charles F Zorumski
- Departments of Psychiatry, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Steven Mennerick
- Departments of Psychiatry, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA.
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Johnston JN, Kadriu B, Kraus C, Henter ID, Zarate CA. Ketamine in neuropsychiatric disorders: an update. Neuropsychopharmacology 2024; 49:23-40. [PMID: 37340091 PMCID: PMC10700638 DOI: 10.1038/s41386-023-01632-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
The discovery of ketamine as a rapid-acting antidepressant led to a new era in the development of neuropsychiatric therapeutics, one characterized by an antidepressant response that occurred within hours or days rather than weeks or months. Considerable clinical research supports the use of-or further research with-subanesthetic-dose ketamine and its (S)-enantiomer esketamine in multiple neuropsychiatric disorders including depression, bipolar disorder, anxiety spectrum disorders, substance use disorders, and eating disorders, as well as for the management of chronic pain. In addition, ketamine often effectively targets symptom domains associated with multiple disorders, such as anxiety, anhedonia, and suicidal ideation. This manuscript: 1) reviews the literature on the pharmacology and hypothesized mechanisms of subanesthetic-dose ketamine in clinical research; 2) describes similarities and differences in the mechanism of action and antidepressant efficacy between racemic ketamine, its (S) and (R) enantiomers, and its hydroxynorketamine (HNK) metabolite; 3) discusses the day-to-day use of ketamine in the clinical setting; 4) provides an overview of ketamine use in other psychiatric disorders and depression-related comorbidities (e.g., suicidal ideation); and 5) provides insights into the mechanisms of ketamine and therapeutic response gleaned from the study of other novel therapeutics and neuroimaging modalities.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Translational and Experimental Medicine, Neuroscience at Jazz Pharmaceuticals, San Diego, CA, USA
| | - Christoph Kraus
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Krystal JH, Kavalali ET, Monteggia LM. Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms. Neuropsychopharmacology 2024; 49:41-50. [PMID: 37488280 PMCID: PMC10700627 DOI: 10.1038/s41386-023-01629-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 07/26/2023]
Abstract
Ketamine is an open channel blocker of ionotropic glutamatergic N-Methyl-D-Aspartate (NMDA) receptors. The discovery of its rapid antidepressant effects in patients with depression and treatment-resistant depression fostered novel effective treatments for mood disorders. This discovery not only provided new insight into the neurobiology of mood disorders but also uncovered fundamental synaptic plasticity mechanisms that underlie its treatment. In this review, we discuss key clinical aspects of ketamine's effect as a rapidly acting antidepressant, synaptic and circuit mechanisms underlying its action, as well as how these novel perspectives in clinical practice and synapse biology form a road map for future studies aimed at more effective treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
21
|
Su WJ, Hu T, Jiang CL. Cool the Inflamed Brain: A Novel Anti-inflammatory Strategy for the Treatment of Major Depressive Disorder. Curr Neuropharmacol 2024; 22:810-842. [PMID: 37559243 PMCID: PMC10845090 DOI: 10.2174/1570159x21666230809112028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Abundant evidence suggests that inflammatory cytokines contribute to the symptoms of major depressive disorder (MDD) by altering neurotransmission, neuroplasticity, and neuroendocrine processes. Given the unsatisfactory response and remission of monoaminergic antidepressants, anti-inflammatory therapy is proposed as a feasible way to augment the antidepressant effect. Recently, there have been emerging studies investigating the efficiency and efficacy of anti-inflammatory agents in the treatment of MDD and depressive symptoms comorbid with somatic diseases. METHODS In this narrative review, prospective clinical trials focusing on anti-inflammatory treatment for depression have been comprehensively searched and screened. Based on the included studies, we summarize the rationale for the anti-inflammatory therapy of depression and discuss the utilities and confusions regarding the anti-inflammatory strategy for MDD. RESULTS This review included over 45 eligible trials. For ease of discussion, we have grouped them into six categories based on their mechanism of action, and added some other anti-inflammatory modalities, including Chinese herbal medicine and non-drug therapy. Pooled results suggest that anti-inflammatory therapy is effective in improving depressive symptoms, whether used as monotherapy or add-on therapy. However, there remain confusions in the application of anti-inflammatory therapy for MDD. CONCLUSION Based on current clinical evidence, anti-inflammatory therapy is a promisingly effective treatment for depression. This study proposes a novel strategy for clinical diagnosis, disease classification, personalized treatment, and prognostic prediction of depression. Inflammatory biomarkers are recommended to be assessed at the first admission of MDD patients, and anti-inflammatory therapy are recommended to be included in the clinical practice guidelines for diagnosis and treatment. Those patients with high levels of baseline inflammation (e.g., CRP > 3 mg/L) may benefit from adjunctive anti-inflammatory therapy.
Collapse
Affiliation(s)
- Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
22
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. [Ketamine and suicidal behavior: Contribution of animal models of aggression-impulsivity to understanding its mechanism of action]. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:3-14. [PMID: 37890717 DOI: 10.1016/j.pharma.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
More than two-thirds of suicides occur during a major depressive episode. Acting out prevention measures and therapeutic options to manage the suicidal crisis are limited. The impulsive-aggressive dimensions are vulnerability factors associated with suicide in patients suffering from a characterized depressive episode: this can be a dimension involved in animals. Impulsive and aggressive rodent models can help analyze, at least in part, the neurobiology of suicide and the beneficial effects of treatments. Ketamine, a glutamatergic antagonist, by rapidly improving the symptoms of depressive episodes, would help reduce suicidal thoughts in the short term. Animal models share with humans impulsive and aggressive endophenotypes modulated by the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation or the hypothalamic-pituitary-adrenal axis and stress. Significant effects of ketamine on these endophenotypes remain to be demonstrated.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France
| | - Fabrice Jollant
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France; Pôle de psychiatrie, CHU de Nîmes, Nîmes, France; Département de psychiatrie, Université McGill et Groupe McGill d'études sur le suicide, Montréal, Canada
| | - Laurent Tritschler
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France
| | - Romain Colle
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France
| | - Emmanuelle Corruble
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France
| | - Alain M Gardier
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
23
|
Xie Y, Zhao G, Lei X, Cui N, Wang H. Advances in the regulatory mechanisms of mTOR in necroptosis. Front Immunol 2023; 14:1297408. [PMID: 38164133 PMCID: PMC10757967 DOI: 10.3389/fimmu.2023.1297408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily highly conserved serine/threonine protein kinase, plays a prominent role in controlling gene expression, metabolism, and cell death. Programmed cell death (PCD) is indispensable for maintaining homeostasis by removing senescent, defective, or malignant cells. Necroptosis, a type of PCD, relies on the interplay between receptor-interacting serine-threonine kinases (RIPKs) and the membrane perforation by mixed lineage kinase domain-like protein (MLKL), which is distinguished from apoptosis. With the development of necroptosis-regulating mechanisms, the importance of mTOR in the complex network of intersecting signaling pathways that govern the process has become more evident. mTOR is directly responsible for the regulation of RIPKs. Autophagy is an indirect mechanism by which mTOR regulates the removal and interaction of RIPKs. Another necroptosis trigger is reactive oxygen species (ROS) produced by oxidative stress; mTOR regulates necroptosis by exploiting ROS. Considering the intricacy of the signal network, it is reasonable to assume that mTOR exerts a bifacial effect on necroptosis. However, additional research is necessary to elucidate the underlying mechanisms. In this review, we summarized the mechanisms underlying mTOR activation and necroptosis and highlighted the signaling pathway through which mTOR regulates necroptosis. The development of therapeutic targets for various diseases has been greatly advanced by the expanding knowledge of how mTOR regulates necroptosis.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Krystal JH, Kaye AP, Jefferson S, Girgenti MJ, Wilkinson ST, Sanacora G, Esterlis I. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc Natl Acad Sci U S A 2023; 120:e2305772120. [PMID: 38011560 DOI: 10.1073/pnas.2305772120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ketamine has emerged as a transformative and mechanistically novel pharmacotherapy for depression. Its rapid onset of action, efficacy for treatment-resistant symptoms, and protection against relapse distinguish it from prior antidepressants. Its discovery emerged from a reconceptualization of the neurobiology of depression and, in turn, insights from the elaboration of its mechanisms of action inform studies of the pathophysiology of depression and related disorders. It has been 25 y since we first presented our ketamine findings in depression. Thus, it is timely for this review to consider what we have learned from studies of ketamine and to suggest future directions for the optimization of rapid-acting antidepressant treatment.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Sarah Jefferson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
25
|
Wojtas A. The possible place for psychedelics in pharmacotherapy of mental disorders. Pharmacol Rep 2023; 75:1313-1325. [PMID: 37934320 PMCID: PMC10661751 DOI: 10.1007/s43440-023-00550-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Since its emergence in the 1960s, the serotonergic theory of depression bore fruit in the discovery of a plethora of antidepressant drugs affecting the lives of millions of patients. While crucial in the history of drug development, recent studies undermine the effectiveness of currently used antidepressant drugs in comparison to placebo, emphasizing the long time it takes to initiate the therapeutic response and numerous adverse effects. Thus, the scope of contemporary pharmacological research shifts from drugs affecting the serotonin system to rapid-acting antidepressant drugs. The prototypical representative of the aforementioned class is ketamine, an NMDA receptor antagonist capable of alleviating the symptoms of depression shortly after the drug administration. This discovery led to a paradigm shift, focusing on amino-acidic neurotransmitters and growth factors. Alas, the drug is not perfect, as its therapeutic effect diminishes circa 2 weeks after administration. Furthermore, it is not devoid of some severe side effects. However, there seems to be another, more efficient, and safer way to target the glutamatergic system. Hallucinogenic agonists of the 5-HT2A receptor, commonly known as psychedelics, are nowadays being reconsidered in clinical practice, shedding their infamous 1970s stigma. More and more clinical studies prove their clinical efficacy and rapid onset after a single administration while bearing fewer side effects. This review focuses on the current state-of-the-art literature and most recent clinical studies concerning the use of psychedelic drugs in the treatment of mental disorders. Specifically, the antidepressant potential of LSD, psilocybin, DMT, and 5-MeO-DMT will be discussed, together with a brief summary of other possible applications.
Collapse
Affiliation(s)
- Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
26
|
Stachowicz K. Deciphering the mechanisms of reciprocal regulation or interdependence at the cannabinoid CB1 receptors and cyclooxygenase-2 level: Effects on mood, cognitive implications, and synaptic signaling. Neurosci Biobehav Rev 2023; 155:105439. [PMID: 37898448 DOI: 10.1016/j.neubiorev.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
The lipid endocannabinoid system refers to endogenous cannabinoids (eCBs), the enzymes involved in their synthesis and metabolism, and the G protein-coupled cannabinoid receptors (GPCRs), CB1, and CB2. CB1 receptors (CB1Rs) are distributed in the brain at presynaptic terminals. Their activation induces inhibition of neurotransmitter release, which are gamma-aminobutyric acid (GABA), glutamate (Glu), dopamine, norepinephrine, serotonin, and acetylcholine. Postsynaptically localized CB1Rs regulate the activity of selected ion channels and N-methyl-D-aspartate receptors (NMDARs). CB2Rs are mainly peripheral and will not be considered here. Anandamide metabolism, mediated by cyclooxygenase-2 (COX-2), generates anandamide-derived prostanoids. In addition, COX-2 regulates the formation of CB1 ligands, which reduce excitatory transmission in the hippocampus (HC). The role of CB1Rs and COX-2 has been described in anxiety, depression, and cognition, among other central nervous system (CNS) disorders, affecting neurotransmission and behavior of the synapses. This review will analyze common pathways, mechanisms, and behavioral effects of manipulation at the CB1Rs/COX-2 level.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacoslogy, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
27
|
Guilloux JP, Nguyen TML, Gardier AM. [Ketamine: a neuropsychotropic drug with an innovative mechanism of action]. Biol Aujourdhui 2023; 217:133-144. [PMID: 38018940 DOI: 10.1051/jbio/2023026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Indexed: 11/30/2023]
Abstract
Ketamine, a non-competitive antagonist of the N-methyl-D-aspartate-glutamate receptor (R-NMDA), has a rapid (from 24 h post-dose) and prolonged (up to one week) antidepressant effect in treatment resistant depression and in rodent models of anxiety/depression. Arguments regarding its cellular and molecular mechanisms underlying its antidepressant activity mainly come from animal studies. However, debates still persist on the structural remodeling of frontocortical/hippocampal neurons and the role of excitatory/inhibitory neurotransmitters involved in its behavioral effect. Neurochemical and behavioral changes are maintained 24 h after administration of ketamine, well beyond its plasma elimination half-life. The glutamatergic pyramidal cells of the medial prefrontal cortex are primarily implicated in the therapeutic effects of ketamine. Advances in knowledge of the consequences of R-NMDA blockade allowed to specify the underlying mechanisms involving the activation of AMPA glutamate receptors, which triggers a cascade of intracellular events dependent on the mechanistic target of rapamycin, brain-derived neurotrophic factor, and synaptic protein synthesis facilitating synaptic plasticity (number of dendritic spines, synaptogenesis). This review focuses on abnormalities of neurotransmitter systems involved in major depressive disorders, their potential impact on neural circuitry and beneficial effects of ketamine. Recent preclinical data pave the way for future studies to better clarify the mechanism of action of fast-acting antidepressant drugs for the development of novel, more effective therapies.
Collapse
Affiliation(s)
- Jean-Philippe Guilloux
- Laboratoire de Neuropharmacologie, Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, Équipe MOODS, F-91400 Orsay, France
| | - Thi Mai Loan Nguyen
- Laboratoire de Neuropharmacologie, Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, Équipe MOODS, F-91400 Orsay, France
| | - Alain M Gardier
- Laboratoire de Neuropharmacologie, Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, Équipe MOODS, F-91400 Orsay, France
| |
Collapse
|
28
|
Vecera CM, C. Courtes A, Jones G, Soares JC, Machado-Vieira R. Pharmacotherapies Targeting GABA-Glutamate Neurotransmission for Treatment-Resistant Depression. Pharmaceuticals (Basel) 2023; 16:1572. [PMID: 38004437 PMCID: PMC10675154 DOI: 10.3390/ph16111572] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Treatment-resistant depression (TRD) is a term used to describe a particular type of major depressive disorder (MDD). There is no consensus about what defines TRD, with various studies describing between 1 and 4 failures of antidepressant therapies, with or without electroconvulsive therapy (ECT). That is why TRD is such a growing concern among clinicians and researchers, and it explains the necessity for investigating novel therapeutic targets beyond conventional monoamine pathways. An imbalance between two primary central nervous system (CNS) neurotransmitters, L-glutamate and γ-aminobutyric acid (GABA), has emerged as having a key role in the pathophysiology of TRD. In this review, we provide an evaluation and comprehensive review of investigational antidepressants targeting these two systems, accessing their levels of available evidence, mechanisms of action, and safety profiles. N-methyl-D-aspartate (NMDA) receptor antagonism has shown the most promise amongst the glutamatergic targets, with ketamine and esketamine (Spravato) robustly generating responses across trials. Two specific NMDA-glycine site modulators, D-cycloserine (DCS) and apimostinel, have also generated promising initial safety and efficacy profiles, warranting further investigation. Combination dextromethorphan-bupropion (AXS-05/Auvelity) displays a unique mechanism of action and demonstrated positive results in particular applicability in subpopulations with cognitive dysfunction. Currently, the most promising GABA modulators appear to be synthetic neurosteroid analogs with positive GABAA receptor modulation (such as brexanolone). Overall, advances in the last decade provide exciting perspectives for those who do not improve with conventional therapies. Of the compounds reviewed here, three are approved by the Food and Drug Administration (FDA): esketamine (Spravato) for TRD, Auvelity (dextromethorphan-bupropion) for major depressive disorder (MDD), and brexanolone (Zulresso) for post-partum depression (PPD). Notably, some concerns have arisen with esketamine and brexanolone, which will be detailed in this study.
Collapse
Affiliation(s)
- Courtney M. Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Gregory Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Rodrigo Machado-Vieira
- John S. Dunn Behavioral Sciences Center at UTHealth Houston, 5615 H.Mark Crosswell Jr St, Houston, TX 77021, USA
| |
Collapse
|
29
|
Chaki S, Watanabe M. mGlu2/3 receptor antagonists for depression: overview of underlying mechanisms and clinical development. Eur Arch Psychiatry Clin Neurosci 2023; 273:1451-1462. [PMID: 36715750 DOI: 10.1007/s00406-023-01561-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Triggered by the ground-breaking finding that ketamine exerts robust and rapid-acting antidepressant effects in patients with treatment-resistant depression, glutamatergic systems have attracted attention as targets for the development of novel antidepressants. Among glutamatergic systems, group II metabotropic glutamate (mGlu) receptors, consisting of mGlu2 and mGlu3 receptors, are of interest because of their modulatory roles in glutamatergic transmission. Accumulating evidence has indicated that mGlu2/3 receptor antagonists have antidepressant-like effects in rodent models that mirror those of ketamine and that mGlu2/3 receptor antagonists also share underlying mechanisms with ketamine that are responsible for these antidepressant-like actions. Importantly, contrary to their antidepressant-like profile, preclinical studies have revealed that mGlu2/3 receptor antagonists are devoid of ketamine-like adverse effects, such as psychotomimetic-like behavior, abuse potential and neurotoxicity. Despite some discouraging results for an mGlu2/3 receptor antagonist decoglurant (classified as a negative allosteric modulator [NAM]) in patients with major depressive disorder, clinical trials of two mGlu2/3 receptor antagonists, a phase 2 trial of TS-161 (an orthosteric antagonist) and a phase 1 trial of DSP-3456 (a NAM), are presently on-going. mGlu2/3 receptors still hold promise for the development of safer and more efficacious antidepressants.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama, 331-9530, Japan.
| | - Mai Watanabe
- Taisho Pharmaceutical R&D Inc, 350 Mt. Kemble Avenue, Morristown, NJ, 07960, USA
| |
Collapse
|
30
|
Tan B, Browne CJ, Nöbauer T, Vaziri A, Friedman JM, Nestler EJ. Drugs of abuse hijack a mesolimbic pathway that processes homeostatic need. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556059. [PMID: 37732251 PMCID: PMC10508763 DOI: 10.1101/2023.09.03.556059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Addiction prioritizes drug use over innate needs by "hijacking" brain circuits that direct motivation, but how this develops remains unclear. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we find that drugs of abuse augment ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell-type-specific manner. Combining "FOS-Seq", CRISPR-perturbations, and snRNA-seq, we identify Rheb as a shared molecular substrate that regulates cell-type-specific signal transductions in NAc while enabling drugs to suppress natural reward responses. Retrograde circuit mapping pinpoints orbitofrontal cortex which, upon activation, mirrors drug effects on innate needs. These findings deconstruct the dynamic, molecular, and circuit basis of a common reward circuit, wherein drug value is scaled to promote drug-seeking over other, normative goals.
Collapse
Affiliation(s)
- Bowen Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- These authors contributed equally
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- These authors contributed equally
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
31
|
Sharma A, Tajerian M, Berner J. Rapamycin Augmentation of Chronic Ketamine as a Novel Treatment for Complex Regional Pain Syndrome. Cureus 2023; 15:e43715. [PMID: 37724220 PMCID: PMC10505505 DOI: 10.7759/cureus.43715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/20/2023] Open
Abstract
This case report describes the dramatic clinical response of refractory chronic complex regional pain syndrome to combined immunomodulatory treatment. Ketamine and rapamycin markedly minimized pain historically associated with suicidal behavior, increased baseline activity, and allowed for a reduction in palliative polypharmacy. The piecewise mechanism of action is unclear given multiple postulated targets, such as microglia, astroglia, T-regulatory cells, B-regulatory cells, or neurons. Relevant laboratory and genetic information may allow the application of this treatment to other affected individuals.
Collapse
Affiliation(s)
- Ayush Sharma
- Pain Management, Woodinville Psychiatric Associates, Woodinville, USA
| | - Maral Tajerian
- Department of Biology, Queens College, City University of New York, Flushing, USA
- The Graduate Center, City University of New York, New York, USA
| | - Jon Berner
- Psychiatry, Woodinville Psychiatric Associates, Woodinville, USA
| |
Collapse
|
32
|
Casanova-Maldonado I, Arancibia D, Lois P, Peña-Villalobos I, Palma V. Hyperbaric oxygen treatment increases intestinal stem cell proliferation through the mTORC1/S6K1 signaling pathway in Mus musculus. Biol Res 2023; 56:41. [PMID: 37438828 DOI: 10.1186/s40659-023-00444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/05/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hyperbaric oxygen treatment (HBOT) has been reported to modulate the proliferation of neural and mesenchymal stem cell populations, but the molecular mechanisms underlying these effects are not completely understood. In this study, we aimed to assess HBOT somatic stem cell modulation by evaluating the role of the mTOR complex 1 (mTORC1), a key regulator of cell metabolism whose activity is modified depending on oxygen levels, as a potential mediator of HBOT in murine intestinal stem cells (ISCs). RESULTS We discovered that acute HBOT synchronously increases the proliferation of ISCs without affecting the animal's oxidative metabolism through activation of the mTORC1/S6K1 axis. mTORC1 inhibition by rapamycin administration for 20 days also increases ISCs proliferation, generating a paradoxical response in mice intestines, and has been proposed to mimic a partial starvation state. Interestingly, the combination of HBOT and rapamycin does not have a synergic effect, possibly due to their differential impact on the mTORC1/S6K1 axis. CONCLUSIONS HBOT can induce an increase in ISCs proliferation along with other cell populations within the crypt through mTORC1/S6K1 modulation without altering the oxidative metabolism of the animal's small intestine. These results shed light on the molecular mechanisms underlying HBOT therapeutic action, laying the groundwork for future studies.
Collapse
Affiliation(s)
- Ignacio Casanova-Maldonado
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| | - David Arancibia
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile
| | - Pablo Lois
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile
- Education Department, Faculty of Humanities, Universidad Mayor, Santiago de Chile, Providencia, Chile
| | - Isaac Peña-Villalobos
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| |
Collapse
|
33
|
Lepow L, Morishita H, Yehuda R. Critical Period Plasticity as a Framework for Psychedelic-Assisted Psychotherapy. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2023; 21:329-336. [PMID: 37404962 PMCID: PMC10316207 DOI: 10.1176/appi.focus.23021012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
As psychedelic compounds gain traction in psychiatry, there is a need to consider the active mechanism to explain the effect observed in randomized clinical trials. Traditionally, biological psychiatry has asked how compounds affect the causal pathways of illness to reduce symptoms and therefore focus on analysis of the pharmacologic properties. In psychedelic-assisted psychotherapy (PAP), there is debate about whether ingestion of the psychedelic alone is thought to be responsible for the clinical outcome. A question arises how the medication and psychotherapeutic intervention together might lead to neurobiological changes that underlie recovery from illness such as post-traumatic stress disorder (PTSD). This paper offers a framework for investigating the neurobiological basis of PAP by extrapolating from models used to explain how a pharmacologic intervention might create an optimal brain state during which environmental input has enduring effects. Specifically, there are developmental "critical" periods (CP) with exquisite sensitivity to environmental input; the biological characteristics are largely unknown. We discuss a hypothesis that psychedelics may remove the brakes on adult neuroplasticity, inducing a state similar to that of neurodevelopment. In the visual system, progress has been made both in identifying the biological conditions which distinguishes the CP and in manipulating the active ingredients with the idea that we might pharmacologically reopen a critical period in adulthood. We highlight ocular dominance plasticity (ODP) in the visual system as a model for characterizing CP in limbic systems relevant to psychiatry. A CP framework may help to integrate the neuroscientific inquiry with the influence of the environment both in development and in PAP. Appeared originally in Front Neurosci 2021; 15:710004.
Collapse
Affiliation(s)
- Lauren Lepow
- Department of Psychiatry, Icahn School of Medicine Mount Sinai, New York, NY, United States (all authors). Department of Neuroscience, Icahn School of Medicine Mount Sinai, New York, NY, United States (Lepow, Morishita). Department of Ophthalmology, Icahn School of Medicine Mount Sinai, New York, NY, United States (Morishita). Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States (Yehuda)
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine Mount Sinai, New York, NY, United States (all authors). Department of Neuroscience, Icahn School of Medicine Mount Sinai, New York, NY, United States (Lepow, Morishita). Department of Ophthalmology, Icahn School of Medicine Mount Sinai, New York, NY, United States (Morishita). Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States (Yehuda)
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine Mount Sinai, New York, NY, United States (all authors). Department of Neuroscience, Icahn School of Medicine Mount Sinai, New York, NY, United States (Lepow, Morishita). Department of Ophthalmology, Icahn School of Medicine Mount Sinai, New York, NY, United States (Morishita). Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States (Yehuda)
| |
Collapse
|
34
|
Kim JW, Suzuki K, Kavalali ET, Monteggia LM. Bridging rapid and sustained antidepressant effects of ketamine. Trends Mol Med 2023; 29:364-375. [PMID: 36907686 PMCID: PMC10101916 DOI: 10.1016/j.molmed.2023.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Acute administration of (R,S)-ketamine (ketamine) produces rapid antidepressant effects that in some patients can be sustained for several days to more than a week. Ketamine blocks N-methyl-d-asparate (NMDA) receptors (NMDARs) to elicit specific downstream signaling that induces a novel form of synaptic plasticity in the hippocampus that has been linked to the rapid antidepressant action. These signaling events lead to subsequent downstream transcriptional changes that are involved in the sustained antidepressant effects. Here we review how ketamine triggers this intracellular signaling pathway to mediate synaptic plasticity which underlies the rapid antidepressant effects and links it to downstream signaling and the sustained antidepressant effects.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA; College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea; Department of Regulatory Science, Gradaute School, Kyung Hee University, Seoul, Republic of Korea; Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Kanzo Suzuki
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Japan
| | - Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
35
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. Pharmacological Mechanism of Ketamine in Suicidal Behavior Based on Animal Models of Aggressiveness and Impulsivity: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:ph16040634. [PMID: 37111391 PMCID: PMC10146327 DOI: 10.3390/ph16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Around 700,000 people die from suicide each year in the world. Approximately 90% of suicides have a history of mental illness, and more than two-thirds occur during a major depressive episode. Specific therapeutic options to manage the suicidal crisis are limited and measures to prevent acting out also remain limited. Drugs shown to reduce the risk of suicide (antidepressants, lithium, or clozapine) necessitate a long delay of onset. To date, no treatment is indicated for the treatment of suicidality. Ketamine, a glutamate NMDA receptor antagonist, is a fast-acting antidepressant with significant effects on suicidal ideation in the short term, while its effects on suicidal acts still need to be demonstrated. In the present article, we reviewed the literature on preclinical studies in order to identify the potential anti-suicidal pharmacological targets of ketamine. Impulsive-aggressive traits are one of the vulnerability factors common to suicide in patients with unipolar and bipolar depression. Preclinical studies in rodent models with impulsivity, aggressiveness, and anhedonia may help to analyze, at least in part, suicide neurobiology, as well as the beneficial effects of ketamine/esketamine on reducing suicidal ideations and preventing suicidal acts. The present review focuses on disruptions in the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation, and/or the HPA axis in rodent models with an impulsive/aggressive phenotype, because these traits are critical risk factors for suicide in humans. Ketamine can modulate these endophenotypes of suicide in human as well as in animal models. The main pharmacological properties of ketamine are then summarized. Finally, numerous questions arose regarding the mechanisms by which ketamine may prevent an impulsive-aggressive phenotype in rodents and suicidal ideations in humans. Animal models of anxiety/depression are important tools to better understand the pathophysiology of depressed patients, and in helping develop novel and fast antidepressant drugs with anti-suicidal properties and clinical utility.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Fabrice Jollant
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- Pôle de Psychiatrie, CHU Nîmes, 30900 Nîmes, France
- Department of Psychiatry, McGill University and McGill Group for Suicide Studies, Montréal, QC H3A 0G4, Canada
| | - Laurent Tritschler
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Romain Colle
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| |
Collapse
|
36
|
Johnston JN, Greenwald MS, Henter ID, Kraus C, Mkrtchian A, Clark NG, Park LT, Gold P, Zarate CA, Kadriu B. Inflammation, stress and depression: An exploration of ketamine's therapeutic profile. Drug Discov Today 2023; 28:103518. [PMID: 36758932 PMCID: PMC10050119 DOI: 10.1016/j.drudis.2023.103518] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Well-established animal models of depression have described a proximal relationship between stress and central nervous system (CNS) inflammation - a relationship mirrored in the peripheral inflammatory biomarkers of individuals with depression. Evidence also suggests that stress-induced proinflammatory states can contribute to the neurobiology of treatment-resistant depression. Interestingly, ketamine, a rapid-acting antidepressant, can partially exert its therapeutic effects via anti-inflammatory actions on the hypothalamic-pituitary adrenal (HPA) axis, the kynurenine pathway or by cytokine suppression. Further investigations into the relationship between ketamine, inflammation and stress could provide insight into ketamine's unique therapeutic mechanisms and stimulate efforts to develop rapid-acting, anti-inflammatory-based antidepressants.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Maximillian S Greenwald
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Kraus
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anahit Mkrtchian
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Neil G Clark
- US School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Philip Gold
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Lee CW, Chu MC, Wu HF, Chung YJ, Hsieh TH, Chang CY, Lin YC, Lu TY, Chang CH, Chi H, Chang HS, Chen YF, Li CT, Lin HC. Different synaptic mechanisms of intermittent and continuous theta-burst stimulations in a severe foot-shock induced and treatment-resistant depression in a rat model. Exp Neurol 2023; 362:114338. [PMID: 36717014 DOI: 10.1016/j.expneurol.2023.114338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/04/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Treatment-resistant depression (TRD) is a condition wherein patients with depression fail to respond to antidepressant trials. A new form of repetitive transcranial magnetic stimulation (rTMS), called theta-burst stimulation (TBS), which includes intermittent theta-burst stimulation (iTBS) and continuous theta-burst stimulation (cTBS), is non-inferior to rTMS in TRD treatment. However, the mechanism of iTBS and cTBS underlying the treatment of TRD in the prefrontal cortex (PFC) remains unclear. Hence, we applied foot-shock stress as a traumatic event to develop a TRD rat model and investigated the different mechanisms of iTBS and cTBS. The iTBS and cTBS treatment were effective in depressive-like behavior and active coping behavior. The iTBS treatments improved impaired long-term potentiation and long-term depression (LTD), whereas the cTBS treatment only improved aberrant LTD. Moreover, the decrease in mature brain-derived neurotrophic factor (BDNF)-related protein levels were reversed by iTBS treatment. The decrease in proBDNF-related protein expression was improved by iTBS and cTBS treatment. Both iTBS and cTBS improved the decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and downregulation of mammalian target of the rapamycin (mTOR) signaling pathway. The iTBS produces both excitatory and inhibitory synaptic effects, and the cTBS only produces inhibitory synaptic effects in the PFC.
Collapse
Affiliation(s)
- Chi-Wei Lee
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chia Chu
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Fang Wu
- Department of Optometry, Hsin-Sheng College of Medical Care and Management, Taoyuan, Taiwan
| | - Yueh-Jung Chung
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chieh-Yu Chang
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Cheng Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yi Lu
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Hsiang Chang
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang Chi
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - Yih-Fung Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan.
| |
Collapse
|
38
|
Suárez Santiago JE, Roldán GR, Picazo O. Ketamine as a pharmacological tool for the preclinical study of memory deficit in schizophrenia. Behav Pharmacol 2023; 34:80-91. [PMID: 36094064 DOI: 10.1097/fbp.0000000000000689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a serious neuropsychiatric disorder characterized by the presence of positive symptoms (hallucinations, delusions, and disorganization of thought and language), negative symptoms (abulia, alogia, and affective flattening), and cognitive impairment (attention deficit, impaired declarative memory, and deficits in social cognition). Dopaminergic hyperactivity seems to explain the positive symptoms, but it does not completely clarify the appearance of negative and cognitive clinical manifestations. Preclinical data have demonstrated that acute and subchronic treatment with NMDA receptor antagonists such as ketamine (KET) represents a useful model that resembles the schizophrenia symptomatology, including cognitive impairment. This latter has been explained as a hypofunction of NMDA receptors located on the GABA parvalbumin-positive interneurons (near to the cortical pyramidal cells), thus generating an imbalance between the inhibitory and excitatory activity in the corticomesolimbic circuits. The use of behavioral models to explore alterations in different domains of memory is vital to learn more about the neurobiological changes that underlie schizophrenia. Thus, to better understand the neurophysiological mechanisms involved in cognitive impairment related to schizophrenia, the purpose of this review is to analyze the most recent findings regarding the effect of KET administration on these processes.
Collapse
Affiliation(s)
- José Eduardo Suárez Santiago
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel Roldán Roldán
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ofir Picazo
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
| |
Collapse
|
39
|
Johnston JN, Kadriu B, Allen J, Gilbert JR, Henter ID, Zarate CA. Ketamine and serotonergic psychedelics: An update on the mechanisms and biosignatures underlying rapid-acting antidepressant treatment. Neuropharmacology 2023; 226:109422. [PMID: 36646310 PMCID: PMC9983360 DOI: 10.1016/j.neuropharm.2023.109422] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The discovery of ketamine as a rapid-acting antidepressant spurred significant research to understand its underlying mechanisms of action and to identify other novel compounds that may act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, though the challenge of conducting randomized controlled trials with SPs and the necessity of long-term clinical observation are important limitations. This review summarizes the similarities and differences between the psychoactive effects associated with both ketamine and SPs and the mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular and neuroimaging aspects are considered. While their main mechanisms of action differ-SPs increase serotonergic signaling while ketamine is a glutamatergic modulator-evidence suggests that the downstream mechanisms of action of both ketamine and SPs include mechanistic target of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to the ongoing research that has been conducted with ketamine. For both therapeutics, issues with regulation and proper controls should be addressed before more widespread implementation. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Josh Allen
- The Alfred Centre, Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Deyama S, Aoki S, Sugie R, Fukuda H, Shuto S, Minami M, Kaneda K. Intranasal Administration of Resolvin E1 Produces Antidepressant-Like Effects via BDNF/VEGF-mTORC1 Signaling in the Medial Prefrontal Cortex. Neurotherapeutics 2023; 20:484-501. [PMID: 36622634 PMCID: PMC10121976 DOI: 10.1007/s13311-022-01337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2022] [Indexed: 01/10/2023] Open
Abstract
Intracerebroventricular infusion of resolvin E1 (RvE1), a bioactive metabolite derived from eicosapentaenoic acid, exerts antidepressant-like effects in a mouse model of lipopolysaccharide (LPS)-induced depression; these effects are blocked by systemic injection of rapamycin, a mechanistic target of rapamycin complex 1 (mTORC1) inhibitor. Additionally, local infusion of RvE1 into the medial prefrontal cortex (mPFC) or dorsal hippocampal dentate gyrus (DG) produces antidepressant-like effects. To evaluate the potential of RvE1 for clinical use, the present study examined whether treatment with RvE1 via intranasal (i.n.) route, a non-invasive route for effective drug delivery to the brain, produces antidepressant-like effects in LPS-challenged mice using tail suspension and forced swim tests. Intranasal administration of RvE1 significantly attenuated LPS-induced immobility, and these antidepressant-like effects were completely blocked by an AMPA receptor antagonist or L-type voltage-dependent Ca2+ channel blocker. The antidepressant-like effects of both i.n. and intra-mPFC administrations of RvE1 were blocked by intra-mPFC infusion of a neutralizing antibody (nAb) for brain-derived neurotrophic factor (BDNF) or vascular endothelial growth factor (VEGF). Intra-mPFC infusion of rapamycin completely blocked the antidepressant-like effects of both i.n. and intra-mPFC administrations of RvE1 as well as those of intra-mPFC infusion of BDNF and VEGF. Moreover, i.n. RvE1 produced antidepressant-like effects via mTORC1 activation in the mPFC of a mouse model of repeated prednisolone-induced depression. Intra-dorsal DG infusion of BDNF and VEGF nAbs, but not rapamycin, blocked the antidepressant-like effects of i.n. RvE1. These findings suggest that i.n. administration of RvE1 produces antidepressant-like effects through activity-dependent BDNF/VEGF release in the mPFC and dorsal DG, and mTORC1 activation in the mPFC, but not in the dorsal DG. Thus, RvE1 can be a promising candidate for a novel rapid-acting antidepressant.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Shun Aoki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Rinako Sugie
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hayato Fukuda
- Laboratory of Organic Chemistry for Drug Development, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Pharmaceutical Organic Chemistry Laboratory, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Satoshi Shuto
- Laboratory of Organic Chemistry for Drug Development, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
41
|
Cardona-Acosta AM, Bolaños-Guzmán CA. Role of the mesolimbic dopamine pathway in the antidepressant effects of ketamine. Neuropharmacology 2023; 225:109374. [PMID: 36516891 PMCID: PMC9839658 DOI: 10.1016/j.neuropharm.2022.109374] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Depression is a complex and highly heterogeneous disorder which diagnosis is based on an exceedingly variable set of clinical symptoms. Current treatments focus almost exclusively on the manipulation of monoamine neurotransmitter systems, but despite considerable efforts, these remain inadequate for a significant proportion of those afflicted by the disorder. The emergence of racemic (R, S)-ketamine as a fast-acting antidepressant has provided an exciting new path for the study of major depressive disorder (MDD) and the search for better therapeutics for its treatment. Previous work suggested that ketamine's mechanism of action is primarily mediated via blockaded of N-methyl-d-aspartate (NMDA) receptors, however, this is an area of active research and clinical and preclinical evidence now indicate that ketamine acts on multiple systems. The last couple of decades have cemented the mesolimbic dopamine reward pathway's involvement in the pathogenesis of MDD and related mood disorders. Exposure to negative stress dysregulates dopamine neuronal activity disrupting reward and motivational processes resulting in anhedonia (lack of pleasure), a hallmark symptom of depression. Although the mechanism(s) underlying ketamine's antidepressant activity continue to be elucidated, current evidence indicate that its therapeutic effects are mediated, at least in part, via long-lasting synaptic changes and subsequent molecular adaptations in brain regions within the mesolimbic dopamine system. Notwithstanding, ketamine is a drug of abuse, and this liability may pose limitations for long term use as an antidepressant. This review outlines the current knowledge of ketamine's actions within the mesolimbic dopamine system and its abuse potential. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
42
|
Lv S, Yao K, Zhang Y, Zhu S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology 2023; 225:109378. [PMID: 36539011 DOI: 10.1016/j.neuropharm.2022.109378] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Ketamine, functioning as a channel blocker of the excitatory glutamate-gated N-methyl-d-aspartate (NMDA) receptors, displays compelling fast-acting and sustained antidepressant effects for treatment-resistant depression. Over the past decades, clinical and preclinical studies have implied that the pathology of depression is associated with dysfunction of glutamatergic transmission. In particular, the discovery of antidepressant agents modulating NMDA receptor function has prompted breakthroughs for depression treatment compared with conventional antidepressants targeting the monoaminergic system. In this review, we first summarized the signalling pathway of the ketamine-mediated antidepressant effects, based on the glutamate hypothesis of depression. Second, we reviewed the hypotheses of the synaptic mechanism and network of ketamine antidepressant effects within different brain areas and distinct subcellular localizations, including NMDA receptor antagonism on GABAergic interneurons, extrasynaptic and synaptic NMDA receptor-mediated antagonism, and ketamine blocking bursting activities in the lateral habenula. Third, we reviewed the different roles of NMDA receptor subunits in ketamine-mediated cognitive and psychiatric behaviours in genetically-manipulated rodent models. Finally, we summarized the structural basis of NMDA receptor channel blockers and discussed NMDA receptor modulators that have been reported to exert potential antidepressant effects in animal models or in clinical trials. Integrating the cutting-edge technologies of cryo-EM and artificial intelligence-based drug design (AIDD), we expect that the next generation of first-in-class rapid antidepressants targeting NMDA receptors would be an emerging direction for depression therapeutics. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Shiyun Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kejie Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youyi Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
43
|
Jha MK, Mathew SJ. Pharmacotherapies for Treatment-Resistant Depression: How Antipsychotics Fit in the Rapidly Evolving Therapeutic Landscape. Am J Psychiatry 2023; 180:190-199. [PMID: 36855876 DOI: 10.1176/appi.ajp.20230025] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
One in three adults with major depressive disorder (MDD) do not experience clinically significant improvement after multiple sequential courses of antidepressants and have treatment-resistant depression (TRD). The presence of TRD contributes to the morbidity and excess mortality associated with MDD and has been linked to significantly increased health care expenses. In the absence of a consensus definition of TRD, this report takes a broad approach by considering inadequate response to one or more courses of antidepressants and focuses on atypical antipsychotics that are approved by the U.S. Food and Drug Administration for treatment of depression (aripiprazole, brexpiprazole, cariprazine, extended-release quetiapine, and olanzapine-fluoxetine combination). While multiple acute-phase studies have demonstrated the efficacy of these medications in improving depressive symptoms, clinically meaningful improvement (i.e., remission) remains limited, with significant concerns about side effects (including weight gain, metabolic dysfunction, extrapyramidal symptoms, and tardive dyskinesia), especially with long-term use. With the rapidly evolving landscape of antidepressant treatments over the past few years, which has witnessed approval of rapid-acting antidepressants (e.g., esketamine nasal spray and dextromethorphan-bupropion combination) and several more in the late-stage pipeline (e.g., zuranolone and psilocybin), it remains to be seen whether the use of atypical antipsychotics will go the way of the older and rarely prescribed antidepressants (such as tricyclics and monoamine oxidase inhibitors). Pragmatic clinical trials are needed to compare the effectiveness of atypical antipsychotics with TRD-specific pharmacotherapies and neuromodulation treatments and to identify the optimal sequencing of these varied approaches for patients with MDD. When using atypical antipsychotics, clinicians and patients are encouraged to use a shared decision-making approach by personalizing treatment selection based on anticipated side effects, tolerability, cost, and feasibility.
Collapse
Affiliation(s)
- Manish K Jha
- Center for Depression Research and Clinical Care, Department of Psychiatry, UT Southwestern Medical Center, and O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas (Jha); Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Mathew); Michael E. DeBakey VA Medical Center, Houston (Mathew); Menninger Clinic, Houston (Mathew)
| | - Sanjay J Mathew
- Center for Depression Research and Clinical Care, Department of Psychiatry, UT Southwestern Medical Center, and O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas (Jha); Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Mathew); Michael E. DeBakey VA Medical Center, Houston (Mathew); Menninger Clinic, Houston (Mathew)
| |
Collapse
|
44
|
Deyama S, Kaneda K. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of ketamine. Neuropharmacology 2023; 224:109335. [PMID: 36403852 DOI: 10.1016/j.neuropharm.2022.109335] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The neurotrophic hypothesis of depression proposes that reduced levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) contribute to neuronal atrophy or loss in the prefrontal cortex (PFC) and hippocampus and impaired hippocampal adult neurogenesis, which are associated with depressive symptoms. Chronic, but acute, treatment with typical monoaminergic antidepressants can at least partially reverse these deficits, in part via induction of BDNF and/or VEGF expression, consistent with their delayed onset of action. Ketamine, an N-methyl-d-aspartate receptor antagonist, exerts rapid and sustained antidepressant effects. Rodent studies have revealed that ketamine rapidly increases BDNF and VEGF release and/or expression in the PFC and hippocampus, which in turn increases the number and function of spine synapses in the PFC and hippocampal neurogenesis. Ketamine also induces the persistent release of insulin-like growth factor 1 (IGF-1) in the PFC of male mice. These neurotrophic effects of ketamine are associated with its rapid and sustained antidepressant effects. In this review, we first provide an overview of the neurotrophic hypothesis of depression and then discuss the role of BDNF, VEGF, IGF-1, and other growth factors (IGF-2 and transforming growth factor-β1) in the antidepressant effects of ketamine and its enantiomers. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
45
|
Weapons of stress reduction: (R,S)-ketamine and its metabolites as prophylactics for the prevention of stress-induced psychiatric disorders. Neuropharmacology 2023; 224:109345. [PMID: 36427554 DOI: 10.1016/j.neuropharm.2022.109345] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Exposure to stress is one of the greatest contributing factors to developing a psychiatric disorder, particularly in susceptible populations. Enhancing resilience to stress could be a powerful intervention to reduce the incidence of psychiatric disease and reveal insight into the pathophysiology of psychiatric disorders. (R,S)-ketamine and its metabolites have recently been shown to exert protective effects when administered before or after a variety of stressors and may be effective, tractable prophylactic compounds against psychiatric disease. Drug dosing, sex, age, and strain in preclinical rodent studies, significantly influence the prophylactic effects of (R,S)-ketamine and related compounds. Due to the broad neurobiological actions of (R,S)-ketamine, a variety of mechanisms have been proposed to contribute to the resilience-enhancing effects of this drug, including altering various transcription factors across the genome, enhancing inhibitory connections from the prefrontal cortex, and increasing synaptic plasticity in the hippocampus. Promisingly, select data have shown that (R,S)-ketamine may be an effective prophylactic against psychiatric disorders, such as postpartum depression (PPD). Overall, this review will highlight a brief history of the prophylactic effects of (R,S)-ketamine, the potential mechanisms underlying its protective actions, and possible future directions for translating prophylactic compounds to the clinic. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
|
46
|
Onisiforou A, Georgiou P, Zanos P. Role of group II metabotropic glutamate receptors in ketamine's antidepressant actions. Pharmacol Biochem Behav 2023; 223:173531. [PMID: 36841543 DOI: 10.1016/j.pbb.2023.173531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Major Depressive Disorder (MDD) is a serious neuropsychiatric disorder afflicting around 16-17 % of the global population and is accompanied by recurrent episodes of low mood, hopelessness and suicidal thoughts. Current pharmacological interventions take several weeks to even months for an improvement in depressive symptoms to emerge, with a significant percentage of individuals not responding to these medications at all, thus highlighting the need for rapid and effective next-generation treatments for MDD. Pre-clinical studies in animals have demonstrated that antagonists of the metabotropic glutamate receptor subtype 2/3 (mGlu2/3 receptor) exert rapid antidepressant-like effects, comparable to the actions of ketamine. Therefore, it is possible that mGlu2 or mGlu3 receptors to have a regulatory role on the unique antidepressant properties of ketamine, or that convergent intracellular mechanisms exist between mGlu2/3 receptor signaling and ketamine's effects. Here, we provide a comprehensive and critical evaluation of the literature on these convergent processes underlying the antidepressant action of mGlu2/3 receptor inhibitors and ketamine. Importantly, combining sub-threshold doses of mGlu2/3 receptor inhibitors with sub-antidepressant ketamine doses induce synergistic antidepressant-relevant behavioral effects. We review the evidence supporting these combinatorial effects since sub-effective dosages of mGlu2/3 receptor antagonists and ketamine could reduce the risk for the emergence of significant adverse events compared with taking normal dosages. Overall, deconvolution of ketamine's pharmacological targets will give critical insights to influence the development of next-generation antidepressant treatments with rapid actions.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
| | - Polymnia Georgiou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; Department of Psychology, University of Wisconsin Milwaukee, WI 53211, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
47
|
Chaki S, Watanabe M. Antidepressants in the post-ketamine Era: Pharmacological approaches targeting the glutamatergic system. Neuropharmacology 2023; 223:109348. [PMID: 36423706 DOI: 10.1016/j.neuropharm.2022.109348] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The efficacy of currently available medications for depression is unsatisfactory, and that has spurred the development of novel antidepressants based on a hypothesis other than the monoamine hypothesis. Recent studies have revealed the importance of the glutamatergic system as a drug target for depression, and the validity of this hypothesis has been underpinned by the discovery of the antidepressant effects of ketamine, leading to the market launch of Spravato® nasal spray which delivers (S)-ketamine (esketamine). However, both ketamine and esketamine have unwanted adverse effects that hinder their routine use in daily practice. Extensive studies have elucidated the mechanisms underlying the antidepressant effects of ketamine, and that has encouraged numerous drug discovery activities to search for agents that retain a ketamine-like antidepressant profile but with lesser adverse effect liabilities. The discovery activities have included attempts to identify 1) the active substance(s) in the circulation after ketamine administration and 2) agents that act on the proposed mechanisms of action of ketamine. Clinical trials of agents discovered in the course of these activities are underway, and in 2022, AUVELITY™ (AXS-05; dextromethorphan with bupropion) was approved by the United States Food and Drug Administration. Drug development of post-ketamine agents should provide novel antidepressants that are safer, but as potent and rapidly acting as ketamine.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan.
| | - Mai Watanabe
- Taisho Pharmaceutical R&D Inc., 350 Mt. Kemble Avenue, Morristown, NJ 07960, USA.
| |
Collapse
|
48
|
Abstract
Treatment of major depressive disorder (MDD) including treatment-resistant depression (TRD) remains a major unmet need. Although there are several classes of dissimilar antidepressant drugs approved for MDD, the current drugs have either limited efficacy or are associated with undesirable side effects and withdrawal symptoms. The efficacy and side effects of antidepressant drugs are mainly attributed to their actions on different monoamine neurotransmitters (serotonin, norepinephrine, and dopamine). Development of new antidepressants with novel targets beyond the monoamine pathways may fill the unmet need in treatment of MDD and TRD. The recent approval of intranasal Esketamine (glutamatergic agent) in conjunction with an oral antidepressant for the treatment of adult TRD patients was the first step toward expanding beyond the monoamine targets. Several other glutamatergic (AXS-05, REL-1017, AV-101, SLS-002, AGN24175, and PCN-101) and GABAergic (brexanolone, zuranolone, and ganaxolone) drugs are currently in different stages of clinical development for MDD, TRD and other indications. The renaissance of psychedelic drugs and the emergence of preliminary positive clinical trial results with psilocybin, Ayahuasca, 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), and lysergic acid diethylamide (LSD) may pave the way towards establishing this class of drugs as effective therapies for MDD, TRD and other neuropsychiatric disorders. Going beyond the monoamine targets appears to be an effective strategy to develop novel antidepressant drugs with superior efficacy, safety, and tolerability for the improved treatment of MDD and TRD.
Collapse
|
49
|
Role of mTOR1 signaling in the antidepressant effects of ketamine and the potential of mTORC1 activators as novel antidepressants. Neuropharmacology 2023; 223:109325. [PMID: 36334763 DOI: 10.1016/j.neuropharm.2022.109325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Conventional antidepressant medications act on monoaminergic systems and have important limitations, including a therapeutic delay of weeks to months and low rates of efficacy. Recently, clinical findings have indicated that ketamine, a dissociative anesthetic that blocks N-methyl-d-aspartate receptor channel activity, causes rapid and long-lasting antidepressant effects. Although the exact mechanisms underlying the antidepressant effects of ketamine are not fully known, preclinical studies have demonstrated a key role for mechanistic target of rapamycin complex 1 (mTORC1) signaling and a subsequent increase in synapse formation in the medial prefrontal cortex. In this review, we discuss the role of mTORC1 and its subsequent signaling cascade in the antidepressant effects of ketamine and other compounds with glutamatergic mechanisms of action. We also present the possibility that mTORC1 signaling itself is a drug discovery target.
Collapse
|
50
|
Ketamine-Associated Change in Anhedonia and mTOR Expression in Treatment-Resistant Depression. Biol Psychiatry 2023:S0006-3223(22)01699-7. [PMID: 36707268 DOI: 10.1016/j.biopsych.2022.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 01/26/2023]
|