1
|
Nippert KE, Rowland CP, Vazey EM, Moorman DE. Alcohol, flexible behavior, and the prefrontal cortex: Functional changes underlying impaired cognitive flexibility. Neuropharmacology 2024; 260:110114. [PMID: 39134298 DOI: 10.1016/j.neuropharm.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Cognitive flexibility enables individuals to alter their behavior in response to changing environmental demands, facilitating optimal behavior in a dynamic world. The inability to do this, called behavioral inflexibility, is a pervasive behavioral phenotype in alcohol use disorder (AUD), driven by disruptions in cognitive flexibility. Research has repeatedly shown that behavioral inflexibility not only results from alcohol exposure across species but can itself be predictive of future drinking. Like many high-level executive functions, flexible behavior requires healthy functioning of the prefrontal cortex (PFC). The scope of this review addresses two primary themes: first, we outline tasks that have been used to investigate flexibility in the context of AUD or AUD models. We characterize these based on the task features and underlying cognitive processes that differentiate them from one another. We highlight the neural basis of flexibility measures, focusing on the PFC, and how acute or chronic alcohol in humans and non-human animal models impacts flexibility. Second, we consolidate findings on the molecular, physiological and functional changes in the PFC elicited by alcohol, that may contribute to cognitive flexibility deficits seen in AUD. Collectively, this approach identifies several key avenues for future research that will facilitate effective treatments to promote flexible behavior in the context of AUD, to reduce the risk of alcohol related harm, and to improve outcomes following AUD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn E Nippert
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Courtney P Rowland
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Elena M Vazey
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
Mohammadkhani A, Mitchell C, James MH, Borgland SL, Dayas CV. Contribution of hypothalamic orexin (hypocretin) circuits to pathologies of motivation. Br J Pharmacol 2024; 181:4430-4449. [PMID: 39317446 PMCID: PMC11458361 DOI: 10.1111/bph.17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 09/26/2024] Open
Abstract
The orexin (also known as hypocretin) system, consisting of neuropeptides orexin-A and orexin-B, was discovered over 25 years ago and was immediately identified as a central regulator of sleep and wakefulness. These peptides interact with two G-protein coupled receptors, orexin 1 (OX1) and orexin 2 (OX2) receptors which are capable of coupling to all heterotrimeric G-protein subfamilies, but primarily transduce increases in calcium signalling. Orexin neurons are regulated by a variety of transmitter systems and environmental stimuli that signal reward availability, including food and drug related cues. Orexin neurons are also activated by anticipation, stress, cues predicting motivationally relevant information, including those predicting drugs of abuse, and engage neuromodulatory systems, including dopamine neurons of the ventral tegmental area (VTA) to respond to these signals. As such, orexin neurons have been characterized as motivational activators that coordinate a range of functions, including feeding and arousal, that allow the individual to respond to motivationally relevant information, critical for survival. This review focuses on the role of orexins in appetitive motivation and highlights a role for these neuropeptides in pathologies characterized by inappropriately high levels of motivated arousal (overeating, anxiety and substance use disorders) versus those in which motivation is impaired (depression).
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Caitlin Mitchell
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- The Hunter Medical Research, New Lambton Heights, New South Wales, Australia
| | - Morgan H James
- Department of Psychiatry and Brain Health Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- The Hunter Medical Research, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
3
|
Sun N, Wei R, Jia B, Lou T, Li Z, Nie X, Yu W, Zhao M, Li Q. Bibliometric analysis of orexin: A promising neuropeptide. Medicine (Baltimore) 2024; 103:e40213. [PMID: 39470537 DOI: 10.1097/md.0000000000040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Orexin is an excitatory neuropeptide produced in the lateral hypothalamus, playing a role in various physiological functions in humans. There is a growing body of literature on orexins. This paper utilizes CiteSpace software to organize and analyze a significant number of articles on orexin, providing readers with an intuitive overview of research trends and emerging hot topics in this field. METHODS The electronic database, Web of Science Core Collection (WoSCC), was searched for publications related to orexins. Annual publications, countries/regions, institutions, authors and keywords were analyzed, and the results were visualized via CiteSpace software. RESULTS A total of 5486 publications were included, with articles making up 85.30% and reviews 14.70%. The top 3 countries publishing the most papers on orexins were the United States (2057 papers), Japan (778), and China (556). The leading institutions included Research Libraries UK (278), Harvard University (250), and Stanford University (221). The most prolific authors in the field were Yves Dauvilliers (69), Abbas Haghparast (67), and Takeshi Sakurai (66). The most frequently used keywords were "neurons" (981), followed by "sleep" (824), "food intake" (612), "receptors" (547), and "neuropathology" (535). Recent research hotspots include melanin-concentrating hormone neurons, Alzheimer disease, gamma-aminobutyric acid neurons, oxidative stress, suvorexant, the orexin system, prevalence, and stress. Based on keyword clustering analysis, the top 5 research hotspots from 2003 to 2022 were: the effects of orexins on sleep and metabolism, potential pathways of orexin signaling, the relationship between orexin and immunity, new findings on depression and hypertension related to orexin, and possible targets for neurodegenerative diseases. CONCLUSION Orexin, a neuropeptide linked to various physiological and pathological processes, plays a crucial role in sleep/wakefulness, reward mechanisms, stress responses, and neurodegenerative diseases. Its significant research value and potential medical applications are underscored by the rapid expansion of studies, particularly in the USA and Japan. However, the lack of collaboration among researchers highlights the need for enhanced academic exchange and cooperation to further advance the field of orexin research.
Collapse
Affiliation(s)
- Ning Sun
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Post-Doctoral Research Station, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Wei
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bochao Jia
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Taiwei Lou
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zirong Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaowei Nie
- Beijing University of Chinese Medicine, Third Affiliated Hospital, Beijing, China
| | - Wenxiao Yu
- Department of Andrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Zhao
- Department of Andrology, Wang Jing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyan Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Romigi A. Eating disorders and sleep disorders: A bidirectional interaction? Sleep Med Rev 2024; 77:101992. [PMID: 39197385 DOI: 10.1016/j.smrv.2024.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Affiliation(s)
- Andrea Romigi
- IRCCS Neuromed Istituto Neurologico Mediterraneo Via Atinense, 18 Pozzilli, (IS), Italy; Faculty of Psychology, Uninettuno Telematic International University, 00186, Rome, Italy.
| |
Collapse
|
5
|
Hallab A. Sleep and nighttime behavior disorders in older adults: associations with hypercholesterolemia and hypertriglyceridemia at baseline, and a predictive analysis of incident cases at 12 months follow-up. Lipids Health Dis 2024; 23:320. [PMID: 39342373 PMCID: PMC11439313 DOI: 10.1186/s12944-024-02302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Sleep disorders, particularly insomnia and obstructive sleep apnea, are associated with dyslipidemia in the general population. The study's aim was to explore the association between pathological Cholesterol and Triglyceride levels, and sleep and nighttime behavior disorders (SNBD) in older adults, whether they might predict SNBD onset, and to emphasize the role of body mass index (BMI) in this association. METHODS Alzheimer's Disease Neuroimaging Initiative (ADNI) population with complete Cholesterol, Triglyceride, SNBD, and neurocognitive data were included. Logistic regression was performed to study the association between hypercholesterolemia, hypertriglyceridemia, and SNBD at baseline and at 12 months. Relevant confounders, particularly BMI, were adjusted for. RESULTS Among the 2,216 included cases, 1,045 (47%) were females, and the median age was 73 years (IQR: 68, 78). At baseline, 357 (16%) had SNBD and 327 (18%) at 12 months; 187 of them were incident cases. There were more cases of baseline SNBD in the hypertriglyceridemia group than in those without (19% vs. 14%, P-value = 0.003). Similarly, more follow-up SNBD cases had hypertriglyceridemia at baseline (21% vs. 16%, P-value = 0.025). SNBD cases at baseline had significantly higher serum Triglyceride levels than those without (132 vs. 118mg/dL, P-value < 0.001). Only hypertriglyceridemia was significantly associated with baseline SNBD (crude OR = 1.43, 95%CI: 1.13,1.80, P-value = 0.003), even after adjustment for confounding factors (adj. OR = 1.36, 95%CI: 1.06,1.74, P-value = 0.016) and (BMI-adj. OR = 1.29, 95%CI: 1.00,1.66, P-value = 0.048). None of the dyslipidemia forms did predict incident cases at 12 months. CONCLUSIONS Hypertriglyceridemia, but not hypercholesterolemia, was associated with higher odds of SNBD. The association was independent of BMI. None of the dyslipidemia forms did predict incident SNBD over 12 months. Sleep disorders should motivate a systematic screening of dyslipidemia in older adults and vice versa.
Collapse
Affiliation(s)
- Asma Hallab
- Biologie Intégrative et Physiologie - Parcours Neurosciences Cellulaires et Integrées, Faculté des Sciences et Ingénierie, Campus Pierre Et Marie Curie, Sorbonne Université, Paris, France.
- Pathologies du Sommeil, Faculté de Médecine, Hopital Universitaire Pitié-Salpêtrière. Sorbonne Université, Paris, France.
- Charité Universitätsmedizin - Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, Berlin, 10117, Germany.
| |
Collapse
|
6
|
Hallab A. High serum Cholesterol and Triglyceride levels in older adults: associations with sleep and nighttime behavior disorders at baseline and a prediction analysis of incidental cases at 12 months follow-up. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.05.24308529. [PMID: 38883726 PMCID: PMC11178015 DOI: 10.1101/2024.06.05.24308529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Introduction This study explored the association between dyslipidemia and sleep and nighttime behavior disorders (SNBD) in the elderly. Methods ADNI population with complete Cholesterol, Triglyceride, SNBD, and neurocognitive data were included. Logistic regression was performed to study the association between dyslipidemia and SNBD at baseline and 12 months. Relevant confounders were adjusted for. Results Among the 2,216 included cases, 1,045 (47%) were females, and the median age was 73 (IQR: 68, 78). At baseline, 357 (16%) had SNBD, and 327 (18%) at 12 months; 187 were incident cases.There were more cases of baseline SNBD in the hypertriglyceridemia group than in those without (19% vs. 14%, p-value=0.003). Similarly, more follow-up SNBD cases had hypertriglyceridemia at baseline (21% vs. 16%, p-value=0.025). SNBD cases at baseline had significantly higher serum Triglyceride levels than those without (132 vs. 118mg/dL, p-value<0.001).Only hypertriglyceridemia was significantly associated with baseline SNBD (crude OR=1.43, 95%CI: 1.13,1.80, p-value=0.003), even after adjustment for confounding factors (adj.OR=1.36, 95%CI: 1.06,1.74, p-value=0.016) and (BMI-adj.OR=1.29, 95%CI: 1.00,1.66, p-value=0.048). None of the dyslipidemia forms did predict incident cases at 12 months. Conclusions Hypertriglyceridemia, but not hypercholesterolemia, was associated with higher odds of SNBD. None of the dyslipidemia forms predicted incidental SNBD over 12 months.
Collapse
Affiliation(s)
- Asma Hallab
- Biologie Intégrative et Physiologie – Parcours Neurosciences Cellulaires. Faculté des Sciences et Ingénierie. Sorbonne Université, Paris, France
- Pathologie du Sommeil. Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin. Institut of Public Health. Berlin, Germany
| | | |
Collapse
|
7
|
Zhang VY, O'Connor SL, Welsh WJ, James MH. Machine learning models to predict ligand binding affinity for the orexin 1 receptor. ARTIFICIAL INTELLIGENCE CHEMISTRY 2024; 2:100040. [PMID: 38476266 PMCID: PMC10927255 DOI: 10.1016/j.aichem.2023.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The orexin 1 receptor (OX1R) is a G-protein coupled receptor that regulates a variety of physiological processes through interactions with the neuropeptides orexin A and B. Selective OX1R antagonists exhibit therapeutic effects in preclinical models of several behavioral disorders, including drug seeking and overeating. However, currently there are no selective OX1R antagonists approved for clinical use, fueling demand for novel compounds that act at this target. In this study, we meticulously curated a dataset comprising over 1300 OX1R ligands using a stringent filter and criteria cascade. Subsequently, we developed highly predictive quantitative structure-activity relationship (QSAR) models employing the optimized hyper-parameters for the random forest machine learning algorithm and twelve 2D molecular descriptors selected by recursive feature elimination with a 5-fold cross-validation process. The predictive capacity of the QSAR model was further assessed using an external test set and enrichment study, confirming its high predictivity. The practical applicability of our final QSAR model was demonstrated through virtual screening of the DrugBank database. This revealed two FDA-approved drugs (isavuconazole and cabozantinib) as potential OX1R ligands, confirmed by radiolabeled OX1R binding assays. To our best knowledge, this study represents the first report of highly predictive QSAR models on a large comprehensive dataset of diverse OX1R ligands, which should prove useful for the discovery and design of new compounds targeting this receptor.
Collapse
Affiliation(s)
- Vanessa Y Zhang
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
- West Windsor-Plainsboro High School South, West Windsor, NJ, USA
| | - Shayna L O'Connor
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| |
Collapse
|
8
|
Steward T. Endocrinology-informed neuroimaging in eating disorders: GLP1, orexins, and psilocybin. Trends Mol Med 2024; 30:321-323. [PMID: 38123380 DOI: 10.1016/j.molmed.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The neurobiology of eating disorders [EDs; anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED)] remains poorly understood. Here, I describe how neuroimaging, accompanied by peripheral endocrine measures, can provide insights into the neurobiological drivers of eating disorders. Orexins/hypocretins, glucagon-like peptide-1 receptor (GLP1R) agonists, and psilocybin are highlighted as avenues for investigation.
Collapse
Affiliation(s)
- Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
Carpi M, Palagini L, Fernandes M, Calvello C, Geoffroy PA, Miniati M, Pini S, Gemignani A, Mercuri NB, Liguori C. Clinical usefulness of dual orexin receptor antagonism beyond insomnia: Neurological and psychiatric comorbidities. Neuropharmacology 2024; 245:109815. [PMID: 38114045 DOI: 10.1016/j.neuropharm.2023.109815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Orexin is a neurotransmitter produced by a small group of hypothalamic neurons. Besides its well-known role in the regulation of the sleep-wake cycle, the orexin system was shown to be relevant in several physiological functions including cognition, mood and emotion modulation, and energy homeostasis. Indeed, the implication of orexin neurotransmission in neurological and psychiatric diseases has been hypothesized via a direct effect exerted by the projections of orexin neurons to several brain areas, and via an indirect effect through orexin-mediated modulation of sleep and wake. Along with the growing evidence concerning the use of dual orexin receptor antagonists (DORAs) in the treatment of insomnia, studies assessing their efficacy in insomnia comorbid with psychiatric and neurological diseases have been set in order to investigate the potential impact of DORAs on both sleep-related symptoms and disease-specific manifestations. This narrative review aimed at summarizing the current evidence on the use of DORAs in neurological and psychiatric conditions comorbid with insomnia, also discussing the possible implication of modulating the orexin system for improving the burden of symptoms and the pathological mechanisms of these disorders. Target searches were performed on PubMed/MEDLINE and Scopus databases and ongoing studies registered on Clinicaltrials.gov were reviewed. Despite some contradictory findings, preclinical studies seemingly support the possible beneficial role of orexin antagonism in the management of the most common neurological and psychiatric diseases with sleep-related comorbidities. However, clinical research is still limited and further studies are needed for corroborating these promising preliminary results.
Collapse
Affiliation(s)
- Matteo Carpi
- Sleep and Epilepsy Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy.
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Carmen Calvello
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Pierre Alexis Geoffroy
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018, Paris, France; GHU Paris - Psychiatry & Neurosciences, Paris, France; Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France.
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Angelo Gemignani
- Unit of Psychology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | | | - Claudio Liguori
- Sleep and Epilepsy Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
10
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
11
|
Knowles LG, Armanious AJ, Peng Y, Welsh WJ, James MH. Recent advances in drug discovery efforts targeting the sigma 1 receptor system: Implications for novel medications designed to reduce excessive drug and food seeking. ADDICTION NEUROSCIENCE 2023; 8:100126. [PMID: 37753198 PMCID: PMC10519676 DOI: 10.1016/j.addicn.2023.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Psychiatric disorders characterized by uncontrolled reward seeking, such as substance use disorders (SUDs), alcohol use disorder (AUD) and some eating disorders, impose a significant burden on individuals and society. Despite their high prevalence and substantial morbidity and mortality rates, treatment options for these disorders remain limited. Over the past two decades, there has been a gradual accumulation of evidence pointing to the sigma-1 receptor (S1R) system as a promising target for therapeutic interventions designed to treat these disorders. S1R is a chaperone protein that resides in the endoplasmic reticulum, but under certain conditions translocates to the plasma membrane. In the brain, S1Rs are expressed in several regions important for reward, and following translocation, they physically associate with several reward-related GPCRs, including dopamine receptors 1 and 2 (D1R and D2R). Psychostimulants, alcohol, as well as palatable foods, all alter expression of S1R in regions important for motivated behavior, and S1R antagonists generally decrease behavioral responses to these rewards. Recent advances in structural modeling have permitted the development of highly-selective S1R antagonists with favorable pharmacokinetic profiles, thus providing a therapeutic avenue for S1R-based medications. Here, we provide an up-to-date overview of work linking S1R with motivated behavior for drugs of abuse and food, as well as evidence supporting the clinical utility of S1R antagonists to reduce their excessive consumption. We also highlight potential challenges associated with targeting the S1R system, including the need for a more comprehensive understanding of the underlying neurobiology and careful consideration of the pharmacological properties of S1R-based drugs.
Collapse
Affiliation(s)
- Liam G. Knowles
- Harpur School of Arts and Sciences, Binghamton University, Vestal, NY, USA
| | - Abanoub J. Armanious
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Youyi Peng
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - William J. Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
| | - Morgan H. James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| |
Collapse
|
12
|
Tao Y, Qin Y, Chen S, Xu T, Lin J, Su D, Yu W, Chen X. Emerging trends and hot spots of sleep and genetic research: a bibliometric analysis of publications from 2002 to 2022 in the field. Front Neurol 2023; 14:1264177. [PMID: 38020599 PMCID: PMC10663257 DOI: 10.3389/fneur.2023.1264177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Sleep is an important biological process and has been linked to many diseases; however, very little is known about which and how genes control and regulate sleep. Although technology has seen significant development, this issue has still not been adequately resolved. Therefore, we conducted a bibliometric analysis to assess the progress in research on sleep quality and associated genes over the past 2 decades. Through our statistical data and discussions, we aimed to provide researchers with better research directions and ideas, thus promoting the advancement of this field. Methods On December 29, 2022, we utilized bibliometric techniques, such as co-cited and cluster analysis and keyword co-occurrence, using tools such as CiteSpace, VOSviewer, and the Online Analysis Platform of Literature Metrology (http://bibliometric.com/), to conduct a thorough examination of the relevant publications extracted from the Web of Science Core Collection (WoSCC). Our analysis aimed to identify the emerging trends and hot spots in this field while also predicting their potential development in future. Results Cluster analysis of the co-cited literature revealed the most popular terms relating to sleep quality and associated genes in the manner of cluster labels; these included genome-wide association studies (GWAS), circadian rhythms, obstructive sleep apnea (OSA), DNA methylation, and depression. Keyword burst detection suggested that obstructive sleep apnea, circadian clock, circadian genes, and polygenic risk score were newly emergent research hot spots. Conclusion Based on this bibliometric analysis of the publications in the last 20 years, a comprehensive analysis of the literature clarified the contributions, changes in research hot spots, and evolution of research techniques regarding sleep quality and associated genes. This research can provide medical staff and researchers with revelations into future directions of the study on the pathological mechanisms of sleep-related diseases.
Collapse
Affiliation(s)
- Ying Tao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yi Qin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Sifan Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Tian Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Junhui Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Diansan Su
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xuemei Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
13
|
Mutti C, Malagutti G, Maraglino V, Misirocchi F, Zilioli A, Rausa F, Pizzarotti S, Spallazzi M, Rosenzweig I, Parrino L. Sleep Pathologies and Eating Disorders: A Crossroad for Neurology, Psychiatry and Nutrition. Nutrients 2023; 15:4488. [PMID: 37892563 PMCID: PMC10610508 DOI: 10.3390/nu15204488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The intricate connection between eating behaviors and sleep habits is often overlooked in clinical practice, despite their profound interdependence. Sleep plays a key role in modulating psychological, hormonal and metabolic balance and exerting an influence on food choices. Conversely, various eating disorders may affect sleep continuity, sometimes promoting the development of sleep pathologies. Neurologists, nutritionists and psychiatrists tend to focus on these issues separately, resulting in a failure to recognize the full extent of the clinical conditions. This detrimental separation can lead to underestimation, misdiagnosis and inappropriate therapeutic interventions. In this review, we aim to provide a comprehensive understanding of the tangled relationship between sleep, sleep pathologies and eating disorders, by incorporating the perspective of sleep experts, psychologists and psychiatrists. Our goal is to identify a practical crossroad integrating the expertise of all the involved specialists.
Collapse
Affiliation(s)
- Carlotta Mutti
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Giulia Malagutti
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Valentina Maraglino
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Francesco Misirocchi
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| | - Alessandro Zilioli
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| | - Francesco Rausa
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Silvia Pizzarotti
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Marco Spallazzi
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| | - Ivana Rosenzweig
- Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London WC2R 2LS, UK
| | - Liborio Parrino
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| |
Collapse
|
14
|
Rivera-Mateos M, Ramos-Lopez O. Prevalence of food addiction and its association with lifestyle factors in undergraduate students from Northwest Mexico. J Addict Dis 2023; 41:308-316. [PMID: 36005830 DOI: 10.1080/10550887.2022.2116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Background: The aim of this study was to determine the prevalence of food addiction (FA) in undergraduate students from Northwest Mexico and to examine its association with lifestyle factors, eating behaviors and food consumption.Methods: This cross-sectional study included a total of 326 undergraduate students, both sexes, between 18 and 25 years of age, who were enrolled in a bachelor's degree program at a public or private university in the city of Tijuana, Baja California, Mexico. FA was assessed using the modified Yale Food Addiction Scale Version 2.0 (mYFAS 2.0). Lifestyle (sleep patterns, physical exercise, alcohol intake, and smoking) and nutritional information (eating behaviors and food frequency consumption) was obtained through a clinical history. A multivariate logistic regression model was fitted to assess the factors associated with FA.Results: The whole prevalence of FA was 12.9%. In general, mild FA was the most frequent (5.2%), followed by severe (4.3%) and moderate (3.4%) categories. In the multivariate model, insomnia conferred a higher risk for FA (OR = 2.08, 95% CI, 1.04-4.17, p = 0.040), while the habitual consumption of fruits showed a protective effect (OR = 0.50, 95% CI, 0.25-0.98, p = 0.046). Overall, the model predicted FA in 12% (R2=0.12, p = 0.011).Conclusion: The prevalence of FA is 12.9% among undergraduate students from Northwest Mexico. Although caution should be exercised, insomnia seems to increase the risk of FA, while the habitual consumption of fruits appears to have a protective role. Additional studies are needed to validate these results.
Collapse
Affiliation(s)
- Melissa Rivera-Mateos
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Mexico
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Mexico
| |
Collapse
|
15
|
Rossi MA. Control of energy homeostasis by the lateral hypothalamic area. Trends Neurosci 2023; 46:738-749. [PMID: 37353461 PMCID: PMC10524917 DOI: 10.1016/j.tins.2023.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023]
Abstract
The lateral hypothalamic area (LHA) is a subcortical brain region that exerts control over motivated behavior, feeding, and energy balance across species. Recent single-cell sequencing studies have defined at least 30 distinct LHA neuron types. Some of these influence specific aspects of energy homeostasis; however, the functions of many LHA cell types remain unclear. This review addresses the rapidly emerging evidence from cell-type-specific investigations that the LHA leverages distinct neuron populations to regulate energy balance through complex connections with other brain regions. It will highlight recent findings demonstrating that LHA control of energy balance extends beyond mere food intake and propose outstanding questions to be addressed by future research.
Collapse
Affiliation(s)
- Mark A Rossi
- Child Health Institute of New Jersey, New Brunswick, NJ, USA; Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
16
|
Brown RM, James MH. Binge eating, overeating and food addiction: Approaches for examining food overconsumption in laboratory rodents. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110717. [PMID: 36623582 PMCID: PMC10162020 DOI: 10.1016/j.pnpbp.2023.110717] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Overeating ranges in severity from casual overindulgence to an overwhelming drive to consume certain foods. At its most extreme, overeating can manifest as clinical diagnoses such as binge eating disorder or bulimia nervosa, yet subclinical forms of overeating such as emotional eating or uncontrolled eating can still have a profoundly negative impact on health and wellbeing. Although rodent models cannot possibly capture the full spectrum of disordered overeating, studies in laboratory rodents have substantially progressed our understanding of the neurobiology of overconsumption. These experimental approaches range from simple food-exposure protocols that promote binge-like eating and the development of obesity, to more complex operant procedures designed to examine distinct 'addiction-like' endophenotypes for food. This review provides an overview of these experimental approaches, with the view to providing a comprehensive resource for preclinical investigators seeking to utilize behavioural models for studying the neural systems involved in food overconsumption.
Collapse
Affiliation(s)
- Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, NJ, USA; Brain Health Institute, Rutgers University, NJ, USA.
| |
Collapse
|
17
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
18
|
Ratković D, Knežević V, Dickov A, Fedrigolli E, Čomić M. Comparison of binge-eating disorder and food addiction. J Int Med Res 2023; 51:3000605231171016. [PMID: 37115520 PMCID: PMC10155018 DOI: 10.1177/03000605231171016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
In the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, binge-eating disorder (BED) is classified as episodes of binge eating while not being hungry, eating too fast until feeling uncomfortably full, or eating in solitude with feelings of shame and disgust after eating, without compensatory mechanisms. The controversial disorder food addiction (FA) is characterized by overconsumption, cravings, failure to cut down on amounts of food, and withdrawal and tolerance to overeating. In this narrative review, we aimed to comprehensively characterize and compare BED and FA. We searched PubMed using the keywords "binge-eating disorder" and "food addiction." We finally included 51 publications according to topic specificity, credibility, the authors' reputation, and non-bias criteria. BED is characterized by concerns about dietary issues, body shape, and weight as well as depressive symptoms and brooding rumination. FA can be divided into substance addiction and behavioral addiction, which can be differentiated using a list of criteria including hunger, taste, pleasure, function of food, loss of social connections, weight concerns, and awareness about the disorder. Further research is needed to further characterize and distinguish BED and FA.
Collapse
Affiliation(s)
- Dragana Ratković
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Psychiatry and Psychological Medicine, Novi Sad, Republic of Serbia
- Psychiatry Clinic, University Clinical Center of Vojvodina, Novi Sad, Republic of Serbia
| | - Vladimir Knežević
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Psychiatry and Psychological Medicine, Novi Sad, Republic of Serbia
- Psychiatry Clinic, University Clinical Center of Vojvodina, Novi Sad, Republic of Serbia
| | - Aleksandra Dickov
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Psychiatry and Psychological Medicine, Novi Sad, Republic of Serbia
- Psychiatry Clinic, University Clinical Center of Vojvodina, Novi Sad, Republic of Serbia
| | - Elsa Fedrigolli
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Psychiatry and Psychological Medicine, Novi Sad, Republic of Serbia
| | - Maša Čomić
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Psychiatry and Psychological Medicine, Novi Sad, Republic of Serbia
- Psychiatry Clinic, University Clinical Center of Vojvodina, Novi Sad, Republic of Serbia
| |
Collapse
|
19
|
Moline M, Asakura S, Beuckman C, Landry I, Setnik B, Ashworth J, Henningfield JE. The abuse potential of lemborexant, a dual orexin receptor antagonist, according to the 8 factors of the Controlled Substances Act. Psychopharmacology (Berl) 2023; 240:699-711. [PMID: 36749354 PMCID: PMC10006052 DOI: 10.1007/s00213-023-06320-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023]
Abstract
RATIONALE Lemborexant (LEM) is a dual orexin receptor antagonist (DORA) approved in multiple countries including the USA, Japan, Canada, Australia, and several Asian countries for the treatment of insomnia in adults. As a compound with central nervous system activity, it is important to understand the abuse potential of LEM with respect to public health. OBJECTIVES This review discusses data for LEM relevant to each of the 8 factors of the United States Controlled Substances Act. RESULTS LEM did not demonstrate abuse potential in nonclinical testing and was associated with a low incidence of abuse-related adverse events in clinical study participants with insomnia disorder. Similar to other DORAs that have been evaluated (eg., almorexant, suvorexant (SUV), and daridorexant), LEM and the positive controls (zolpidem and SUV) also showed drug liking in a phase 1 abuse potential study that enrolled subjects who used sedatives recreationally. However, internet surveillance of SUV and the FDA Adverse Events Reporting System suggests that drugs in the DORA class display very low abuse-related risks in the community. Additionally, as described in FDA-approved labeling, it does not carry physical dependence and withdrawal risks. CONCLUSIONS LEM, similar to most other prescription insomnia medications, was placed into Schedule IV. However, LEM and other drugs in the DORA class may have a lower potential for abuse as suggested by real-world postmarketing data from federal surveys and internet surveillance, and thus may have lower risks to public health than Schedule IV benzodiazepines and nonbenzodiazepine hypnotics that potentiate GABA signaling.
Collapse
Affiliation(s)
- Margaret Moline
- Eisai Inc., 200 Metro Boulevard, Nutley, Jersey, NJ, 07110, USA.
| | | | | | | | - Beatrice Setnik
- Altasciences, Laval, Quebec, Canada and the Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | | | - Jack E Henningfield
- Pinney Associates, Inc., Bethesda, MD, USA.,The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Sex-dependent role of orexin deficiency in feeding behavior and affective state of mice following intermittent access to a Western diet - Implications for binge-like eating behavior. Physiol Behav 2023; 260:114069. [PMID: 36572152 DOI: 10.1016/j.physbeh.2022.114069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Binge eating disorder is a debilitating disease characterized by recurrent episodes of excessive food consumption and associated with psychiatric comorbidities. Despite a growing body of research investigating the neurobiological underpinnings of eating disorders, specific treatments are lacking. Given its fundamental role in feeding behaviors, we investigated the role of the orexin (hypocretin) neuropeptide system in binge-like eating and associated phenotypes. Specifically, we submitted female and male orexin-deficient mice to a paradigm of intermittent access (once weekly for 24 h) to a Western diet (WD) to induce binge-like eating. Additionally, we measured their anxiety-like behavior and plasma corticosterone levels. All mice showed binge-like eating in response to the intermittent WD access, but females did so to a greater extent than males. While orexin deficiency did not affect binge-like eating in this paradigm, we found that female orexin-deficient mice generally weighed more, and they expressed increased hypophagia and stress levels compared to wild-type mice following binge-like eating episodes. These detrimental effects of orexin deficiency were marginal or absent in males. Moreover, male wild-type mice expressed post-binge anxiety, but orexin-deficient mice did not. In conclusion, these results extend our knowledge of orexin's role in dysregulated eating and associated negative affective states, and contribute to the growing body of evidence indicating a sexual dimorphism of the orexin system. Considering that many human disorders, and especially eating disorders, have a strong sex bias, our findings further emphasize the importance of testing both female and male subjects.
Collapse
|
21
|
Examining the relationship between obstructive sleep apnoea and eating behaviours and attitudes: A systematic review. Appetite 2023; 181:106390. [PMID: 36423746 DOI: 10.1016/j.appet.2022.106390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Between 60 and 90% of adults with OSA are reported as overweight. The co-existence of obesity and OSA can greatly increase an individual's risk of type 2 diabetes, metabolic syndrome and cardiovascular disease. To better understand this relationship between OSA and weight, this review aimed to investigate if there is evidence of certain eating behaviours or eating attitudes that might be found in adults living with OSA. METHODS We searched four databases (MEDLINE, Embase, PsycInfo and Web of Science) on January 17th, 2022, to identify studies assessing the association between eating patterns and OSA in adults. Twenty-one studies met the inclusion criteria. A narrative synthesis was conducted on the included studies, following the vote-counting method. RESULTS There is preliminary evidence that the time of day when calories are consumed is associated with lower OSA severity. No other clear patterns of eating behaviours or attitudes were identified however this may be due to disparity within research studies and their reported results. CONCLUSION Further research is needed to examine the relationship between eating times and OSA severity. We recommend standardising the approach to examining the eating patterns of those living with OSA and the relationship that this might have on OSA symptoms as well as looking at attitudes towards food in this population. This may prove helpful in providing a better understanding of the relationship between OSA and persons with overweight and help in future intervention development.
Collapse
|
22
|
Mogavero MP, Silvani A, Lanza G, DelRosso LM, Ferini-Strambi L, Ferri R. Targeting Orexin Receptors for the Treatment of Insomnia: From Physiological Mechanisms to Current Clinical Evidence and Recommendations. Nat Sci Sleep 2023; 15:17-38. [PMID: 36713640 PMCID: PMC9879039 DOI: 10.2147/nss.s201994] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/08/2023] [Indexed: 01/23/2023] Open
Abstract
After a detailed description of orexins and their roles in sleep and other medical disorders, we discuss here the current clinical evidence on the effects of dual (DORAs) or selective (SORAs) orexin receptor antagonists on insomnia with the aim to provide recommendations for their further assessment in a context of personalized and precision medicine. In the last decade, many trials have been conducted with orexin receptor antagonists, which represent an innovative and valid therapeutic option based on the multiple mechanisms of action of orexins on different biological circuits, both centrally and peripherally, and their role in a wide range of medical conditions which are often associated with insomnia. A very interesting aspect of this new category of drugs is that they have limited abuse liability and their discontinuation does not seem associated with significant rebound effects. Further studies on the efficacy of DORAs are required, especially on children and adolescents and in particular conditions, such as menopause. Which DORA is most suitable for each patient, based on comorbidities and/or concomitant treatments, should be the focus of further careful research. On the contrary, studies on SORAs, some of which seem to be appropriate also in insomnia in patients with psychiatric diseases, are still at an early stage and, therefore, do not allow to draw definite conclusions.
Collapse
Affiliation(s)
- Maria P Mogavero
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Lanza
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Lourdes M DelRosso
- Pulmonary and Sleep Medicine, University of California San Francisco-Fresno, Fresno, CA, USA
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
23
|
Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2023; 48:61-78. [PMID: 35710601 PMCID: PMC9700806 DOI: 10.1038/s41386-022-01356-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Our modern society suffers from both pervasive sleep loss and substance abuse-what may be the indications for sleep on substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-associated psychiatric diseases.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Allen Institute, Seattle, WA, 98109, USA
| | - Dylan Thomas Vaughan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Lourdes Almeida Rojo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Merlin S, Furlong TM. Habitual behaviour associated with exposure to high-calorie diet is prevented by an orexin-receptor-1 antagonist. ADDICTION NEUROSCIENCE 2022; 4:100036. [PMID: 37476304 PMCID: PMC10357952 DOI: 10.1016/j.addicn.2022.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Habitual actions, which are associated with addictive behaviours, contribute to the loss of control of food seeking seen following exposure to calorie-dense foods in rats. Antagonism of orexin-receptor-1 (ORX-R1) has been shown to reduce a range of stimulus-driven feeding behaviours, but have yet to be implicated in the regulation of habitual actions. In the current study, male Long-Evans rats were given 'binge-like' access to high-calorie diet (HCD) or standard chow diet, and were subsequently trained to press a lever for food outcome. When lever responses were tested following outcome devaluation, chow-fed rats displayed goal-directed actions, whereas HCD-exposed rats displayed habitual actions. In study 1, it was shown that systemic administration of the ORX-R1 antagonist, SB-334867, prior to test restored goal-directed behaviour in HCD-exposed rats. In study 2, intra-nigral administration of SB-334867 similarly restored goal-directed behaviour, thereby implicating the substantia nigra as an important site for this effect. This study demonstrates that targeting ORX-R1 reduces habitual food seeking in male rats which may be important for understanding and treating compulsive feeding, obesity and binge eating disorder. This study also implicates the lateral hypothalamus, where ORX is produced, in mediating the expression of habits for the first time, and thus extends on the neurocircuits known to regulate habitual actions. Further investigation is required to determine whether the same effects are also seen in female rats, given that there are recognised sexual dimorphisms in feeding behaviour and a higher incidence of disordered eating in female than male populations.
Collapse
Affiliation(s)
- Sam Merlin
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Teri M. Furlong
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
25
|
James MH, Aston-Jones G. Orexin Reserve: A Mechanistic Framework for the Role of Orexins (Hypocretins) in Addiction. Biol Psychiatry 2022; 92:836-844. [PMID: 36328706 PMCID: PMC10184826 DOI: 10.1016/j.biopsych.2022.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
In 2014, we proposed that orexin signaling transformed motivationally relevant states into adaptive behavior directed toward exploiting an opportunity or managing a threat, a process we referred to as motivational activation. Advancements in animal models since then have permitted higher-resolution measurements of motivational states; in particular, the behavioral economics approach for studying drug demand characterizes conditions that lead to the enhanced motivation that underlies addiction. This motivational plasticity is paralleled by persistently increased orexin expression in a topographically specific manner-a finding confirmed across species, including in humans. Normalization of orexin levels also reduces drug motivation in addiction models. These new advancements lead us to update our proposed framework for the orexin function. We now propose that the capacity of orexin neurons to exhibit dynamic shifts in peptide production contributes to their role in adaptive motivational regulation and that this is achieved via a pool of reserve orexin neurons. This reserve is normally bidirectionally recruited to permit motivational plasticity that promotes flexible, adaptive behavior. In pathological states such as addiction, however, we propose that the orexin system loses capacity to adaptively adjust peptide production, resulting in focused hypermotivation for drug, driven by aberrantly and persistently high expression in the orexin reserve pool. This mechanistic framework has implications for the understanding and treatment of several psychiatric disorders beyond addiction, particularly those characterized by motivational dysfunction.
Collapse
Affiliation(s)
- Morgan H James
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey; Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey.
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey; Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey.
| |
Collapse
|
26
|
Sleep disruption as a potential contributor to the worsening of eating disorder pathology during the COVID-19-pandemic. J Eat Disord 2022; 10:181. [PMID: 36424635 PMCID: PMC9685838 DOI: 10.1186/s40337-022-00704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
The acute phase of the COVID-19 pandemic was associated with significant increases in the prevalence and severity of eating disorders (EDs). Studies also highlighted changes to sleep quality and duration in many individuals throughout this period. Although these two phenomena have been examined separately, here we highlight the need to investigate the potential link between these outcomes. Sleep dysregulation and EDs have previously been hypothesized to interact via a positive feedback loop, wherein poor sleep exacerbates ED symptomatology which, in turn, further worsens sleep. Thus, we speculate that the aggravation of sleep disturbances and EDs during COVID-19 lockdowns may have been somewhat interdependent. We further hypothesize that the worsening of depression and anxiety symptomology during the acute phase of the pandemic may have served as an additional mediating variable. Altogether, in our view, these observations highlight a need for future work to examine the possible causal relationship between sleep and ED pathology, which may ultimately lead to improved clinical management of disordered eating.
Collapse
|
27
|
Dhafar HO, BaHammam AS. Body Weight and Metabolic Rate Changes in Narcolepsy: Current Knowledge and Future Directions. Metabolites 2022; 12:1120. [PMID: 36422261 PMCID: PMC9693066 DOI: 10.3390/metabo12111120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 08/26/2023] Open
Abstract
Narcolepsy is a known auto-immune disease that presents mainly in the teenage years with irresistible sleep attacks. Patients with narcolepsy, especially NT1, have been found to have a high prevalence of obesity and other metabolic derangements. This narrative review aimed to address the relationship between narcolepsy and changes in weight and metabolic rate, and discuss potential mechanisms for weight gain and metabolic changes and future research agendas on this topic. This article will provide a balanced, up-to-date critical review of the current literature, and delineate areas for future research, in order to understand the pathophysiological metabolic changes in narcolepsy. Articles using predefined keywords were searched for in PubMed and Google Scholar databases, with predefined inclusion and exclusion criteria. Compared to controls, patients with narcolepsy are more likely to be obese and have higher BMIs and waist circumferences. According to recent research, weight gain in narcolepsy patients may be higher during the disease's outset. The precise mechanisms causing this weight gain remains unknown. The available information, albeit limited, does not support differences in basal or resting metabolic rates between patients with narcolepsy and controls, other than during the time of disease onset. The evidence supporting the role of orexin in weight gain in humans with narcolepsy is still controversial, in the literature. Furthermore, the available data did not show any appreciable alterations in the levels of CSF melanin-concentrating hormone, plasma and CSF leptin, or serum growth hormone, in relation to weight gain. Other mechanisms have been proposed, including a reduction in sympathetic tone, hormonal changes, changes in eating behavior and physical activity, and genetic predisposition. The association between increased body mass index and narcolepsy is well-recognized; however, the relationship between narcolepsy and other metabolic measures, such as body fat/muscle distribution and metabolic rate independent of BMI, is not well documented, and the available evidence is inconsistent. Future longitudinal studies with larger sample sizes are needed to assess BMR in patients with narcolepsy under a standard protocol at the outset of narcolepsy, with regular follow-up.
Collapse
Affiliation(s)
- Hamza O. Dhafar
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Family Medicine, Prince Mansour Military Hospital, Taif 26526, Saudi Arabia
| | - Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
- The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, P.O. Box 2454, Riyadh 11324, Saudi Arabia
| |
Collapse
|
28
|
Li W, Chen X, Luo Y, Luo L, Chen H. Orbitofrontal neural dissociation of healthy and unhealthy food reward sensitivity in normal-weight binge eaters. Psychiatry Res 2022; 316:114736. [PMID: 35932570 DOI: 10.1016/j.psychres.2022.114736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/24/2022] [Accepted: 07/20/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE The orbitofrontal cortex (OFC) has been repeatedly found to play an important role in food reward processing and binge eating (BE) episodes. However, most studies have focused mainly on reward-related neural alterations in clinical binge eating patients, with little consideration of preclinical individuals with BE that are more likely to develop from non-clinical individuals to clinical patients in the future. This study aimed to examine whether preclinical binge eaters exhibited OFC-related resting-state functional connectivity (rsFC) in the context of food reward. METHOD Binge eaters (BE group, n = 28) and healthy controls (HCs, n = 28) matched for age and body mass index (BMI) underwent rs-fMRI scans and completed self-reported assessment of BE symptoms. Food reward sensitivity was measured using the modified food incentive delay task. Analysis of covariance was used to assess the between-group differences in the medial and lateral OFC (a priori selected regions of interest) connectivity patterns in the context of food reward, while controlling for age, sex, and BMI. RESULTS Lower unhealthy food (UF) reward sensitivity was significantly associated with stronger inverse OFC-putamen connectivity for HCs, while the BE group showed no association between UF reward sensitivity and the OFC-putamen connectivity. Higher healthy food (HF) reward sensitivity in the BE group was significantly correlated with stronger positive OFC-middle frontal gyrus and OFC-inferior parietal gyrus connectivity, while the opposite was found for HCs. CONCLUSIONS Binge eaters showed less functional synchrony within reward regions contributing to the UF reward sensitivity, but enhanced neural interactions between reward and inhibitory control regions correlated with the HF reward sensitivity. These novel findings may demonstrate the potential orbitofrontal neural dissociation of unhealthy and healthy food reward sensitivity in normal-weight binge eaters.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Yijun Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Lin Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China; Research Center of Psychology and Social Development, Chongqing 400715, China.
| |
Collapse
|
29
|
O'Connor RM, Kenny PJ. Utility of 'substance use disorder' as a heuristic for understanding overeating and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110580. [PMID: 35636576 DOI: 10.1016/j.pnpbp.2022.110580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Rates of obesity and obesity-associated diseases have increased dramatically in countries with developed economies. Substance use disorders (SUDs) are characterized by the persistent use of the substance despite negative consequences. It has been hypothesized that overconsumption of palatable energy dense food can elicit SUD-like maladaptive behaviors that contribute to persistent caloric intake beyond homeostatic need even in the face of negative consequences. Palatable food and drugs of abuse act on many of the same motivation-related circuits in the brain, and can induce, at least superficially, similar molecular, cellular, and physiological adaptations on these circuits. As such, applying knowledge about the neurobiological mechanisms of SUDs may serve as useful heuristic to better understand the persistent overconsumption of palatable food that contributes to obesity. However, many important differences exist between the actions of drugs of abuse and palatable food in the brain. This warrants caution when attributing weight gain and obesity to the manifestation of a putative SUD-related behavioral disorder. Here, we describe similarities and differences between compulsive drug use in SUDs and overconsumption in obesity and consider the merit of the concept of "food addiction".
Collapse
Affiliation(s)
- Richard M O'Connor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America.
| |
Collapse
|
30
|
Celli R, van Luijtelaar G. The Orexin System: A Potential Player in the Pathophysiology of Absence Epilepsy. Curr Neuropharmacol 2022; 20:1254-1260. [PMID: 34911428 PMCID: PMC9881075 DOI: 10.2174/1570159x19666211215122833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Absence epilepsy is characterized by the presence of spike-and-wave discharges (SWDs) at the EEG generated within the cortico-thalamo-cortical circuit. The molecular mechanisms involved in the pathophysiology of absence epilepsy are only partially known. WAG/Rij rats older than 2-3 months develop spontaneous SWDs, and they are sensitive to anti- absence medications. Hence, WAG/Rij rats are extensively used as a model for absence epilepsy with predictive validity. OBJECTIVE The aim of the study was to examine the possibility that the orexin system, which supports the wake status in experimental animals and humans, plays a role in the pathophysiology of absence seizures. METHODS The perspective grounds its method from recent literature along with measurements of orexin receptor type-1 (OX1) protein levels in the thalamus and somatosensory cortex of WAG/Rij rats and non-epileptic Wistar control rats at two ages (25 days and 6-7 months). OX1 protein levels were measured by immunoblotting. RESULTS The analysis of the current literature suggests that the orexin system might be involved in the pathophysiology of absence epilepsy and might be targeted by therapeutic intervention. Experimental data are in line with this hypothesis, showing that OX1 protein levels were reduced in the thalamus and somatosensory cortex of symptomatic WAG/Rij rats (6-7 months of age) with respect to non-epileptic controls, whereas these differences were not seen in pre-symptomatic, 25 days-old WAG/Rij rats. CONCLUSION This perspective might pave the way for future studies on the involvement of the orexinergic system in the pathophysiology of SWDs associated with absence epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Roberta Celli
- I.R.C.C.S. Neuromed, Pozzilli, Italy; ,Address correspondence to these authors at the Neuromed, via Dell’Elettronica, 86077 Pozzilli (Is), Italy; Tel: +39 0865915211; E-mail: ; , Donders Centre for Cognition, Radboud University, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands; Tel: +31.24.3615621; E-mail:
| | - Gilles van Luijtelaar
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands,Address correspondence to these authors at the Neuromed, via Dell’Elettronica, 86077 Pozzilli (Is), Italy; Tel: +39 0865915211; E-mail: ; , Donders Centre for Cognition, Radboud University, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands; Tel: +31.24.3615621; E-mail:
| |
Collapse
|
31
|
Foldi CJ, James MH, Brown RM, Piya MK, Steward T. Advancing translational neuroscience research for eating disorders. Aust N Z J Psychiatry 2022; 56:739-741. [PMID: 35674383 PMCID: PMC9248015 DOI: 10.1177/00048674221106678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Claire J Foldi
- Department of Physiology, Monash University, Clayton, VIC, Australia,Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA,Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Milan K Piya
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia,Macarthur Diabetes Endocrinology and Metabolism Service, Camden and Campbelltown Hospitals, Campbelltown, NSW, Australia
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia,Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
32
|
Pantazis CB, James MH, O’Connor S, Shin N, Aston-Jones G. Orexin-1 receptor signaling in ventral tegmental area mediates cue-driven demand for cocaine. Neuropsychopharmacology 2022; 47:741-751. [PMID: 34635803 PMCID: PMC8782853 DOI: 10.1038/s41386-021-01173-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 02/03/2023]
Abstract
Drug-associated sensory cues increase motivation for drug and the orexin system is importantly involved in this stimulus-enhanced motivation. Ventral tegmental area (VTA) is a major target by which orexin signaling modulates reward behaviors, but it is unknown whether this circuit is necessary for cue-driven motivation for cocaine. Here, we investigated the role of VTA orexin signaling in cue-driven motivation for cocaine using a behavioral economics (BE) paradigm. We found that infusion of the orexin-1 receptor (Ox1R) antagonist SB-334867 (SB) into VTA prior to BE testing reduced motivation when animals were trained to self-administer cocaine with discrete cues and tested on BE with those cues. SB had no effect when animals were trained to self-administer cocaine without cues or tested on BE without cues, indicating that learning to associate cues with drug delivery during self-administration training was necessary for cues to recruit orexin signaling in VTA. These effects were specific to VTA, as injections of SB immediately dorsal had no effect. Moreover, intra-VTA SB did not have an impact on locomotor activity, or low- or high-effort consumption of sucrose. Finally, we microinjected a novel retrograde adeno-associated virus (AAVretro) containing an orexin-specific short hairpin RNA (OxshRNA) into VTA to knock down orexin in the hypothalamus-VTA circuit. These injections significantly reduced orexin expression in lateral hypothalamus (LH) and decreased cue-driven motivation. These studies demonstrate a role for orexin signaling in VTA, specifically when cues predict drug reward.
Collapse
Affiliation(s)
- Caroline B. Pantazis
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA ,grid.94365.3d0000 0001 2297 5165Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Morgan H. James
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers Unviversity, Piscataway, NJ USA
| | - Shayna O’Connor
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA
| | - Noah Shin
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Cell Biology and Neuroscience Department, Rutgers University-New Brunswick, Piscataway, NJ USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA.
| |
Collapse
|
33
|
Matzeu A, Martin-Fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022; 15:787595. [PMID: 35126069 PMCID: PMC8811192 DOI: 10.3389/fnbeh.2021.787595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Orexins (also known as hypocretins) are neuropeptides that participate in the regulation of energy metabolism, homeostasis, sleep, feeding, stress responses, arousal, and reward. Particularly relevant to the scope of the present review is the involvement of the orexin system in brain mechanisms that regulate motivation, especially highly motivated behavior, arousal, and stress, making it an ideal target for studying addiction and discovering treatments. Drug abuse and misuse are thought to induce maladaptive changes in the orexin system, and these changes might promote and maintain uncontrolled drug intake and contribute to relapse. Dysfunctional changes in this neuropeptidergic system that are caused by drug use might also be responsible for alterations of feeding behavior and the sleep-wake cycle that are commonly disrupted in subjects with substance use disorder. Drug addiction has often been associated with an increase in activity of the orexin system, suggesting that orexin receptor antagonists may be a promising pharmacological treatment for substance use disorder. Substantial evidence has shown that single orexin receptor antagonists that are specific to either orexin receptor 1 or 2 can be beneficial against drug intake and relapse. Interest in the efficacy of dual orexin receptor antagonists, which were primarily developed to treat insomnia, has grown in the field of drug addiction. Treatments that target the orexin system may be a promising strategy to reduce drug intake, mitigate relapse vulnerability, and restore “normal” physiological functions, including feeding and sleep. The present review discusses preclinical and clinical evidence of the involvement of orexins in drug addiction and possible beneficial pharmacotherapeutic effects of orexin receptor antagonists to treat substance use disorder.
Collapse
|
34
|
Brown RM, Dayas CV, James MH, Smith RJ. New directions in modelling dysregulated reward seeking for food and drugs. Neurosci Biobehav Rev 2022; 132:1037-1048. [PMID: 34736883 PMCID: PMC8816817 DOI: 10.1016/j.neubiorev.2021.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Behavioral models are central to behavioral neuroscience. To study the neural mechanisms of maladaptive behaviors (including binge eating and drug addiction), it is essential to develop and utilize appropriate animal models that specifically focus on dysregulated reward seeking. Both food and cocaine are typically consumed in a regulated manner by rodents, motivated by reward and homeostatic mechanisms. However, both food and cocaine seeking can become dysregulated, resulting in binge-like consumption and compulsive patterns of intake. The speakers in this symposium for the 2021 International Behavioral Neuroscience Meeting utilize behavioral models of dysregulated reward-seeking to investigate the neural mechanisms of binge-like consumption, enhanced cue-driven reward seeking, excessive motivation, and continued use despite negative consequences. In this review, we outline examples of maladaptive patterns of intake and explore recent animal models that drive behavior to become dysregulated, including stress exposure and intermittent access to rewards. Lastly, we explore select behavioral and neural mechanisms underlying dysregulated reward-seeking for both food and drugs.
Collapse
Affiliation(s)
- Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Christopher V Dayas
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Rachel J Smith
- Department of Psychological & Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
35
|
La Torre ME, Villano I, Monda M, Messina A, Cibelli G, Valenzano A, Pisanelli D, Panaro MA, Tartaglia N, Ambrosi A, Carotenuto M, Monda V, Messina G, Porro C. Role of Vitamin E and the Orexin System in Neuroprotection. Brain Sci 2021; 11:brainsci11081098. [PMID: 34439717 PMCID: PMC8394512 DOI: 10.3390/brainsci11081098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Microglia are the first line of defense at the level of the central nervous system (CNS). Phenotypic change in microglia can be regulated by various factors, including the orexin system. Neuroinflammation is an inflammatory process mediated by cytokines, by the lack of interaction between neurotransmitters and their specific receptors, caused by systemic tissue damage or, more often, associated with direct damage to the CNS. Chronic activation of microglia could lead to long-term neurodegenerative diseases. This review aims to explore how tocopherol (vitamin E) and the orexin system may play a role in the prevention and treatment of microglia inflammation and, consequently, in neurodegenerative diseases thanks to its antioxidant properties. The results of animal and in vitro studies provide evidence to support the use of tocopherol for a reduction in microglia inflammation as well as a greater activation of the orexinergic system. Although there is much in vivo and in vitro evidence of vitamin E antioxidant and protective abilities, there are still conflicting results for its use as a treatment for neurodegenerative diseases that speculate that vitamin E, under certain conditions or genetic predispositions, can be pro-oxidant and harmful.
Collapse
Affiliation(s)
- Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Ines Villano
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Daniela Pisanelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Nicola Tartaglia
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 71122 Foggia, Italy; (N.T.); (A.A.)
| | - Antonio Ambrosi
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 71122 Foggia, Italy; (N.T.); (A.A.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
- Correspondence: ; Tel.: +39-8815-88095
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| |
Collapse
|