1
|
White JD, Minto MS, Willis C, Quach BC, Han S, Tao R, Deep-Soboslay A, Zillich L, Witt SH, Spanagel R, Hansson AC, Clark SL, van den Oord EJ, Hyde TM, Mayfield RD, Webb BT, Johnson EO, Kleinman JE, Bierut LJ, Hancock DB. Alcohol Use Disorder-Associated DNA Methylation in the Nucleus Accumbens and Dorsolateral Prefrontal Cortex. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100375. [PMID: 39399155 PMCID: PMC11470413 DOI: 10.1016/j.bpsgos.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 10/15/2024] Open
Abstract
Background Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms that underlie the development and progression of AUD remains limited. Here, we investigated AUD-associated DNA methylation changes within and across 2 addiction-relevant brain regions, the nucleus accumbens and dorsolateral prefrontal cortex. Methods Illumina HumanMethylation EPIC array data from 119 decedents (61 cases, 58 controls) were analyzed using robust linear regression with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public annotation data and published genetic and epigenetic studies. We also tested for brain region-shared and brain region-specific associations using mixed-effects modeling and assessed implications of these results using public gene expression data from human brain. Results At a false discovery rate of ≤.05, we identified 105 unique AUD-associated CpGs (annotated to 120 genes) within and across brain regions. AUD-associated CpGs were enriched in histone marks that tag active promoters, and our strongest signals were specific to a single brain region. Some concordance was found between our results and those of earlier published alcohol use or dependence methylation studies. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors, some of which also overlapped with previous addiction-related methylation studies. Conclusions Our findings identify AUD-associated methylation signals and provide evidence of overlap with previous genetic and methylation studies. These signals may constitute predisposing genetic differences or robust methylation changes associated with AUD, although more work is needed to further disentangle the mechanisms that underlie these associations and their implications for AUD.
Collapse
Affiliation(s)
- Julie D. White
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Melyssa S. Minto
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Caryn Willis
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Bryan C. Quach
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - Ran Tao
- Lieber Institute for Brain Development, Baltimore, Maryland
| | | | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, Texas
| | - Edwin J.C.G. van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virgina
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, the University of Texas at Austin, Austin, Texas
| | - Bradley T. Webb
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Eric O. Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
- Fellow Program, RTI International, Research Triangle Park, North Carolina
| | | | - Laura J. Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Dana B. Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| |
Collapse
|
2
|
MacDonald M, Fonseca PAS, Johnson KR, Murray EM, Kember RL, Kranzler HR, Mayfield RD, da Silva D. Divergent gene expression patterns in alcohol and opioid use disorders lead to consistent alterations in functional networks within the dorsolateral prefrontal cortex. Transl Psychiatry 2024; 14:437. [PMID: 39402051 PMCID: PMC11473550 DOI: 10.1038/s41398-024-03143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024] Open
Abstract
Substance Use Disorders (SUDs) manifest as persistent drug-seeking behavior despite adverse consequences, with Alcohol Use Disorder (AUD) and Opioid Use Disorder (OUD) representing prevalent forms associated with significant mortality rates and economic burdens. The co-occurrence of AUD and OUD is common, necessitating a deeper comprehension of their intricate interactions. While the causal link between these disorders remains elusive, shared genetic factors are hypothesized. Leveraging public datasets, we employed genomic and transcriptomic analyses to explore conserved and distinct molecular pathways within the dorsolateral prefrontal cortex associated with AUD and OUD. Our findings unveil modest transcriptomic overlap at the gene level between the two disorders but substantial convergence on shared biological pathways. Notably, these pathways predominantly involve inflammatory processes, synaptic plasticity, and key intracellular signaling regulators. Integration of transcriptomic data with the latest genome-wide association studies (GWAS) for problematic alcohol use (PAU) and OUD not only corroborated our transcriptomic findings but also confirmed the limited shared heritability between the disorders. Overall, our study indicates that while alcohol and opioids induce diverse transcriptional alterations at the gene level, they converge on select biological pathways, offering promising avenues for novel therapeutic targets aimed at addressing both disorders simultaneously.
Collapse
Affiliation(s)
- Martha MacDonald
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo A S Fonseca
- Dpto. Producción Animal, Facultad de Veterinaria, Universidad de León. Campus de Vegazana s/n, Leon, Spain
| | - Kory R Johnson
- Bioinformatics Section, Intramural Information Technology & Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Erin M Murray
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY, USA
| | - Rachel L Kember
- Center for Studies of Addiction, University of Pennsylvania, Perelman School of Medicine and Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, University of Pennsylvania, Perelman School of Medicine and Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - R Dayne Mayfield
- Department of Neuroscience Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - Daniel da Silva
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Zhou H, Gelernter J. Human genetics and epigenetics of alcohol use disorder. J Clin Invest 2024; 134:e172885. [PMID: 39145449 PMCID: PMC11324314 DOI: 10.1172/jci172885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Alcohol use disorder (AUD) is a prominent contributor to global morbidity and mortality. Its complex etiology involves genetics, epigenetics, and environmental factors. We review progress in understanding the genetics and epigenetics of AUD, summarizing the key findings. Advancements in technology over the decades have elevated research from early candidate gene studies to present-day genome-wide scans, unveiling numerous genetic and epigenetic risk factors for AUD. The latest GWAS on more than one million participants identified more than 100 genetic variants, and the largest epigenome-wide association studies (EWAS) in blood and brain samples have revealed tissue-specific epigenetic changes. Downstream analyses revealed enriched pathways, genetic correlations with other traits, transcriptome-wide association in brain tissues, and drug-gene interactions for AUD. We also discuss limitations and future directions, including increasing the power of GWAS and EWAS studies as well as expanding the diversity of populations included in these analyses. Larger samples, novel technologies, and analytic approaches are essential; these include whole-genome sequencing, multiomics, single-cell sequencing, spatial transcriptomics, deep-learning prediction of variant function, and integrated methods for disease risk prediction.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Biomedical Informatics and Data Science
- Center for Brain and Mind Health
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Genetics, and
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Zillich L, Artioli A, Pohořalá V, Zillich E, Stertz L, Belschner H, Jabali A, Frank J, Streit F, Avetyan D, Völker M, Müller S, Hansson A, Meyer T, Rietschel M, Spanagel R, Oliveira A, Walss-Bass C, Bernardi R, Koch P, Witt S. Cell type-specific Multi-Omics Analysis of Cocaine Use Disorder in the Human Caudate Nucleus. RESEARCH SQUARE 2024:rs.3.rs-4834308. [PMID: 39184101 PMCID: PMC11343288 DOI: 10.21203/rs.3.rs-4834308/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Structural and functional alterations in the brain's reward circuitry are present in cocaine use disorder (CocUD), but their molecular underpinnings remain unclear. To investigate these mechanisms, we performed single-nuclei multiome profiling on postmortem caudate nucleus tissue from six individuals with CocUD and eight controls. We profiled 31,178 nuclei, identifying 13 cell types including D1- and D2-medium spiny neurons (MSNs) and glial cells. We observed 1,383 differentially regulated genes and 10,235 differentially accessible peaks, with alterations in MSNs and astrocytes related to neurotransmitter activity and synapse organization. Gene regulatory network analysis identified the transcription factor ZEB1 as exhibiting distinct CocUD-specific subclusters, activating downstream expression of ion- and calcium-channels in MSNs. Further, PDE10A emerged as a potential drug target, showing conserved effects in a rat model. This study highlights cell type-specific molecular alterations in CocUD and provides targets for further investigation, demonstrating the value of multi-omics approaches in addiction research.
Collapse
|
5
|
Zhang W, Zhang X, Qiu C, Zhang Z, Su KJ, Luo Z, Liu M, Zhao B, Wu L, Tian Q, Shen H, Wu C, Deng HW. An atlas of genetic effects on the monocyte methylome across European and African populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.12.24311885. [PMID: 39211851 PMCID: PMC11361221 DOI: 10.1101/2024.08.12.24311885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Elucidating the genetic architecture of DNA methylation (DNAm) is crucial for decoding the etiology of complex diseases. However, current epigenomic studies often suffer from incomplete coverage of methylation sites and the use of tissues containing heterogeneous cell populations. To address these challenges, we present a comprehensive human methylome atlas based on deep whole-genome bisulfite sequencing (WGBS) and whole-genome sequencing (WGS) of purified monocytes from 298 European Americans (EA) and 160 African Americans (AA) in the Louisiana Osteoporosis Study. Our atlas enables the analysis of over 25 million DNAm sites. We identified 1,383,250 and 1,721,167 methylation quantitative trait loci (meQTLs) in cis -regions for EA and AA populations, respectively, with 880,108 sites shared between ancestries. While cis -meQTLs exhibited population-specific patterns, primarily due to differences in minor allele frequencies, shared cis -meQTLs showed high concordance across ancestries. Notably, cis -heritability estimates revealed significantly higher mean values in the AA population (0.09) compared to the EA population (0.04). Furthermore, we developed population-specific DNAm imputation models using Elastic Net, enabling methylome-wide association studies (MWAS) for 1,976,046 and 2,657,581 methylation sites in EA and AA, respectively. The performance of our MWAS models was validated through a systematic multi-ancestry analysis of 41 complex traits from the Million Veteran Program. Our findings bridge the gap between genomics and the monocyte methylome, uncovering novel methylation-phenotype associations and their transferability across diverse ancestries. The identified meQTLs, MWAS models, and data resources are freely available at www.gcbhub.org and https://osf.io/gct57/ .
Collapse
|
6
|
Rogers WD, White A, Damaj MI, Miles MF. Identification of ethanol analgesia quantitative trait loci and candidate genes in BXD recombinant inbred mouse lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599372. [PMID: 38948869 PMCID: PMC11212936 DOI: 10.1101/2024.06.17.599372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Alcohol consumption produces acute analgesic effects, and people experiencing pain conditions may drink alcohol to alleviate discomfort. However, tolerance to the analgesic properties of alcohol could prompt escalating consumption and dependence. Both nociception and alcohol-induced analgesia are under significant genetic control. Understanding the genetic architecture of these processes could inform better treatment options for people with pain conditions. This study aims to identify quantitative trait loci (QTL) driving variation in ethanol-induced analgesia across BXD recombinant inbred mouse lines. Male and female mice from 62 BXD strains received ethanol or saline oral gavage for five days and were tested for hot plate (HP) latency at baseline, Day 1, and Day 5. QTL mapping of HP phenotypes identified a significant provisional QTL on chromosome 17 for Day 1 HP latency in mice receiving ethanol. An additional highly suggestive QTL was present on chromosome 9 for the difference in pre- and post-ethanol thermal nociception. Candidate genes within QTL support intervals were provisionally identified using HP phenotypic correlations to transcriptomic database, expression QTL analysis, and other bioinformatics inquiries. The combined behavioral and bioinformatic analyses yielded strong ethanol analgesia candidate genes, specifically Myo6. Thus, the results of this genetic study of ethanol-induced analgesia in BXD mouse strains may contribute significantly to our understanding of the molecular basis for individual variation in the analgesic response to acute ethanol.
Collapse
Affiliation(s)
- Walker D. Rogers
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Alyssa White
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Michael F. Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
7
|
MacDonald M, Fonseca PAS, Johnson K, Murray EM, Kember RL, Kranzler H, Mayfield D, da Silva D. Divergent gene expression patterns in alcohol and opioid use disorders lead to consistent alterations in functional networks within the Dorsolateral Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591734. [PMID: 38746311 PMCID: PMC11092658 DOI: 10.1101/2024.04.29.591734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Substance Use Disorders (SUDs) manifest as persistent drug-seeking behavior despite adverse consequences, with Alcohol Use Disorder (AUD) and Opioid Use Disorder (OUD) representing prevalent forms associated with significant mortality rates and economic burdens. The co-occurrence of AUD and OUD is common, necessitating a deeper comprehension of their intricate interactions. While the causal link between these disorders remains elusive, shared genetic factors are hypothesized. Leveraging public datasets, we employed genomic and transcriptomic analyses to explore conserved and distinct molecular pathways within the dorsolateral prefrontal cortex associated with AUD and OUD. Our findings unveil modest transcriptomic overlap at the gene level between the two disorders but substantial convergence on shared biological pathways. Notably, these pathways predominantly involve inflammatory processes, synaptic plasticity, and key intracellular signaling regulators. Integration of transcriptomic data with the latest genome-wide association studies (GWAS) for problematic alcohol use (PAU) and OUD not only corroborated our transcriptomic findings but also confirmed the limited shared heritability between the disorders. Overall, our study indicates that while alcohol and opioids induce diverse transcriptional alterations at the gene level, they converge on select biological pathways, offering promising avenues for novel therapeutic targets aimed at addressing both disorders simultaneously.
Collapse
Affiliation(s)
- Martha MacDonald
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Pablo A. S. Fonseca
- Dpto. Producción Animal, Facultad de Veterinaria, Universidad de León. Campus de Vegazana s/n, 24007 Leon, Spain
| | - Kory Johnson
- Bioinformatics Section, Intramural Information Technology & Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Erin M Murray
- Department of Neuroscience, University of Rochester School of Medicine, Rochester NY
| | - Rachel L Kember
- Center for Studies of Addiction, University of Pennsylvania, Perelman School of Medicine and Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Henry Kranzler
- Center for Studies of Addiction, University of Pennsylvania, Perelman School of Medicine and Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Dayne Mayfield
- Department of Neuroscience Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX
| | - Daniel da Silva
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
8
|
Andrade-Brito DE, Núñez-Ríos DL, Martínez-Magaña JJ, Nagamatsu ST, Rompala G, Zillich L, Witt SH, Clark SL, Lattig MC, Montalvo-Ortiz JL. Neuronal-specific methylome and hydroxymethylome analysis reveal significant loci associated with alcohol use disorder. Front Genet 2024; 15:1345410. [PMID: 38633406 PMCID: PMC11021708 DOI: 10.3389/fgene.2024.1345410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5 mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5 hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5 mC and 5 hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Methods: Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5 mC and 5 hmC at the genome-wide level. Differential 5 mC and 5 hmC were evaluated using the methylKit R package and significance was set at false discovery rate < 0.05 and differential methylation > 2. Functional enrichment analyses were performed, and gene-level convergence was evaluated in an independent dataset that assessed 5 mC and 5 hmC of AUD in bulk cortical tissue. Results: We identified 417 5 mC and 363 5hmC significant differential CpG sites associated with AUD, with 59% in gene promoters. Some of the identified genes have been previously implicated in alcohol consumption, including SYK, DNMT3A for 5 mC, GAD1, DLX1, DLX2, for 5 hmC and GATA4 in both. Convergence with a previous AUD 5 mC and 5 hmC study was observed for 28 genes. We also identified 5 and 35 differential regions for 5 mC and 5 hmC, respectively. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5 mC genes. Discussion: This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD, identifying both previously reported and potentially novel gene associations with AUD. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.
Collapse
Affiliation(s)
- Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Diana L. Núñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, United States
| | - Maria C. Lattig
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| |
Collapse
|
9
|
Cao Z, An Y, Lu Y. Altered N6-Methyladenosine Modification Patterns and Transcript Profiles Contributes to Cognitive Dysfunction in High-Fat Induced Diabetic Mice. Int J Mol Sci 2024; 25:1990. [PMID: 38396669 PMCID: PMC10889299 DOI: 10.3390/ijms25041990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
N6-methyladenosine (m6A) constitutes the paramount post-transcriptional modification within eukaryotic mRNA. This modification is subjected to stimulus-dependent regulation within the central nervous system of mammals, being influenced by sensory experiences, learning processes, and injuries. The patterns of m6A methylation within the hippocampal region of diabetes cognitive impairment (DCI) has not been investigated. A DCI model was established by feeding a high-fat diet to C57BL/6J mice. m6A and RNA sequencing was conducted to profile the m6A-tagged transcripts in the hippocampus. Methylated RNA immunoprecipitation with next-generation sequencing and RNA sequencing analyses yielded differentially m6A-modified and expressed genes in the hippocampus of DCI mice, which were enriched in pathways involving synaptic transmission and axonal guidance. Mechanistic analyses revealed a remarkable change in m6A modification levels through alteration of the mRNA expression of m6A methyltransferases (METTL3 and METTL14) and demethylase (FTO) in the hippocampus of DCI mice. We identified a co-mediated specific RNA regulatory strategy that broadens the epigenetic regulatory mechanism of RNA-induced neurodegenerative disorders associated with metabolic and endocrine diseases.
Collapse
Affiliation(s)
- Zhaoming Cao
- School of Nursing, Peking University, Beijing 100191, China;
| | - Yu An
- Endocrinology Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China;
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China;
| |
Collapse
|
10
|
Zillich L, Cetin M, Hummel EM, Poisel E, Fries GR, Frank J, Streit F, Foo JC, Sirignano L, Friske MM, Lenz B, Hoffmann S, Adorjan K, Kiefer F, Bakalkin G, Hansson AC, Lohoff FW, Kärkkäinen O, Kok E, Karhunen PJ, Sutherland GT, Walss-Bass C, Spanagel R, Rietschel M, Moser DA, Witt SH. Biological aging markers in blood and brain tissue indicate age acceleration in alcohol use disorder. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:250-259. [PMID: 38276909 PMCID: PMC10922212 DOI: 10.1111/acer.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is associated with increased mortality and morbidity risk. A reason for this could be accelerated biological aging, which is strongly influenced by disease processes such as inflammation. As recent studies of AUD show changes in DNA methylation and gene expression in neuroinflammation-related pathways in the brain, biological aging represents a potentially important construct for understanding the adverse effects of substance use disorders. Epigenetic clocks have shown accelerated aging in blood samples from individuals with AUD. However, no systematic evaluation of biological age measures in AUD across different tissues and brain regions has been undertaken. METHODS As markers of biological aging (BioAge markers), we assessed Levine's and Horvath's epigenetic clocks, DNA methylation telomere length (DNAmTL), telomere length (TL), and mitochondrial DNA copy number (mtDNAcn) in postmortem brain samples from Brodmann Area 9 (BA9), caudate nucleus, and ventral striatum (N = 63-94), and in whole blood samples (N = 179) of individuals with and without AUD. To evaluate the association between AUD status and BioAge markers, we performed linear regression analyses while adjusting for covariates. RESULTS The majority of BioAge markers were significantly associated with chronological age in all samples. Levine's epigenetic clock and DNAmTL were indicative of accelerated biological aging in AUD in BA9 and whole blood samples, while Horvath's showed the opposite effect in BA9. No significant association of AUD with TL and mtDNAcn was detected. Measured TL and DNAmTL showed only small correlations in blood and none in brain. CONCLUSIONS The present study is the first to simultaneously investigate epigenetic clocks, telomere length, and mtDNAcn in postmortem brain and whole blood samples in individuals with AUD. We found evidence for accelerated biological aging in AUD in blood and brain, as measured by Levine's epigenetic clock, and DNAmTL. Additional studies of different tissues from the same individuals are needed to draw valid conclusions about the congruence of biological aging in blood and brain.
Collapse
Affiliation(s)
- Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Metin Cetin
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth M. Hummel
- Department of Genetic Psychology, Faculty of Psychology, Ruhr Universität Bochum, Bochum, Germany
| | - Eric Poisel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gabriel R. Fries
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jerome C. Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marion M. Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bernd Lenz
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Eloise Kok
- Department of Pathology, University of Helsinki, Helsinki, Finland and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pekka J. Karhunen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd., Pirkanmaa Hospital District, and Finnish Cardiovascular Research Centre Tampere, Tampere, Finland
| | - Greg T Sutherland
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Consuelo Walss-Bass
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk A. Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr Universität Bochum, Bochum, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Innovative Psychiatric and Psychotherapeutic Research, Biobank, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
White JD, Minto MS, Willis C, Quach BC, Han S, Tao R, Deep-Soboslay A, Zillich L, Clark SL, van den Oord EJCG, Hyde TM, Mayfield RD, Webb BT, Johnson EO, Kleinman JE, Bierut LJ, Hancock DB. Alcohol Use Disorder-Associated DNA Methylation in the Nucleus Accumbens and Dorsolateral Prefrontal Cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.23300238. [PMID: 38293028 PMCID: PMC10827272 DOI: 10.1101/2024.01.17.23300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms underlying the development and progression of AUD remain limited. Here, we interrogate AUD-associated DNA methylation (DNAm) changes within and across addiction-relevant brain regions: the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC). Methods Illumina HumanMethylation EPIC array data from 119 decedents of European ancestry (61 cases, 58 controls) were analyzed using robust linear regression, with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public gene regulatory data and published genetic and epigenetic studies. We additionally tested for brain region-shared and -specific associations using mixed effects modeling and assessed implications of these results using public gene expression data. Results At a false discovery rate ≤ 0.05, we identified 53 CpGs significantly associated with AUD status for NAc and 31 CpGs for DLPFC. In a meta-analysis across the regions, we identified an additional 21 CpGs associated with AUD, for a total of 105 unique AUD-associated CpGs (120 genes). AUD-associated CpGs were enriched in histone marks that tag active promoters and our strongest signals were specific to a single brain region. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors; all others represent novel associations. Conclusions Our findings identify AUD-associated methylation signals, the majority of which are specific within NAc or DLPFC. Some signals may constitute predisposing genetic and epigenetic variation, though more work is needed to further disentangle the neurobiological gene regulatory differences associated with AUD.
Collapse
Affiliation(s)
- Julie D. White
- GenOmics and Translational Research Center, RTI International
| | | | - Caryn Willis
- GenOmics and Translational Research Center, RTI International
| | - Bryan C. Quach
- GenOmics and Translational Research Center, RTI International
| | | | - Ran Tao
- Lieber Institute for Brain Development (LIBD)
| | | | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University
| | | | | | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin
| | - Bradley T. Webb
- GenOmics and Translational Research Center, RTI International
| | - Eric O. Johnson
- GenOmics and Translational Research Center, RTI International
- Fellow Program, RTI International
| | | | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine
| | - Dana B. Hancock
- GenOmics and Translational Research Center, RTI International
| |
Collapse
|
12
|
Andrade-Brito DE, Núñez-Ríos DL, Martínez-Magaña JJ, Nagamatsu ST, Rompala G, Zillich L, Witt SH, Clark SL, Latig MC, Montalvo-Ortiz JL. Neuronal-specific methylome and hydroxymethylome analysis reveal replicated and novel loci associated with alcohol use disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.28.23299094. [PMID: 38105948 PMCID: PMC10725575 DOI: 10.1101/2023.11.28.23299094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5mC and 5hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5mC and 5hmC at the genome-wide level. Differential 5mC and 5hmC were evaluated using the methylKit R package and significance was set at false discovery rate <0.05 and differential methylation >2. Functional enrichment analyses were performed and replication was evaluated replication in an independent dataset that assessed 5mC and 5hmC of AUD in bulk cortical tissue. We identified 417 5mC and 363 5hmC genome-wide significant differential CpG sites associated with AUD, with 59% in gene promoters. We also identified genes previously implicated in alcohol consumption, such as SYK, CHRM2, DNMT3A, and GATA4, for 5mC and GATA4, and GAD1, GATA4, DLX1 for 5hmC. Replication was observed for 28 CpG sites from a previous AUD 5mC and 5hmC study, including FOXP1. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5mC genes. This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD. We replicated previous findings and identified novel associations with AUD for both 5mC and 5hmC marks within the OFC. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.
Collapse
Affiliation(s)
- Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Diana L. Núñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, Texas, USA
| | - Maria C. Latig
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | | | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| |
Collapse
|
13
|
Arfmann W, Achenbach J, Meyer-Bockenkamp F, Proskynitopoulos PJ, Groh A, Muschler MAN, Glahn A, Hagemeier L, Preuss V, Klintschar M, Frieling H, Rhein M. Comparing DRD2 Promoter Methylation Between Blood and Brain in Alcohol Dependence. Alcohol Alcohol 2023; 58:216-223. [PMID: 36747480 DOI: 10.1093/alcalc/agad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
AIMS The dopamine receptor D2 (DRD2) is substantially involved in several forms of addiction. In addition to genetic polymorphisms, epigenetic mechanisms have emerged as an important means of regulation. Previously, DRD2 hypo- and hyper-methylation have been observed in alcohol use disorder (AUD). Blood samples are commonly used as a surrogate marker of epigenetic alterations in epigenetic research, but few specific comparisons between blood and brain tissue samples in AUD exist. METHODS We used post-mortem brain tissue samples of 17 deceased patients with AUD and 31 deceased controls to investigate the relationship between blood and brain methylation of the DRD2 promoter. RESULTS When investigating individual cytosine methylation sites (CpG), several significant differences were found in the nucleus accumbens and hippocampus in the study population. Investigating binding sites with significant differences in methylation levels revealed hypomethylated CpGs targeting mainly activating transcription factors. CONCLUSION These findings support an altered transcription of the DRD2 gene in AUD specimens with a consecutively changed reward response in the brain. While methylation between specific brain regions and blood is comparable, our study further suggests that blood methylation cannot provide meaningful perspectives on DRD2 promoter methylation in the brain.
Collapse
Affiliation(s)
- Wiebke Arfmann
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johannes Achenbach
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Department of Anesthesiology and Intensive Care Medicine, Pain Clinic, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Fiona Meyer-Bockenkamp
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Phileas J Proskynitopoulos
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Adrian Groh
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Marc A N Muschler
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Alexander Glahn
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Lars Hagemeier
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Vanessa Preuss
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michael Klintschar
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Mathias Rhein
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
14
|
Domi E, Barchiesi R, Barbier E. Epigenetic Dysregulation in Alcohol-Associated Behaviors: Preclinical and Clinical Evidence. Curr Top Behav Neurosci 2023. [PMID: 36717533 DOI: 10.1007/7854_2022_410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder (AUD) is characterized by loss of control over intake and drinking despite harmful consequences. At a molecular level, AUD is associated with long-term neuroadaptations in key brain regions that are involved in reward processing and decision-making. Over the last decades, a great effort has been made to understand the neurobiological basis underlying AUD. Epigenetic mechanisms have emerged as an important mechanism in the regulation of long-term alcohol-induced gene expression changes. Here, we review the literature supporting a role for epigenetic processes in AUD. We particularly focused on the three most studied epigenetic mechanisms: DNA methylation, Histone modification and non-coding RNAs. Clinical studies indicate an association between AUD and DNA methylation both at the gene and global levels. Using behavioral paradigms that mimic some of the characteristics of AUD, preclinical studies demonstrate that changes in epigenetic mechanisms can functionally impact alcohol-associated behaviors. While many studies support a therapeutic potential for targeting epigenetic enzymes, more research is needed to fully understand their role in AUD. Identification of brain circuits underlying alcohol-associated behaviors has made major advances in recent years. However, there are very few studies that investigate how epigenetic mechanisms can affect these circuits or impact the neuronal ensembles that promote alcohol-associated behaviors. Studies that focus on the role of circuit-specific and cell-specific epigenetic changes for clinically relevant alcohol behaviors may provide new insights on the functional role of epigenetic processes in AUD.
Collapse
Affiliation(s)
- Esi Domi
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Riccardo Barchiesi
- Department of Neuroscience, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Estelle Barbier
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
15
|
Jarczak J, Miszczak M, Radwanska K. Is DNA methylation in the brain a mechanism of alcohol use disorder? Front Behav Neurosci 2023; 17:957203. [PMID: 36778133 PMCID: PMC9908583 DOI: 10.3389/fnbeh.2023.957203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Alcohol use disorder (AUD) is a worldwide problem. Unfortunately, the molecular mechanisms of alcohol misuse are still poorly understood, therefore successful therapeutic approaches are limited. Accumulating data indicate that the tendency for compulsive alcohol use is inherited, suggesting a genetic background as an important factor. However, the probability to develop AUD is also affected by life experience and environmental factors. Therefore, the epigenetic modifications that are altered over lifetime likely contribute to increased risk of alcohol misuse. Here, we review the literature looking for the link between DNA methylation in the brain, a common epigenetic modification, and AUD-related behaviors in humans, mice and rats. We sum up the main findings, identify the existing gaps in our knowledge and indicate future directions of the research.
Collapse
|
16
|
Ghemrawi M, Tejero NF, Duncan G, McCord B. Pyrosequencing: Current forensic methodology and future applications-a review. Electrophoresis 2023; 44:298-312. [PMID: 36168852 DOI: 10.1002/elps.202200177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023]
Abstract
The recent development of small, single-amplicon-based benchtop systems for pyrosequencing has opened up a host of novel procedures for applications in forensic science. Pyrosequencing is a sequencing by synthesis technique, based on chemiluminescent inorganic pyrophosphate detection. This review explains the pyrosequencing workflow and illustrates the step-by-step chemistry, followed by a description of the assay design and factors to keep in mind for an exemplary assay. Existing and potential forensic applications are highlighted using this technology. Current applications include identifying species, identifying bodily fluids, and determining smoking status. We also review progress in potential applications for the future, including research on distinguishing monozygotic twins, detecting alcohol and drug abuse, and other phenotypic characteristics such as diet and body mass index. Overall, the versatility of the pyrosequencing technologies renders it a useful tool in forensic genomics.
Collapse
Affiliation(s)
- Mirna Ghemrawi
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Nicole Fernandez Tejero
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - George Duncan
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida, USA
| | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| |
Collapse
|
17
|
Poisel E, Zillich L, Streit F, Frank J, Friske MM, Foo JC, Mechawar N, Turecki G, Hansson AC, Nöthen MM, Rietschel M, Spanagel R, Witt SH. DNA methylation in cocaine use disorder-An epigenome-wide approach in the human prefrontal cortex. Front Psychiatry 2023; 14:1075250. [PMID: 36865068 PMCID: PMC9970996 DOI: 10.3389/fpsyt.2023.1075250] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Cocaine use disorder (CUD) is characterized by a loss of control over cocaine intake and is associated with structural, functional, and molecular alterations in the human brain. At the molecular level, epigenetic alterations are hypothesized to contribute to the higher-level functional and structural brain changes observed in CUD. Most evidence of cocaine-associated epigenetic changes comes from animal studies while only a few studies have been performed using human tissue. METHODS We investigated epigenome-wide DNA methylation (DNAm) signatures of CUD in human post-mortem brain tissue of Brodmann area 9 (BA9). A total of N = 42 BA9 brain samples were obtained from N = 21 individuals with CUD and N = 21 individuals without a CUD diagnosis. We performed an epigenome-wide association study (EWAS) and analyzed CUD-associated differentially methylated regions (DMRs). To assess the functional role of CUD-associated differential methylation, we performed Gene Ontology (GO) enrichment analyses and characterized co-methylation networks using a weighted correlation network analysis. We further investigated epigenetic age in CUD using epigenetic clocks for the assessment of biological age. RESULTS While no cytosine-phosphate-guanine (CpG) site was associated with CUD at epigenome-wide significance in BA9, we detected a total of 20 CUD-associated DMRs. After annotation of DMRs to genes, we identified Neuropeptide FF Receptor 2 (NPFFR2) and Kalirin RhoGEF Kinase (KALRN) for which a previous role in the behavioral response to cocaine in rodents is known. Three of the four identified CUD-associated co-methylation modules were functionally related to neurotransmission and neuroplasticity. Protein-protein interaction (PPI) networks derived from module hub genes revealed several addiction-related genes as highly connected nodes such as Calcium Voltage-Gated Channel Subunit Alpha1 C (CACNA1C), Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1), and Jun Proto-Oncogene, AP-1 Transcription Factor Subunit (JUN). In BA9, we observed a trend toward epigenetic age acceleration (EAA) in individuals with CUD remaining stable even after adjustment for covariates. CONCLUSION Results from our study highlight that CUD is associated with epigenome-wide differences in DNAm levels in BA9 particularly related to synaptic signaling and neuroplasticity. This supports findings from previous studies that report on the strong impact of cocaine on neurocircuits in the human prefrontal cortex (PFC). Further studies are needed to follow up on the role of epigenetic alterations in CUD focusing on the integration of epigenetic signatures with transcriptomic and proteomic data.
Collapse
Affiliation(s)
- Eric Poisel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marion M Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Innovative Psychiatric and Psychotherapeutic Research, Biobank, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
18
|
Denham AN, Drake J, Gavrilov M, Taylor ZN, Bacanu SA, Vladimirov VI. Long Non-Coding RNAs: The New Frontier into Understanding the Etiology of Alcohol Use Disorder. Noncoding RNA 2022; 8:59. [PMID: 36005827 PMCID: PMC9415279 DOI: 10.3390/ncrna8040059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a complex, chronic, debilitating condition impacting millions worldwide. Genetic, environmental, and epigenetic factors are known to contribute to the development of AUD. Long non-coding RNAs (lncRNAs) are a class of regulatory RNAs, commonly referred to as the "dark matter" of the genome, with little to no protein-coding potential. LncRNAs have been implicated in numerous processes critical for cell survival, suggesting that they play important functional roles in regulating different cell processes. LncRNAs were also shown to display higher tissue specificity than protein-coding genes and have a higher abundance in the brain and central nervous system, demonstrating a possible role in the etiology of psychiatric disorders. Indeed, genetic (e.g., genome-wide association studies (GWAS)), molecular (e.g., expression quantitative trait loci (eQTL)) and epigenetic studies from postmortem brain tissues have identified a growing list of lncRNAs associated with neuropsychiatric and substance use disorders. Given that the expression patterns of lncRNAs have been associated with widespread changes in the transcriptome, including methylation, chromatin architecture, and activation or suppression of translational activity, the regulatory nature of lncRNAs may be ubiquitous and an innate component of gene regulation. In this review, we present a synopsis of the functional impact that lncRNAs may play in the etiology of AUD. We also discuss the classifications of lncRNAs, their known functional roles, and therapeutic advancements in the field of lncRNAs to further clarify the functional relationship between lncRNAs and AUD.
Collapse
Affiliation(s)
- Allie N. Denham
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
| | - John Drake
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
- MSCI Program, Texas A&M University, Bryan, TX 77807, USA
| | - Matthew Gavrilov
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
| | - Zachary N. Taylor
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23219, USA
- Departent of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Vladimir I. Vladimirov
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
- Departent of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
- Texas A&M Institute for Neuroscience, College Station, Texas A&M University, College Station, TX 77843, USA
- Genetics Interdisciplinary Program, College Station, Texas A&M University, College Station, TX 77843, USA
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Zillich L, Poisel E, Frank J, Foo JC, Friske MM, Streit F, Sirignano L, Heilmann-Heimbach S, Heimbach A, Hoffmann P, Degenhardt F, Hansson AC, Bakalkin G, Nöthen MM, Rietschel M, Spanagel R, Witt SH. Multi-omics signatures of alcohol use disorder in the dorsal and ventral striatum. Transl Psychiatry 2022; 12:190. [PMID: 35523767 PMCID: PMC9076849 DOI: 10.1038/s41398-022-01959-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol Use Disorder (AUD) is a major contributor to global mortality and morbidity. Postmortem human brain tissue enables the investigation of molecular mechanisms of AUD in the neurocircuitry of addiction. We aimed to identify differentially expressed (DE) genes in the ventral and dorsal striatum between individuals with AUD and controls, and to integrate the results with findings from genome- and epigenome-wide association studies (GWAS/EWAS) to identify functionally relevant molecular mechanisms of AUD. DNA-methylation and gene expression (RNA-seq) data was generated from postmortem brain samples of 48 individuals with AUD and 51 controls from the ventral striatum (VS) and the dorsal striatal regions caudate nucleus (CN) and putamen (PUT). We identified DE genes using DESeq2, performed gene-set enrichment analysis (GSEA), and tested enrichment of DE genes in results of GWASs using MAGMA. Weighted correlation network analysis (WGCNA) was performed for DNA-methylation and gene expression data and gene overlap was tested. Differential gene expression was observed in the dorsal (FDR < 0.05), but not the ventral striatum of AUD cases. In the VS, DE genes at FDR < 0.25 were overrepresented in a recent GWAS of problematic alcohol use. The ARHGEF15 gene was upregulated in all three brain regions. GSEA in CN and VS pointed towards cell-structure associated GO-terms and in PUT towards immune pathways. The WGCNA modules most strongly associated with AUD showed strong enrichment for immune response and inflammation pathways. Our integrated analysis of multi-omics data sets provides further evidence for the importance of immune- and inflammation-related processes in AUD.
Collapse
Affiliation(s)
- Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eric Poisel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marion M Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - André Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, 4003, Switzerland
| | - Franziska Degenhardt
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Innovative Psychiatric and Psychotherapeutic Research, Biobank, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
20
|
Zillich L, Poisel E, Streit F, Frank J, Fries GR, Foo JC, Friske MM, Sirignano L, Hansson AC, Nöthen MM, Witt SH, Walss-Bass C, Spanagel R, Rietschel M. Epigenetic Signatures of Smoking in Five Brain Regions. J Pers Med 2022; 12:566. [PMID: 35455681 PMCID: PMC9029407 DOI: 10.3390/jpm12040566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Epigenome-wide association studies (EWAS) in peripheral blood have repeatedly found associations between tobacco smoking and aberrant DNA methylation (DNAm), but little is known about DNAm signatures of smoking in the human brain, which may contribute to the pathophysiology of addictive behavior observed in chronic smokers. (2) Methods: We investigated the similarity of DNAm signatures in matched blood and postmortem brain samples (n = 10). In addition, we performed EWASs in five brain regions belonging to the neurocircuitry of addiction: anterior cingulate cortex (ACC), Brodmann Area 9, caudate nucleus, putamen, and ventral striatum (n = 38-72). (3) Results: cg15925993 within the LOC339975 gene was epigenome-wide significant in the ACC. Of 16 identified differentially methylated regions, two (PRSS50 and LINC00612/A2M-AS1) overlapped between multiple brain regions. Functional enrichment was detected for biological processes related to neuronal development, inflammatory signaling and immune cell migration. Additionally, our results indicate the association of the well-known AHRR CpG site cg05575921 with smoking in the brain. (4) Conclusion: The present study provides further evidence of the strong relationship between aberrant DNAm and smoking.
Collapse
Affiliation(s)
- Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Eric Poisel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Gabriel R. Fries
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (G.R.F.); (C.W.-B.)
| | - Jerome C. Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Marion M. Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany; (M.M.F.); (A.C.H.)
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany; (M.M.F.); (A.C.H.)
| | - Markus M. Nöthen
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
- Center for Innovative Psychiatric and Psychotherapeutic Research, Biobank, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (G.R.F.); (C.W.-B.)
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany; (M.M.F.); (A.C.H.)
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| |
Collapse
|
21
|
Kaplan G, Xu H, Abreu K, Feng J. DNA Epigenetics in Addiction Susceptibility. Front Genet 2022; 13:806685. [PMID: 35145550 PMCID: PMC8821887 DOI: 10.3389/fgene.2022.806685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Addiction is a chronically relapsing neuropsychiatric disease that occurs in some, but not all, individuals who use substances of abuse. Relatively little is known about the mechanisms which contribute to individual differences in susceptibility to addiction. Neural gene expression regulation underlies the pathogenesis of addiction, which is mediated by epigenetic mechanisms, such as DNA modifications. A growing body of work has demonstrated distinct DNA epigenetic signatures in brain reward regions that may be associated with addiction susceptibility. Furthermore, factors that influence addiction susceptibility are also known to have a DNA epigenetic basis. In the present review, we discuss the notion that addiction susceptibility has an underlying DNA epigenetic basis. We focus on major phenotypes of addiction susceptibility and review evidence of cell type-specific, time dependent, and sex biased effects of drug use. We highlight the role of DNA epigenetics in these diverse processes and propose its contribution to addiction susceptibility differences. Given the prevalence and lack of effective treatments for addiction, elucidating the DNA epigenetic mechanism of addiction vulnerability may represent an expeditious approach to relieving the addiction disease burden.
Collapse
|