1
|
Friske MM, Torrico EC, Haas MJW, Borruto AM, Giannone F, Hade AC, Yu Y, Gao L, Sutherland GT, Hitzemann R, Philips MA, Fei SS, Sommer WH, Mayfield RD, Spanagel R. A systematic review and meta-analysis on the transcriptomic signatures in alcohol use disorder. Mol Psychiatry 2025; 30:310-326. [PMID: 39242950 PMCID: PMC11649567 DOI: 10.1038/s41380-024-02719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Currently available clinical treatments on alcohol use disorder (AUD) exhibit limited efficacy and new druggable targets are required. One promising approach to discover new molecular treatment targets involves the transcriptomic profiling of brain regions within the addiction neurocircuitry, utilizing animal models and postmortem brain tissue from deceased patients with AUD. Unfortunately, such studies suffer from large heterogeneity and small sample sizes. To address these limitations, we conducted a cross-species meta-analysis on transcriptome-wide data obtained from brain tissue of patients with AUD and animal models. We integrated 36 cross-species transcriptome-wide RNA-expression datasets with an alcohol-dependent phenotype vs. controls, following the PRISMA guidelines. In total, we meta-analyzed 964 samples - 502 samples from the prefrontal cortex (PFC), 282 nucleus accumbens (NAc) samples, and 180 from amygdala (AMY). The PFC had the highest number of differentially expressed genes (DEGs) across rodents, monkeys, and humans. Commonly dysregulated DEGs suggest conserved cross-species mechanisms for chronic alcohol consumption/AUD comprising MAPKs as well as STAT, IRF7, and TNF. Furthermore, we identified numerous unique gene sets that might contribute individually to these conserved mechanisms and also suggest novel molecular aspects of AUD. Validation of the transcriptomic alterations on the protein level revealed interesting targets for further investigation. Finally, we identified a combination of DEGs that are commonly regulated across different brain tissues as potential biomarkers for AUD. In summary, we provide a compendium of genes that are assessable via a shiny app, and describe signaling pathways, and physiological and cellular processes that are altered in AUD that require future studies for functional validation.
Collapse
Affiliation(s)
- Marion M Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | - Eva C Torrico
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Maximilian J W Haas
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anna M Borruto
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Francesco Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andreas-Christian Hade
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, Tartu, Estonia
- Forensic Medical Examination Department, Estonian Forensic Science Institute, Tallinn, Estonia
| | - Yun Yu
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Greg T Sutherland
- New South Wales Tissue Resource Center, University of Sydney, Camperdown, NSW, Australia
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Wolfgang H Sommer
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany.
| |
Collapse
|
2
|
Rentschler KM, Kodavanti UP. Mechanistic insights regarding neuropsychiatric and neuropathologic impacts of air pollution. Crit Rev Toxicol 2024; 54:953-980. [PMID: 39655487 DOI: 10.1080/10408444.2024.2420972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions. Inhaled pollutants include compositionally differing mixtures of respirable gaseous and particulate components of varied sizes, solubilities, and chemistry. Inhalation of combustibles and volatile organic compounds (VOCs) or other irritant particulate matter (PM) may trigger lung sensory afferents which initiate a sympathetic stress response via activation of the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. Activation of SAM and HPA axes are associated with selective inhibition of hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes following exposure. Regarding chronic exposure in susceptible hosts, these changes may become pathological by causing neuroinflammation, neurotransmitter, and neuroendocrine imbalances. Soluble PM, such as metals and nano-size particles may translocate across the olfactory, trigeminal, or vagal nerves through retrograde axonal transport, or through systemic circulation which may disrupt the blood-brain barrier (BBB) and deposit in neural tissue. Neuronal deposition of metallic components can have a negative impact through multiple molecular mechanisms. In addition to systemic translocation, the release of pituitary and stress hormones, altered metabolic hormonal status and resultant circulating metabolic milieu, and sympathetically and HPA-mediated changes in immune markers, may secondarily impact the brain through a variety of regulatory adrenal hormone-dependent mechanisms. Several reviews covering air pollution as a risk factor for neuropsychiatric disorders have been published, but no reviews discuss the in-depth intersection between molecular and stress-related neuroendocrine mechanisms, thereby addressing adaptation and susceptibility variations and link to peripheral tissue effects. The purpose of this review is to discuss evidence regarding neurochemical, neuroendocrine, and molecular mechanisms which may contribute to neuropathology from air pollution exposure. This review also covers bi-directional neural and systemic interactions which may raise the risk for air pollution-related systemic illness.
Collapse
Affiliation(s)
- Katherine M Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
3
|
Cardona-Jordan KM, Lay-Rivera XX, Cartagena-López E, Bracho-Rincón DL, González-Bermejo R, Alvarado-Monefeldt GL, Del Toro JPG, Esquilín-Rodríguez CJ, Lloret-Torres M, Velázquez-Marrero C. Sex Differences in Contextual Extinction Learning After Single Binge-Like EtOH Exposure in Adolescent C57BL/6J Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620195. [PMID: 39484582 PMCID: PMC11527338 DOI: 10.1101/2024.10.25.620195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The relationship between chronic heavy drinking and post-traumatic stress disorder (PTSD) is well-documented; however, the impact of more common drinking patterns, such as a single episode leading to a blood alcohol concentration (BAC) of 0.09 g/dL (moderate intoxication), remains underexplored. Given the frequent co-occurrence of PTSD and alcohol misuse, it is essential to understand the biological and behavioral factors driving this comorbidity. We hypothesize that alcohol's immediate sedative effects are coupled with the development of persistent molecular alcohol tolerance, which may disrupt fear extinction learning. To investigate this, we employed a S ingle E pisode E thanol (SEE) in-vivo exposure to mimic binge-like alcohol consumption over a 6-hour period, following contextual conditioning trials. Extinction trials were conducted 24 hours later to assess the effects on extinction learning. Our findings reveal a significant deficit in fear extinction learning in alcohol-treated adolescent male mice compared to saline-treated controls, with no such effects observed in female adolescent mice. These results suggest that even non-chronic alcohol exposure may contribute to the development of trauma- and stress-related disorders, such as PTSD, in males. Additionally, histological analysis revealed significant alterations in FKBP5, β-catenin, and GSK-3β levels in the hippocampus, striatum, and basolateral amygdala of alcohol-treated mice following extinction. The insights gained from this study could reshape our understanding of the risk factors for PTSD and open new avenues for prevention and treatment, targeting the molecular mechanisms that mediate alcohol tolerance.
Collapse
Affiliation(s)
- Kiara M Cardona-Jordan
- University of Puerto Rico, Medical Sciences Campus, Dr. Jose Celso Barbosa, San Juan, PR, 00936
| | - Xiany X Lay-Rivera
- University of Puerto Rico, Medical Sciences Campus, Dr. Jose Celso Barbosa, San Juan, PR, 00936
| | - Eliezer Cartagena-López
- Institute of Neurobiology, UPR-Medical Sciences Campus, 201 Blvd del Valle, San Juan, PR, 00901
| | - Dina L Bracho-Rincón
- Neuroimaging and Electrophysiology Facility - Institute of Neurobiology, 201 Blvd del Valle, San Juan, PR, 00901
| | - Ruth González-Bermejo
- Institute of Neurobiology, UPR-Medical Sciences Campus, 201 Blvd del Valle, San Juan, PR, 00901
| | | | | | | | - Mario Lloret-Torres
- University of Puerto Rico, Medical Sciences Campus, Dr. Jose Celso Barbosa, San Juan, PR, 00936
| | | |
Collapse
|
4
|
Cruz B, Vozella V, Borgonetti V, Bullard R, Bianchi PC, Kirson D, Bertotto LB, Bajo M, Vlkolinsky R, Messing RO, Zorrilla EP, Roberto M. Chemogenetic inhibition of central amygdala CRF-expressing neurons decreases alcohol intake but not trauma-related behaviors in a rat model of post-traumatic stress and alcohol use disorder. Mol Psychiatry 2024; 29:2611-2621. [PMID: 38509197 PMCID: PMC11415545 DOI: 10.1038/s41380-024-02514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are often comorbid. Few treatments exist to reduce comorbid PTSD/AUD. Elucidating the mechanisms underlying their comorbidity could reveal new avenues for therapy. Here, we employed a model of comorbid PTSD/AUD, in which rats were subjected to a stressful shock in a familiar context followed by alcohol drinking. We then examined fear overgeneralization and irritability in these rats. Familiar context stress elevated drinking, increased fear overgeneralization, increased alcohol-related aggressive signs, and elevated peripheral stress hormones. We then examined transcripts of stress- and fear-relevant genes in the central amygdala (CeA), a locus that regulates stress-mediated alcohol drinking. Compared with unstressed rats, stressed rats exhibited increases in CeA transcripts for Crh and Fkbp5 and decreases in transcripts for Bdnf and Il18. Levels of Nr3c1 mRNA, which encodes the glucocorticoid receptor, increased in stressed males but decreased in stressed females. Transcripts of Il18 binding protein (Il18bp), Glp-1r, and genes associated with calcitonin gene-related peptide signaling (Calca, Ramp1, Crlr-1, and Iapp) were unaltered. Crh, but not Crhr1, mRNA was increased by stress; thus, we tested whether inhibiting CeA neurons that express corticotropin-releasing factor (CRF) suppress PTSD/AUD-like behaviors. We used Crh-Cre rats that had received a Cre-dependent vector encoding hM4D(Gi), an inhibitory Designer Receptors Exclusively Activated by Designer Drugs. Chemogenetic inhibition of CeA CRF neurons reduced alcohol intake but not fear overgeneralization or irritability-like behaviors. Our findings suggest that CeA CRF modulates PTSD/AUD comorbidity, and inhibiting CRF neural activity is primarily associated with reducing alcohol drinking but not trauma-related behaviors that are associated with PTSD/AUD.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Paula C Bianchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Dean Kirson
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Luisa B Bertotto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Eric P Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA.
| |
Collapse
|
5
|
Wang B, Li T, Xu L, Cai Y. Protective effect of FKBP12 on dextran sulfate sodium-induced ulcerative colitis in mice as a tacrolimus receptor. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-16. [PMID: 38466901 DOI: 10.1080/15257770.2024.2320817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Ulcerative colitis (UC) is a multifactorial intestinal disease with a high incidence. In recent years, there has been an urgent need for pleiotropic drugs with a clear biosafety profile. Tacrolimus (TAC) is an immunosuppressant with stronger in vivo effects and better gastrointestinal absorption and is considered a potential treatment for UC. FKBP12 is a mediator of TAC immunosuppression; however, it is unclear whether it can participate in the development of UC in combination with TAC. The purpose of this study is to preliminarily validate the function of FKBP12 by establishing dextran sulfate sodium (DSS)-induced UC model and TAC treatment. The results revealed that TAC was effective in alleviating DSS-induced UC symptoms such as body weight and disease activity index (DAI). TAC significantly protects colonic tissue and attenuates DSS-induced histomorphological changes. In addition, FKBP12 is down-regulated in the intestinal tissue of DSS-induced UC mice and in serum samples of UC patients. In conclusion, our study revealed that FKBP12 may act as a TAC receptor to have anti-inflammatory and protective effects on DSS-induced UC in mice, which will provide a new option for the treatment of UC.
Collapse
Affiliation(s)
- Birong Wang
- Department of Gastroenterology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tingzan Li
- Department of Gastroenterology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liqin Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuxi Cai
- Department of Critical Care Medicine, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Ma J, Yang Z, Gao H, Huda N, Jiang Y, Liangpunsakul S. FK-binding protein 5: Possible relevance to the pathogenesis of metabolic dysfunction and alcohol-associated liver disease. J Investig Med 2024; 72:128-138. [PMID: 37807186 DOI: 10.1177/10815589231207793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The FK506-binding protein (FKBP5) plays significant roles in mediating stress responses by interacting with glucocorticoids, participating in adipogenesis, and influencing various cellular pathways throughout the body. In this review, we described the potential role of FKBP5 in the pathogenesis of two common chronic liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD), and alcohol-associated liver disease (ALD). We provided an overview of the FK-binding protein family and elucidated their roles in cellular stress responses, metabolic diseases, and adipogenesis. We explored how FKBP5 may mechanistically influence the pathogenesis of MASLD and ALD and provided insights for further investigation into the role of FKBP5 in these two diseases.
Collapse
Affiliation(s)
- Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hui Gao
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
7
|
Vozella V, Cruz B, Feldman HC, Bullard R, Bianchi PC, Natividad LA, Cravatt BF, Zorrilla EP, Ciccocioppo R, Roberto M. Sexually dimorphic effects of monoacylglycerol lipase inhibitor MJN110 on stress-related behaviour and drinking in Marchigian Sardinian alcohol-preferring rats. Br J Pharmacol 2023; 180:3130-3145. [PMID: 37488777 PMCID: PMC10805956 DOI: 10.1111/bph.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid (eCB) system plays an important homeostatic role in the regulation of stress circuits and has emerged as a therapeutic target to treat stress disorders and alcohol use disorder (AUD). Extensive research has elucidated a role for the eCB anandamide (AEA), but less is known about 2-arachidonoylglycerol (2-AG) mediated signalling. EXPERIMENTAL APPROACH We pharmacologically enhanced eCB signalling by inhibiting the 2-AG metabolizing enzyme, monoacylglycerol lipase (MAGL), in male and female Marchigian Sardinian alcohol-preferring (msP) rats, a model of innate alcohol preference and stress hypersensitivity, and in control Wistar rats. We tested the acute effect of the selective MAGL inhibitor MJN110 in alleviating symptoms of alcohol drinking, anxiety, irritability and fear. KEY RESULTS A single systemic administration of MJN110 increased 2-AG levels in the central amygdala, prelimbic and infralimbic cortex but did not acutely alter alcohol drinking. MAGL inhibition reduced aggressive behaviours in female msPs, and increased defensive behaviours in male msPs, during the irritability test. Moreover, in the novelty-induced hypophagia test, MJN110 selectively enhanced palatable food consumption in females, mitigating stress-induced food suppression. Lastly, msP rats showed increased conditioned fear behaviour compared with Wistar rats, and MJN110 reduced context-associated conditioned fear responses, but not cue-probed fear expression, in male msPs. CONCLUSIONS AND IMPLICATIONS Acute inhibition of MAGL attenuated some stress-related responses in msP rats but not voluntary alcohol drinking. Our results provide new insights into the sex dimorphism documented in stress-induced responses. Sex-specific eCB-based approaches should be considered in the clinical development of therapeutics.
Collapse
Affiliation(s)
- Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hannah C. Feldman
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paula C. Bianchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil
| | - Luis A. Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, TX 78712, USA
| | - Benjamin F. Cravatt
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032 Italy
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Zhou JL, de Guglielmo G, Ho AJ, Kallupi M, Pokhrel N, Li HR, Chitre AS, Munro D, Mohammadi P, Carrette LLG, George O, Palmer AA, McVicker G, Telese F. Single-nucleus genomics in outbred rats with divergent cocaine addiction-like behaviors reveals changes in amygdala GABAergic inhibition. Nat Neurosci 2023; 26:1868-1879. [PMID: 37798411 PMCID: PMC10620093 DOI: 10.1038/s41593-023-01452-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The amygdala processes positive and negative valence and contributes to addiction, but the cell-type-specific gene regulatory programs involved are unknown. We generated an atlas of single-nucleus gene expression and chromatin accessibility in the amygdala of outbred rats with high and low cocaine addiction-like behaviors following prolonged abstinence. Differentially expressed genes between the high and low groups were enriched for energy metabolism across cell types. Rats with high addiction index (AI) showed increased relapse-like behaviors and GABAergic transmission in the amygdala. Both phenotypes were reversed by pharmacological inhibition of the glyoxalase 1 enzyme, which metabolizes methylglyoxal-a GABAA receptor agonist produced by glycolysis. Differences in chromatin accessibility between high and low AI rats implicated pioneer transcription factors in the basic helix-loop-helix, FOX, SOX and activator protein 1 families. We observed opposite regulation of chromatin accessibility across many cell types. Most notably, excitatory neurons had greater accessibility in high AI rats and inhibitory neurons had greater accessibility in low AI rats.
Collapse
Affiliation(s)
- Jessica L Zhou
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Aaron J Ho
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Narayan Pokhrel
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Hai-Ri Li
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Munro
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Graham McVicker
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Francesca Telese
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Li A, Bao J, Gao S, He Y, Nie X, Hosyanto FF, He X, Li T, Xu L. MicroRNA hsa-miR-320a-3p and Its Targeted mRNA FKBP5 Were Differentially Expressed in Patients with HIV/TB Co-Infection. ACS Infect Dis 2023; 9:1742-1753. [PMID: 37624586 DOI: 10.1021/acsinfecdis.3c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Among the PLWH (people living with HIV) population, the risk of developing active tuberculosis (TB) is increasing. Active TB also accelerates the deterioration of PLWH's immune function and is one of the leading causes of death in the PLWH population. So far, accurate diagnosis of active TB in the PLWH population remains challenging. Through data analysis of HIV/TB co-infection in the GEO database, the differentially expressed genes as well as their related microRNA (miRNA) were acquired and were further verified through clinical blood samples. Dual-luciferase assay was used to verify the mechanism of miRNA on mRNA. The enrichment of immune cells in database patient samples was analyzed by bioinformatics and finally verified by blood routine data. Our study found that FKBP5 (FK506 binding protein 5) was highly expressed in the HIV/TB co-infection group; hsa-miR-320a-3p was highly expressed in the HIV infection group but decreased in the HIV/TB co-infection group. Dual-luciferase assay results showed that hsa-miR-320a-3p mimics significantly reduced the relative luciferase activity of the WT-FKBP5 group; however, this phenomenon was not observed in the MUT-FKBP5 group. At the same time, as a key molecule of the immune-related pathway, FKBP5 is highly correlated with the amount of neutrophils, which provides a new suggestion for the treatment of the HIV/TB co-infection population. Our study found that hsa-miR-320a-3p can decrease FKBP5 expression, suggesting a potential regulatory role for FKBP5. The involvement of FKBP5 and its related molecule hsa-miR-320a-3p in HIV/TB co-infection proposes them as potential biomarkers for the diagnosis of active TB in the PLWH population.
Collapse
Affiliation(s)
- Anlong Li
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiajia Bao
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Hospital-Acquired Infection Control Department, First People's Hospital of Jintang County, Chengdu 610400, China
| | - Sijia Gao
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ying He
- Central Laboratory, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China
| | - Xiaoping Nie
- Central Laboratory, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China
| | | | - Xintong He
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tongxin Li
- Central Laboratory, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China
| | - Lei Xu
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Borgonetti V, Cruz B, Vozella V, Khom S, Steinman MQ, Bullard R, D’Ambrosio S, Oleata CS, Vlkolinsky R, Bajo M, Zorrilla EP, Kirson D, Roberto M. IL-18 Signaling in the Rat Central Amygdala Is Disrupted in a Comorbid Model of Post-Traumatic Stress and Alcohol Use Disorder. Cells 2023; 12:1943. [PMID: 37566022 PMCID: PMC10416956 DOI: 10.3390/cells12151943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share dysregulated neuroimmune-related pathways. Here, we used our established rat model of comorbid post-traumatic stress disorder (PTSD)/AUD to characterize the interleukin 18 (IL-18) system in the central amygdala (CeA). Male and female rats underwent novel (NOV) and familiar (FAM) shock stress, or no stress (unstressed controls; CTL) followed by voluntary alcohol drinking and PTSD-related behaviors, then all received renewed alcohol access prior to the experiments. In situ hybridization revealed that the number of CeA positive cells for Il18 mRNA increased, while for Il18bp decreased in both male and female FAM stressed rats versus CTL. No changes were observed in Il18r1 expression across groups. Ex vivo electrophysiology showed that IL-18 reduced GABAA-mediated miniature inhibitory postsynaptic currents (mIPSCs) frequencies in CTL, suggesting reduced CeA GABA release, regardless of sex. Notably, this presynaptic effect of IL-18 was lost in both NOV and FAM males, while it persisted in NOV and FAM females. IL-18 decreased mIPSC amplitude in CTL female rats, suggesting postsynaptic effects. Overall, our results suggest that stress in rats with alcohol access impacts CeA IL-18-system expression and, in sex-related fashion, IL-18's modulatory function at GABA synapses.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Michael Q. Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Shannon D’Ambrosio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Christopher S. Oleata
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| |
Collapse
|
11
|
Buffa V, Knaup FH, Heymann T, Springer M, Schmidt MV, Hausch F. Analysis of the Selective Antagonist SAFit2 as a Chemical Probe for the FK506-Binding Protein 51. ACS Pharmacol Transl Sci 2023; 6:361-371. [PMID: 36926456 PMCID: PMC10012253 DOI: 10.1021/acsptsci.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 02/16/2023]
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as an important regulator of the mammalian stress response and is involved in persistent pain states and metabolic pathways. The FK506 analog SAFit2 (short for selective antagonist of FKBP51 by induced fit) was the first potent and selective FKBP51 ligand with an acceptable pharmacokinetic profile. At present, SAFit2 represents the gold standard for FKBP51 pharmacology and has been extensively used in numerous biological studies. Here we review the current knowledge on SAFit2 as well as guidelines for its use.
Collapse
Affiliation(s)
- Vanessa Buffa
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Fabian H. Knaup
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Tim Heymann
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Margherita Springer
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mathias V. Schmidt
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Felix Hausch
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|