1
|
Tsai JF, Yu FY, Liu BH. Citrinin disrupts microtubule assembly in cardiac cells: Impact on mitochondrial organization and function. CHEMOSPHERE 2024; 365:143352. [PMID: 39293683 DOI: 10.1016/j.chemosphere.2024.143352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Citrinin (CTN) is a mycotoxin commonly present in various foods and feeds worldwide, as well as dietary supplements in Asian countries, but the risks and cellular mechanisms associated with its cardiotoxicity remains unclear. In this study, RNA-seq analysis of CTN-treated H9c2 cardiac cells demonstrated significant perturbations in pathways related to microtubule cytoskeleton and mitochondrial network organization. CTN disrupted microtubule polymerization and downregulated mRNA levels of microtubule-assembling genes, Map2 and Tpx2, in H9c2 cardiac cells. Additionally, CTN interfered with the distribution of mitochondrial network along the microtubules, leading to the accumulation of dysfunctional mitochondria characterized by elevated superoxide levels and reduced membrane potential. This disruption also caused the buildup of lysosomes and ubiquitinated proteins, which hindered waste clearance in microtubule-disassembled H9c2 cells. Molecular docking analysis indicated that CTN could bind to the colchicine binding site on β-tubulin, thereby mimicking the microtubule-disrupting effect of colchicine. This study provides morphological, transcriptomic, and mechanistic evidence to elucidate the cardiotoxic mechanisms of CTN, which involve the dysregulated microtubule network, subsequent mitochondrial mislocalization, and impaired proteolysis of damaged proteins/organelles in cardiac cells. Our findings may enhance the fundamental understanding and facilitate future risk assessment of CTN.
Collapse
Affiliation(s)
- Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Read TA, Cisterna BA, Skruber K, Ahmadieh S, Liu TM, Vitriol JA, Shi Y, Black JB, Butler MT, Lindamood HL, Lefebvre AE, Cherezova A, Ilatovskaya DV, Bear JE, Weintraub NL, Vitriol EA. The actin binding protein profilin 1 localizes inside mitochondria and is critical for their function. EMBO Rep 2024; 25:3240-3262. [PMID: 39026010 PMCID: PMC11316047 DOI: 10.1038/s44319-024-00209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
The monomer-binding protein profilin 1 (PFN1) plays a crucial role in actin polymerization. However, mutations in PFN1 are also linked to hereditary amyotrophic lateral sclerosis, resulting in a broad range of cellular pathologies which cannot be explained by its primary function as a cytosolic actin assembly factor. This implies that there are important, undiscovered roles for PFN1 in cellular physiology. Here we screened knockout cells for novel phenotypes associated with PFN1 loss of function and discovered that mitophagy was significantly upregulated. Indeed, despite successful autophagosome formation, fusion with the lysosome, and activation of additional mitochondrial quality control pathways, PFN1 knockout cells accumulate depolarized, dysmorphic mitochondria with altered metabolic properties. Surprisingly, we also discovered that PFN1 is present inside mitochondria and provide evidence that mitochondrial defects associated with PFN1 loss are not caused by reduced actin polymerization in the cytosol. These findings suggest a previously unrecognized role for PFN1 in maintaining mitochondrial integrity and highlight new pathogenic mechanisms that can result from PFN1 dysregulation.
Collapse
Affiliation(s)
- Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Bruno A Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kristen Skruber
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Samah Ahmadieh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Josefine A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yang Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Joseph B Black
- Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mitchell T Butler
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Alena Cherezova
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
3
|
Ghosh Dastidar R, Banerjee S, Lal PB, Ghosh Dastidar S. Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation to Neurological Disorders. Mol Neurobiol 2024; 61:3788-3808. [PMID: 38012514 PMCID: PMC11236935 DOI: 10.1007/s12035-023-03768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic or diagnostic marker.
Collapse
Affiliation(s)
- Ranita Ghosh Dastidar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Saradindu Banerjee
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India
| | - Piyush Behari Lal
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| |
Collapse
|
4
|
Pan MH, Zhang KH, Wu SL, Pan ZN, Sun MH, Li XH, Ju JQ, Luo SM, Ou XH, Sun SC. FMNL2 regulates actin for endoplasmic reticulum and mitochondria distribution in oocyte meiosis. eLife 2024; 12:RP92732. [PMID: 38747713 PMCID: PMC11095938 DOI: 10.7554/elife.92732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
- College of Veterinary Medicine, Northwest A&F UniversityShaanxiChina
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Si-Le Wu
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Shi-Ming Luo
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| |
Collapse
|
5
|
Kinnart I, Manders L, Heyninck T, Imberechts D, Praschberger R, Schoovaerts N, Verfaillie C, Verstreken P, Vandenberghe W. Elevated α-synuclein levels inhibit mitophagic flux. NPJ Parkinsons Dis 2024; 10:80. [PMID: 38594264 PMCID: PMC11004019 DOI: 10.1038/s41531-024-00696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
The pathogenic effect of SNCA gene multiplications indicates that elevation of wild-type α-synuclein levels is sufficient to cause Parkinson's disease (PD). Mitochondria have been proposed to be a major target of α-synuclein-induced damage. PINK1/parkin/DJ-1-mediated mitophagy is a defense strategy that allows cells to selectively eliminate severely damaged mitochondria. Here, we quantified mitophagic flux and non-mitochondrial autophagic flux in three models of increased α-synuclein expression: 1/Drosophila melanogaster that transgenically express human wild-type and mutant α-synuclein in flight muscle; 2/human skin fibroblasts transfected with α-synuclein or β-synuclein; and 3/human induced pluripotent stem cell (iPSC)-derived neurons carrying an extra copy of wild-type SNCA under control of a doxycycline-inducible promoter, allowing titratable α-synuclein upregulation. In each model, elevated α-synuclein levels potently suppressed mitophagic flux, while non-mitochondrial autophagy was preserved. In human neurons, a twofold increase in wild-type α-synuclein was already sufficient to induce this effect. PINK1 and parkin activation and mitochondrial translocation of DJ-1 after mitochondrial depolarization were not affected by α-synuclein upregulation. Overexpression of the actin-severing protein cofilin or treatment with CK666, an inhibitor of the actin-related protein 2/3 (Arp2/3) complex, rescued mitophagy in neurons with increased α-synuclein, suggesting that excessive actin network stabilization mediated the mitophagy defect. In conclusion, elevated α-synuclein levels inhibit mitophagic flux. Disruption of actin dynamics may play a key role in this effect.
Collapse
Affiliation(s)
- Inge Kinnart
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Liselot Manders
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Thibaut Heyninck
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Dorien Imberechts
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Roman Praschberger
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Nils Schoovaerts
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | | | - Patrik Verstreken
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium.
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Zhang Y, Yang J, Ouyang C, Meng N. The association between ferroptosis and autophagy in cardiovascular diseases. Cell Biochem Funct 2024; 42:e3985. [PMID: 38509716 DOI: 10.1002/cbf.3985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is a process in which cells degrade intracellular substances and play a variety of roles in cells, such as maintaining intracellular homeostasis, preventing cell overgrowth, and removing pathogens. It is highly conserved during the evolution of eukaryotic cells. So far, the study of autophagy is still a hot topic in the field of cytology. Ferroptosis is an iron-dependent form of cell death, accompanied by the accumulation of reactive oxygen species and lipid peroxides. With the deepening of research, it has been found that ferroptosis, like autophagy, is involved in the occurrence and development of cardiovascular diseases. The relationship between autophagy and ferroptosis is complex, and the association between the two in cardiovascular disease remains to be clarified. This article reviews the mechanism of autophagy and ferroptosis and their correlation, and discusses the relationship between them in cardiovascular diseases, which is expected to provide new and important treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Junjun Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
7
|
Sousa-Squiavinato ACM, Morgado-Díaz JA. A glimpse into cofilin-1 role in cancer therapy: A potential target to improve clinical outcomes? Biochim Biophys Acta Rev Cancer 2024; 1879:189087. [PMID: 38395237 DOI: 10.1016/j.bbcan.2024.189087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Cofilin-1 (CFL1) modulates dynamic actin networks by severing and enhancing depolymerization. The upregulation of cofilin-1 expression in several cancer types is associated with tumor progression and metastasis. However, recent discoveries indicated relevant cofilin-1 functions under oxidative stress conditions, interplaying with mitochondrial dynamics, and apoptosis networks. In this scenario, these emerging roles might impact the response to clinical therapy and could be used to enhance treatment efficacy. Here, we highlight new perspectives of cofilin-1 in the therapy resistance context and discussed how cofilin-1 is involved in these events, exploring aspects of its contribution to therapeutic resistance. We also provide an analysis of CFL1 expression in several tumors predicting survival. Therefore, understanding how exactly coflin-1 plays, particularly in therapy resistance, may pave the way to the development of treatment strategies and improvement of patient survival.
Collapse
Affiliation(s)
| | - Jose Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Huang D, Chen S, Xiong D, Wang H, Zhu L, Wei Y, Li Y, Zou S. Mitochondrial Dynamics: Working with the Cytoskeleton and Intracellular Organelles to Mediate Mechanotransduction. Aging Dis 2023; 14:1511-1532. [PMID: 37196113 PMCID: PMC10529762 DOI: 10.14336/ad.2023.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/01/2023] [Indexed: 05/19/2023] Open
Abstract
Cells are constantly exposed to various mechanical environments; therefore, it is important that they are able to sense and adapt to changes. It is known that the cytoskeleton plays a critical role in mediating and generating extra- and intracellular forces and that mitochondrial dynamics are crucial for maintaining energy homeostasis. Nevertheless, the mechanisms by which cells integrate mechanosensing, mechanotransduction, and metabolic reprogramming remain poorly understood. In this review, we first discuss the interaction between mitochondrial dynamics and cytoskeletal components, followed by the annotation of membranous organelles intimately related to mitochondrial dynamic events. Finally, we discuss the evidence supporting the participation of mitochondria in mechanotransduction and corresponding alterations in cellular energy conditions. Notable advances in bioenergetics and biomechanics suggest that the mechanotransduction system composed of mitochondria, the cytoskeletal system, and membranous organelles is regulated through mitochondrial dynamics, which may be a promising target for further investigation and precision therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Read TA, Cisterna BA, Skruber K, Ahmadieh S, Lindamood HL, Vitriol JA, Shi Y, Lefebvre AE, Black JB, Butler MT, Bear JE, Cherezova A, Ilatovskaya DV, Weintraub NL, Vitriol EA. The actin binding protein profilin 1 is critical for mitochondria function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552354. [PMID: 37609280 PMCID: PMC10441311 DOI: 10.1101/2023.08.07.552354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Profilin 1 (PFN1) is an actin binding protein that is vital for the polymerization of monomeric actin into filaments. Here we screened knockout cells for novel functions of PFN1 and discovered that mitophagy, a type of selective autophagy that removes defective or damaged mitochondria from the cell, was significantly upregulated in the absence of PFN1. Despite successful autophagosome formation and fusion with the lysosome, and activation of additional mitochondrial quality control pathways, PFN1 knockout cells still accumulate damaged, dysfunctional mitochondria. Subsequent imaging and functional assays showed that loss of PFN1 significantly affects mitochondria morphology, dynamics, and respiration. Further experiments revealed that PFN1 is located to the mitochondria matrix and is likely regulating mitochondria function from within rather than through polymerizing actin at the mitochondria surface. Finally, PFN1 mutants associated with amyotrophic lateral sclerosis (ALS) fail to rescue PFN1 knockout mitochondrial phenotypes and form aggregates within mitochondria, further perturbing them. Together, these results suggest a novel function for PFN1 in regulating mitochondria and identify a potential pathogenic mechanism of ALS-linked PFN1 variants.
Collapse
Affiliation(s)
- Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Bruno A. Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kristen Skruber
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Samah Ahmadieh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Halli L. Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Josefine A. Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yang Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Joseph B. Black
- Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mitchell T. Butler
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - James E. Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Alena Cherezova
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Neil L. Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A. Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
10
|
Fung TS, Chakrabarti R, Higgs HN. The multiple links between actin and mitochondria. Nat Rev Mol Cell Biol 2023; 24:651-667. [PMID: 37277471 PMCID: PMC10528321 DOI: 10.1038/s41580-023-00613-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Actin plays many well-known roles in cells, and understanding any specific role is often confounded by the overlap of multiple actin-based structures in space and time. Here, we review our rapidly expanding understanding of actin in mitochondrial biology, where actin plays multiple distinct roles, exemplifying the versatility of actin and its functions in cell biology. One well-studied role of actin in mitochondrial biology is its role in mitochondrial fission, where actin polymerization from the endoplasmic reticulum through the formin INF2 has been shown to stimulate two distinct steps. However, roles for actin during other types of mitochondrial fission, dependent on the Arp2/3 complex, have also been described. In addition, actin performs functions independent of mitochondrial fission. During mitochondrial dysfunction, two distinct phases of Arp2/3 complex-mediated actin polymerization can be triggered. First, within 5 min of dysfunction, rapid actin assembly around mitochondria serves to suppress mitochondrial shape changes and to stimulate glycolysis. At a later time point, at more than 1 h post-dysfunction, a second round of actin polymerization prepares mitochondria for mitophagy. Finally, actin can both stimulate and inhibit mitochondrial motility depending on the context. These motility effects can either be through the polymerization of actin itself or through myosin-based processes, with myosin 19 being an important mitochondrially attached myosin. Overall, distinct actin structures assemble in response to diverse stimuli to affect specific changes to mitochondria.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
11
|
de Wet S, Mangali A, Batt R, Kriel J, Vahrmeijer N, Niehaus D, Theart R, Loos B. The Highs and Lows of Memantine-An Autophagy and Mitophagy Inducing Agent That Protects Mitochondria. Cells 2023; 12:1726. [PMID: 37443760 PMCID: PMC10340721 DOI: 10.3390/cells12131726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Memantine is an FDA-approved, non-competitive NMDA-receptor antagonist that has been shown to have mitochondrial protective effects, improve cell viability and enhance clearance of Aβ42 peptide. Currently, there are uncertainties regarding the precise molecular targets as well as the most favourable treatment concentrations of memantine. Here, we made use of an imaging-based approach to investigate the concentration-dependent effects of memantine on mitochondrial fission and fusion dynamics, autophagy and mitochondrial quality control using a neuronal model of CCCP-induced mitochondrial injury so as to better unpack how memantine aids in promoting neuronal health. GT1-7 murine hypothalamic cells were cultured under standard conditions, treated with a relatively high and low concentration (100 µM and 50 µM) of memantine for 48 h. Images were acquired using a Zeiss 780 PS1 platform. Utilising the mitochondrial event localiser (MEL), we demonstrated clear concentration-dependent effects of memantine causing a protective response to mitochondrial injury. Both concentrations maintained the mitochondrial network volume whilst the low concentration caused an increase in mitochondrial number as well as increased fission and fusion events following CCCP-induced injury. Additionally, we made use of a customised Python-based image processing and analysis pipeline to quantitatively assess memantine-dependent changes in the autophagosomal and lysosomal compartments. Our results revealed that memantine elicits a differential, concentration-dependent effect on autophagy pathway intermediates. Intriguingly, low but not high concentrations of memantine lead to the induction of mitophagy. Taken together, our findings have shown that memantine is able to protect the mitochondrial network by preserving its volume upon mitochondrial injury with high concentrations of memantine inducing macroautophagy, whereas low concentrations lead to the induction of mitophagy.
Collapse
Affiliation(s)
- Sholto de Wet
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Asandile Mangali
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Richard Batt
- Department of Electric and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Jurgen Kriel
- Microscopy Unit, Central Analytical Facility, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Nicola Vahrmeijer
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Dana Niehaus
- Department of Psychiatry and Stikland Hospital, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7530, South Africa
| | - Rensu Theart
- Department of Electric and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
12
|
Martínez RAS, Pinky PD, Harlan BA, Brewer GJ. GTP energy dependence of endocytosis and autophagy in the aging brain and Alzheimer's disease. GeroScience 2023; 45:757-780. [PMID: 36622562 PMCID: PMC9886713 DOI: 10.1007/s11357-022-00717-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
Increased interest in the aging and Alzheimer's disease (AD)-related impairments in autophagy in the brain raise important questions about regulation and treatment. Since many steps in endocytosis and autophagy depend on GTPases, new measures of cellular GTP levels are needed to evaluate energy regulation in aging and AD. The recent development of ratiometric GTP sensors (GEVALS) and findings that GTP levels are not homogenous inside cells raise new issues of regulation of GTPases by the local availability of GTP. In this review, we highlight the metabolism of GTP in relation to the Rab GTPases involved in formation of early endosomes, late endosomes, and lysosomal transport to execute the autophagic degradation of damaged cargo. Specific GTPases control macroautophagy (mitophagy), microautophagy, and chaperone-mediated autophagy (CMA). By inference, local GTP levels would control autophagy, if not in excess. Additional levels of control are imposed by the redox state of the cell, including thioredoxin involvement. Throughout this review, we emphasize the age-related changes that could contribute to deficits in GTP and AD. We conclude with prospects for boosting GTP levels and reversing age-related oxidative redox shift to restore autophagy. Therefore, GTP levels could regulate the numerous GTPases involved in endocytosis, autophagy, and vesicular trafficking. In aging, metabolic adaptation to a sedentary lifestyle could impair mitochondrial function generating less GTP and redox energy for healthy management of amyloid and tau proteostasis, synaptic function, and inflammation.
Collapse
Affiliation(s)
| | - Priyanka D. Pinky
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Benjamin A. Harlan
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
- Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92697 USA
- MIND Institute, University of California Irvine, Irvine, CA 92697 USA
| |
Collapse
|
13
|
Shimura D, Shaw RM. Live-cell imaging and analysis of actin-mediated mitochondrial fission. STAR Protoc 2023; 4:101958. [PMID: 36542522 PMCID: PMC9795527 DOI: 10.1016/j.xpro.2022.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Current approaches, such as fixed-cell imaging or single-snapshot imaging, are insufficient to capture cytoskeleton-mediated mitochondrial fission. Here, we present a protocol to capture actin-mediated mitochondrial fission using high-resolution time-lapse imaging. We describe steps starting from cell preparation and mitochondria labeling through to live-cell imaging and final analysis. This approach is also applicable for analysis of multiple cytoskeleton-mediated organelle events such as vesicle trafficking, membrane fusion, and endocytic events in live cells. For complete details on the use and execution of this protocol, please refer to Shimura et al. (2021).1.
Collapse
Affiliation(s)
- Daisuke Shimura
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| | - Robin M Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Yadav T, Gau D, Roy P. Mitochondria-actin cytoskeleton crosstalk in cell migration. J Cell Physiol 2022; 237:2387-2403. [PMID: 35342955 PMCID: PMC9945482 DOI: 10.1002/jcp.30729] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria perform diverse functions in the cell and their roles during processes such as cell survival, differentiation, and migration are increasingly being appreciated. Mitochondrial and actin cytoskeletal networks not only interact with each other, but this multifaceted interaction shapes their functional dynamics. The interrelation between mitochondria and the actin cytoskeleton extends far beyond the requirement of mitochondrial ATP generation to power actin dynamics, and impinges upon several major aspects of cellular physiology. Being situated at the hub of cell signaling pathways, mitochondrial function can alter the activity of actin regulatory proteins and therefore modulate the processes downstream of actin dynamics such as cellular migration. As we will discuss, this regulation is highly nuanced and operates at multiple levels allowing mitochondria to occupy a strategic position in the regulation of migration, as well as pathological events that rely on aberrant cell motility such as cancer metastasis. In this review, we summarize the crosstalk that exists between mitochondria and actin regulatory proteins, and further emphasize on how this interaction holds importance in cell migration in normal as well as dysregulated scenarios as in cancer.
Collapse
Affiliation(s)
- Tarun Yadav
- Biology, Indian Institute of Science Education and Research, Pune
| | - David Gau
- Bioengineering, University of Pittsburgh, USA
| | - Partha Roy
- Bioengineering, University of Pittsburgh, USA
- Pathology, University of Pittsburgh, USA
| |
Collapse
|
15
|
Shimura D, Shaw RM. GJA1-20k and Mitochondrial Dynamics. Front Physiol 2022; 13:867358. [PMID: 35399255 PMCID: PMC8983841 DOI: 10.3389/fphys.2022.867358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
Connexin 43 (Cx43) is the primary gap junction protein of mammalian heart ventricles and is encoded by the gene Gja1 which has a single coding exon and therefore cannot be spliced. We previously identified that Gja1 mRNA undergoes endogenous internal translation initiated at one of several internal AUG (M) start codons, generating N-terminal truncated protein isoforms that retain the C-terminus distal to the start site. GJA1-20k, whose translation initiates at mRNA M213, is usually the most abundant isoform in cells and greatly increases after ischemic and metabolic stress. GJA1-20k consists of a small segment of the last transmembrane domain and the complete C-terminus tail of Cx43, with a total size of about 20 kDa. The original role identified for GJA1-20k is as an essential subunit that facilitates the trafficking of full-length Cx43 hexameric hemichannels to cell-cell contacts, generating traditional gap junctions between adjacent cells facilitating, in cardiac muscle, efficient spread of electrical excitation. GJA1-20k deficient mice (generated by a M213L substitution in Gja1) suffer poor electrical coupling between cardiomycytes and arrhythmogenic sudden death two to 4 weeks after their birth. We recently identified that exogenous GJA1-20k expression also mimics the effect of ischemic preconditioning in mouse heart. Furthermore, GJA1-20k localizes to the mitochondrial outer membrane and induces a protective and DRP1 independent form of mitochondrial fission, preserving ATP production and generating less reactive oxygen species (ROS) under metabolic stress, providing powerful protection of myocardium to ischemic insult. In this manuscript, we focus on the detailed roles of GJA1-20k in mitochondria, and its interaction with the actin cytoskeleton.
Collapse
|
16
|
Jetto CT, Nambiar A, Manjithaya R. Mitophagy and Neurodegeneration: Between the Knowns and the Unknowns. Front Cell Dev Biol 2022; 10:837337. [PMID: 35392168 PMCID: PMC8981085 DOI: 10.3389/fcell.2022.837337] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (henceforth autophagy) an evolutionary conserved intracellular pathway, involves lysosomal degradation of damaged and superfluous cytosolic contents to maintain cellular homeostasis. While autophagy was initially perceived as a bulk degradation process, a surfeit of studies in the last 2 decades has revealed that it can also be selective in choosing intracellular constituents for degradation. In addition to the core autophagy machinery, these selective autophagy pathways comprise of distinct molecular players that are involved in the capture of specific cargoes. The diverse organelles that are degraded by selective autophagy pathways are endoplasmic reticulum (ERphagy), lysosomes (lysophagy), mitochondria (mitophagy), Golgi apparatus (Golgiphagy), peroxisomes (pexophagy) and nucleus (nucleophagy). Among these, the main focus of this review is on the selective autophagic pathway involved in mitochondrial turnover called mitophagy. The mitophagy pathway encompasses diverse mechanisms involving a complex interplay of a multitude of proteins that confers the selective recognition of damaged mitochondria and their targeting to degradation via autophagy. Mitophagy is triggered by cues that signal the mitochondrial damage such as disturbances in mitochondrial fission-fusion dynamics, mitochondrial membrane depolarisation, enhanced ROS production, mtDNA damage as well as developmental cues such as erythrocyte maturation, removal of paternal mitochondria, cardiomyocyte maturation and somatic cell reprogramming. As research on the mechanistic aspects of this complex pathway is progressing, emerging roles of new players such as the NIPSNAP proteins, Miro proteins and ER-Mitochondria contact sites (ERMES) are being explored. Although diverse aspects of this pathway are being investigated in depth, several outstanding questions such as distinct molecular players of basal mitophagy, selective dominance of a particular mitophagy adapter protein over the other in a given physiological condition, molecular mechanism of how specific disease mutations affect this pathway remain to be addressed. In this review, we aim to give an overview with special emphasis on molecular and signalling pathways of mitophagy and its dysregulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Cuckoo Teresa Jetto
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- *Correspondence: Ravi Manjithaya,
| |
Collapse
|
17
|
Yanes B, Rainero E. The Interplay between Cell-Extracellular Matrix Interaction and Mitochondria Dynamics in Cancer. Cancers (Basel) 2022; 14:1433. [PMID: 35326584 PMCID: PMC8946811 DOI: 10.3390/cancers14061433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
The tumor microenvironment, in particular the extracellular matrix (ECM), plays a pivotal role in controlling tumor initiation and progression. In particular, the interaction between cancer cells and the ECM promotes cancer cell growth and invasion, leading to the formation of distant metastasis. Alterations in cancer cell metabolism is a key hallmark of cancer, which is often associated with alterations in mitochondrial dynamics. Recent research highlighted that, changes in mitochondrial dynamics are associated with cancer migration and metastasis-these has been extensively reviewed elsewhere. However, less is known about the interplay between the extracellular matrix and mitochondria functions. In this review, we will highlight how ECM remodeling associated with tumorigenesis contribute to the regulation of mitochondrial function, ultimately promoting cancer cell metabolic plasticity, able to fuel cancer invasion and metastasis.
Collapse
Affiliation(s)
| | - Elena Rainero
- School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK;
| |
Collapse
|
18
|
Wang S, Tan J, Miao Y, Zhang Q. Mitochondrial Dynamics, Mitophagy, and Mitochondria–Endoplasmic Reticulum Contact Sites Crosstalk Under Hypoxia. Front Cell Dev Biol 2022; 10:848214. [PMID: 35281107 PMCID: PMC8914053 DOI: 10.3389/fcell.2022.848214] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are double membrane organelles within eukaryotic cells, which act as cellular power houses, depending on the continuous availability of oxygen. Nevertheless, under hypoxia, metabolic disorders disturb the steady-state of mitochondrial network, which leads to dysfunction of mitochondria, producing a large amount of reactive oxygen species that cause further damage to cells. Compelling evidence suggests that the dysfunction of mitochondria under hypoxia is linked to a wide spectrum of human diseases, including obstructive sleep apnea, diabetes, cancer and cardiovascular disorders. The functional dichotomy of mitochondria instructs the necessity of a quality-control mechanism to ensure a requisite number of functional mitochondria that are present to fit cell needs. Mitochondrial dynamics plays a central role in monitoring the condition of mitochondrial quality. The fission–fusion cycle is regulated to attain a dynamic equilibrium under normal conditions, however, it is disrupted under hypoxia, resulting in mitochondrial fission and selective removal of impaired mitochondria by mitophagy. Current researches suggest that the molecular machinery underlying these well-orchestrated processes are coordinated at mitochondria–endoplasmic reticulum contact sites. Here, we establish a holistic understanding of how mitochondrial dynamics and mitophagy are regulated at mitochondria–endoplasmic reticulum contact sites under hypoxia.
Collapse
|
19
|
Gbetuwa M, Lu LS, Wang TJ, Chen YJ, Chiou JF, Su TY, Yang TS. Nucleus Near-Infrared (nNIR) Irradiation of Single A549 Cells Induces DNA Damage and Activates EGFR Leading to Mitochondrial Fission. Cells 2022; 11:cells11040624. [PMID: 35203275 PMCID: PMC8870661 DOI: 10.3390/cells11040624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
There has been great interest in identifying the biological substrate for light-cell interaction and their relations to cancer treatment. In this study, a near-infrared (NIR) laser is focused into the nucleus (nNIR) or cytoplasm (cNIR) of a single living cell by a high numerical aperture condenser to dissect the novel role of cell nucleus in mediating NIR effects on mitochondrial dynamics of A549 non-small cell lung cancer cells. Our analysis showed that nNIR, but not cNIR, triggered mitochondrial fission in 10 min. In contrast, the fission/fusion balance of mitochondria directly exposed to cNIR does not change. While the same phenomenon is also triggered by single molecular interactions between epidermal growth factor (EGF) and its receptor EGFR, pharmacological studies with cetuximab, PD153035, and caffeine suggest EGF signaling crosstalk to DNA damaging response to mediate rapid mitochondrial fission as a result of nNIR irradiation. These results suggest that nuclear DNA integrity is a novel biological target for cellular response to NIR.
Collapse
Affiliation(s)
- Momoh Gbetuwa
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- International PhD Program for Cell Therapy and Regeneration, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tai-Yuan Su
- Department of Electrical Engineering, Yuan-Ze University, Chung-Li 32003, Taiwan;
| | - Tzu-Sen Yang
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan
- School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 5206)
| |
Collapse
|
20
|
Sligar J, Debruin DA, Saner NJ, Philp AM, Philp A. The importance of mitochondrial quality control for maintaining skeletal muscle function across healthspan. Am J Physiol Cell Physiol 2022; 322:C461-C467. [PMID: 35108118 DOI: 10.1152/ajpcell.00388.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As the principal energy-producing organelles of the cell, mitochondria support numerous biological processes related to metabolism, growth and regeneration in skeletal muscle. Deterioration in skeletal muscle functional capacity with age is thought to be driven in part by a reduction in skeletal muscle oxidative capacity and reduced fatigue resistance. Underlying this maladaptive response is the development of mitochondrial dysfunction caused by alterations in mitochondrial quality control (MQC), a term encompassing processes of mitochondrial synthesis (biogenesis), remodelling (dynamics) and degradation (mitophagy). Knowledge regarding the role and regulation of MQC in skeletal muscle and the influence of ageing in this process have rapidly advanced in the last decade. Given the emerging link between ageing and MQC, therapeutic approaches to manipulate MQC to prevent mitochondrial dysfuntion during ageing hold tremendous therapeutic potential.
Collapse
Affiliation(s)
- James Sligar
- Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Medical School, UNSW Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Danielle A Debruin
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Sunshine Hospital, St Albans, Australia.,Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Nicholas J Saner
- Human Integrative Physiology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Ashleigh M Philp
- Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Medical School, UNSW Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Medical School, UNSW Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Barnette BL, Yu Y, Ullrich RL, Emmett MR. Mitochondrial Effects in the Liver of C57BL/6 Mice by Low Dose, High Energy, High Charge Irradiation. Int J Mol Sci 2021; 22:ijms222111806. [PMID: 34769236 PMCID: PMC8584048 DOI: 10.3390/ijms222111806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Galactic cosmic rays are primarily composed of protons (85%), helium (14%), and high charge/high energy ions (HZEs) such as 56Fe, 28Si, and 16O. HZE exposure is a major risk factor for astronauts during deep-space travel due to the possibility of HZE-induced cancer. A systems biology integrated omics approach encompassing transcriptomics, proteomics, lipidomics, and functional biochemical assays was used to identify microenvironmental changes induced by HZE exposure. C57BL/6 mice were placed into six treatment groups and received the following irradiation treatments: 600 MeV/n 56Fe (0.2 Gy), 1 GeV/n 16O (0.2 Gy), 350 MeV/n 28Si (0.2 Gy), 137Cs (1.0 Gy) gamma rays, 137Cs (3.0 Gy) gamma rays, and sham irradiation. Left liver lobes were collected at 30, 60, 120, 270, and 360 days post-irradiation. Analysis of transcriptomic and proteomic data utilizing ingenuity pathway analysis identified multiple pathways involved in mitochondrial function that were altered after HZE irradiation. Lipids also exhibited changes that were linked to mitochondrial function. Molecular assays for mitochondrial Complex I activity showed significant decreases in activity after HZE exposure. HZE-induced mitochondrial dysfunction suggests an increased risk for deep space travel. Microenvironmental and pathway analysis as performed in this research identified possible targets for countermeasures to mitigate risk.
Collapse
Affiliation(s)
- Brooke L. Barnette
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA;
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA;
| | - Robert L. Ullrich
- The Radiation Effects Research Foundation (RERF), Hiroshima 732-0815, Japan;
| | - Mark R. Emmett
- Department of Radiation Oncology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
- Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
- Correspondence: ; Tel.: +1-(409)-747-1943
| |
Collapse
|
22
|
Fu R, Xing H, Wang X, Liu Y, Li B, Zhang L, Li Z, Duan D, Chen J. Neuroprotective effects of tetrahydroxystilbene glucoside against rotenone-induced toxicity in PC12 cells. Biol Pharm Bull 2021; 45:143-149. [PMID: 34707025 DOI: 10.1248/bpb.b21-00812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the mechanism of the protective effect of tetrahydroxystilbene glucoside (TSG) on nerve cells, an injury model induced by rotenone in PC12 cells was constructed. Cell viability was detected by using CCK8 assay. Apoptosis was detected by using flow cytometry. The mitochondrial membrane potential (MMP) was detected by using the fluorescent probe JC-1. Generation of reactive oxygen species (ROS) in PC12 cells was determined using the CM-H2DCFDA probe. Protein expression in PC12 cells was detected using western blotting. The results showed that TSG (20-100 μM) attenuated the cytotoxic effects of rotenone on PC12 cells. TSG pretreatment attenuated the apoptosis rate, the degradation of PARP and the activation of cleaved caspase 3, which was induced by rotenone. TSG can significantly reduce the effect of rotenone on the reduction of MMP and the expression of cytoC in the cytosolic fraction. TSG attenuated rotenone-induced de-phosphorylation and mitochondrial translocation of cofilin, as well as rotenone-induced accumulation of ROS. The western blot results showed that ROT could decrease the expression level of p-GSK-3β and p-AKT, and TSG could weaken these effects of rotenone. In addition, TSG increased the expression level of Nrf2 in the nuclear fraction. These results suggest that TSG could protect PC12 cells against rotenone through multiple pathways. Thus, TSG has the potential to become a novel neuroprotective agent.
Collapse
Affiliation(s)
- Ruoqiu Fu
- Department of Pharmacy, Daping Hospital, Army Medical University
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital, Army Medical University
| | - Xianfeng Wang
- Department of Pharmacy, Daping Hospital, Army Medical University
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University
| | - Bin Li
- Department of Pharmacy, Daping Hospital, Army Medical University
| | - Lin Zhang
- Department of Pharmacy, Daping Hospital, Army Medical University
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University
| | - Dongyu Duan
- Department of Pharmacy, Daping Hospital, Army Medical University
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University
| |
Collapse
|
23
|
Shimura D, Nuebel E, Baum R, Valdez SE, Xiao S, Warren JS, Palatinus JA, Hong T, Rutter J, Shaw RM. Protective mitochondrial fission induced by stress-responsive protein GJA1-20k. eLife 2021; 10:69207. [PMID: 34608863 PMCID: PMC8492060 DOI: 10.7554/elife.69207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The Connexin43 gap junction gene GJA1 has one coding exon, but its mRNA undergoes internal translation to generate N-terminal truncated isoforms of Connexin43 with the predominant isoform being only 20 kDa in size (GJA1-20k). Endogenous GJA1-20k protein is not membrane bound and has been found to increase in response to ischemic stress, localize to mitochondria, and mimic ischemic preconditioning protection in the heart. However, it is not known how GJA1-20k benefits mitochondria to provide this protection. Here, using human cells and mice, we identify that GJA1-20k polymerizes actin around mitochondria which induces focal constriction sites. Mitochondrial fission events occur within about 45 s of GJA1-20k recruitment of actin. Interestingly, GJA1-20k mediated fission is independent of canonical Dynamin-Related Protein 1 (DRP1). We find that GJA1-20k-induced smaller mitochondria have decreased reactive oxygen species (ROS) generation and, in hearts, provide potent protection against ischemia-reperfusion injury. The results indicate that stress responsive internally translated GJA1-20k stabilizes polymerized actin filaments to stimulate non-canonical mitochondrial fission which limits ischemic-reperfusion induced myocardial infarction.
Collapse
Affiliation(s)
- Daisuke Shimura
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, United States
| | - Esther Nuebel
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States.,Department of Biochemistry, University of Utah, Salt Lake City, United States.,Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, United States
| | - Rachel Baum
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, United States
| | - Steven E Valdez
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, United States
| | - Shaohua Xiao
- Department of Neurology, University of California at Los Angeles, Los Angeles, United States
| | - Junco S Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, United States
| | - Joseph A Palatinus
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, United States
| | - TingTing Hong
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, United States.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States.,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, United States
| | - Jared Rutter
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States.,Department of Biochemistry, University of Utah, Salt Lake City, United States.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
| | - Robin M Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, United States
| |
Collapse
|
24
|
Fu P, Epshtein Y, Ramchandran R, Mascarenhas JB, Cress AE, Jacobson J, Garcia JGN, Natarajan V. Essential role for paxillin tyrosine phosphorylation in LPS-induced mitochondrial fission, ROS generation and lung endothelial barrier loss. Sci Rep 2021; 11:17546. [PMID: 34475475 PMCID: PMC8413352 DOI: 10.1038/s41598-021-97006-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/12/2021] [Indexed: 11/09/2022] Open
Abstract
We have shown that both reactive oxygen species (ROS) and paxillin tyrosine phosphorylation regulate LPS-induced human lung endothelial permeability. Mitochondrial ROS (mtROS) is known to increase endothelial cell (EC) permeability which requires dynamic change in mitochondrial morphology, events that are likely to be regulated by paxillin. Here, we investigated the role of paxillin and its tyrosine phosphorylation in regulating LPS-induced mitochondrial dynamics, mtROS production and human lung microvascular EC (HLMVEC) dysfunction. LPS, in a time-dependent manner, induced higher levels of ROS generation in the mitochondria compared to cytoplasm or nucleus. Down-regulation of paxillin expression with siRNA or ecto-expression of paxillin Y31F or Y118F mutant plasmids attenuated LPS-induced mtROS in HLMVECs. Pre-treatment with MitoTEMPO, a scavenger of mtROS, attenuated LPS-induced mtROS, endothelial permeability and VE-cadherin phosphorylation. Further, LPS-induced mitochondrial fission in HLMVECs was attenuated by both a paxillin siRNA, and paxillin Y31F/Y118F mutant. LPS stimulated phosphorylation of dynamin-related protein (DRP1) at S616, which was also attenuated by paxillin siRNA, and paxillinY31/Y118 mutants. Inhibition of DRP1 phosphorylation by P110 attenuated LPS-induced mtROS and endothelial permeability. LPS challenge of HLMVECs enhanced interaction between paxillin, ERK, and DRP1, and inhibition of ERK1/2 activation with PD98059 blocked mitochondrial fission. Taken together, these results suggest a key role for paxillin tyrosine phosphorylation in LPS-induced mitochondrial fission, mtROS generation and EC barrier dysfunction.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, COMRB Room # 3137, 909, South Wolcott Avenue, Chicago, IL, 60612, USA. .,The Affiliated Hospital of Medical School, Medical School of Ningbo University, 247 Renmin Road, Ningbo, China.
| | - Yulia Epshtein
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ramaswamy Ramchandran
- Department of Pharmacology, University of Illinois at Chicago, COMRB Room # 3137, 909, South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Joseph B Mascarenhas
- Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Anne E Cress
- Departments of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jeffrey Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, COMRB Room # 3137, 909, South Wolcott Avenue, Chicago, IL, 60612, USA. .,Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Lapeña-Luzón T, Rodríguez LR, Beltran-Beltran V, Benetó N, Pallardó FV, Gonzalez-Cabo P. Cofilin and Neurodegeneration: New Functions for an Old but Gold Protein. Brain Sci 2021; 11:brainsci11070954. [PMID: 34356188 PMCID: PMC8303701 DOI: 10.3390/brainsci11070954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cofilin is an actin-binding protein that plays a major role in the regulation of actin dynamics, an essential cellular process. This protein has emerged as a crucial molecule for functions of the nervous system including motility and guidance of the neuronal growth cone, dendritic spine organization, axonal branching, and synaptic signalling. Recently, other important functions in cell biology such as apoptosis or the control of mitochondrial function have been attributed to cofilin. Moreover, novel mechanisms of cofilin function regulation have also been described. The activity of cofilin is controlled by complex regulatory mechanisms, with phosphorylation being the most important, since the addition of a phosphate group to cofilin renders it inactive. Due to its participation in a wide variety of key processes in the cell, cofilin has been related to a great variety of pathologies, among which neurodegenerative diseases have attracted great interest. In this review, we summarized the functions of cofilin and its regulation, emphasizing how defects in these processes have been related to different neurodegenerative diseases.
Collapse
Affiliation(s)
- Tamara Lapeña-Luzón
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.L.-L.); (L.R.R.); (V.B.-B.); (N.B.); (F.V.P.)
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.L.-L.); (L.R.R.); (V.B.-B.); (N.B.); (F.V.P.)
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Vicent Beltran-Beltran
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.L.-L.); (L.R.R.); (V.B.-B.); (N.B.); (F.V.P.)
| | - Noelia Benetó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.L.-L.); (L.R.R.); (V.B.-B.); (N.B.); (F.V.P.)
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.L.-L.); (L.R.R.); (V.B.-B.); (N.B.); (F.V.P.)
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.L.-L.); (L.R.R.); (V.B.-B.); (N.B.); (F.V.P.)
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
26
|
Xu X, Cui Y, Li C, Wang Y, Cheng J, Chen S, Sun J, Ren J, Yao X, Gao J, Huang X, Wan Q, Wang Q. SETD3 Downregulation Mediates PTEN Upregulation-Induced Ischemic Neuronal Death Through Suppression of Actin Polymerization and Mitochondrial Function. Mol Neurobiol 2021; 58:4906-4920. [PMID: 34218417 DOI: 10.1007/s12035-021-02459-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022]
Abstract
SET domain protein 3 (SETD3) is an actin-specific methyltransferase, a rare post-translational modification with limited known biological functions. Till now, the function of SETD3 in cerebral ischemia-reperfusion (I/R)-induced injury remains unknown. Here, we show that the protein level of SETD3 is decreased in rat neurons after cerebral I/R injury. SETD3 promotes neuronal survival after both glucose and oxygen deprivation/reoxygenation (OGD/R) and cerebral I/R injury, and knockdown of SETD3 increases OGD/R-induced neuronal death. We further show that OGD/R-induced downregulation of SETD3 leads to the decrease of cellular ATP level, the reduction of mitochondrial electric potential and the increase of ROS production, thereby promoting mitochondrial dysfunction. We found that SETD3 reduction-induced mitochondrial dysfunction is mediated by the suppression of actin polymerization after OGD/R. Furthermore, we demonstrate that I/R-induced upregulation of PTEN leads to the downregulation of SETD3, and suppressing PTEN protects against ischemic neuronal death through downregulation of SETD3 and enhancement of actin polymerization. Together, this study provides the first evidence suggesting that I/R-induced downregulation of SETD3 mediates PTEN upregulation-induced ischemic neuronal death through downregulation of SETD3 and subsequent suppression of actin polymerization. Thus, upregulating SETD3 is a potential approach for the development of ischemic stroke therapy.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Congqin Li
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yuyang Wang
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jing Cheng
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, 430071, China
| | - Songfeng Chen
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, 430071, China
| | - Jiangdong Sun
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Jinyang Ren
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Xujin Yao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Xiaohong Huang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Qiang Wang
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
27
|
Zheng J, Wei S, Xiao T, Li G. LC3B/p62-mediated mitophagy protects A549 cells from resveratrol-induced apoptosis. Life Sci 2021; 271:119139. [PMID: 33539914 DOI: 10.1016/j.lfs.2021.119139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 02/05/2023]
Abstract
AIMS Complicated mechanisms in cancer cells have been restricting the medicinal value of resveratrol (Res). The mechanisms by which Res exerts its anti-tumor activity in lung cancer cells have diverged among reports in recent years, whether cells choose to undergo autophagic cell death or apoptosis remains controversial. Yet, whether Res-induced autophagic cell death transforms into apoptosis is still unknown, and by which autophagy regulates programmed cell death is still undefined. MAIN METHODS Here, A549 cells were treated with Res to investigate the mechanisms of autophagy and apoptosis using western blot, immunofluorescence staining for LC3B. KEY FINDINGS Non-canonical autophagy was induced by Res-treatment in a Beclin-1- and ATG5-independent manner, with apoptosis being activated simultaneously. Autophagy induced by Res was activated by rapamycin with decreased apoptosis, suggesting that autophagy may serve as a protective pathway in cells. Mitophagy was found to be induced by Res using fluorescence co-localization of mitochondria with lysosomes. Subsequently, it was identified that mitophagy was mediated by LC3B/p62 interaction and could be inhibited by LC3B knockout and p62 knockdown following increased apoptosis. SIGNIFICANCE In conclusion, the current results demonstrate that Res-induced non-canonical autophagy in A549 lung cancer cells with apoptosis activation simultaneously, while LC3B/p62-mediated mitophagy protects tumor cells against apoptosis, providing novel mechanisms about the critical role of mitophagy in regulating cell fate.
Collapse
Affiliation(s)
- Jiahua Zheng
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry/The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Xinling Road 22, Shantou, China
| | - Shaochai Wei
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry/The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Xinling Road 22, Shantou, China
| | - Tingting Xiao
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry/The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Xinling Road 22, Shantou, China
| | - Guanwu Li
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry/The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Xinling Road 22, Shantou, China.
| |
Collapse
|
28
|
Zhang L, Fu R, Duan D, Li Z, Li B, Ming Y, Li L, Ni R, Chen J. Cyclovirobuxine D Induces Apoptosis and Mitochondrial Damage in Glioblastoma Cells Through ROS-Mediated Mitochondrial Translocation of Cofilin. Front Oncol 2021; 11:656184. [PMID: 33816313 PMCID: PMC8018288 DOI: 10.3389/fonc.2021.656184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background Cyclovirobuxine D (CVBD), a steroidal alkaloid, has multiple pharmacological activities, including anti-cancer activity. However, the anti-cancer effect of CVBD on glioblastoma (GBM) has seldom been investigated. This study explores the activity of CVBD in inducing apoptosis of GBM cells, and examines the related mechanism in depth. Methods GBM cell lines (T98G, U251) and normal human astrocytes (HA) were treated with CVBD. Cell viability was examined by CCK-8 assay, and cell proliferation was evaluated by cell colony formation counts. Apoptosis and mitochondrial superoxide were measured by flow cytometry. All protein expression levels were determined by Western blotting. JC-1 and CM-H2DCFDA probes were used to evaluate the mitochondrial membrane potential (MMP) change and intracellular ROS generation, respectively. The cell ultrastructure was observed by transmission electron microscope (TEM). Colocalization of cofilin and mitochondria were determined by immunofluorescence assay. Results CVBD showed a greater anti-proliferation effect on the GBM cell lines, T98G and U251, than normal human astrocytes in dose- and time-dependent manners. CVBD induced apoptosis and mitochondrial damage in GBM cells. We found that CVBD led to mitochondrial translocation of cofilin. Knockdown of cofilin attenuated CVBD-induced apoptosis and mitochondrial damage. Additionally, the generation of ROS and mitochondrial superoxide was also induced by CVBD in a dose-dependent manner. N-acetyl-L-cysteine (NAC) and mitoquinone (MitoQ) pre-treatment reverted CVBD-induced apoptosis and mitochondrial damage. MitoQ pretreatment was able to block the mitochondrial translocation of cofilin caused by CVBD. Conclusions Our data revealed that CVBD induced apoptosis and mitochondrial damage in GBM cells. The underlying mechanism is related to mitochondrial translocation of cofilin caused by mitochondrial oxidant stress.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruoqiu Fu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongyu Duan
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
29
|
Xu J, Huang Y, Zhao J, Wu L, Qi Q, Liu Y, Li G, Li J, Liu H, Wu H. Cofilin: A Promising Protein Implicated in Cancer Metastasis and Apoptosis. Front Cell Dev Biol 2021; 9:599065. [PMID: 33614640 PMCID: PMC7890941 DOI: 10.3389/fcell.2021.599065] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cofilin is an actin-binding protein that regulates filament dynamics and depolymerization. The over-expression of cofilin is observed in various cancers, cofilin promotes cancer metastasis by regulating cytoskeletal reorganization, lamellipodium formation and epithelial-to-mesenchymal transition. Clinical treatment of cancer regarding cofilin has been explored in aspects of tumor cells apoptosis and cofilin related miRNAs. This review addresses the structure and phosphorylation of cofilin and describes recent findings regarding the function of cofilin in regulating cancer metastasis and apoptosis in tumor cells.
Collapse
Affiliation(s)
- Jing Xu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jimeng Zhao
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guona Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Goodman CA, Davey JR, Hagg A, Parker BL, Gregorevic P. Dynamic Changes to the Skeletal Muscle Proteome and Ubiquitinome Induced by the E3 Ligase, ASB2β. Mol Cell Proteomics 2021; 20:100050. [PMID: 33516941 PMCID: PMC8042406 DOI: 10.1016/j.mcpro.2021.100050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is a posttranslational protein modification that has been shown to have a range of effects, including regulation of protein function, interaction, localization, and degradation. We have previously shown that the muscle-specific ubiquitin E3 ligase, ASB2β, is downregulated in models of muscle growth and that overexpression ASB2β is sufficient to induce muscle atrophy. To gain insight into the effects of increased ASB2β expression on skeletal muscle mass and function, we used liquid chromatography coupled to tandem mass spectrometry to investigate ASB2β-mediated changes to the skeletal muscle proteome and ubiquitinome, via a parallel analysis of remnant diGly-modified peptides. The results show that viral vector-mediated ASB2β overexpression in murine muscles causes progressive muscle atrophy and impairment of force-producing capacity, while ASB2β knockdown induces mild muscle hypertrophy. ASB2β-induced muscle atrophy and dysfunction were associated with the early downregulation of mitochondrial and contractile protein abundance and the upregulation of proteins involved in proteasome-mediated protein degradation (including other E3 ligases), protein synthesis, and the cytoskeleton/sarcomere. The overexpression ASB2β also resulted in marked changes in protein ubiquitination; however, there was no simple relationship between changes in ubiquitination status and protein abundance. To investigate proteins that interact with ASB2β and, therefore, potential ASB2β targets, Flag-tagged wild-type ASB2β, and a mutant ASB2β lacking the C-terminal SOCS box domain (dSOCS) were immunoprecipitated from C2C12 myotubes and subjected to label-free proteomic analysis to determine the ASB2β interactome. ASB2β was found to interact with a range of cytoskeletal and nuclear proteins. When combined with the in vivo ubiquitinomic data, our studies have identified novel putative ASB2β target substrates that warrant further investigation. These findings provide novel insight into the complexity of proteome and ubiquitinome changes that occur during E3 ligase-mediated skeletal muscle atrophy and dysfunction.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Sunshine Hospital, The University of Melbourne, St Albans, Victoria, Australia
| | - Jonathan R Davey
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Adam Hagg
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin L Parker
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia.
| | - Paul Gregorevic
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
31
|
Audano M, Pedretti S, Ligorio S, Crestani M, Caruso D, De Fabiani E, Mitro N. "The Loss of Golden Touch": Mitochondria-Organelle Interactions, Metabolism, and Cancer. Cells 2020; 9:cells9112519. [PMID: 33233365 PMCID: PMC7700504 DOI: 10.3390/cells9112519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria represent the energy hub of cells and their function is under the constant influence of their tethering with other subcellular organelles. Mitochondria interact with the endoplasmic reticulum, lysosomes, cytoskeleton, peroxisomes, and nucleus in several ways, ranging from signal transduction, vesicle transport, and membrane contact sites, to regulate energy metabolism, biosynthetic processes, apoptosis, and cell turnover. Tumorigenesis is often associated with mitochondrial dysfunction, which could likely be the result of an altered interaction with different cell organelles or structures. The purpose of the present review is to provide an updated overview of the links between inter-organellar communications and interactions and metabolism in cancer cells, with a focus on mitochondria. The very recent publication of several reviews on these aspects testifies the great interest in the area. Here, we aim at (1) summarizing recent evidence supporting that the metabolic rewiring and adaptation observed in tumors deeply affect organelle dynamics and cellular functions and vice versa; (2) discussing insights on the underlying mechanisms, when available; and (3) critically presenting the gaps in the field that need to be filled, for a comprehensive understanding of tumor cells’ biology. Chemo-resistance and druggable vulnerabilities of cancer cells related to the aspects mentioned above is also outlined.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma De Fabiani
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| | - Nico Mitro
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| |
Collapse
|
32
|
Wang Y, Song X, Wang Y, Huang L, Luo W, Li F, Qin S, Wang Y, Xiao J, Wu Y, Jin F, Kitazato K, Wang Y. Dysregulation of cofilin-1 activity-the missing link between herpes simplex virus type-1 infection and Alzheimer's disease. Crit Rev Microbiol 2020; 46:381-396. [PMID: 32715819 DOI: 10.1080/1040841x.2020.1794789] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial disease triggered by environmental factors in combination with genetic predisposition. Infectious agents, in particular herpes simplex virus type 1 (HSV-1), are gradually being recognised as important factors affecting the development of AD. However, the mechanism linking HSV-1 and AD remains unknown. Of note, HSV-1 manipulates the activity of cofilin-1 to ensure their efficient infection in neuron cells. Cofilin-1, the main regulator of actin cytoskeleton reorganization, is implicating for the plastic of dendritic spines and axon regeneration of neuronal cells. Moreover, dysfunction of cofilin-1 is observed in most AD patients, as well as in mice with AD and ageing. Further, inhibition of cofilin-1 activity ameliorates the host cognitive impairment in an animal model of AD. Together, dysregulation of cofilin-1 led by HSV-1 infection is a potential link between HSV-1 and AD. Herein, we critically summarize the role of cofilin-1-mediated actin dynamics in both HSV-1 infection and AD, respectively. We also propose several hypotheses regarding the connecting roles of cofilin-1 dysregulation in HSV-1 infection and AD. Our review provides a foundation for future studies targeting individuals carrying HSV-1 in combination with cofilin-1 to promote a more individualised approach for treatment and prevention of AD.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yun Wang
- Department of Obstetrics and gynecology, The First affiliated hospital of Jinan University, Guangzhou, PR China
| | - Lianzhou Huang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Weisheng Luo
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yuan Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| |
Collapse
|
33
|
Shi Y, Tao M, Ma X, Hu Y, Huang G, Qiu A, Zhuang S, Liu N. Delayed treatment with an autophagy inhibitor 3-MA alleviates the progression of hyperuricemic nephropathy. Cell Death Dis 2020; 11:467. [PMID: 32555189 PMCID: PMC7298642 DOI: 10.1038/s41419-020-2673-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a cell self-renewal process that relies on the degradation of the cytoplasmic proteins or organelles of lysosomes and is associated with development of numerous diseases. However, the therapeutic effect of autophagy inhibition on hyperuricemic nephropathy (HN) and the underlying mechanisms are still unknown. Here, we investigated the effect of delayed treatment with 3-methyladenine (3-MA), a specific autophagy inhibitor, on the development of HN in a rat model. Administration of 3-MA at 21 days following after uric acid injury protected kidney from hyperuricemic-related injuries, as demonstrated by improving renal dysfunction and architecture damage, blocking Beclin-1 and LC3II/I and decreasing the number of autophagic vacuoles. Late treatment with 3-MA was also effective in attenuating renal fibrosis as evidenced by reducing ECM protein deposition, blocking epithelial-to-mesenchymal transition (EMT) and decreasing the number of renal epithelial cells arrested at the G2/M phase of cell cycle. Injury to the kidney resulted in increased expression of TGFβ receptor I, and phosphorylation of Smad3, 3-MA significantly abrogated all these responses. Moreover, inhibition of autophagy suppressed mitochondrial fission, downregulated the expression of Dynamin-related protein 1 (Drp-1), Cofilin and F-actin, and alleviated cell apoptosis. Finally, 3-MA effectively blocked STAT3 and NF-κB phosphorylation and suppressed infiltration of macrophages and lymphocytes as well as release of multiple profibrogenic cytokines/chemokines in the injured kidney. Taken together, these findings indicate that hyperuricemia-induced autophagy is critically involved in the activation of renal fibroblasts, EMT, mitochondrial fission and apoptosis of tubular epithelial cells and development of renal fibrosis. Thus, this study provides evidence for autophagy inhibitors as the treatment of HN patients.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guansen Huang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Lovy A, Ahumada-Castro U, Bustos G, Farias P, Gonzalez-Billault C, Molgó J, Cardenas C. Concerted Action of AMPK and Sirtuin-1 Induces Mitochondrial Fragmentation Upon Inhibition of Ca 2+ Transfer to Mitochondria. Front Cell Dev Biol 2020; 8:378. [PMID: 32523953 PMCID: PMC7261923 DOI: 10.3389/fcell.2020.00378] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles constantly undergoing fusion and fission. Ca2+ regulates many aspects of mitochondrial physiology by modulating the activity of several mitochondrial proteins. We previously showed that inhibition of constitutive IP3R-mediated Ca2+ transfer to the mitochondria leads to a metabolic cellular stress and eventually cell death. Here, we show that the decline of mitochondrial function generated by a lack of Ca2+ transfer induces a DRP-1 independent mitochondrial fragmentation that at an early time is mediated by an increase in the NAD+/NADH ratio and activation of SIRT1. Subsequently, AMPK predominates and drives the fragmentation. SIRT1 activation leads to the deacetylation of cortactin, favoring actin polymerization, and mitochondrial fragmentation. Knockdown of cortactin or inhibition of actin polymerization prevents fragmentation. These data reveal SIRT1 as a new player in the regulation of mitochondrial fragmentation induced by metabolic/bioenergetic stress through regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States.,Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Galdo Bustos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Paula Farias
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Christian Gonzalez-Billault
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Jordi Molgó
- Université Paris-Saclay, CEA, Institut des Sciences du Vivant Frédéric Joliot, ERL CNRS n° 9004, Département Médicaments et Technologies pour la Santé, Service d'Ingénierie Moléculaire pour la Santé (SIMoS), Gif-sur-Yvette, France
| | - Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
35
|
Bristot IJ, Kehl Dias C, Chapola H, Parsons RB, Klamt F. Metabolic rewiring in melanoma drug-resistant cells. Crit Rev Oncol Hematol 2020; 153:102995. [PMID: 32569852 DOI: 10.1016/j.critrevonc.2020.102995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Several evidences indicate that melanoma, one of the deadliest types of cancer, presents the ability to transiently shift its phenotype under treatment or microenvironmental pressure to an invasive and treatment-resistant phenotype, which is characterized by cells with slow division cycle (also called slow-cycling cells) and high-OXPHOS metabolism. Many cellular marks have been proposed to track this phenotype, such as the expression levels of the master regulator of melanocyte differentiation (MITF) and the epigenetic factor JARID1B. It seems that the slow-cycling phenotype does not necessarily present a single gene expression signature. However, many lines of evidence lead to a common metabolic rewiring process in resistant cells that activates mitochondrial metabolism and changes the mitochondrial network morphology. Here, we propose that mitochondria-targeted drugs could increase not only the efficiency of target therapy, bypassing the dynamics between fast-cycling and slow-cycling, but also the sensitivity to immunotherapy by modulation of the melanoma microenvironment.
Collapse
Affiliation(s)
- Ivi Juliana Bristot
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil.
| | - Camila Kehl Dias
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| | - Henrique Chapola
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Fábio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| |
Collapse
|
36
|
Cho HM, Sun W. Molecular cross talk among the components of the regulatory machinery of mitochondrial structure and quality control. Exp Mol Med 2020; 52:730-737. [PMID: 32398745 PMCID: PMC7272630 DOI: 10.1038/s12276-020-0434-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction critically impairs cellular health and often causes or affects the progression of several diseases, including neurodegenerative diseases and cancer. Thus, cells must have several ways to monitor the condition of mitochondrial quality and maintain mitochondrial health. Accumulating evidence suggests that the molecular machinery responding to spontaneous changes in mitochondrial morphology is associated with the routine mitochondrial quality control system. In this short review, we discuss recent progress made in linking mitochondrial structural dynamics and the quality control system. The health of mitochondria is important for cellular health, and is maintained by the same mechanisms that control their shape. Mitochondria continuously divide, fuse, elongate, and shrink, forming ever-changing networks inside cells. Damaged mitochondria produce toxic byproducts and have been implicated in neurodegenerative diseases and cancer. Although changes in mitochondrial structure are known to be related to cellular health, the detailed mechanisms are not well understood. In a review, Woong Sun and Hyo Min Cho at the Korea University College of Medicine, Seoul, detail how mitochondrial fusion, division, and recycling are controlled, what signals are used to dispose of damaged mitochondria, and how the shape-control mechanisms also regulate mitochondrial quality. This review will help us to more clearly understand the structure-function relationship of mitochondria.
Collapse
Affiliation(s)
- Hyo Min Cho
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea.
| |
Collapse
|
37
|
Wang J, Toan S, Zhou H. Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: New insights into the mechanisms and therapeutic potentials. Pharmacol Res 2020; 156:104771. [PMID: 32234339 DOI: 10.1016/j.phrs.2020.104771] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
Thrombolytic therapy and revascularization strategies create a complete recanalization of the occluded epicardial coronary artery in patients with myocardial infarction (MI). However, about 35 % of patients still experience an impaired myocardial reperfusion, which is termed a no-reflow phenomenon mainly caused by cardiac microvascular ischemia-reperfusion (I/R) injury. Mitochondria are essential for microvascular endothelial cells' survival, both because of their roles as metabolic energy producers and as regulators of programmed cell death. Mitochondrial structure and function are regulated by a mitochondrial quality control (MQC) system, a series of processes including mitochondrial biogenesis, mitochondrial dynamics/mitophagy, mitochondrial proteostasis, and mitochondria-mediated cell death. Our review discusses the MQC mechanisms and how they are linked to cardiac microvascular I/R injury. Additionally, we will summarize the molecular basis that results in defective MQC mechanisms and present potential therapeutic interventions for improving MQC in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
38
|
Hu J, Zhang H, Li J, Jiang X, Zhang Y, Wu Q, Shen L, Shi J, Gao N. ROCK1 activation-mediated mitochondrial translocation of Drp1 and cofilin are required for arnidiol-induced mitochondrial fission and apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:37. [PMID: 32075676 PMCID: PMC7031977 DOI: 10.1186/s13046-020-01545-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/14/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Arnidiol is a pentacyclic triterpene diol that has multiple pharmacological activities. However, the apoptotic activities of arnidiol in human cancer cells have not yet been explored, nor has the mechanism by which arnidiol induces apoptosis been examined in depth. METHODS MDA-MB-231 cells and xenografted mice were treated with arnidiol. Mitochondrial fission and apoptosis were determined by immunofluorescence, flow cytometry and related molecular biological techniques. The interaction and colocalization of cofilin and Drp1 was determined by immunoprecipitation and immunofluorescence assays. RESULTS Arnidiol induces mitochondrial fission and apoptosis through mitochondrial translocation of Drp1 and cofilin. Importantly, the interaction of Drp1 and cofilin in mitochondria is involved in arnidiol-induced mitochondrial fission and apoptosis. Knockdown of either Drp1 or cofilin abrogated arnidiol-induced mitochondrial translocation, interaction of Drp1 and cofilin, mitochondrial fission and apoptosis. Only dephosphorylated Drp1 (Ser637) and cofilin (Ser3) were translocated to the mitochondria. Mutants of Drp1 S637A and cofilin S3A, which mimic the dephosphorylated forms, enhanced mitochondrial fission and apoptosis induced by arnidiol, whereas mutants of Drp1 S637D and cofilin S3E, which mimic the phosphorylated forms, suppressed mitochondrial fission and apoptosis induced by arnidiol. A mechanistic study revealed that ROCK1 activation plays an important role in the arnidiol-mediated Drp1 and cofilin dephosphorylation and mitochondrial translocation, mitochondrial fission, and apoptosis. CONCLUSIONS Our data reveal a novel role of both Drp1 and cofilin in the regulation of mitochondrial fission and apoptosis and suggest that arnidiol could be developed as a potential agent for the treatment of human cancer.
Collapse
Affiliation(s)
- Jinjiao Hu
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Hongwei Zhang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jie Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yanhao Zhang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Liwen Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Ning Gao
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
39
|
Kovaleva TF, Maksimova NS, Pchelin PV, Pershin VI, Tkachenko NM, Gainullin MR, Mukhina IV. A New Cofilin-Dependent Mechanism for the Regulation of Brain Mitochondria Biogenesis and Degradation. Sovrem Tekhnologii Med 2020; 12:6-13. [PMID: 34513032 PMCID: PMC8353704 DOI: 10.17691/stm2020.12.1.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Indexed: 11/14/2022] Open
Abstract
The aim Was to study the role of post-translational modifications of cofilin in the regulation of respiration and autophagy in murine brain mitochondria.
Collapse
Affiliation(s)
- T F Kovaleva
- Senior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N S Maksimova
- PhD Student, Junior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - P V Pchelin
- Laboratory Assistant, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - V I Pershin
- Laboratory Assistant, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N M Tkachenko
- Junior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M R Gainullin
- Senior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Researcher, Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, P.O. Box 4950, Nydalen, Oslo, 0424, Norway, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern, Oslo, 0318, Norway
| | - I V Mukhina
- Professor, Director of the Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Head of the Department of Normal Physiology named after N.Y. Belenkov, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Professor, Department of Neurotechnologies, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
40
|
Purde V, Busch F, Kudryashova E, Wysocki VH, Kudryashov DS. Oligomerization Affects the Ability of Human Cyclase-Associated Proteins 1 and 2 to Promote Actin Severing by Cofilins. Int J Mol Sci 2019; 20:E5647. [PMID: 31718088 PMCID: PMC6888645 DOI: 10.3390/ijms20225647] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/03/2023] Open
Abstract
Actin-depolymerizing factor (ADF)/cofilins accelerate actin turnover by severing aged actin filaments and promoting the dissociation of actin subunits. In the cell, ADF/cofilins are assisted by other proteins, among which cyclase-associated proteins 1 and 2 (CAP1,2) are particularly important. The N-terminal half of CAP has been shown to promote actin filament dynamics by enhancing ADF-/cofilin-mediated actin severing, while the central and C-terminal domains are involved in recharging the depolymerized ADP-G-actin/cofilin complexes with ATP and profilin. We analyzed the ability of the N-terminal fragments of human CAP1 and CAP2 to assist human isoforms of "muscle" (CFL2) and "non-muscle" (CFL1) cofilins in accelerating actin dynamics. By conducting bulk actin depolymerization assays and monitoring single-filament severing by total internal reflection fluorescence (TIRF) microscopy, we found that the N-terminal domains of both isoforms enhanced cofilin-mediated severing and depolymerization at similar rates. According to our analytical sedimentation and native mass spectrometry data, the N-terminal recombinant fragments of both human CAP isoforms form tetramers. Replacement of the original oligomerization domain of CAPs with artificial coiled-coil sequences of known oligomerization patterns showed that the activity of the proteins is directly proportional to the stoichiometry of their oligomerization; i.e., tetramers and trimers are more potent than dimers, which are more effective than monomers. Along with higher binding affinities of the higher-order oligomers to actin, this observation suggests that the mechanism of actin severing and depolymerization involves simultaneous or consequent and coordinated binding of more than one N-CAP domain to F-actin/cofilin complexes.
Collapse
Affiliation(s)
- Vedud Purde
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (V.P.); (F.B.); (E.K.); (V.H.W.)
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (V.P.); (F.B.); (E.K.); (V.H.W.)
- Resource for Native MS-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (V.P.); (F.B.); (E.K.); (V.H.W.)
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (V.P.); (F.B.); (E.K.); (V.H.W.)
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Resource for Native MS-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, OH 43210, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (V.P.); (F.B.); (E.K.); (V.H.W.)
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Fung TS, Ji WK, Higgs HN, Chakrabarti R. Two distinct actin filament populations have effects on mitochondria, with differences in stimuli and assembly factors. J Cell Sci 2019; 132:jcs234435. [PMID: 31413070 PMCID: PMC6765187 DOI: 10.1242/jcs.234435] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies show that mitochondria and actin filaments work together in two contexts: (1) increased cytoplasmic calcium induces cytoplasmic actin polymerization that stimulates mitochondrial fission and (2) mitochondrial depolarization causes actin assembly around mitochondria, with roles in mitophagy. It is unclear whether these two processes utilize similar actin assembly mechanisms. Here, we show that these are distinct actin assembly mechanisms in the acute phase after treatment (<10 min). Calcium-induced actin assembly is INF2 dependent and Arp2/3 complex independent, whereas depolarization-induced actin assembly is Arp2/3 complex dependent and INF2 independent. The two types of actin polymerization are morphologically distinct, with calcium-induced filaments throughout the cytosol and depolarization-induced filaments as 'clouds' around depolarized mitochondria. We have previously shown that calcium-induced actin stimulates increases in both mitochondrial calcium and recruitment of the dynamin GTPase Drp1 (also known as DNM1L). In contrast, depolarization-induced actin is temporally associated with extensive mitochondrial dynamics that do not result in mitochondrial fission, but in circularization of the inner mitochondrial membrane (IMM). These dynamics are dependent on the protease OMA1 and independent of Drp1. Actin cloud inhibition causes increased IMM circularization, suggesting that actin clouds limit these dynamics.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
42
|
Cheng Z, Combs M, Zhu Q, Xia P, Opheim Z, Parker J, Mack CP, Taylor JM. Genome-Wide RNAi Screen Identifies Regulators of Cardiomyocyte Necrosis. ACS Pharmacol Transl Sci 2019; 2:361-371. [PMID: 32259070 DOI: 10.1021/acsptsci.9b00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 12/22/2022]
Abstract
Regulation of cellular death is central to nearly all physiological routines and is dysregulated in virtually all diseases. Cell death occurs by two major processes, necrosis which culminates in a pervasive inflammatory response and apoptosis which is largely immunologically inert. As necrosis has long been considered an accidental, unregulated form of cellular death that occurred in response to a harsh environmental stimulus, it was largely ignored as a clinical target. However, recent elegant studies suggest that certain forms of necrosis can be reprogrammed. However, scant little is known about the molecules and pathways that orchestrate calcium-overload-induced necrosis, a main mediator of ischemia/reperfusion (IR)-induced cardiomyocyte cell death. To rectify this critical gap in our knowledge, we performed a novel genome-wide siRNA screen to identify modulators of calcium-induced necrosis in human muscle cells. Our screen identified multiple molecular circuitries that either enhance or inhibit this process, including lysosomal calcium channel TPCN1, mitophagy mediatorTOMM7, Ran-binding protein RanBP9, Histone deacetylase HDAC2, chemokine CCL11, and the Arp2/3 complex regulator glia maturation factor-γ (GMFG). Notably, a number of druggable enzymes were identified, including the proteasome β5 subunit (encoded by PSMB5 gene), which controls the proteasomal chymotrypsin-like peptidase activity. Such findings open up the possibility for the discovery of pharmacological interventions that could provide therapeutic benefits to patients affected by myriad disorders characterized by excessive (or too little) necrotic cell loss, including but not limited to IR injury in the heart and kidney, chronic neurodegenerative disorders, muscular dystrophies, sepsis, and cancers.
Collapse
Affiliation(s)
- Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210, United States
| | - Matthew Combs
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Qiang Zhu
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Peng Xia
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210, United States
| | - Zachary Opheim
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Joel Parker
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Christopher P Mack
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Joan M Taylor
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
43
|
p53/BNIP3-dependent mitophagy limits glycolytic shift in radioresistant cancer. Oncogene 2019; 38:3729-3742. [PMID: 30664690 DOI: 10.1038/s41388-019-0697-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/19/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022]
Abstract
The role of p53 in genotoxic therapy-induced metabolic shift in cancers is not yet known. In this study, we investigated the role of p53 in the glycolytic shift in head and neck squamous cell carcinoma cell lines following irradiation. Isogenic p53-null radioresistant cancer cells established through cumulative irradiation showed decreased oxygen consumption and increased glycolysis with compromised mitochondria, corresponding with their enhanced sensitivity to drugs that target glycolysis. In contrast, radioresistant cancer cells with wild-type p53 preserved their primary metabolic profile with intact mitophagic processes and maintained their mitochondrial integrity. Moreover, we identified a previously unappreciated link between p53 and mitophagy, which limited the glycolytic shift through the BNIP3-dependent clearance of abnormal mitochondria. Thus, drugs targeting glycolysis could be used as an alternative strategy for overcoming radioresistant cancers, and the p53 status could be used as a biomarker for selecting participants for clinical trials.
Collapse
|
44
|
Basheer WA, Fu Y, Shimura D, Xiao S, Agvanian S, Hernandez DM, Hitzeman TC, Hong T, Shaw RM. Stress response protein GJA1-20k promotes mitochondrial biogenesis, metabolic quiescence, and cardioprotection against ischemia/reperfusion injury. JCI Insight 2018; 3:121900. [PMID: 30333316 DOI: 10.1172/jci.insight.121900] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/11/2018] [Indexed: 01/23/2023] Open
Abstract
Connexin 43 (Cx43), a product of the GJA1 gene, is a gap junction protein facilitating intercellular communication between cardiomyocytes. Cx43 protects the heart from ischemic injury by mechanisms that are not well understood. GJA1 mRNA can undergo alternative translation, generating smaller isoforms in the heart, with GJA1-20k being the most abundant. Here, we report that ischemic and ischemia/reperfusion (I/R) injuries upregulate endogenous GJA1-20k protein in the heart, which targets to cardiac mitochondria and associates with the outer mitochondrial membrane. Exploring the functional consequence of increased GJA1-20k, we found that AAV9-mediated gene transfer of GJA1-20k in mouse hearts increases mitochondrial biogenesis while reducing mitochondrial membrane potential, respiration, and ROS production. By doing so, GJA1-20k promotes a protective mitochondrial phenotype, as seen with ischemic preconditioning (IPC), which also increases endogenous GJA1-20k in heart lysates and mitochondrial fractions. As a result, AAV9-GJA1-20k pretreatment reduces myocardial infarct size in mouse hearts subjected to in vivo ischemic injury or ex vivo I/R injury, similar to an IPC-induced cardioprotective effect. In conclusion, GJA1-20k is an endogenous stress response protein that induces mitochondrial biogenesis and metabolic hibernation, preconditioning the heart against I/R insults. Introduction of exogenous GJA1-20k is a putative therapeutic strategy for patients undergoing anticipated ischemic injury.
Collapse
Affiliation(s)
- Wassim A Basheer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ying Fu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daisuke Shimura
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shaohua Xiao
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sosse Agvanian
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Diana M Hernandez
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tara C Hitzeman
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - TingTing Hong
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, California
| | - Robin M Shaw
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, California
| |
Collapse
|
45
|
Zhou H, Wang J, Hu S, Zhu H, Toanc S, Ren J. BI1 alleviates cardiac microvascular ischemia-reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F-actin pathways. J Cell Physiol 2018; 234:5056-5069. [PMID: 30256421 DOI: 10.1002/jcp.27308] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
Pathogenesis of cardiac microvascular ischemia-reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F-actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F-actin-mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F-actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Medical School of Chinese PLA Hospital, Beijing, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - Jin Wang
- Department of Cardiology, Medical School of Chinese PLA Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Medical School of Chinese PLA Hospital, Beijing, China
| | - Hong Zhu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - Sam Toanc
- Department of Chemical and Environmental Engineering, University of California, Riverside, California
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming
| |
Collapse
|
46
|
Ji K, Lin K, Wang Y, Du L, Xu C, He N, Wang J, Liu Y, Liu Q. TAZ inhibition promotes IL-2-induced apoptosis of hepatocellular carcinoma cells by activating the JNK/F-actin/mitochondrial fission pathway. Cancer Cell Int 2018; 18:117. [PMID: 30127666 PMCID: PMC6092825 DOI: 10.1186/s12935-018-0615-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/09/2018] [Indexed: 01/31/2023] Open
Abstract
Background Cytokine-based cancer therapies have attracted a great deal of attention in recent years. Unfortunately, resistance to treatment limits the efficacy of these therapeutics. Therefore, the aim of our study was to explore the mechanism of IL-2-based therapy for hepatocellular carcinoma in an attempt to increase the efficiency of this treatment option. Methods HepG2 cells were treated with IL-2. Then, siRNA against TZA was used to transfected into HepG2 cells. Cellular apoptosis was measured via MTT assay, TUNEL assay and caspase-3 activity. Cellular proliferation was evaluated via EdU assay and western blotting. Cellular migration was detected via Transwell assay. Mitochondrial function was monitored by mitochondrial potential analysis, ROS staining, immunofluorescence and western blotting. Pathway blocker and activator were used to establish the role of JNK/F-actin/mitochondrial fission signaling pathway in HepG2 cells stress response. Results Our study found that IL-2 treatment significantly reduced the viability, mobility and proliferation of HepG2 cells in vitro. We also demonstrated that IL-2 treatment was accompanied by an increase in the expression of transcriptional co-activator with PDZ-binding motif (TAZ). Interestingly, genetic ablation of TAZ in the presence of IL-2 further promoted apoptosis, inhibited mobility, and arrested proliferation in HepG2 cells. At the molecular level, IL-2 administration activated excessive mitochondrial fission via the JNK/F-actin pathway; these effects were further enhanced by TAZ deletion. Mechanistically, TAZ knockdown further increased the expression of mitochondrial fission-related proteins such as Drp1, Mff and Fis. The augmented mitochondrial fission stimulated ROS overproduction, mediated redox imbalance, interrupted mitochondrial energy generation, reduced mitochondrial membrane potential, promoted leakage of the pro-apoptotic molecule cyt-c into the nucleus, and initiated caspase-9-related mitochondrial death. Further, we demonstrated that the anti-proliferative and anti-metastatic effects of IL-2 in HepG2 cells were enhanced by TAZ deletion, suggesting that IL-2 sensitizes HepG2 cells to IL-2-based cytokine therapy. However, JNK/F-actin pathway blockade could abrogate the inhibitory effects of TAZ deletion on HepG2 migration, proliferation and survival. Conclusions Taken together, our data indicate that the anti-tumor effects of IL-2-based therapies may be enhanced by TAZ deletion in a JNK/F-actin pathway-dependent manner. This finding provides a novel combinatorial therapeutic approach for treating hepatocellular carcinoma that might significantly increase the efficacy of cytokine-based therapies in a clinical setting. Electronic supplementary material The online version of this article (10.1186/s12935-018-0615-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Kaili Lin
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| |
Collapse
|