1
|
Guo SS, Liu Z, Wang GM, Sun Z, Yu K, Fawcett JP, Buettner R, Gao B, Fässler R. KANK1 promotes breast cancer development by compromising Scribble-mediated Hippo activation. Nat Commun 2024; 15:10381. [PMID: 39613731 DOI: 10.1038/s41467-024-54645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
KANK1 is expressed in epithelial cells and connects focal adhesions with the adjacent cortical microtubule stabilizing complex. Although KANK1 was shown to suppress cancer cell growth in vitro, TCGA database points to high KANK1 levels associated with poor prognosis in a wide spectrum of human malignancies. Here, we address this discrepancy and report that KANK1 promotes proliferation and survival of PyMT-transformed mammary tumor cells in vivo. Mechanistically, KANK1 localizes to the basal side of basement membrane (BM)-attached transformed luminal epithelial cells. When these cells lose the contact with the BM and disassemble integrin adhesions, KANK1 is found at cell-cell junctions where it competes with the polarity and tumor suppressor Scribble for NOS1AP binding, which curbs the ability of Scribble to promote Hippo pathway activity. The consequences are stabilization and nuclear accumulation of TAZ, growth and survival of tumor cells and elevated breast cancer development.
Collapse
Affiliation(s)
- Shiny Shengzhen Guo
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Zhiying Liu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Guan M Wang
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Zhiqi Sun
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kaikai Yu
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - James P Fawcett
- Departments of Pharmacology and Surgery, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Reinhard Buettner
- Institute of Pathology, Medical Faculty, University Cologne, Cologne, Germany
| | - Bo Gao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
2
|
Hebchen DM, Schader T, Spaeth M, Müller N, Graumann J, Schröder K. NoxO1 regulates EGFR signaling by its interaction with Erbin. Redox Biol 2024; 77:103396. [PMID: 39426288 PMCID: PMC11536020 DOI: 10.1016/j.redox.2024.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
NADPH oxidase organizer 1 (NoxO1) is a scaffold cytoplasmic subunit of the reactive oxygen species (ROS) forming Nox1 complex and involved in angiogenesis, differentiation, and atherosclerosis. We found that overexpression of NoxO1 without simultaneous overexpression of any other component of the active Nox1 complex inhibited EGF-induced wound closure and signaling, while NoxO1 KO yielded the opposite effect. Accordingly, we hypothesize NoxO1 to exert Nox1 independent functions. Using the BioID technique, we identified ErbB2 interacting protein (Erbin) as novel interaction partner of NoxO1. Colocalization of NoxO1 with EGFR, as well as with Erbin validated this finding. EGF treatment interrupted colocalization of NoxO1 and EGFR. EGF mediated kinase activation was delayed in NoxO1 overexpressing cells, while knockout of NoxO1 had the opposite effect. In conclusion, Erbin was identified as a novel NoxO1 interacting protein. Through the subsequent interaction of NoxO1 and EGFR, NoxO1 interferes with EGF signaling. The results of this study suggest a potential role of NoxO1 as an adaptor protein with functions beyond the well-established enabling of Nox1 mediated ROS formation.
Collapse
Affiliation(s)
| | - Tim Schader
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany
| | - Niklas Müller
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany.
| |
Collapse
|
3
|
Qiu T, Tan L, Yan J, Luo Q. Erbin: an important therapeutic target for blocking tumor metastasis. Front Pharmacol 2024; 15:1474798. [PMID: 39391694 PMCID: PMC11464413 DOI: 10.3389/fphar.2024.1474798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Erbin is an adapter protein that interacts with the v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2) in epithelial cells. Erbin plays an important role in various signaling pathways, including cell proliferation, apoptosis, and autophagy. Additionally, Erbin is implicated in the pathogenesis and progression of sepsis and various cancers, including breast cancer, acute myeloid leukemia (AML), hepatocellular carcinoma (HCC), and colorectal cancer (CRC). A recent study shows that loss of Erbin increases the release of acyl-carnitine (Acar) through abolishing interaction with prothrombotic protein endothelial cell-specific adhesion molecule (ESAM), promotes mitochondrial oxidative phosphorylation in B cells, and ultimately suppresses lung metastasis of CRC. Accordingly, Erbin provides us with a new potential treatment for tumor metastasis.
Collapse
Affiliation(s)
- Tingting Qiu
- Department of hematopathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Liquan Tan
- Department of Nursing, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jialong Yan
- Institute of Clinical Research, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qunli Luo
- Department of hematopathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
4
|
Willim J, Woike D, Greene D, Das S, Pfeifer K, Yuan W, Lindsey A, Itani O, Böhme AL, Tibbe D, Hönck HH, Hassani Nia F, Zech M, Brunet T, Faivre L, Sorlin A, Vitobello A, Smol T, Colson C, Baranano K, Schatz K, Bayat A, Schoch K, Spillmann R, Davis EE, Conboy E, Vetrini F, Platzer K, Neuser S, Gburek-Augustat J, Grace AN, Mitchell B, Stegmann A, Sinnema M, Meeks N, Saunders C, Cadieux-Dion M, Hoyer J, Van-Gils J, de Sainte-Agathe JM, Thompson ML, Bebin EM, Weisz-Hubshman M, Tabet AC, Verloes A, Levy J, Latypova X, Harder S, Silverman GA, Pak SC, Schedl T, Freson K, Mumford A, Turro E, Schlein C, Shashi V, Kreienkamp HJ. Variants in LRRC7 lead to intellectual disability, autism, aggression and abnormal eating behaviors. Nat Commun 2024; 15:7909. [PMID: 39256359 PMCID: PMC11387733 DOI: 10.1038/s41467-024-52095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Members of the leucine rich repeat (LRR) and PDZ domain (LAP) protein family are essential for animal development and histogenesis. Densin-180, encoded by LRRC7, is the only LAP protein selectively expressed in neurons. Densin-180 is a postsynaptic scaffold at glutamatergic synapses, linking cytoskeletal elements with signalling proteins such as the α-subunit of Ca2+/calmodulin-dependent protein kinase II. We have previously observed an association between high impact variants in LRRC7 and Intellectual Disability; also three individual cases with variants in LRRC7 had been described. We identify here 33 individuals (one of them previously described) with a dominant neurodevelopmental disorder due to heterozygous missense or loss-of-function variants in LRRC7. The clinical spectrum involves intellectual disability, autism, ADHD, aggression and, in several cases, hyperphagia-associated obesity. A PDZ domain variant interferes with synaptic targeting of Densin-180 in primary cultured neurons. Using in vitro systems (two hybrid, BioID, coimmunoprecipitation of tagged proteins from 293T cells) we identified new candidate interaction partners for the LRR domain, including protein phosphatase 1 (PP1), and observed that variants in the LRR reduced binding to these proteins. We conclude that LRRC7 encodes a major determinant of intellectual development and behaviour.
Collapse
Affiliation(s)
- Jana Willim
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Woike
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Greene
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarada Das
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kevin Pfeifer
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Weimin Yuan
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Anika Lindsey
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Omar Itani
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Amber L Böhme
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Debora Tibbe
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Hinrich Hönck
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Theresa Brunet
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon-Bourgogne, Dijon, France
- INSERM-Université de Bourgogne-UMR1231 GAD, Dijon, France
| | - Arthur Sorlin
- INSERM-Université de Bourgogne-UMR1231 GAD, Dijon, France
- Laboratoire de Génomique médicale, Centre NEOMICS, CHU Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- INSERM-Université de Bourgogne-UMR1231 GAD, Dijon, France
- Laboratoire de Génomique médicale, Centre NEOMICS, CHU Dijon Bourgogne, Dijon, France
| | - Thomas Smol
- Univ. Lille, CHU Lille, ULR7364 - RADEME, Lille, France
| | - Cindy Colson
- Univ. Lille, CHU Lille, ULR7364 - RADEME, Lille, France
| | - Kristin Baranano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Krista Schatz
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Department for Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Rebecca Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Erin Conboy
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sonja Neuser
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropaediatrics, Hospital for Children and Adolescents, University of Leipzig Medical Center, Leipzig, Germany
| | - Alexandra Noel Grace
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
| | - Bailey Mitchell
- Baylor College of Medicine in San Antonio, San Antonio, TX, USA
| | - Alexander Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Naomi Meeks
- Children's Hospital Colorado, Division of Clinical Genetics & Metabolism, Aurora, CO, USA
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Maxime Cadieux-Dion
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julien Van-Gils
- Genetics Lab, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | | | | | | | - Monika Weisz-Hubshman
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, Tx, USA
| | - Anne-Claude Tabet
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Jonathan Levy
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Xenia Latypova
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Sönke Harder
- Mass spectrometry and Proteome Analytics, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gary A Silverman
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Stephen C Pak
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Tim Schedl
- Department of Genetics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ernest Turro
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Schlein
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Lulić L, Šimić I, Božinović K, Pešut E, Manojlović L, Grce M, Dediol E, Sabol I, Tomaić V. Moderate SCRIB Expression Levels Correlate with Worse Prognosis in OPSCC Patients Regardless of HPV Status. Cells 2024; 13:1002. [PMID: 38920638 PMCID: PMC11201649 DOI: 10.3390/cells13121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Head and neck cancers rank as the sixth most prevalent cancers globally. In addition to traditional risk factors such as smoking and alcohol use, human papillomavirus (HPV) infections are becoming a significant causative agent of head and neck cancers, particularly among Western populations. Although HPV offers a significant survival benefit, the search for better biomarkers is still ongoing. In the current study, our objective was to investigate whether the expression levels of three PDZ-domain-containing proteins (SCRIB, NHERF2, and DLG1), known HPV E6 cellular substrates, influence the survival of HNSCC patients treated by primary surgery (n = 48). Samples were derived from oropharyngeal and oral cancers, and HPV presence was confirmed by PCR and p16 staining. Clinical and follow-up information was obtained from the hospital database and the Croatian Cancer registry up to November 2023. Survival was evaluated using the Kaplan-Meier method and Cox proportional hazard regression. The results were corroborated through the reanalysis of a comparable subset of TCGA cancer patients (n = 391). In conclusion, of the three targets studied, only SCRIB levels were found to be an independent predictor of survival in the Cox regression analysis, along with tumor stage. Further studies in a more typical Western population setting are needed since smoking and alcohol consumption are still prominent in the Croatian population, while the strongest association between survival and SCRIB levels was seen in HPV-negative cases.
Collapse
Affiliation(s)
- Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ivana Šimić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ena Pešut
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Luka Manojlović
- Department of Pathology and Cytology, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Emil Dediol
- Department of Maxillofacial Surgery, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Ivan Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Rosell R, Codony-Servat J, González J, Santarpia M, Jain A, Shivamallu C, Wang Y, Giménez-Capitán A, Molina-Vila MA, Nilsson J, González-Cao M. KRAS G12C-mutant driven non-small cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2024; 195:104228. [PMID: 38072173 DOI: 10.1016/j.critrevonc.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | | - Jessica González
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Italy
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Yu Wang
- Genfleet Therapeutics, Shanghai, China
| | | | | | - Jonas Nilsson
- Department Radiation Sciences, Oncology, Umeå University, Sweden
| | | |
Collapse
|
7
|
Wang Y, Li X, Guan X, Song Z, Liu H, Guan Z, Wang J, Zhu L, Zhang D, Zhao L, Xie P, Wei X, Shang N, Liu Y, Jin Z, Ji Z, Dai G. The Upregulation of Leucine-Rich Repeat Containing 1 Expression Activates Hepatic Stellate Cells and Promotes Liver Fibrosis by Stabilizing Phosphorylated Smad2/3. Int J Mol Sci 2024; 25:2735. [PMID: 38473980 DOI: 10.3390/ijms25052735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Liver fibrosis poses a significant global health risk due to its association with hepatocellular carcinoma (HCC) and the lack of effective treatments. Thus, the need to discover additional novel therapeutic targets to attenuate liver diseases is urgent. Leucine-rich repeat containing 1 (LRRC1) reportedly promotes HCC development. Previously, we found that LRRC1 was significantly upregulated in rat fibrotic liver according to the transcriptome sequencing data. Herein, in the current work, we aimed to explore the role of LRRC1 in liver fibrosis and the underlying mechanisms involved. LRRC1 expression was positively correlated with liver fibrosis severity and significantly elevated in both human and murine fibrotic liver tissues. LRRC1 knockdown or overexpression inhibited or enhanced the proliferation, migration, and expression of fibrogenic genes in the human hepatic stellate cell line LX-2. More importantly, LRRC1 inhibition in vivo significantly alleviated CCl4-induced liver fibrosis by reducing collagen accumulation and hepatic stellate cells' (HSCs) activation in mice. Mechanistically, LRRC1 promoted HSC activation and liver fibrogenesis by preventing the ubiquitin-mediated degradation of phosphorylated mothers against decapentaplegic homolog (Smad) 2/3 (p-Smad2/3), thereby activating the TGF-β1/Smad pathway. Collectively, these results clarify a novel role for LRRC1 as a regulator of liver fibrosis and indicate that LRRC1 is a promising target for antifibrotic therapies.
Collapse
Affiliation(s)
- Yake Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaolong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaowen Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Song
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huanfei Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jianwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lina Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Di Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liang Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peitong Xie
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyi Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Shang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhongzhen Jin
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhili Ji
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guifu Dai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Kook E, Chun KS, Kim DH. Emerging Roles of YES1 in Cancer: The Putative Target in Drug Resistance. Int J Mol Sci 2024; 25:1450. [PMID: 38338729 PMCID: PMC10855972 DOI: 10.3390/ijms25031450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases that are recognized as proto-oncogenic products. Among SFKs, YES1 is frequently amplified and overexpressed in a variety of human tumors, including lung, breast, ovarian, and skin cancers. YES1 plays a pivotal role in promoting cell proliferation, survival, and invasiveness during tumor development. Recent findings indicate that YES1 expression and activation are associated with resistance to chemotherapeutic drugs and tyrosine kinase inhibitors in human malignancies. YES1 undergoes post-translational modifications, such as lipidation and nitrosylation, which can modulate its catalytic activity, subcellular localization, and binding affinity for substrate proteins. Therefore, we investigated the diverse mechanisms governing YES1 activation and its impact on critical intracellular signal transduction pathways. We emphasized the function of YES1 as a potential mechanism contributing to the anticancer drug resistance emergence.
Collapse
Affiliation(s)
- Eunjin Kook
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea;
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, Republic of Korea;
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea;
| |
Collapse
|
9
|
Abedrabbo M, Sloomy S, Abu-Leil R, Kfir-Cohen E, Ravid S. Scribble, Lgl1, and myosin IIA interact with α-/β-catenin to maintain epithelial junction integrity. Cell Adh Migr 2023; 17:1-23. [PMID: 37743653 PMCID: PMC10761038 DOI: 10.1080/19336918.2023.2260645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
E-cadherin-catenin complex together with the cytoskeleton, builds the core of Adherens junctions (AJs). It has been reported that Scribble stabilizes the coupling of E-cadherin with catenins promoting epithelial cell adhesion, but the mechanism remains unknown. We show that Scribble, Lgl1, and NMII-A reside in a complex with E-cadherin-catenin complex. Depletion of either Scribble or Lgl1 disrupts the localization of E-cadherin-catenin complex to AJs. aPKCζ phosphorylation of Lgl1 regulates AJ localization of Lgl1 and E-cadherin-catenin complexes. Both Scribble and Lgl1 regulate the activation and recruitment of NMII-A at AJs. Finally, Scribble and Lgl1 are downregulated by TGFβ-induced EMT, and their re-expression during EMT impedes its progression. Our results provide insight into the mechanism regulating AJ integrity by Scribble, Lgl1, and NMII-A.
Collapse
Affiliation(s)
- Maha Abedrabbo
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shirel Sloomy
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Reham Abu-Leil
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Einav Kfir-Cohen
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shoshana Ravid
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
10
|
Liu Y, Fang Q, Ming T, Zuo J, Jing G, Song X. Knockout of Erbin promotes pyroptosis via regulating NLRP3/caspase-1/Gasdermin D pathway in sepsis-induced acute kidney injury. Clin Exp Nephrol 2023; 27:781-790. [PMID: 37310569 DOI: 10.1007/s10157-023-02364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND This study aims to investigate the correlation between Erbin and sepsis, and the role of Erbin on the pyroptosis pathway in acute kidney injury caused by sepsis and NLRP3/caspase-1/Gasdermin D pathway. METHODS In the study, lipopolysaccharide (LPS) treatment or cecal ligation and puncture (CLP) surgery on mice were used to stimulate the in vitro and in vivo sepsis-induced renal injury model. The male C57BL/6 of wild-type mice (WT) and Erbin-knockout mice (Erbin-/-, EKO) were randomly divided into four groups (WT + Sham, WT + CLP, EKO + Sham, EKO + CLP). Inflammatory cytokine, renal function, pyroptotic cell numbers and the levels of protein and mRNA expression of pyroptosis, including the NLRP3 (all P < 0.05), were analyzed and found increase in Erbin-/- mice with CLP and LPS-induced HK-2 cells. RESULTS The inhibited of Erbin shows a renal damaged effect by promoting NLRP3 inflammasome-mediated pyroptosis in SI-AKI. CONCLUSION This study demonstrated a novel mechanism by which Erbin regulates NLRP3 inflammasome-mediated pyroptosis in SI-AKI.
Collapse
Affiliation(s)
- Yuping Liu
- The Department of Research Centre of Anesthesiology and Critical Care Medicine Anesthesiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, 430071, Hubei Province, China
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qing Fang
- The Department of Research Centre of Anesthesiology and Critical Care Medicine Anesthesiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, 430071, Hubei Province, China
| | - Tingqian Ming
- Department of Anesthesiology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Jing Zuo
- The Department of Research Centre of Anesthesiology and Critical Care Medicine Anesthesiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, 430071, Hubei Province, China
| | - Guoqing Jing
- The Department of Research Centre of Anesthesiology and Critical Care Medicine Anesthesiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, 430071, Hubei Province, China
| | - Xuemin Song
- The Department of Research Centre of Anesthesiology and Critical Care Medicine Anesthesiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
11
|
Amgalan B, Day CP, Przytycka TM. Exploring tumor-normal cross-talk with TranNet: Role of the environment in tumor progression. PLoS Comput Biol 2023; 19:e1011472. [PMID: 37721939 PMCID: PMC10538798 DOI: 10.1371/journal.pcbi.1011472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such dependencies. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights into the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Bayarbaatar Amgalan
- National Center for Biotechnology Information/National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics/Center for Cancer Research/National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Teresa M. Przytycka
- National Center for Biotechnology Information/National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
12
|
Hatzold J, Nett V, Brantsch S, Zhang JL, Armistead J, Wessendorf H, Stephens R, Humbert PO, Iden S, Hammerschmidt M. Matriptase-dependent epidermal pre-neoplasm in zebrafish embryos caused by a combination of hypotonic stress and epithelial polarity defects. PLoS Genet 2023; 19:e1010873. [PMID: 37566613 PMCID: PMC10446194 DOI: 10.1371/journal.pgen.1010873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/23/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Aberrantly up-regulated activity of the type II transmembrane protease Matriptase-1 has been associated with the development and progression of a range of epithelial-derived carcinomas, and a variety of signaling pathways can mediate Matriptase-dependent tumorigenic events. During mammalian carcinogenesis, gain of Matriptase activity often results from imbalanced ratios between Matriptase and its cognate transmembrane inhibitor Hai1. Similarly, in zebrafish, unrestrained Matriptase activity due to loss of hai1a results in epidermal pre-neoplasms already during embryogenesis. Here, based on our former findings of a similar tumor-suppressive role for the Na+/K+-pump beta subunit ATP1b1a, we identify epithelial polarity defects and systemic hypotonic stress as another mode of aberrant Matriptase activation in the embryonic zebrafish epidermis in vivo. In this case, however, a different oncogenic pathway is activated which contains PI3K, AKT and NFkB, rather than EGFR and PLD (as in hai1a mutants). Strikingly, epidermal pre-neoplasm is only induced when epithelial polarity defects in keratinocytes (leading to disturbed Matriptase subcellular localization) occur in combination with systemic hypotonic stress (leading to increased proteolytic activity of Matriptase). A similar combinatorial effect of hypotonicity and loss of epithelial polarity was also obtained for the activity levels of Matriptase-1 in human MCF-10A epithelial breast cells. Together, this is in line with the multi-factor concept of carcinogenesis, with the notion that such factors can even branch off from one and the same initiator (here ATP1a1b) and can converge again at the level of one and the same mediator (here Matriptase). In sum, our data point to tonicity and epithelial cell polarity as evolutionarily conserved regulators of Matriptase activity that upon de-regulation can constitute an alternative mode of Matriptase-dependent carcinogenesis in vivo.
Collapse
Affiliation(s)
- Julia Hatzold
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Verena Nett
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Stephanie Brantsch
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Jin-Li Zhang
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Joy Armistead
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Heike Wessendorf
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Rebecca Stephens
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O. Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sandra Iden
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| |
Collapse
|
13
|
Thüring EM, Hartmann C, Maddumage JC, Javorsky A, Michels BE, Gerke V, Banks L, Humbert PO, Kvansakul M, Ebnet K. Membrane recruitment of the polarity protein Scribble by the cell adhesion receptor TMIGD1. Commun Biol 2023; 6:702. [PMID: 37430142 DOI: 10.1038/s42003-023-05088-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Scribble (Scrib) is a multidomain polarity protein and member of the leucine-rich repeat and PDZ domain (LAP) protein family. A loss of Scrib expression is associated with disturbed apical-basal polarity and tumor formation. The tumor-suppressive activity of Scrib correlates with its membrane localization. Despite the identification of numerous Scrib-interacting proteins, the mechanisms regulating its membrane recruitment are not fully understood. Here, we identify the cell adhesion receptor TMIGD1 as a membrane anchor of Scrib. TMIGD1 directly interacts with Scrib through a PDZ domain-mediated interaction and recruits Scrib to the lateral membrane domain in epithelial cells. We characterize the association of TMIGD1 with each Scrib PDZ domain and describe the crystal structure of the TMIGD1 C-terminal peptide complexed with PDZ domain 1 of Scrib. Our findings describe a mechanism of Scrib membrane localization and contribute to the understanding of the tumor-suppressive activity of Scrib.
Collapse
Affiliation(s)
- Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Janesha C Maddumage
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Birgitta E Michels
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany.
| |
Collapse
|
14
|
Stewart BZ, Mamonova T, Sneddon WB, Javorsky A, Yang Y, Wang B, Nolin TD, Humbert PO, Friedman PA, Kvansakul M. Scribble scrambles parathyroid hormone receptor interactions to regulate phosphate and vitamin D homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2220851120. [PMID: 37252981 PMCID: PMC10266016 DOI: 10.1073/pnas.2220851120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/30/2023] [Indexed: 06/01/2023] Open
Abstract
G protein-coupled receptors, including PTHR, are pivotal for controlling metabolic processes ranging from serum phosphate and vitamin D levels to glucose uptake, and cytoplasmic interactors may modulate their signaling, trafficking, and function. We now show that direct interaction with Scribble, a cell polarity-regulating adaptor protein, modulates PTHR activity. Scribble is a crucial regulator for establishing and developing tissue architecture, and its dysregulation is involved in various disease conditions, including tumor expansion and viral infections. Scribble co-localizes with PTHR at basal and lateral surfaces in polarized cells. Using X-ray crystallography, we show that colocalization is mediated by engaging a short sequence motif at the PTHR C-terminus using Scribble PDZ1 and PDZ3 domain, with binding affinities of 31.7 and 13.4 μM, respectively. Since PTHR controls metabolic functions by actions on renal proximal tubules, we engineered mice to selectively knockout Scribble in proximal tubules. The loss of Scribble impacted serum phosphate and vitamin D levels and caused significant plasma phosphate elevation and increased aggregate vitamin D3 levels, whereas blood glucose levels remained unchanged. Collectively these results identify Scribble as a vital regulator of PTHR-mediated signaling and function. Our findings reveal an unexpected link between renal metabolism and cell polarity signaling.
Collapse
Affiliation(s)
- Bryce Z. Stewart
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA15261
| | - W. Bruce Sneddon
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA15261
| | - Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Yanmei Yang
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA15261
| | - Bin Wang
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA15261
| | - Thomas D. Nolin
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh Schools of Pharmacy and Medicine, Pittsburgh, PA15216
- Department of Medicine Schools of Pharmacy and Medicine Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA15216
| | - Patrick O. Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, VIC3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Peter A. Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA15261
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| |
Collapse
|
15
|
Viral subversion of the cell polarity regulator Scribble. Biochem Soc Trans 2023; 51:415-426. [PMID: 36606695 PMCID: PMC9987997 DOI: 10.1042/bst20221067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
Scribble is a scaffolding protein that regulates key events such as cell polarity, tumorigenesis and neuronal signalling. Scribble belongs to the LAP family which comprise of 16 Leucine Rich Repeats (LRR) at the N-terminus, two LAP Specific Domains (LAPSD) and four PSD-95/Discs-large/ZO-1 (PDZ) domains at the C-terminus. The four PDZ domains have been shown to be key for a range of protein-protein interactions and have been identified to be crucial mediators for the vast majority of Scribble interactions, particularly via PDZ Binding Motifs (PBMs) often found at the C-terminus of interacting proteins. Dysregulation of Scribble is associated with poor prognosis in viral infections due to subversion of multiple cell signalling pathways by viral effector proteins. Here, we review the molecular details of the interplay between Scribble and viral effector proteins that provide insight into the potential modes of regulation of Scribble mediated polarity signalling.
Collapse
|
16
|
Stewart BZ, Caria S, Humbert PO, Kvansakul M. Structural analysis of human papillomavirus E6 interactions with Scribble PDZ domains. FEBS J 2023. [PMID: 36609831 DOI: 10.1111/febs.16718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 01/05/2022] [Indexed: 01/08/2023]
Abstract
The cell polarity regulator Scribble has been shown to be a critical regulator of the establishment and development of tissue architecture, and its dysregulation promotes or suppresses tumour development in a context-dependent manner. Scribble activity is subverted by numerous viruses. This includes human papillomaviruses (HPVs), who target Scribble via the E6 protein. Binding of E6 from high-risk HPV strains to Scribble via a C-terminal PDZ-binding motif leads to Scribble degradation in vivo. However, the precise molecular basis for Scribble-E6 interactions remains to be defined. We now show that Scribble PDZ1 and PDZ3 are the major interactors of HPV E6 from multiple high-risk strains, with each E6 protein displaying a unique interaction profile. We then determined crystal structures of Scribble PDZ1 and PDZ3 domains in complex with the PDZ-binding motif (PBM) motifs of E6 from HPV strains 16, 18 and 66. Our findings reveal distinct interaction patterns for each E6 PBM motif from a given HPV strain, suggesting that a complex molecular interplay exists that underpins the overt Scribble-HPV E6 interaction and controls E6 carcinogenic potential.
Collapse
Affiliation(s)
- Bryce Z Stewart
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Sofia Caria
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.,Department of Biochemistry & Pharmacology, University of Melbourne, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, VIC, 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
18
|
Sharma M, Dey CS. PHLPP isoforms differentially regulate Akt isoforms and AS160 affecting neuronal insulin signaling and insulin resistance via Scribble. Cell Commun Signal 2022; 20:179. [PMID: 36376971 PMCID: PMC9664818 DOI: 10.1186/s12964-022-00987-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/08/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The aim of the present study was to determine the role of individual PHLPP isoforms in insulin signaling and insulin resistance in neuronal cells. METHODS PHLPP isoforms were either silenced or overexpressed individually, and the effects were observed on individual Akt isoforms, AS160 and on neuronal glucose uptake, under insulin sensitive and resistant conditions. To determine PHLPP regulation itself, we tested effect of scaffold protein, Scribble, on PHLPP isoforms and neuronal glucose uptake. RESULTS We observed elevated expression of both PHLPP1 and PHLPP2 in insulin resistant neuronal cells (Neuro-2A, mouse neuroblastoma; SHSY-5Y, human neuroblastoma) as well as in the whole brain lysates of high-fat-diet mediated diabetic mice. In insulin sensitive condition, PHLPP isoforms differentially affected activation of all Akt isoforms, wherein PHLPP1 regulated serine phosphorylation of Akt2 and Akt3, while PHLPP2 regulated Akt1 and Akt3. This PHLPP mediated Akt isoform specific regulation activated AS160 affecting glucose uptake. Under insulin resistant condition, a similar trend of results were observed in Akt isoforms, AS160 and glucose uptake. Over-expressed PHLPP isoforms combined with elevated endogenous expression under insulin resistant condition drastically affected downstream signaling, reducing neuronal glucose uptake. No compensation was observed amongst PHLPP isoforms under all conditions tested, indicating independent roles and pointing towards possible scaffolding interactions behind isoform specificity. Silencing of Scribble, a scaffolding protein known to interact with PHLPP, affected cellular localization of both PHLPP1 and PHLPP2, and caused increase in glucose uptake. CONCLUSIONS PHLPP isoforms play independent roles via Scribble in regulating Akt isoforms differentially, affecting AS160 and neuronal glucose uptake. Video abstract.
Collapse
Affiliation(s)
- Medha Sharma
- grid.417967.a0000 0004 0558 8755Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016 India
| | - Chinmoy Sankar Dey
- grid.417967.a0000 0004 0558 8755Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016 India
| |
Collapse
|
19
|
Campanale JP, Mondo JA, Montell DJ. A Scribble/Cdep/Rac pathway controls follower-cell crawling and cluster cohesion during collective border-cell migration. Dev Cell 2022; 57:2483-2496.e4. [PMID: 36347240 PMCID: PMC9725179 DOI: 10.1016/j.devcel.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Collective cell movements drive normal development and metastasis. Drosophila border cells move as a cluster of 6-10 cells, where the role of the Rac GTPase in migration was first established. In border cells, as in most migratory cells, Rac stimulates leading-edge protrusion. Upstream Rac regulators in leaders have been identified; however, the regulation and function of Rac in follower border cells is unknown. Here, we show that all border cells require Rac, which promotes follower-cell motility and is important for cluster compactness and movement. We identify a Rac guanine nucleotide exchange factor, Cdep, which also regulates follower-cell movement and cluster cohesion. Scribble, Discs large, and Lethal giant larvae localize Cdep basolaterally and share phenotypes with Cdep. Relocalization of Cdep::GFP partially rescues Scribble knockdown, suggesting that Cdep is a major downstream effector of basolateral proteins. Thus, a Scrib/Cdep/Rac pathway promotes cell crawling and coordinated, collective migration in vivo.
Collapse
Affiliation(s)
- Joseph P Campanale
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - James A Mondo
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
20
|
Jiang M, Jike Y, Gan F, Li J, Hu Y, Xie M, Liu K, Qin W, Bo Z. Verification of Ferroptosis Subcluster-Associated Genes Related to Osteosarcoma and Exploration of Immune Targeted Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9942014. [PMID: 36211822 PMCID: PMC9534693 DOI: 10.1155/2022/9942014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Background Despite tremendous advances in treating osteosarcoma (OS), the survival rates of patients have failed to improve dramatically over the past decades. Ferroptosis, a newly discovered iron-dependent type of regulated cell death, is implicated in tumors, and its features in OS remain unascertained. We designed to determine the involvement of ferroptosis subcluster-related modular genes in OS progression and prognosis. Methods The OS-related datasets retrieved from GEO and TARGET database were clustered for identifying molecular subclusters with different ferroptosis-related genes (FRGs) expression patterns. Weighted gene coexpression network analysis (WGCNA) was applied to identify modular genes from FRG subclusters. The least absolute shrinkage and selection operator (LASSO) algorithm and multivariable Cox regression analysis were adopted to develop the prognostic model. Potential mechanisms of development and prognosis in OS were explored by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). Then, a comprehensive analysis was conducted for immune checkpoint markers and assessment of predictive power to drug response. The protein expression levels of the three ferroptosis subcluster-related modular genes were verified by immunohistochemistry. Results Two independent subclusters presenting diverse expression profiles of FRGs were obtained, with significantly different survival states. Ferroptosis subcluster-related modular genes were screened with WGCNA, and the GESA results showed that ferroptosis subcluster-related modular genes could affect the cellular energy metabolism, thus influencing the development and prognosis of osteosarcoma. A prognostic model was established by incorporating three ferroptosis subcluster-related modular genes (LRRC1, ACO2, and CTNNBIP1) and a nomogram by integrating clinical features, and they were evaluated for the predictive power on OS prognosis. The 20 immune checkpoint-related genes confirmed the insensitivity to tumor immunotherapy in high-risk patients. IC50s of Axitinib and Cytarabine suggested a higher sensitivity to the targeted drug. Finally, the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry were consistent with bioinformatics analysis. Conclusion Ferroptosis are closely associated with the OS prognosis. The risk-scoring model incorporating three ferroptosis subcluster-related modular genes has shown outstanding advantages in predicting patient prognosis.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiji Jike
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fu Gan
- Department of Urology Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jia Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yang Hu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingjing Xie
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kaicheng Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wentao Qin
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhandong Bo
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Sui JSY, Martin P, Keogh A, Murchan P, Ryan L, Nicholson S, Cuffe S, Broin PÓ, Finn SP, Fitzmaurice GJ, Ryan R, Young V, Gray SG. Altered expression of ACOX2 in non-small cell lung cancer. BMC Pulm Med 2022; 22:321. [PMID: 35999530 PMCID: PMC9396774 DOI: 10.1186/s12890-022-02115-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Peroxisomes are organelles that play essential roles in many metabolic processes, but also play roles in innate immunity, signal transduction, aging and cancer. One of the main functions of peroxisomes is the processing of very-long chain fatty acids into metabolites that can be directed to the mitochondria. One key family of enzymes in this process are the peroxisomal acyl-CoA oxidases (ACOX1, ACOX2 and ACOX3), the expression of which has been shown to be dysregulated in some cancers. Very little is however known about the expression of this family of oxidases in non-small cell lung cancer (NSCLC). ACOX2 has however been suggested to be elevated at the mRNA level in over 10% of NSCLC, and in the present study using both standard and bioinformatics approaches we show that expression of ACOX2 is significantly altered in NSCLC. ACOX2 mRNA expression is linked to a number of mutated genes, and associations between ACOX2 expression and tumour mutational burden and immune cell infiltration were explored. Links between ACOX2 expression and candidate therapies for oncogenic driver mutations such as KRAS were also identified. Furthermore, levels of acyl-CoA oxidases and other associated peroxisomal genes were explored to identify further links between the peroxisomal pathway and NSCLC. The results of this biomarker driven study suggest that ACOX2 may have potential clinical utility in the diagnosis, prognosis and stratification of patients into various therapeutically targetable options.
Collapse
Affiliation(s)
- Jane S Y Sui
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Petra Martin
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
- Midland Regional Hospital Tullamore, Tullamore, Ireland
| | - Anna Keogh
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
| | - Pierre Murchan
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Ireland
- School of Mathematics, Statistics, and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Lisa Ryan
- Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Siobhan Nicholson
- Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Sinead Cuffe
- HOPE Directorate, St James's Hospital, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematics, Statistics, and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Ireland
- Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland
- Cancer Molecular Diagnostics, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Gerard J Fitzmaurice
- Surgery, Anaesthesia and Critical Care Directorate, St James's Hospital, Dublin, Ireland
| | - Ronan Ryan
- Surgery, Anaesthesia and Critical Care Directorate, St James's Hospital, Dublin, Ireland
| | - Vincent Young
- Surgery, Anaesthesia and Critical Care Directorate, St James's Hospital, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- School of Biological Sciences, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
22
|
Molecular basis of Tick Born encephalitis virus NS5 mediated subversion of apico-basal cell polarity signalling. Biochem J 2022; 479:1303-1315. [PMID: 35670457 PMCID: PMC9317960 DOI: 10.1042/bcj20220037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
The Scribble (Scrib) protein is a conserved cell polarity regulator with anti-tumorigenic properties. Viruses like the Tick-born encephalitis virus (TBEV) target Scribble to establish a cellular environment supporting viral replication, which is ultimately associated with poor prognosis upon infection. The TBEV NS5 protein has been reported to harbour both an internal as well as a C-terminal PDZ binding motif (PBM), however only the internal PBM was shown to be an interactor with Scribble, with the interaction being mediated via the Scribble PDZ4 domain to antagonize host interferon responses. We examined the NS5 PBM motif interactions with all Scribble PDZ domains using isothermal titration calorimetry, which revealed that the proposed internal PBM did not interact with any Scribble PDZ domains. Instead, the C-terminal PBM of NS5 interacted with Scrib PDZ3. We then established the structural basis of these interactions by determining crystal structures of Scrib PDZ3 bound to the NS5 C-terminal PBM. Our findings provide a structural basis for Scribble PDZ domain and TBEV NS5 interactions and provide a platform to dissect the pathogenesis of TBEV and the role of cell polarity signalling using structure guided approaches.
Collapse
|
23
|
Individual and Co-Expression Patterns of FAM83H and SCRIB at Diagnosis Are Associated with the Survival of Colorectal Carcinoma Patients. Diagnostics (Basel) 2022; 12:diagnostics12071579. [PMID: 35885485 PMCID: PMC9318331 DOI: 10.3390/diagnostics12071579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: FAM83H is important in teeth development; however, an increasing number of reports have indicated a role for it in human cancers. FAM83H is involved in cancer progression in association with various oncogenic molecules, including SCRIB. In the analysis of the public database, there was a significant association between FAM83H and SCRIB in colorectal carcinomas. However, studies evaluating the association of FAM83H and SCRIB in colorectal carcinoma have been limited. Methods: The clinicopathological significance of the immunohistochemical expression of FAM83H and SCRIB was evaluated in 222 colorectal carcinomas. Results: The expressions of FAM83H and SCRIB were significantly associated in colorectal carcinoma tissue. In univariate analysis, the nuclear expressions of FAM83H and SCRIB and the cytoplasmic expression of SCRIB were significantly associated with shorter survival of colorectal carcinomas. The nuclear expressions of FAM83H and SCRIB and the cytoplasmic expression of SCRIB were independent indicators of shorter cancer-specific survival in multivariate analysis. A co-expression pattern of nuclear FAM83H and cytoplasmic SCRIB predicted shorter cancer-specific survival (p < 0.001) and relapse-free survival (p = 0.032) in multivariate analysis. Conclusions: This study suggests that FAM83H and SCRIB might be used as prognostic markers of colorectal carcinomas and as potential therapeutic targets for colorectal carcinomas.
Collapse
|
24
|
Ezan J, Moreau MM, Mamo TM, Shimbo M, Decroo M, Sans N, Montcouquiol M. Neuron-Specific Deletion of Scrib in Mice Leads to Neuroanatomical and Locomotor Deficits. Front Genet 2022; 13:872700. [PMID: 35692812 PMCID: PMC9174639 DOI: 10.3389/fgene.2022.872700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Scribble (Scrib) is a conserved polarity protein acting as a scaffold involved in multiple cellular and developmental processes. Recent evidence from our group indicates that Scrib is also essential for brain development as early global deletion of Scrib in the dorsal telencephalon induced cortical thickness reduction and alteration of interhemispheric connectivity. In addition, Scrib conditional knockout (cKO) mice have behavioral deficits such as locomotor activity impairment and memory alterations. Given Scrib broad expression in multiple cell types in the brain, we decided to determine the neuronal contribution of Scrib for these phenotypes. In the present study, we further investigate the function of Scrib specifically in excitatory neurons on the forebrain formation and the control of locomotor behavior. To do so, we generated a novel neuronal glutamatergic specific Scrib cKO mouse line called Nex-Scrib−/− cKO. Remarkably, cortical layering and commissures were impaired in these mice and reproduced to some extent the previously described phenotype in global Scrib cKO. In addition and in contrast to our previous results using Emx1-Scrib−/− cKO, the Nex-Scrib−/− cKO mutant mice exhibited significantly reduced locomotion. Altogether, the novel cKO model described in this study further highlights an essential role for Scrib in forebrain development and locomotor behavior.
Collapse
Affiliation(s)
- Jerome Ezan
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
- *Correspondence: Jerome Ezan,
| | - Maité M. Moreau
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Tamrat M. Mamo
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Miki Shimbo
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Maureen Decroo
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Nathalie Sans
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Mireille Montcouquiol
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| |
Collapse
|
25
|
Structural Basis of the Avian Influenza NS1 Protein Interactions with the Cell Polarity Regulator Scribble. Viruses 2022; 14:v14030583. [PMID: 35336989 PMCID: PMC8954747 DOI: 10.3390/v14030583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Scribble is a highly conserved regulator of cell polarity, a process that enables the generation of asymmetry at the cellular and tissue level in higher organisms. Scribble acts in concert with Disc-large (Dlg) and Lethal-2-giant larvae (Lgl) to form the Scribble polarity complex, and its functional dysregulation is associated with poor prognosis during viral infections. Viruses have been shown to interfere with Scribble by targeting Scribble PDZ domains to subvert the network of interactions that enable normal control of cell polarity via Scribble, as well as the localisation of the Scribble module within the cell. The influenza A virus NS1 protein was shown to bind to human Scribble (SCRIB) via its C-terminal PDZ binding motif (PBM). It was reported that the PBM sequence ESEV is a virulence determinant for influenza A virus H5N1 whilst other sequences, such as ESKV, KSEV and RSKV, demonstrated no affinity towards Scribble. We now show, using isothermal titration calorimetry (ITC), that ESKV and KSEV bind to SCRIB PDZ domains and that ESEV unexpectedly displayed an affinity towards all four PDZs and not just a selected few. We then define the structural basis for the interactions of SCRIB PDZ1 domain with ESEV and ESKV PBM motifs, as well as SCRIB PDZ3 with the ESKV PBM motif. These findings will serve as a platform for understanding the role of Scribble PDZ domains and their interactions with different NS1 PBMs and the mechanisms that mediate cell polarity within the context of the pathogenesis of influenza A virus.
Collapse
|
26
|
Emerging Therapeutic Agents for Colorectal Cancer. Molecules 2021; 26:molecules26247463. [PMID: 34946546 PMCID: PMC8707340 DOI: 10.3390/molecules26247463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
There are promising new therapeutic agents for CRC patients, including novel small-molecule inhibitors and immune checkpoint blockers. We focused on emerging CRC’s therapeutic agents that have shown the potential for progress in clinical practice. This review provides an overview of tyrosine kinase inhibitors targeting VEGF and KIT, BRAF and MEK inhibitors, TLR9 agonist, STAT3 inhibitors, and immune checkpoint blockers (PD1/PDL-1 inhibitors), for which recent advances have been reported. These new agents have the potential to provide benefits to CRC patients with unmet medical needs.
Collapse
|
27
|
Troyanovsky RB, Indra I, Kato R, Mitchell BJ, Troyanovsky SM. Basolateral protein Scribble binds phosphatase PP1 to establish a signaling network maintaining apicobasal polarity. J Biol Chem 2021; 297:101289. [PMID: 34634305 PMCID: PMC8569552 DOI: 10.1016/j.jbc.2021.101289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/25/2023] Open
Abstract
Scribble, a member of the LAP protein family, contributes to the apicobasal polarity (ABP) of epithelial cells. The LAP-unique region of these proteins, which is essential and sufficient for ABP, includes a conserved Leucine-Rich Repeat (LRR) domain. The major binding partners of this region that could regulate ABP remain unknown. Here, using proteomics, native gel electrophoresis, and site-directed mutagenesis, we show that the concave surface of LRR domain in Scribble participates in three types of mutually exclusive interactions-(i) homodimerization, serving as an auto-inhibitory mechanism; (ii) interactions with a diverse set of polarity proteins, such as Llgl1, Llgl2, EPB41L2, and EPB41L5, which produce distinct multiprotein complexes; and (iii) a direct interaction with the protein phosphatase, PP1. Analogy with the complex between PP1 and LRR domain of SDS22, a well-studied PP1 regulator, suggests that the Scibble-PP1 complex stores a latent form of PP1 in the basolateral cell cortex. Such organization may generate a dynamic signaling network wherein PP1 could be dispatched from the complex with Scribble to particular protein ligands, achieving fast dephosphorylation kinetics.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Indrajyoti Indra
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rei Kato
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Brian J Mitchell
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergey M Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
28
|
Riga A, Cravo J, Schmidt R, Pires HR, Castiglioni VG, van den Heuvel S, Boxem M. Caenorhabditis elegans LET-413 Scribble is essential in the epidermis for growth, viability, and directional outgrowth of epithelial seam cells. PLoS Genet 2021; 17:e1009856. [PMID: 34673778 PMCID: PMC8570498 DOI: 10.1371/journal.pgen.1009856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/05/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
The conserved adapter protein Scribble (Scrib) plays essential roles in a variety of cellular processes, including polarity establishment, proliferation, and directed cell migration. While the mechanisms through which Scrib promotes epithelial polarity are beginning to be unraveled, its roles in other cellular processes including cell migration remain enigmatic. In C. elegans, the Scrib ortholog LET-413 is essential for apical–basal polarization and junction formation in embryonic epithelia. However, whether LET-413 is required for postembryonic development or plays a role in migratory events is not known. Here, we use inducible protein degradation to investigate the functioning of LET-413 in larval epithelia. We find that LET-413 is essential in the epidermal epithelium for growth, viability, and junction maintenance. In addition, we identify a novel role for LET-413 in the polarized outgrowth of the epidermal seam cells. These stem cell-like epithelial cells extend anterior and posterior directed apical protrusions in each larval stage to reconnect to their neighbors. We show that the role of LET-413 in seam cell outgrowth is likely mediated largely by the junctional component DLG-1 discs large, which we demonstrate is also essential for directed outgrowth of the seam cells. Our data uncover multiple essential functions for LET-413 in larval development and show that the polarized outgrowth of the epithelial seam cells is controlled by LET-413 Scribble and DLG-1 Discs large. Most cells in multicellular organisms are organized along a directional axis of cell polarity. One protein that is important for this polarized organization is the conserved polarity regulator Scribble. This protein has several functions, including forming the basolateral domains of cells, promoting the formation of cell junctions, and promoting cell migration. How Scribble performs these functions is not fully understood. In this paper we study the role of Scribble during larval development of the small nematode Caenorhabditis elegans using an inducible protein degradation system. We show that Scribble, called LET-413 in C. elegans, is essential in the epidermal epithelium for animal development, as depletion of LET-413 in only this tissue blocks growth. We also demonstrate that LET-413 is required for the polarized outgrowth of an epithelial cell type called the seam cells, a process resembling cell migration. Finally, we show that one major function of LET-413 in seam cell outgrowth is the localization of the junctional component Discs large (DLG-1), which we demonstrate is also essential for this process. Our data thus uncover multiple essential functions for LET-413 in larval development and provide new insights into how the directional outgrowth of epithelial seam cells is controlled.
Collapse
Affiliation(s)
- Amalia Riga
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Janine Cravo
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ruben Schmidt
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Helena R. Pires
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Victoria G. Castiglioni
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sander van den Heuvel
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, Coluccia A, La Regina G, Silvestri R, Gianni S, Toto A. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct 2021; 16:15. [PMID: 34641953 PMCID: PMC8506081 DOI: 10.1186/s13062-021-00303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
30
|
Nomura Y, Dohmae N. Discovery of a small protein-encoding cis-regulatory overlapping gene of the tumor suppressor gene Scribble in humans. Commun Biol 2021; 4:1098. [PMID: 34535749 PMCID: PMC8448870 DOI: 10.1038/s42003-021-02619-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/30/2021] [Indexed: 12/26/2022] Open
Abstract
Intensive gene annotation has revealed many functional and regulatory elements in the human genome. Although eukaryotic protein-coding genes are generally transcribed into monocistronic mRNAs, recent studies have discovered additional short open reading frames (sORFs) in mRNAs. Here, we performed proteogenomic data mining for hidden proteins categorized into sORF-encoded polypeptides (SEPs) in human cancers. We identified a new SEP-encoding overlapping sORF (oORF) on the cell polarity determinant Scribble (SCRIB) that is considered a proto-oncogene with tumor suppressor function in Hippo-YAP/TAZ, MAPK/ERK, and PI3K/Akt/mTOR signaling. Reanalysis of clinical human proteomic data revealed translational dysregulation of both SCRIB and its oORF, oSCRIB, during carcinogenesis. Biochemical analyses suggested that the translatable oSCRIB constitutively limits the capacity of eukaryotic ribosomes to translate the downstream SCRIB. These findings provide a new example of cis-regulatory oORFs that function as a ribosomal roadblock and potentially serve as a fail-safe mechanism to normal cells for non-excessive downstream gene expression, which is hijacked in cancer. Yuhta Nomura and Naoshi Dohmae report the discovery of a small protein-coding gene that overlaps the tumor suppressor gene Scribble. Their data suggest that the overlapping gene, oSCRIB, limits the translation of downstream Scribble and may have important implications in cancer.
Collapse
Affiliation(s)
- Yuhta Nomura
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
31
|
Human DLG1 and SCRIB Are Distinctly Regulated Independently of HPV-16 during the Progression of Oropharyngeal Squamous Cell Carcinomas: A Preliminary Analysis. Cancers (Basel) 2021; 13:cancers13174461. [PMID: 34503271 PMCID: PMC8430552 DOI: 10.3390/cancers13174461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The process of HPV-mediated oncogenesis in HNSCCs is not fully understood. DLG1 and SCRIB protein expression levels and localization changes were evaluated in a number of HPV16-positive and HPV-negative OPSCCs and seem to be associated with malignant transformation. Moreover, loss of SCRIB expression inversely correlates with higher grade tumors, and this is much more evident in the presence of HPV16 E6. This could serve as a potential marker in predicting development of OPSCCs. Abstract The major causative agents of head and neck squamous cell carcinomas (HNSCCs) are either environmental factors, such as tobacco and alcohol consumption, or infection with oncogenic human papillomaviruses (HPVs). An important aspect of HPV-induced oncogenesis is the targeting by the E6 oncoprotein of PDZ domain-containing substrates for proteasomal destruction. Tumor suppressors DLG1 and SCRIB are two of the principal PDZ domain-containing E6 targets. Both have been shown to play critical roles in the regulation of cell growth and polarity and in maintaining the structural integrity of the epithelia. We investigated how modifications in the cellular localization and protein expression of DLG1 and SCRIB in HPV16-positive and HPV-negative histologic oropharyngeal squamous cell carcinomas (OPSCC) might reflect disease progression. HPV presence was determined by p16 staining and HPV genotyping. Whilst DLG1 expression levels did not differ markedly between HPV-negative and HPV16-positive OPSCCs, it appeared to be relocated from cell–cell contacts to the cytoplasm in most samples, regardless of HPV16 positivity. This indicates that alterations in DLG1 distribution could contribute to malignant progression in OPSCCs. Interestingly, SCRIB was also relocated from cell–cell contacts to the cytoplasm in the tumor samples in comparison with normal tissue, regardless of HPV16 status, but in addition there was an obvious reduction in SCRIB expression in higher grade tumors. Strikingly, loss of SCRIB was even more pronounced in HPV16-positive OPSCCs. These alterations in SCRIB levels may contribute to transformation and loss of tissue architecture in the process of carcinogenesis and could potentially serve as markers in the development of OPSCCs.
Collapse
|
32
|
Kotelevets L, Chastre E. A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer. Cancers (Basel) 2021; 13:4264. [PMID: 34503076 PMCID: PMC8428372 DOI: 10.3390/cancers13174264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
33
|
Martín M, Salleron L, Peyret V, Geysels RC, Darrouzet E, Lindenthal S, Bernal Barquero CE, Masini-Repiso AM, Pourcher T, Nicola JP. The PDZ protein SCRIB regulates sodium/iodide symporter (NIS) expression at the basolateral plasma membrane. FASEB J 2021; 35:e21681. [PMID: 34196428 DOI: 10.1096/fj.202100303r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/25/2023]
Abstract
The sodium/iodide symporter (NIS) expresses at the basolateral plasma membrane of the thyroid follicular cell and mediates iodide accumulation required for normal thyroid hormonogenesis. Loss-of-function NIS variants cause congenital hypothyroidism due to impaired iodide accumulation in thyroid follicular cells underscoring the significance of NIS for thyroid physiology. Here we report novel findings derived from the thorough characterization of the nonsense NIS mutant p.R636* NIS-leading to a truncated protein missing the last eight amino acids-identified in twins with congenital hypothyroidism. R636* NIS is severely mislocalized into intracellular vesicular compartments due to the lack of a conserved carboxy-terminal type 1 PDZ-binding motif. As a result, R636* NIS is barely targeted to the plasma membrane and therefore iodide transport is reduced. Deletion of the PDZ-binding motif causes NIS accumulation into late endosomes and lysosomes. Using PDZ domain arrays, we revealed that the PDZ-domain containing protein SCRIB binds to the carboxy-terminus of NIS by a PDZ-PDZ interaction. Furthermore, in CRISPR/Cas9-based SCRIB deficient cells, NIS expression at the basolateral plasma membrane is compromised, leading to NIS localization into intracellular vesicular compartments. We conclude that the PDZ-binding motif is a plasma membrane retention signal that participates in the polarized expression of NIS by selectively interacting with the PDZ-domain containing protein SCRIB, thus retaining the transporter at the basolateral plasma membrane. Our data provide insights into the molecular mechanisms that regulate NIS expression at the plasma membrane, a topic of great interest in the thyroid cancer field considering the relevance of NIS-mediated radioactive iodide therapy for differentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Lisa Salleron
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Elisabeth Darrouzet
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Sabine Lindenthal
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Carlos Eduardo Bernal Barquero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Thierry Pourcher
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
34
|
Structural basis of the human Scribble-Vangl2 association in health and disease. Biochem J 2021; 478:1321-1332. [PMID: 33684218 PMCID: PMC8038854 DOI: 10.1042/bcj20200816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023]
Abstract
Scribble is a critical cell polarity regulator that has been shown to work as either an oncogene or tumor suppressor in a context dependent manner, and also impacts cell migration, tissue architecture and immunity. Mutations in Scribble lead to neural tube defects in mice and humans, which has been attributed to a loss of interaction with the planar cell polarity regulator Vangl2. We show that the Scribble PDZ domains 1, 2 and 3 are able to interact with the C-terminal PDZ binding motif of Vangl2 and have now determined crystal structures of these Scribble PDZ domains bound to the Vangl2 peptide. Mapping of mammalian neural tube defect mutations reveal that mutations located distal to the canonical PDZ domain ligand binding groove can not only ablate binding to Vangl2 but also disrupt binding to multiple other signaling regulators. Our findings suggest that PDZ-associated neural tube defect mutations in Scribble may not simply act in a Vangl2 dependent manner but as broad-spectrum loss of function mutants by disrupting the global Scribble-mediated interaction network.
Collapse
|
35
|
Hussein UK, Ahmed AG, Choi WK, Kim KM, Park SH, Park HS, Noh SJ, Lee H, Chung MJ, Moon WS, Kang MJ, Cho DH, Jang KY. SCRIB Is Involved in the Progression of Ovarian Carcinomas in Association with the Factors Linked to Epithelial-to-Mesenchymal Transition and Predicts Shorter Survival of Diagnosed Patients. Biomolecules 2021; 11:405. [PMID: 33803371 PMCID: PMC8000214 DOI: 10.3390/biom11030405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023] Open
Abstract
SCRIB is a polarity protein important in maintaining cell junctions. However, recent reports have raised the possibility that SCRIB might have a role in human cancers. Thus, this study evaluated the roles of SCRIB in ovarian cancers. In 102 human ovarian carcinomas, nuclear expression of SCRIB predicted shorter survival of ovarian carcinoma patients, especially in the patients who received post-operative chemotherapy. In SKOV3 and SNU119 ovarian cancer cells, overexpression of SCRIB stimulated the proliferation and invasion of cells. Knockout of SCRIB inhibited in vivo tumor growth of SKOV3 cells and overexpression of SCRIB promoted tumor growth. Overexpression of SCRIB stimulated epithelial-to-mesenchymal transition by increasing the expression of N-cadherin, snail, TGF-β1, and smad2/3, and decreasing the expression of E-cadherin; the converse was observed with inhibition of SCRIB. In conclusion, this study presents the nuclear expression of SCRIB as a prognostic marker of ovarian carcinomas and suggests that SCRIB is involved in the progression of ovarian carcinomas by stimulating proliferation and epithelial-to-mesenchymal transition-related invasiveness.
Collapse
Affiliation(s)
- Usama Khamis Hussein
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
- Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Asmaa Gamal Ahmed
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Won Ku Choi
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Jeonju 54896, Korea
| | - Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea;
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Sang Jae Noh
- Department of Forensic Medicine, Jeonbuk National University Medical School, Jeonju 54896, Korea; (S.J.N.); (H.L.)
| | - Ho Lee
- Department of Forensic Medicine, Jeonbuk National University Medical School, Jeonju 54896, Korea; (S.J.N.); (H.L.)
| | - Myoung Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Woo Sung Moon
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Myoung Jae Kang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Dong Hyu Cho
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Jeonju 54896, Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea; (U.K.H.); (A.G.A.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.); (M.J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| |
Collapse
|