1
|
Han M, Wan F, Xiao B, Du J, Peng C, Peng F. Cell components of tumor microenvironment in lung adenocarcinoma: Promising targets for small-molecule compounds. Chin Med J (Engl) 2024:00029330-990000000-01320. [PMID: 39512221 DOI: 10.1097/cm9.0000000000003341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 11/15/2024] Open
Abstract
ABSTRACT Lung cancer is one of the most lethal tumors in the world with a 5-year overall survival rate of less than 20%, mainly including lung adenocarcinoma (LUAD). Tumor microenvironment (TME) has become a new research focus in the treatment of lung cancer. The TME is heterogeneous in composition and consists of cellular components, growth factors, proteases, and extracellular matrix. The various cellular components exert a different role in apoptosis, metastasis, or proliferation of lung cancer cells through different pathways, thus contributing to the treatment of adenocarcinoma and potentially facilitating novel therapeutic methods. This review summarizes the research progress on different cellular components with cell-cell interactions in the TME of LUAD, along with their corresponding drug candidates, suggesting that targeting cellular components in the TME of LUAD holds great promise for future theraputic development.
Collapse
Affiliation(s)
- Mingyu Han
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
- Chengdu No. 1 Pharmaceutical Co., Ltd., Tianpeng Town, Pengzhou, Chengdu, Sichuan 610031, China
| | - Bin Xiao
- Chengdu Push Bio-Technology Co., Ltd., Chengdu, Sichuan 610045, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Zhang C, Ji Y, Wang Q, Ruan L. MiR-629-5p May serve as a biomarker for pediatric acute respiratory distress syndrome and can regulate the inflammatory response. Pediatr Neonatol 2024:S1875-9572(24)00154-2. [PMID: 39277501 DOI: 10.1016/j.pedneo.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE Circulating microRNAs (miRNAs) are associated with pediatric acute respiratory distress syndromes (PARDS). This study analyzed the clinical significance and potential mechanism of microRNA (miR)-629-5p in PARDS. METHODS 82 children with PARDS and 82 controls were enrolled. Serum levels of miR-629-5p were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and its diagnostic significance with respect to for PARDS in children was assessed by the receiver operating characteristic (ROC). Kaplan-Meier curve and multivariate Cox regression were utilized to examine the prognostic significance of miR-629-5p. An in vitro cell model was established using lipopolysaccharide (LPS)-induced alveolar epithelial cells A549. The cell proliferation, apoptosis, and inflammatory factors were assessed using cell counting kit-8 (CCK-8), flow cytometry, and enzyme-linked immunosorbent assay (ELISA). miR-629-5p target genes were identified in the database and validated using the dual-luciferase report assay. RESULTS Serum miR-629-5p levels were significantly higher in children with PARDS than in controls (P < 0.05). miR-629-5p exhibited 86.6% sensitivity and 91.5% specificity in distinguishing children with PARDS. miR-629-5p was an independent risk factor for mortality, and high levels of miR-629-5p have a poor prognosis. LPS promoted apoptosis and overproduction of inflammatory factors in A549 and upregulated miR-629-5p expression (P < 0.05); however, they were partially reversed by the weakened miR-629-5p (P < 0.05). Syndecan-4 (SDC4) is a target of miR-629-5p. The inhibition of SDC4 induced by LPS can be alleviated through the reduction of miR-629-5p. CONCLUSION miR-629-5p serves as a diagnostic biomarker for children with PARDS and it is associated with poor prognosis. Diminished miR-629-5p may alleviate PARDS by targeting SDC4 to suppress apoptosis and inflammation of alveolar epithelial cells.
Collapse
Affiliation(s)
- Cuicui Zhang
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China
| | - Yanan Ji
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China
| | - Qin Wang
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China
| | - Lianying Ruan
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China.
| |
Collapse
|
3
|
Luo LL, Cao Y, Zhang JJ, Xie YX, Li L, Yang H, Long ZB, Wang L, Wang WP. The role of tRF-Val-CAC-010 in lung adenocarcinoma: implications for tumorigenesis and metastasis. BMC Cancer 2024; 24:1033. [PMID: 39169309 PMCID: PMC11337561 DOI: 10.1186/s12885-024-12800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVE Transfer RNA-derived fragments (tRFs) are short non-coding RNA (ncRNA) sequences, ranging from 14 to 30 nucleotides, produced through the precise cleavage of precursor and mature tRNAs. While tRFs have been implicated in various diseases, including cancer, their role in lung adenocarcinoma (LUAD) remains underexplored. This study aims to investigate the impact of tRF-Val-CAC-010, a specific tRF molecule, on the phenotype of LUAD cells and its role in tumorigenesis and progression in vivo. METHODS The expression level of tRF-Val-CAC-010 was quantified using quantitative real-time polymerase chain reaction (qRT-PCR). Specific inhibitors and mimics of tRF-Val-CAC-010 were synthesized for transient transfection. Cell proliferation was assessed using the Cell Counting Kit-8 (CCK-8), while cell invasion and migration were evaluated through Transwell invasion and scratch assays. Flow cytometry was utilized to analyze cell cycle and apoptosis. The in vivo effects of tRF-Val-CAC-010 on tumor growth and metastasis were determined through tumor formation and metastasis imaging experiments in nude mice. RESULTS The expression level of tRF-Val-CAC-010 was upregulated in A549 and PC9 LUAD cells (P < 0.01). Suppression of tRF-Val-CAC-010 expression resulted in decreased proliferation of A549 and PC9 cells (P < 0.001), reduced invasion and migration of A549 (P < 0.05, P < 0.001) and PC9 cells (P < 0.05, P < 0.01), enhanced apoptosis in both A549 (P < 0.05) and PC9 cells (P < 0.05), and increased G2 phase cell cycle arrest in A549 cells (P < 0.05). In vivo, the tumor formation volume in the tRF-inhibitor group was significantly smaller than that in the model and tRF-NC groups (P < 0.05). The metastatic tumor flux value in the tRF-inhibitor group was also significantly lower than that in the model and tRF-NC groups (P < 0.05). CONCLUSION This study demonstrates that tRF-Val-CAC-010 promotes proliferation, migration, and invasion of LUAD cells and induces apoptosis in vitro, however, its specific effects on the cell cycle require further elucidation. Additionally, tRF-Val-CAC-010 enhances tumor formation and metastasis in vivo. Therefore, tRF-Val-CAC-010 may serve as a novel diagnostic biomarker and potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Li-Lin Luo
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Yue Cao
- Kunming University of Science and Technology, Kunming, Yunnan, 650031, China
| | - Juan-Juan Zhang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Yu-Xin Xie
- Kunming University of Science and Technology, Kunming, Yunnan, 650031, China
| | - Linhui Li
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Hui Yang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Zheng-Bo Long
- Kunming University of Science and Technology, Kunming, Yunnan, 650031, China
| | - Li Wang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China.
| | - Wan-Pu Wang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China.
| |
Collapse
|
4
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
5
|
Ouyang X, Li K, Wang J, Zhu W, Yi Q, Zhong J. HMGA2 promotes nasopharyngeal carcinoma progression and is associated with tumor resistance and poor prognosis. Front Oncol 2024; 13:1271080. [PMID: 38304037 PMCID: PMC10830841 DOI: 10.3389/fonc.2023.1271080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC), as one of the most prevalent malignancies in the head and neck region, still lacks a complete understanding of its pathogenesis. Presently, radiotherapy, concurrent chemoradiotherapy, and targeted therapy stand as the primary modalities for treating NPC. With advancements in medicine, the cure rates for nasopharyngeal carcinoma have been steadily increasing. Nevertheless, recurrence and metastasis persist as the primary reasons for treatment failure. Consequently, a profound exploration of the molecular mechanisms underlying the occurrence and progression of nasopharyngeal carcinoma, along with the exploration of corresponding therapeutic approaches, becomes particularly imperative in the quest for comprehensive solutions to combat this disease. High mobility group AT-hook 2 (HMGA2) is a pivotal protein capable of altering chromatin structure, regulating gene expression, and influencing transcriptional activity. In the realm of cancer research, HMGA2 exhibits widespread dysregulation, playing a crucial role in nearly all malignant tumors. It is implicated in various tumorigenic processes, including cell cycle regulation, cell proliferation, epithelial-mesenchymal transition, angiogenesis, tumor invasion, metastasis, and drug resistance. Additionally, HMGA2 serves as a molecular marker and an independent prognostic factor in certain malignancies. Recent studies have increasingly unveiled the critical role of HMGA2 in nasopharyngeal carcinoma (NPC), particularly in promoting malignant progression, correlating with tumor resistance, and serving as an independent adverse prognostic factor. This review focuses on elucidating the oncogenic role of HMGA2 in NPC, suggesting its potential association with chemotherapy resistance in NPC, and proposing its candidacy as an independent factor in nasopharyngeal carcinoma prognosis assessment.
Collapse
Affiliation(s)
| | - Kangxin Li
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiaqi Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weijian Zhu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Yi
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Yang YC, Lin YW, Lee WJ, Lai FR, Ho KH, Chu CY, Hua KT, Chen JQ, Tung MC, Hsiao M, Wen YC, Chien MH. The RNA-binding protein KSRP aggravates malignant progression of clear cell renal cell carcinoma through transcriptional inhibition and post-transcriptional destabilization of the NEDD4L ubiquitin ligase. J Biomed Sci 2023; 30:68. [PMID: 37580757 PMCID: PMC10424398 DOI: 10.1186/s12929-023-00949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/16/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND KH-type splicing regulatory protein (KHSRP, also called KSRP), a versatile RNA-binding protein, plays a critical role in various physiological and pathological conditions through modulating gene expressions at multiple levels. However, the role of KSRP in clear cell renal cell carcinoma (ccRCC) remains poorly understood. METHODS KSRP expression was detected by a ccRCC tissue microarray and evaluated by an in silico analysis. Cell loss-of-function and gain-of-function, colony-formation, anoikis, and transwell assays, and an orthotopic bioluminescent xenograft model were conducted to determine the functional role of KRSP in ccRCC progression. Micro (mi)RNA and complementary (c)DNA microarrays were used to identify downstream targets of KSRP. Western blotting, quantitative real-time polymerase chain reaction, and promoter- and 3-untranslated region (3'UTR)-luciferase reporter assays were employed to validate the underlying mechanisms of KSRP which aggravate progression of ccRCC. RESULTS Our results showed that dysregulated high levels of KSRP were correlated with advanced clinical stages, larger tumor sizes, recurrence, and poor prognoses of ccRCC. Neural precursor cell-expressed developmentally downregulated 4 like (NEDD4L) was identified as a novel target of KSRP, which can reverse the protumorigenic and prometastatic characteristics as well as epithelial-mesenchymal transition (EMT) promotion by KSRP in vitro and in vivo. Molecular studies revealed that KSRP can decrease NEDD4L messenger (m)RNA stability via inducing mir-629-5p upregulation and directly targeting the AU-rich elements (AREs) of the 3'UTR. Moreover, KSRP was shown to transcriptionally suppress NEDD4L via inducing the transcriptional repressor, Wilm's tumor 1 (WT1). In the clinic, ccRCC samples revealed a positive correlation between KSRP and mesenchymal-related genes, and patients expressing high KSRP and low NEDD4L had the worst prognoses. CONCLUSION The current findings unveil novel mechanisms of KSRP which promote malignant progression of ccRCC through transcriptional inhibition and post-transcriptional destabilization of NEDD4L transcripts. Targeting KSRP and its pathways may be a novel pharmaceutical intervention for ccRCC.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu Hsing Street, Taipei, 11031, Taiwan
| | - Yung-Wei Lin
- International Master/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, 111, Section 3, Hsing Long Road, Taipei, 11696, Taiwan
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Feng-Ru Lai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu Hsing Street, Taipei, 11031, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu Hsing Street, Taipei, 11031, Taiwan
| | - Chih-Ying Chu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu Hsing Street, Taipei, 11031, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu Hsing Street, Taipei, 11031, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Min-Che Tung
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, 111, Section 3, Hsing Long Road, Taipei, 11696, Taiwan.
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu Hsing Street, Taipei, 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Duan SL, Fu WJ, Jiang YK, Peng LS, Ousmane D, Zhang ZJ, Wang JP. Emerging role of exosome-derived non-coding RNAs in tumor-associated angiogenesis of tumor microenvironment. Front Mol Biosci 2023; 10:1220193. [PMID: 37602326 PMCID: PMC10436220 DOI: 10.3389/fmolb.2023.1220193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate ecosystem that is actively involved in various stages of cancer occurrence and development. Some characteristics of tumor biological behavior, such as proliferation, migration, invasion, inhibition of apoptosis, immune escape, angiogenesis, and metabolic reprogramming, are affected by TME. Studies have shown that non-coding RNAs, especially long-chain non-coding RNAs and microRNAs in cancer-derived exosomes, facilitate intercellular communication as a mechanism for regulating angiogenesis. They stimulate tumor growth, as well as angiogenesis, metastasis, and reprogramming of the TME. Exploring the relationship between exogenous non-coding RNAs and tumor-associated endothelial cells, as well as their role in angiogenesis, clinicians will gain new insights into treatment as a result.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei-Jie Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying-Ke Jiang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Lu-Shan Peng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
| | - Diabate Ousmane
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
| | - Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jun-Pu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Wang Y, Zhang T, Du H, Yang M, Xie G, Liu T, Deng S, Yuan W, He S, Wu D, Xu Y. Dipeptidase‑2 is a prognostic marker in lung adenocarcinoma that is correlated with its sensitivity to cisplatin. Oncol Rep 2023; 50:161. [PMID: 37449493 PMCID: PMC10360146 DOI: 10.3892/or.2023.8598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Lung cancer accounts for the highest percentage of cancer morbidity and mortality worldwide, and lung adenocarcinoma (LUAD) is the most prevalent subtype. Although numerous therapies have been developed for lung cancer, patient prognosis is limited by tumor metastasis and more effective treatment targets are urgently required. In the present study, gene expression profiles were extracted from the Gene Expression Omnibus database and mRNA expression data were downloaded from The Cancer Genome Atlas database. In addition, TIMER 2.0 database was used to analyze the expression of genes in normal and multiple tumor tissues. Protein expression was confirmed using the Human Protein Atlas database and LUAD cell lines, sphere formation assay, western blotting, and a xenograft mouse model were used to confirm the bioinformatics analysis. Dipeptidase‑2 (DPEP2) expression was significantly decreased in LUAD and was negatively associated with prognosis. DPEP2 overexpression substantially inhibited epithelial‑mesenchymal transition (EMT) as well as LUAD cell metastasis, and limited the expression of the cancer stem cell transformation markers, CD44 and CD133. In addition, DPEP2 improved LUAD sensitivity to cisplatin by inhibiting EMT; this was verified in vitro and in vivo. These data indicated that DPEP2 upregulates E‑cadherin, thereby regulating cell migration, cancer stem cell transformation, and cisplatin resistance, ultimately affecting the survival of patients with LUAD. Overall, the findings of the present suggest that DPEP2 is important in the development of LUAD and can be used both as a prognostic marker and a target for future therapeutic research.
Collapse
Affiliation(s)
- Yuanyi Wang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ting Zhang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hongfei Du
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Min Yang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Guangsu Xie
- Clinical Laboratory, Xindu District People's Hospital of Chengdu, Chengdu, Sichuan 610500, P.R. China
| | - Teng Liu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shihua Deng
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wei Yuan
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shuang He
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Dongming Wu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ying Xu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
9
|
Xie L, Zhang K, You B, Yin H, Zhang P, Shan Y, Gu Z, Zhang Q. Hypoxic nasopharyngeal carcinoma-derived exosomal miR-455 increases vascular permeability by targeting ZO-1 to promote metastasis. Mol Carcinog 2023; 62:803-819. [PMID: 36929868 DOI: 10.1002/mc.23525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Nasopharyngeal carcinoma (NPC), the most frequent reason for treatment failure in head and neck tumors, has the greatest incidence of distant metastases. Increased vascular permeability facilitates metastasis. Exosomal microRNAs (miRNAs) have been implicated in the development of the premetastatic niche and are emerging as prospective biomarkers in cancer patients. We discovered that a higher level of miR-455 was connected to a larger propensity for NPC metastasis based on deep sequencing and RT-qPCR. We found that hypoxia promoted NPC exosomes release and increased miR-455 expression in a way that was hypoxia-inducible factor 1-alpha (HIF-1α) dependent. Exosomes from NPC cells with high levels of miR-455 were found to specifically target zonula occludens 1 (ZO-1), increasing the permeability of endothelial monolayers in vitro vascular permeability and transendothelial invasion experiments. Additional in vivo studies showed that zebrafish with sustained miR-455-overexpressing NPC cell xenografts displayed increased tumor cell mass throughout the body. In vivo, zebrafish vascular tight junction integrity was disrupted by exosomes produced by NPC cells with elevated miR-455 expression. Mice-bearing xenografts further supported the finding that exosomes containing miR-455 might reduce ZO-1 expression in addition to promote NPC cell growth. These findings suggest that in a hypoxic microenvironment, exosomal miR-455 released by NPC cells enhances vascular permeability and promotes metastasis by targeting ZO-1. The HIF-1α-miR-455-ZO-1 signaling pathway may be a promising predictor and potential therapeutic target for NPC with metastasis.
Collapse
Affiliation(s)
- Lixiao Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Kaiwen Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Bo You
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Haimeng Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Panpan Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Shan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
10
|
A circulating microRNA panel as a novel dynamic monitor for oral squamous cell carcinoma. Sci Rep 2023; 13:2000. [PMID: 36737651 PMCID: PMC9898506 DOI: 10.1038/s41598-023-28550-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) has high recurrence and mortality rates despite advances in diagnosis and treatment. Therefore, it is necessary to identify new biomarkers for early detection, efficient monitoring, and prognosis prediction. Since microRNA (miRNA) is stable and detectable in serum, it has been reported to inform the diagnosis and monitor disease progression through liquid biopsy. In this study, a circulating specific miRNA panel in OSCC patients was developed, and its usefulness as a dynamic monitor was validated. Small RNAs were extracted from the serum of OSCC patients (n = 4) and normal controls (n = 6) and profiled using next-generation sequencing. NGS identified 42 differentially expressed miRNAs (DEmiRNAs) in serum between patients with OSCC and healthy controls, with threefold differences (p < 0.05). Combining the 42 DEmiRNAs and The Cancer Genome Atlas (TCGA) databases OSCC cohort, 9 overlapping DEmiRNAs were screened out. Finally, 4 significantly up-regulated miRNAs (miR-92a-3p, miR-92b-3p, miR-320c and miR-629-5p) were identified from OSCC patients via validation in the Chungnam National University Hospital cohort. Application of the specific miRNA panel for distinguishing OSCC patients from healthy controls produced specificity and sensitivity of 97.8 and 74%, respectively. In addition, the serum levels of these 4 miRNAs significantly decreased after complete surgical resection and increased after recurrence. We suggest that circulating 4-miRNA panel might be promising non-invasive predictors for diagnosing and monitoring the progression of patients with OSCC.
Collapse
|
11
|
Shi L, Kan J, Zhuo L, Wang S, Chen S, Zhang B, Ke B. Bioinformatics identification of miR-514b-5p promotes NSCLC progression and induces PI3K/AKT and p38 pathways by targeting small glutamine-rich tetratricopeptide repeat-containing protein beta. FEBS J 2023; 290:1134-1150. [PMID: 36180981 DOI: 10.1111/febs.16639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/05/2022] [Accepted: 09/28/2022] [Indexed: 02/17/2023]
Abstract
Lung cancer is the most aggressive cancer with the highest mortality and incidence rates worldwide. MicroRNAs have been identified as potential targets for non-small cell lung cancer (NSCLC) treatment. However, the modulatory role of miR-514b-5p in NSCLC progression is little known. In the present study, miRNA expression datasets for NSCLC were downloaded from the Cancer Genome Atlas and Gene Ontology Omnibus databases. Gene expression was assessed using a quantitative real-time PCR, and western blot analysis and immunohistochemical staining was used to determine protein expression. Gain and loss of function experiments were performed to investigate the impact of miR-514b-5p and small glutamine-rich tetratricopeptide repeat-containing protein beta (SGTB) on cell proliferation and apoptosis. RNA immunoprecipitation and dual-luciferase assays were performed to analyse the target gene of miR-514b-5p. The biological roles of miR-514b-5p were lastly evaluated using nude mouse tumorigenicity assays in vivo. We found that miR-514b-5p was dramatically increased in NSCLC tissues and higher miR-514b-5p expression was associated with poorer overall survival in NSCLC patients. Furthermore, overexpression of miR-514b-5p promoted NSCLC cell growth and suppressed apoptosis by inducing the activation of the phosphatidylinositol-3-kinase (PI3K)/AKT and p38 signalling pathways. Mechanistically, dual-luciferase and the RNA immunoprecipitation results highlighted that SGTB was a target gene of miR-514b-5p. Moreover, overexpression of SGTB reduced cell division and promoted apoptosis in vitro through blocking the PI3K/AKT and p38 signalling pathways. Our findings indicated that miR-514b-5p contributes to carcinoma progression in NSCLC via the PI3K/AKT and p38 signalling pathways by targeting SGTB and this could be a promising diagnostic and therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lin Shi
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jun Kan
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Zhuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Siyun Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shaobing Chen
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Bei Zhang
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin Ke
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
12
|
Formation of pre-metastatic niches induced by tumor extracellular vesicles in lung metastasis. Pharmacol Res 2023; 188:106669. [PMID: 36681367 DOI: 10.1016/j.phrs.2023.106669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
There are a number of malignant tumors that metastasize into the lung as one of their most common sites of dissemination. The successful infiltration of tumor cells into distant organs is the result of the cooperation between tumor cells and distant host cells. When tumor cells have not yet reached distant organs, in situ tumor cells secrete extracellular vesicles (EVs) carrying important biological information. In recent years, scholars have found that tumor cells-derived EVs act as the bridge between orthotopic tumors and secondary metastases by promoting the formation of a pre-metastatic niche (PMN), which plays a key role in awakening dormant circulating tumor cells and promoting tumor cell colonization. This review provides an overview of multiple routes and mechanisms underlying PMN formation induced by EVs and summaries study findings that underline a potential role of EVs in the intervention of lung PMN, both as a target or a carrier for drug design. In this review, the underlying mechanisms of EVs in lung PMN formation are highlighted as well as potential applications to lung metastasis diagnosis and treatment.
Collapse
|
13
|
Yan C, Wang P, Zhao C, Yin G, Meng X, Li L, Cai S, Meng B. Long Noncoding RNA MAGI2-AS3 Represses Cell Progression in Clear Cell Renal Cell Carcinoma by Modulating the miR-629-5p/PRDM16 Axis. Crit Rev Eukaryot Gene Expr 2023; 33:43-56. [PMID: 37602452 DOI: 10.1615/critreveukaryotgeneexpr.2023048338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The objective of this study was to determine the regulatory mechanism of MAGI2-AS3 in clear cell renal cell carcinoma (ccRCC), thereby supplying a new insight for ccRCC treatment. Expression data in TCGA-KIRC were obtained. Target gene lncRNA for research was determined using expression analysis and clinical analysis. lncRNA's downstream regulatory miRNA and mRNA were predicted by bioinformatics databases. ccRCC cell malignant phenotypes were detected via CCK-8, colony formation, Transwell migration, and invasion assays. The targeting relationship between genes was assessed through dual-luciferase reporter gene analysis. Kaplan-Meier (K-M) analysis was carried out to verify the effect of MAGI2-AS3, miR-629-5p, and PRDM16 on the survival rate of ccRCC patients. MAGI2-AS3 expression in ccRCC tissue and cells was shown to be markedly decreased and its expression to continuously decline with tumor progression. MAGI2-AS3 suppresses ccRCC proliferation and migration. Dual-luciferase assay showed that MAGI2-AS3 binds miR-629-5p and that miR-629-5p binds PRDM16. In addition, functional experiments showed that MAGI2-AS3 facilitates PRDM16 expression by repressing miR-629-5p expression, thereby suppressing ccRCC cell aggression. K-M analysis showed that upregulation of either MAGI2-AS3 or PRDM16 significantly improves ccRCC patient survival, while upregulation of miR-629-5p has no significant impact. MAGI2-AS3 sponges miR-629-5p to modulate PRDM16 to mediate ccRCC development. Meanwhile, the MAGI2-AS3/miR-629-5p/PRDM16 axis, as a regulatory pathway of ccRCC progression, may be a possible therapeutic target and prognostic indicator of ccRCC.
Collapse
Affiliation(s)
- Chengquan Yan
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Pengfei Wang
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Chaofei Zhao
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Guangwei Yin
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Xin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Lin Li
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Shengyong Cai
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Bin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| |
Collapse
|
14
|
Lee SJ, Kim JM, Lee ES, Park KY, Kim HR. Relationship Between MicroRNA Signature and Arterial Stiffness in Patients With Ischemic Stroke. J Clin Neurol 2023; 19:28-35. [PMID: 36606643 PMCID: PMC9833874 DOI: 10.3988/jcn.2023.19.1.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE We investigated whether circulating microRNAs (miRNAs) is associated with arterial stiffness in patients with acute ischemic stroke. METHODS We recruited patients with acute ischemic stroke who were admitted to a university hospital stroke center and underwent carotid-femoral pulse wave velocity (cfPWV) measurement using SphygmoCor (AtCor Medical, Sydney, Australia) and brachial-ankle PWV using a volume-plethysmography device (VP-1000, Omron Colin, Komaki, Japan). Circulating miRNAs were measured in venous blood samples stored in EDTA. We selected five miRNAs (miR-17, miR-93, miR-450, miR-629, and let-7i) related to atherosclerosis based on a literature review. Pearson's correlation analysis was applied to the correlations between miRNAs and arterial stiffness parameters. Finally, multivariable linear regression analysis was performed to identify the independent factors for cfPWV. RESULTS This study included 70 patients (age=71.1±10.3 years [mean±SD], 29 females). The expression levels of miR-93 (r=-0.27, p=0.049) and let-7i (r=-0.27, p=0.039) were inversely correlated with cfPWV. Multivariable linear regression analysis including age, hypertension, and estimated glomerular filtration rate showed that let-7i was independently related with cfPWV (standardized coefficient=-0.262, p=0.036). Correlation analysis indicated that let-7i was positively associated with visceral muscle Hounsfield units on computed tomography (r=0.264, p=0.043). CONCLUSIONS The expression level of let-7i was independently related to arterial stiffness in patients with cerebral infarction, suggesting that it plays a pathophysiological role in atherosclerosis.
Collapse
Affiliation(s)
- Sang-Jin Lee
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jeong-Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Sun Lee
- Department of Laboratory Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kwang-Yeol Park
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hye Ryoun Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Li DK, Chen XR, Wang LN, Wang JH, Li JK, Zhou ZY, Li X, Cai LB, Zhong SS, Zhang JJ, Zeng YM, Zhang QB, Fu XY, Lyu XM, Li MY, Huang ZX, Yao KT. Exosomal HMGA2 protein from EBV-positive NPC cells destroys vascular endothelial barriers and induces endothelial-to-mesenchymal transition to promote metastasis. Cancer Gene Ther 2022; 29:1439-1451. [PMID: 35388172 PMCID: PMC9576596 DOI: 10.1038/s41417-022-00453-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
Abstract
Increased vascular permeability facilitates metastasis. Cancer-secreted exosomes are emerging mediators of cancer-host crosstalk. Epstein-Barr virus (EBV), identified as the first human tumor-associated virus, plays a crucial role in metastatic tumors, especially in nasopharyngeal carcinoma (NPC). To date, whether and how exosomes from EBV-infected NPC cells affect vascular permeability remains unclear. Here, we show that exosomes from EBV-positive NPC cells, but not exosomes from EBV-negative NPC cells, destroy endothelial cell tight junction (TJ) proteins, which are natural barriers against metastasis, and promote endothelial-to-mesenchymal transition (EndMT) in endothelial cells. Proteomic analysis revealed that the level of HMGA2 protein was higher in exosomes derived from EBV-positive NPC cells compared with that in exosomes derived from EBV-negative NPC cells. Depletion of HMGA2 in exosomes derived from EBV-positive NPC cells attenuates endothelial cell dysfunction and tumor cell metastasis. In contrast, exosomes from HMGA2 overexpressing EBV-negative NPC cells promoted these processes. Furthermore, we showed that HMGA2 upregulates the expression of Snail, which contributes to TJ proteins reduction and EndMT in endothelial cells. Moreover, the level of HMGA2 in circulating exosomes is significantly higher in NPC patients with metastasis than in those without metastasis and healthy negative controls, and the level of HMGA2 in tumor cells is associated with TJ and EndMT protein expression in endothelial cells. Collectively, our findings suggest exosomal HMGA2 from EBV-positive NPC cells promotes tumor metastasis by targeting multiple endothelial TJ and promoting EndMT, which highlights secreted HMGA2 as a potential therapeutic target and a predictive marker for NPC metastasis.
Collapse
Affiliation(s)
- Deng-Ke Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xing-Rui Chen
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li-Na Wang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, 510180, China
| | - Jia-Hong Wang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ji-Ke Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Ying Zhou
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China
| | - Lin-Bo Cai
- Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China
| | | | - Jing-Jing Zhang
- Department of Radiotherapy, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, 528403, China
| | - Yu-Mei Zeng
- Department of Pathology, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, 528403, China
| | - Qian-Bing Zhang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Yan Fu
- Department of Otorhinolaryngology Head and Neck Surgery, General Hospital of Southern Theater Command, People's Liberation Army of China, Guangzhou, 510010, China
| | - Xiao-Ming Lyu
- Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Min-Ying Li
- Department of Radiotherapy, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, 528403, China.
| | - Zhong-Xi Huang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Kai-Tai Yao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Jeong HR, Han JA, Kim H, Lee HJ, Shim YS, Kang MJ, Yoon JS, Ryu S, Hwang IT. Exosomal miRNA Profile in Small-for-Gestational-Age Children: A Potential Biomarker for Catch-Up Growth. Genes (Basel) 2022; 13:938. [PMID: 35741700 PMCID: PMC9223036 DOI: 10.3390/genes13060938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Objective: The mechanism underlying postnatal growth failure and catch-up growth in small-for-gestational-age (SGA) children is poorly understood. This study investigated the exosomal miRNA signature associated with catch-up growth in SGA children. Methods: In total, 16 SGA and 10 appropriate-for-gestational-age (AGA) children were included. Serum exosomal miRNA was analyzed using next-generation sequencing (NGS). Exosomal miRNA was profiled for five SGA children with catch-up growth (SGA-CU), six SGA children without CU growth (SGA-nCU), and five AGA children. Results: Exosomal miRNA profiles were clustered into three clear groups. The exosomal miRNA expression profiles of the SGA-nCU group differed from those of the SGA-CU and AGA groups. In all, 22 miRNAs were differentially expressed between SGA-nCU and AGA, 19 between SGA-nCU and SGA-CU, and only 6 between SGA-CU and AGA. In both SGA-nCU and SGA-CU, miR-874-3p was upregulated and miR-6126 was downregulated. Therefore, these two miRNAs could serve as biomarkers for SGA. Compared with SGA-CU and AGA, miR-30c-5p, miR-363-3p, miR-29a-3p, and miR-29c-3p were upregulated in SGA-nCU, while miR-629-5p and miR-23a-5p were downregulated. These six miRNAs could be associated with growth failure in SGA-nCU children. Conclusions: SGA children without CU have a distinct exosomal miRNA expression profile compared with AGA and SGA children with CU. Exosomal miRNAs could serve as novel biomarkers for CU.
Collapse
Affiliation(s)
- Hwal Rim Jeong
- Department of Pediatrics, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea;
| | - Jae-A Han
- Soonchunhyang Institute of Medio-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea; (J.-A.H.); (H.K.)
| | - Heeji Kim
- Soonchunhyang Institute of Medio-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea; (J.-A.H.); (H.K.)
| | - Hye Jin Lee
- Department of Pediatrics, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.J.L.); (M.J.K.); (J.S.Y.)
| | - Young Suk Shim
- Department of Pediatrics, School of Medicine, Ajou University, Suwon 16499, Korea;
| | - Min Jae Kang
- Department of Pediatrics, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.J.L.); (M.J.K.); (J.S.Y.)
| | - Jong Seo Yoon
- Department of Pediatrics, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.J.L.); (M.J.K.); (J.S.Y.)
| | - Seongho Ryu
- Soonchunhyang Institute of Medio-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea; (J.-A.H.); (H.K.)
| | - Il Tae Hwang
- Department of Pediatrics, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.J.L.); (M.J.K.); (J.S.Y.)
| |
Collapse
|
17
|
Kumar VS, Anjali K. Tumour generated exosomal miRNAs: A major player in tumour angiogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166383. [DOI: 10.1016/j.bbadis.2022.166383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
18
|
Wang C, Cheng B. MicroRNA miR-3646 promotes malignancy of lung adenocarcinoma cells by suppressing sorbin and SH3 domain-containing protein 1 via the c-Jun NH2-terminal kinase signaling pathway. Bioengineered 2022; 13:4869-4884. [PMID: 35196185 PMCID: PMC8973682 DOI: 10.1080/21655979.2022.2036889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly malignant tumor. In this study, we examined the role of miR-3646 and its underlying mechanism in the progression of LUAD. The expression of miR-3646 and sorbin and SH3 domain-containing protein 1 (SORBS1) in LUAD tissues and cells was evaluated by quantitative reverse transcription-polymerase chain reaction. LUAD cell adhesion, proliferation, apoptosis was determined. The targeting relationship between SORBS1 and miR-3646 was verified by dual luciferase and RNA pull-down assays. In vivo assays were performed to verify the in vitro results. The expression of miR-3646 was found to be upregulated in LUAD tissues and cells. MiR-3646 overexpression stimulated the proliferation and adhesion of LUAD cells but inhibite
d apoptosis, whereas a miR-3646 inhibitor produced the opposite results. Furthermore, the inhibitory effect of miR-3646 inhibitor was verified in vivo. SORBS1, a target gene identified downstream of miR-3646, was downregulated in LUAD tissues and cells. Additionally, increased SORBS1 inhibited the malignant phenotypes of LUAD cells, which was restored by miR-3646 upregulation. Additionally, western blot analysis revealed that SORBS1 ectopic expression disrupted the JNK signaling pathway, and this effect was restored by miR-3646 overexpression. Thus, this study revealed that miR-3646 promotes LUAD cell proliferation and adhesion, and reduces apoptosis by directly downregulating SORBS1 via the JNK signaling pathway. Investigation of the molecular mechanism of LUAD carcinogenesis revealed that miR-3646 may serve as a biomarker for LUAD treatment.in vivo
Collapse
Affiliation(s)
- Chun Wang
- Out-patient Office, The Affiliated Hospital of Jianghan University, Wuhan Sixth Hospital, Wuhan, Hubei, China
| | - Bo Cheng
- Comprehensive Second Division, The Affiliated Hospital of Jianghan University, Wuhan Sixth Hospital, Wuhan, Hubei, China
| |
Collapse
|
19
|
Tai Y, Chen J, Tao Z, Ren J. Non-coding RNAs: New players in mitophagy and neurodegeneration. Neurochem Int 2021; 152:105253. [PMID: 34864089 DOI: 10.1016/j.neuint.2021.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Mitophagy controls mitochondrial quality to maintain cellular homeostasis, while aberrations in this process are responsible for neurodegenerative diseases. Mitophagy is initiated through the recruitment of autophagosomes in a ubiquitin-dependent or ubiquitin-independent manner under different stress conditions. Although the detailed molecular mechanisms of how mitophagy processes influence neurodegeneration remain largely uncharacterized, there is mounting evidence indicating that non-coding RNAs (ncRNAs), a variety of endogenous regulators, including microRNAs and long non-coding RNAs, extensively participate in mitophagy processes and play pivotal roles in the aging process and neurodegenerative diseases. Here, we reviewed the major mitophagy pathways modulated by some classical and newly found ncRNAs and summarized the diverse mechanisms in a regulatory network. We also discussed the generalizability of ncRNAs in the development of common neurodegenerative diseases related to proteotoxicity and the importance of mitophagy in the pathogenesis of these diseases. In summary, we propose that ncRNAs act as linkers between mitophagy and neurodegeneration, showing the potential therapeutic application of mitophagy regulation mediated by ncRNAs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yusi Tai
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhouteng Tao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Liu Y, Zhao S, Wang J, Zhu Z, Luo L, Xiang Q, Zhou M, Ma Y, Wang Z, Zhao Z. MiR-629-5p Promotes Prostate Cancer Development and Metastasis by Targeting AKAP13. Front Oncol 2021; 11:754353. [PMID: 34722307 PMCID: PMC8554144 DOI: 10.3389/fonc.2021.754353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer (PCa) has become the most frequently occurring cancer among western men according to the latest report, and patients’ prognosis is often poor in the event of tumor progression, therefore, many researches are devoted to exploring the molecular mechanism of PCa metastasis. MicroRNAs (miRNA) have proved to play an important role in this process. In present study, by combining clinical samples with public databases, we found that miR-629-5p increased to varying degrees in primary localized PCa tissues and metastatic PCa tissues compared with adjacent normal tissues, and bioinformatics analysis suggested that high level of miR-629-5p was related to poor prognosis. Functionally, miR-629-5p drove PCa cell proliferation, migration and invasion in vitro, and promoted growth of PCa cells in vivo. Moreover, A-kinase Anchor Protein 13 (AKAP13) was screened as a direct target of miR-629-5p, that expression was negatively correlated with the malignant phenotype of tumor cells. In the end, through verification in clinical specimens, we found that AKAP13 could be independently used as a clinical prognostic indicator. Overall, the present study indicates that miR-629-5p plays an oncogenic role in PCa by targeting AKAP13, which provides a new idea for clinical diagnosis and treatment of complex refractory PCa.
Collapse
Affiliation(s)
- Yangzhou Liu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jiamin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Zhiguo Zhu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lianmin Luo
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Qian Xiang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Mingda Zhou
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Yuxiang Ma
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Zuomin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Liu QL, Zhang Z, Wei X, Zhou ZG. Noncoding RNAs in tumor metastasis: molecular and clinical perspectives. Cell Mol Life Sci 2021; 78:6823-6850. [PMID: 34499209 PMCID: PMC11073083 DOI: 10.1007/s00018-021-03929-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is the main culprit of cancer-associated mortality and involves a complex and multistage process termed the metastatic cascade, which requires tumor cells to detach from the primary site, intravasate, disseminate in the circulation, extravasate, adapt to the foreign microenvironment, and form organ-specific colonization. Each of these processes has been already studied extensively for molecular mechanisms focused mainly on protein-coding genes. Recently, increasing evidence is pointing towards RNAs without coding potential for proteins, referred to as non-coding RNAs, as regulators in shaping cellular activity. Since those first reports, the detection and characterization of non-coding RNA have explosively thrived and greatly enriched the understanding of the molecular regulatory networks in metastasis. Moreover, a comprehensive description of ncRNA dysregulation will provide new insights into novel tools for the early detection and treatment of metastatic cancer. In this review, we focus on discussion of the emerging role of ncRNAs in governing cancer metastasis and describe step by step how ncRNAs impinge on cancer metastasis. In particular, we highlight the diagnostic and therapeutic applications of ncRNAs in metastatic cancer.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
22
|
Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A (RhoA) and Rho/Rho associated protein kinase (Rho/ROCK) pathway. Chin Med J (Engl) 2021; 134:2619-2628. [PMID: 34748526 PMCID: PMC8577671 DOI: 10.1097/cm9.0000000000001804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Microribose nucleic acids (miRNAs) are implicated in the progression of lung adenocarcinoma. MicroRNA-345-5p (miR-345-5p) is a recently identified anti-oncogene in some human cancers, but its functional role and possible molecular mechanism in lung adenocarcinoma remain unknown. This study aimed to identify the biological function and underlying mechanism of miR-345-5p in lung adenocarcinoma cells. METHODS In this study, lung adenocarcinoma tissues and adjacent tissues were collected in the First Affiliated Hospital of Anhui Medical University between April 2016 and February 2017. The expression of miR-345-5p and ras homolog family member A (RhoA) in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines (A549, H1650, PC-9, and H441) was detected by reverse transcription quantitative polymerase chain reaction analysis. Functional assays including colony formation, flow cytometry analysis, wound healing, and transwell assays were performed to assess the proliferation, apoptosis, migration, and invasion of lung adenocarcinoma cells. In addition, RNA pulldown and luciferase reporter assays were conducted to evaluate the relationship between miR-345-5p and RhoA. Difference between the two groups was analyzed with Student's t test, while that among multiple groups was analyzed with one-way analysis of variance. RESULTS MiR-345-5p expression displayed lower level in lung adenocarcinoma tissues (0.241 ± 0.095 vs.1.000 ± 0.233, t = 19.247, P < 0.001) and cell lines (F = 56.992, P < 0.001) than control tissues and cells. Functional experiments demonstrated that upregulation of miR-345-5p inhibited the malignant phenotypes of lung adenocarcinoma cells via suppressing cell proliferation, migration, invasion, and facilitating cell apoptosis. Additionally, RhoA was verified to be the downstream target of miR-345-5p. Expression of RhoA was downregulated by overexpression of miR-345-5p in PC-9 (0.321 ± 0.047 vs. 1.000 ± 0.127, t = 8.536, P < 0.001) and H1650 (0.398 ± 0.054 vs. 1.000 ± 0.156, t = 4.429, P = 0.011) cells. Rescue assays revealed that overexpression of RhoA rescued the suppressive effects of miR-345-5p upregulation on proliferation, migration, and invasion of lung adenocarcinoma cells. Further, miR-345-5p was found to regulate the Rho/Rho-associated protein kinase (ROCK) signaling pathway by downregulation of RhoA in lung adenocarcinoma cells. CONCLUSIONS MiR-345-5p plays a tumor suppressor role in lung adenocarcinoma cells by downregulating RhoA to inactivate the Rho/ROCK pathway.
Collapse
|
23
|
Xiao L, Liu C, Zhang S, Qiu Y, Huang D, Zhang D, Chen H, Ling H, Liu Y, Zhang X. miR-3187-3p enhances migration and invasion by targeting PER2 in head and neck squamous cell carcinomas. J Cancer 2021; 12:5231-5240. [PMID: 34335939 PMCID: PMC8317515 DOI: 10.7150/jca.58593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Invasion and metastasis are major contributors to treatment failure in patients with head and neck squamous cell carcinomas (HNSCCs) and microRNAs (miRNAs) are reported to play important roles in tumor progression. Our study therefore try to find the crucial miRNAs and reveal their molecular and functional mechanisms involved in migration and invasion of HNSCCs. Through The Cancer Genome Atlas (TCGA) data analysis, we screened out miR-3187-3p and its biological function and specific mechanism were further analyzed. The wound-healing and transwell invasion assay demonstrated that miR-3187-3p promoted the capacity of migration and invasion of HNSCCs in vitro. Luciferase reporter assays showed that PER2 was a direct target of miR-3187-3p, which could reverse the effect of miR-3187-3p in HNSCCs. Furthermore, we found that miR-3187-3p / PER2 axis activated the Wnt / β-catenin signaling pathway in HNSCCs. Altogether, our study indicated that miR-3187-3p enhanced migration and invasion by targeting PER2 in HNSCCs.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Huihong Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Hang Ling
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 87 Xiangya Road, Changsha, Hunan 410008, China
| |
Collapse
|
24
|
Non-coding RNA in cancer. Essays Biochem 2021; 65:625-639. [PMID: 33860799 PMCID: PMC8564738 DOI: 10.1042/ebc20200032] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Majority of the human genome is transcribed to RNAs that do not encode proteins. These non-coding RNAs (ncRNAs) play crucial roles in regulating the initiation and progression of various cancers. Given the importance of the ncRNAs, the roles of ncRNAs in cancers have been reviewed elsewhere. Thus, in this review, we mainly focus on the recent studies of the function, regulatory mechanism and therapeutic potential of the ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA (piRNA), in different type of cancers.
Collapse
|
25
|
Xie S, Wu Z, Qi Y, Wu B, Zhu X. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges. Biomed Pharmacother 2021; 138:111450. [PMID: 33690088 DOI: 10.1016/j.biopha.2021.111450] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the common malignant tumors that threaten human life with serious incidence and high mortality. According to the histopathological characteristics, lung cancer is mainly divided into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for about 80-85% of lung cancers. In fact, lung cancer metastasis is a major cause of treatment failure in clinical patients. The underlying reason is that the mechanisms of lung cancer metastasis are still not fully understood. The metastasis of lung cancer cells is controlled by many factors, including the interaction of various components in the lung cancer microenvironment, epithelial-mesenchymal transition (EMT) transformation, and metastasis of cancer cells through blood vessels and lymphatics. The molecular relationships are even more intricate. Further study on the mechanisms of lung cancer metastasis and in search of effective therapeutic targets can bring more reference directions for clinical drug research and development. This paper focuses on the factors affecting lung cancer metastasis and connects with related molecular mechanisms of the lung cancer metastasis and mechanisms of lung cancer to specific organs, which mainly reviews the latest research progress of NSCLC metastasis. Besides, in this paper, experimental models of lung cancer and metastasis, mechanisms in SCLC transfer and the challenges about clinical management of lung cancer are also discussed. The review is intended to provide reference value for the future research in this field and promising treatment clues for clinical patients.
Collapse
Affiliation(s)
- Shimin Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zhengguo Wu
- Department of Thoracic Surgery, Yantian District People's Hospital, Shenzhen, China
| | - Yi Qi
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Binhua Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
26
|
Upregulation of Serum miR-629 Predicts Poor Prognosis for Non-Small-Cell Lung Cancer. DISEASE MARKERS 2021; 2021:8819934. [PMID: 33763157 PMCID: PMC7946467 DOI: 10.1155/2021/8819934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most common types of cancer worldwide. Accumulating evidence has suggested that aberrant expression of microRNAs (miRNAs) is involved in the carcinogenesis and progression of NSCLC. The current study is aimed at investigating the clinical significance of serum miR-629 in NSCLC. The expression levels of serum miR-629 in patients with NSCLC, patients with nonmalignant lung diseases, and healthy controls were assessed by real-time quantitative polymerase chain reaction. Our results showed that serum miR-629 levels were significantly upregulated in NSCLC patients compared to the controls. Serum miR-629 exhibited better performance for discriminating NSCLC patients from healthy controls, compared to the traditional biomarkers CYFRA 21-1 and CEA. In addition, a high serum miR-629 level was positively correlated with adverse clinicopathological parameters including lymph node metastasis, differentiation, and clinical stage. Serum miR-629 was dramatically reduced in the NSCLC cases receiving surgical treatment. Moreover, the patients in the high serum miR-629 group suffered poorer overall survival and disease-free survival than those in the low serum miR-629 group. In conclusion, serum miR-629 might serve as a potential prognostic biomarker for NSCLC.
Collapse
|
27
|
Key microRNAs and hub genes associated with poor prognosis in lung adenocarcinoma. Aging (Albany NY) 2021; 13:3742-3762. [PMID: 33461176 PMCID: PMC7906143 DOI: 10.18632/aging.202337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
In the study, we obtained 36 pairs of lung adenocarcinoma (LUAD) tissues and adjacent non-tumorous tissues. Then, we chose a specific hub-target gene of miRNA and used qRT-PCR to evaluate the expression of PECAM1. We found that the expression level of PECAM1 mRNA in LUAD was significantly lower than that in adjacent nontumor tissues (P<0.0001). Univariate and multivariate analyses were conducted on 481 LUAD patients from The Cancer Genome Atlas (TCGA) according to the Cox proportional hazard regression model to evaluate the impact of PECAM1 expression and other clinicopathological factors on survival. The results showed that the low expression of PECAM1 was an important independent predictor of poor overall survival (HR, 0.704; 95% CI, 0.518-0.957; P = 0.025). Based on the Tumor Immune Estimation Resource (TIMER) database, the relationship between PECAM1 expression and B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration was weak in LUAD (P<0.01). In particular, a more significant positive correlation between PECAM1 expression and HLA-complex members, CD1C, NRP1, and ITGAX expression in dendritic cell was detected in LUAD. The mechanism which PECAM1 involved in the development of LUAD may be closely related to changes in the immune microenvironment.
Collapse
|
28
|
Zeng Y, Fu BM. Resistance Mechanisms of Anti-angiogenic Therapy and Exosomes-Mediated Revascularization in Cancer. Front Cell Dev Biol 2020; 8:610661. [PMID: 33363174 PMCID: PMC7755714 DOI: 10.3389/fcell.2020.610661] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Anti-angiogenic therapies (AATs) have been widely used for cancer treatment. But the beneficial effects of AATs are short, because AAT-induced tumor revascularization facilitates the tumor relapse. In this mini-review, we described different forms of tumor neovascularization and revascularization including sprouting angiogenesis, vessel co-option, intussusceptive angiogenesis, and vasculogenic mimicry, all of which are closely mediated by vascular endothelial growth factor (VEGF), angiopoietins, matrix metalloproteinases, and exosomes. We also summarized the current findings for the resistance mechanisms of AATs including enhancement in pro-angiogenic cytokines, heterogeneity in tumor-associated endothelial cells (ECs), crosstalk between tumor cells and ECs, masking of extracellular vesicles, matrix stiffness and contributions from fibroblasts, macrophages and adipocytes in the tumor microenvironment. We highlighted the revascularization following AATs, particularly the role of exosome stimulating factors such as hypoxia and miRNA, and that of exosomal cargos such as cytokines, miRNAs, lncRNAs, and circRNAs from the tumor ECs in angiogenesis and revascularization. Finally, we proposed that renormalization of tumor ECs would be a more efficient cancer therapy than the current AATs.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| |
Collapse
|
29
|
Wang G, Li Y, Zhang D, Zhao S, Zhang Q, Luo C, Sun X, Zhang B. CELSR1 Acts as an Oncogene Regulated by miR-199a-5p in Glioma. Cancer Manag Res 2020; 12:8857-8865. [PMID: 33061581 PMCID: PMC7520142 DOI: 10.2147/cmar.s258835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose This study aimed to elucidate the biological function and upstream regulatory mechanism of CELSR1 in glioma. Materials and Methods We evaluated the expression of CELSR1 in glioma by TCGA_GEPIA tool, RT-qPCR, and Western blot assays. CCK-8, wound healing, and transwell invasion assays were, respectively, performed to detect the effect of CELSR1 on cell proliferation, migration, and invasion. The upstream regulatory miRNAs of CELSR1 were predicted by TargetScan and validated by luciferase activity reporter assay. Results CELSR1 is overexpressed in glioma (P<0.05). CELSR1 promoted glioma cell proliferation, migration and invasion (P<0.01). CELSR1 was a direct target of miR-199a-5p. miR199a-5p mimics significantly inhibited CELSR1 mRNA and protein expression (P<0.01). miR199a-5p mimics reversed the effects of CELSR1 on glioma cell behaviors (P<0.01). Conclusion CELSR1 acts as an oncogene promoting glioma cell proliferation, migration, and invasion, which is regulated by miR199a-5p.
Collapse
Affiliation(s)
- Guang Wang
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Yong Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital Affiliated to Third Military Medical University, Chongqing, People's Republic of China
| | - Dongxia Zhang
- National Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital Affiliated to Third Military Medical University, Chongqing, People's Republic of China
| | - Songtao Zhao
- National Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital Affiliated to Third Military Medical University, Chongqing, People's Republic of China
| | - Qiong Zhang
- National Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital Affiliated to Third Military Medical University, Chongqing, People's Republic of China
| | - Chao Luo
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Xiaochuan Sun
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bingqian Zhang
- Department of Clinical Medicine, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| |
Collapse
|