1
|
Srivastava TP, Ajmeriya S, Goel I, Talukdar J, Srivastava A, Parshad R, Deo SVS, Mathur SR, Gogia A, Rai A, Dhar R, Karmakar S. Prognostic role of Androgen Receptor splice variant 7 (AR-V7) in the pathogenesis of breast cancer. BMC Cancer 2024; 24:1398. [PMID: 39538154 PMCID: PMC11562864 DOI: 10.1186/s12885-024-13165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The Androgen Receptor (AR) has emerged as an endocrine therapy target in Breast Cancer, exhibiting up to 80% expression in clinical cases. AR-V7, a constitutively activated splice variant of AR with a truncated ligand-binding domain (LBD), demonstrates ligand-independent transcriptional activity and resistance to nonsteroidal antiandrogens like Bicalutamide or Enzalutamide, targeting the LBD. In metastatic prostate cancer, elevated AR-V7 levels lead to therapeutic resistance and increased metastasis. METHODS In this study, we evaluated the expression of AR and AR-V7 in cell lines and a cohort of 89 patients undergoing surgical intervention for treatment-naïve breast cancer. Further clinicopathological correlations and survival analysis were performed to evaluate the relationship between the AR and AR-V7 expression and clinical outcomes. RESULTS AR-V7/AR-FL ratio was elevated in the TNBC cell line and downregulation of AR-FL upon AR antagonists' treatment led to a compensatory increase in AR-V7. Clinical samples showed significantly elevated expression of AR and AR-V7 in tumors compared to control cases. Further clinicopathological correlation revealed aggressive clinical traits, higher pathological grades, and poor survival with AR-V7 expression. CONCLUSIONS Our study unravels AR-V7 as a marker for poor clinical outcomes, predicting breast cancer aggressiveness, and encourages consideration of AR-V7 as a probable target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Isha Goel
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Srivastava
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | - Rajinder Parshad
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Gogia
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Avdhesh Rai
- DBT Centre For Molecular Biology and Cancer Research, Dr. Bhubaneswar Borooah Cancer Institute, Guwahati, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Xu P, Yang JC, Chen B, Ning S, Zhang X, Wang L, Nip C, Shen Y, Johnson OT, Grigorean G, Phinney B, Liu L, Wei Q, Corey E, Tepper CG, Chen HW, Evans CP, Dall'Era MA, Gao AC, Gestwicki JE, Liu C. Proteostasis perturbation of N-Myc leveraging HSP70 mediated protein turnover improves treatment of neuroendocrine prostate cancer. Nat Commun 2024; 15:6626. [PMID: 39103353 PMCID: PMC11300456 DOI: 10.1038/s41467-024-50459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
N-Myc is a key driver of neuroblastoma and neuroendocrine prostate cancer (NEPC). One potential way to circumvent the challenge of undruggable N-Myc is to target the protein homeostasis (proteostasis) system that maintains N-Myc levels. Here, we identify heat shock protein 70 (HSP70) as a top partner of N-Myc, which binds a conserved "SELILKR" motif and prevents the access of E3 ubiquitin ligase, STIP1 homology and U-box containing protein 1 (STUB1), possibly through steric hindrance. When HSP70's dwell time on N-Myc is increased by treatment with the HSP70 allosteric inhibitor, STUB1 is in close proximity with N-Myc and becomes functional to promote N-Myc ubiquitination on the K416 and K419 sites and forms polyubiquitination chains linked by the K11 and K63 sites. Notably, HSP70 inhibition significantly suppressed NEPC tumor growth, increased the efficacy of aurora kinase A (AURKA) inhibitors, and limited the expression of neuroendocrine-related pathways.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Joy C Yang
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Bo Chen
- Department of Urologic Surgery, University of California, Davis, CA, USA
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Leyi Wang
- Department of Urologic Surgery, University of California, Davis, CA, USA
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA, USA
| | - Christopher Nip
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Yuqiu Shen
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Oleta T Johnson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | | | - Brett Phinney
- Proteomics Core Facility, University of California, Davis, CA, USA
| | - Liangren Liu
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Eva Corey
- Department of Urology, University of Washington, Washington, WA, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Marc A Dall'Era
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA, USA.
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA, USA.
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA.
| |
Collapse
|
3
|
Chen B, Xu P, Yang JC, Nip C, Wang L, Shen Y, Ning S, Shang Y, Corey E, Gao AC, Gestwicki JE, Wei Q, Liu L, Liu C. Plexin D1 emerges as a novel target in the development of neural lineage plasticity in treatment-resistant prostate cancer. Oncogene 2024; 43:2325-2337. [PMID: 38877132 PMCID: PMC11286220 DOI: 10.1038/s41388-024-03081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 was highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression was associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibited neural lineage pathways, thereby suppressing NEPC cell proliferation, patient derived xenograft (PDX) tumor organoid viability, and xenograft tumor growth. Mechanistically, the heat shock protein 70 (HSP70) regulated PLXND1 protein stability through degradation, and inhibition of HSP70 decreased PLXND1 expression and NEPC organoid growth. In summary, our findings indicate that PLXND1 could serve as a promising therapeutic target and molecular marker for NEPC.
Collapse
Affiliation(s)
- Bo Chen
- Department of Urologic Surgery, University of California, Davis, CA, USA
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Pengfei Xu
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Joy C Yang
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Christopher Nip
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Leyi Wang
- Department of Urologic Surgery, University of California, Davis, CA, USA
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA, USA
| | - Yuqiu Shen
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Yufeng Shang
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Washington, WA, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Liangren Liu
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA, USA.
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA, USA.
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA.
| |
Collapse
|
4
|
Elbialy A, Kappala D, Desai D, Wang P, Fadiel A, Wang SJ, Makary MS, Lenobel S, Sood A, Gong M, Dason S, Shabsigh A, Clinton S, Parwani AV, Putluri N, Shvets G, Li J, Liu X. Patient-Derived Conditionally Reprogrammed Cells in Prostate Cancer Research. Cells 2024; 13:1005. [PMID: 38920635 PMCID: PMC11201841 DOI: 10.3390/cells13121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives).
Collapse
Affiliation(s)
- Abdalla Elbialy
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Deepthi Kappala
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Dhruv Desai
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Peng Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Ahmed Fadiel
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Shang-Jui Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mina S. Makary
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Vascular and Interventional Radiology, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Lenobel
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Musculoskeletal Imaging, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Akshay Sood
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael Gong
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shawn Dason
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmad Shabsigh
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Clinton
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Anil V. Parwani
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Jenny Li
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xuefeng Liu
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Guo S, Miao M, Wu Y, Pan D, Wu Q, Kang Z, Zeng J, Zhong G, Liu C, Wang J. DHODH inhibition represents a therapeutic strategy and improves abiraterone treatment in castration-resistant prostate cancer. Oncogene 2024; 43:1399-1410. [PMID: 38480915 DOI: 10.1038/s41388-024-03005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 05/05/2024]
Abstract
Castration-resistant prostate cancer (CRPC) is an aggressive disease with poor prognosis, and there is an urgent need for more effective therapeutic targets to address this challenge. Here, we showed that dihydroorotate dehydrogenase (DHODH), an enzyme crucial in the pyrimidine biosynthesis pathway, is a promising therapeutic target for CRPC. The transcript levels of DHODH were significantly elevated in prostate tumors and were negatively correlated with the prognosis of patients with prostate cancer. DHODH inhibition effectively suppressed CRPC progression by blocking cell cycle progression and inducing apoptosis. Notably, treatment with DHODH inhibitor BAY2402234 activated androgen biosynthesis signaling in CRPC cells. However, the combination treatment with BAY2402234 and abiraterone decreased intratumoral testosterone levels and induced apoptosis, which inhibited the growth of CWR22Rv1 xenograft tumors and patient-derived xenograft organoids. Taken together, these results establish DHODH as a key player in CRPC and as a potential therapeutic target for advanced prostate cancer.
Collapse
Affiliation(s)
- Shaoqiang Guo
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miaomiao Miao
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yufeng Wu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongyue Pan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qinyan Wu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhanfang Kang
- Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jianwen Zeng
- Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Guoping Zhong
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA, USA.
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| | - Junjian Wang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Fonseca-Benítez V, Acosta-Guzmán P, Sánchez JE, Alarcón Z, Jiménez RA, Guevara-Pulido J. Design and Evaluation of NSAID Derivatives as AKR1C3 Inhibitors for Breast Cancer Treatment through Computer-Aided Drug Design and In Vitro Analysis. Molecules 2024; 29:1802. [PMID: 38675620 PMCID: PMC11052204 DOI: 10.3390/molecules29081802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer is a major global health issue, causing high incidence and mortality rates as well as psychological stress for patients. Chemotherapy resistance is a common challenge, and the Aldo-keto reductase family one-member C3 enzyme is associated with resistance to anthracyclines like doxorubicin. Recent studies have identified celecoxib as a potential treatment for breast cancer. Virtual screening was conducted using a quantitative structure-activity relationship model to develop similar drugs; this involved backpropagation of artificial neural networks and structure-based virtual screening. The screening revealed that the C-6 molecule had a higher affinity for the enzyme (-11.4 kcal/mol), a lower half-maximal inhibitory concentration value (1.7 µM), and a safer toxicological profile than celecoxib. The compound C-6 was synthesized with an 82% yield, and its biological activity was evaluated. The results showed that C-6 had a more substantial cytotoxic effect on MCF-7 cells (62%) compared to DOX (63%) and celecoxib (79.5%). Additionally, C-6 had a less harmful impact on healthy L929 cells than DOX and celecoxib. These findings suggest that C-6 has promising potential as a breast cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - James Guevara-Pulido
- Investigación en Química Aplicada INQA, Química Farmacéutica, Universidad El Bosque, Bogotá 11001, Colombia; (V.F.-B.); (Z.A.)
| |
Collapse
|
7
|
Li M, Zhang L, Yu J, Wang X, Cheng L, Ma Z, Chen X, Wang L, Goh BC. AKR1C3 in carcinomas: from multifaceted roles to therapeutic strategies. Front Pharmacol 2024; 15:1378292. [PMID: 38523637 PMCID: PMC10957692 DOI: 10.3389/fphar.2024.1378292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Aldo-Keto Reductase Family 1 Member C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase (17β-HSD5) or prostaglandin F (PGF) synthase, functions as a pivotal enzyme in androgen biosynthesis. It catalyzes the conversion of weak androgens, estrone (a weak estrogen), and PGD2 into potent androgens (testosterone and 5α-dihydrotestosterone), 17β-estradiol (a potent estrogen), and 11β-PGF2α, respectively. Elevated levels of AKR1C3 activate androgen receptor (AR) signaling pathway, contributing to tumor recurrence and imparting resistance to cancer therapies. The overexpression of AKR1C3 serves as an oncogenic factor, promoting carcinoma cell proliferation, invasion, and metastasis, and is correlated with unfavorable prognosis and overall survival in carcinoma patients. Inhibiting AKR1C3 has demonstrated potent efficacy in suppressing tumor progression and overcoming treatment resistance. As a result, the development and design of AKR1C3 inhibitors have garnered increasing interest among researchers, with significant progress witnessed in recent years. Novel AKR1C3 inhibitors, including natural products and analogues of existing drugs designed based on their structures and frameworks, continue to be discovered and developed in laboratories worldwide. The AKR1C3 enzyme has emerged as a key player in carcinoma progression and therapeutic resistance, posing challenges in cancer treatment. This review aims to provide a comprehensive analysis of AKR1C3's role in carcinoma development, its implications in therapeutic resistance, and recent advancements in the development of AKR1C3 inhibitors for tumor therapies.
Collapse
Affiliation(s)
- Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, China
- The Third Clinical Medical College of Yangtze University, Jingzhou, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Kelly AG, Wang W, Rothenberger E, Yang J, Gilligan MM, Kipper FC, Attaya A, Gartung A, Hwang SH, Gillespie MJ, Bayer RL, Quinlivan KM, Torres KL, Huang S, Mitsiades N, Yang H, Hammock BD, Panigrahy D. Enhancing cancer immunotherapy via inhibition of soluble epoxide hydrolase. Proc Natl Acad Sci U S A 2024; 121:e2314085121. [PMID: 38330013 PMCID: PMC10873624 DOI: 10.1073/pnas.2314085121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024] Open
Abstract
Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.
Collapse
Affiliation(s)
- Abigail G. Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Weicang Wang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
- Department of Food Science, Purdue University, West Lafayette, IN47907
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Molly M. Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Franciele C. Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Sung Hee Hwang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Michael J. Gillespie
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Rachel L. Bayer
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Katherine M. Quinlivan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Kimberly L. Torres
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Sui Huang
- Institute of Systems Biology, Seattle, WA98109
| | - Nicholas Mitsiades
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
- Department of Internal Medicine, University of CaliforniaDavis,CA95817
| | - Haixia Yang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Food Nutrition and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| |
Collapse
|