1
|
Gao C, Zhang H, Wang Y, Wang S, Guo X, Han Y, Zhao H, An X. Global Transcriptomic and Characteristics Comparisons between Mouse Fetal Liver and Bone Marrow Definitive Erythropoiesis. Cells 2024; 13:1149. [PMID: 38995000 PMCID: PMC11240549 DOI: 10.3390/cells13131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Erythropoiesis occurs first in the yolk sac as a transit "primitive" form, then is gradually replaced by the "definitive" form in the fetal liver (FL) during fetal development and in the bone marrow (BM) postnatally. While it is well known that differences exist between primitive and definitive erythropoiesis, the similarities and differences between FL and BM definitive erythropoiesis have not been studied. Here we performed comprehensive comparisons of erythroid progenitors and precursors at all maturational stages sorted from E16.5 FL and adult BM. We found that FL cells at all maturational stages were larger than their BM counterparts. We further found that FL BFU-E cells divided at a faster rate and underwent more cell divisions than BM BFU-E. Transcriptome comparison revealed that genes with increased expression in FL BFU-Es were enriched in cell division. Interestingly, the expression levels of glucocorticoid receptor Nr3c1, Myc and Myc downstream target Ccna2 were significantly higher in FL BFU-Es, indicating the role of the Nr3c1-Myc-Ccna2 axis in the enhanced proliferation/cell division of FL BFU-E cells. At the CFU-E stage, the expression of genes associated with hemoglobin biosynthesis were much higher in FL CFU-Es, indicating more hemoglobin production. During terminal erythropoiesis, overall temporal patterns in gene expression were conserved between the FL and BM. While biological processes related to translation, the tricarboxylic acid cycle and hypoxia response were upregulated in FL erythroblasts, those related to antiviral signal pathway were upregulated in BM erythroblasts. Our findings uncovered previously unrecognized differences between FL and BM definitive erythropoiesis and provide novel insights into erythropoiesis.
Collapse
Affiliation(s)
- Chengjie Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaomei Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shihui Wang
- Institute of Hematology, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Yongshuai Han
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| |
Collapse
|
2
|
Fevereiro-Martins M, Santos AC, Marques-Neves C, Guimarães H, Bicho M. Complete blood count parameters as biomarkers of retinopathy of prematurity: a Portuguese multicenter study. Graefes Arch Clin Exp Ophthalmol 2023; 261:2997-3006. [PMID: 37129632 PMCID: PMC10543149 DOI: 10.1007/s00417-023-06072-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
PURPOSE To evaluate complete blood count (CBC) parameters in the first week of life as predictive biomarkers for the development of retinopathy of prematurity (ROP). METHODS Multicenter, prospective, observational study of a cohort of preterm infants born with gestational age (GA) < 32 weeks or birth weight < 1500 g in eight Portuguese neonatal intensive care units. All demographic, clinical, and laboratory data from the first week of life were collected. Univariate logistic regression was used to assess risk factors for ROP and then multivariate regression was performed. RESULTS A total of 455 infants were included in the study. The median GA was 29.6 weeks, and the median birth weight was 1295 g. One hundred and seventy-two infants (37.8%) developed ROP. Median values of erythrocytes (p < 0.001), hemoglobin (p < 0.001), hematocrit (p < 0.001), mean corpuscular hemoglobin concentration (p < 0.001), lymphocytes (p = 0.035), and platelets (p = 0.003) of the group of infants diagnosed with ROP any stage were lower than those without ROP. Mean corpuscular volume (MCV) (p = 0.044), red blood cell distribution width (RDW) (p < 0.001), erythroblasts (p < 0.001), neutrophils (p = 0.030), neutrophils-lymphocytes ratio (p = 0.028), and basophils (p = 0.003) were higher in the ROP group. Higher values of MCV, erythroblasts, and basophils remained significantly associated with ROP after multivariate regression. CONCLUSION In our cohort, the increase in erythroblasts, MCV, and basophils in the first week of life was significantly and independently associated with the development of ROP. These CBC parameters may be early predictive biomarkers for ROP.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisbon, Portugal
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisbon, Portugal
- Departamento de Oftalmologia, Hospital Cuf Descobertas, Rua Mário Botas, 1998-018 Lisbon, Portugal
| | - Ana Carolina Santos
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisbon, Portugal
| | - Carlos Marques-Neves
- Centro de Estudos das Ciências da Visão, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisbon, Portugal
- Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisbon, Portugal
| | - Hercília Guimarães
- Departamento de Ginecologia - Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisbon, Portugal
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisbon, Portugal
| |
Collapse
|
3
|
Kitase Y, Madurai NK, Hamimi S, Hellinger RL, Odukoya OA, Ramachandra S, Muthukumar S, Vasan V, Sevensky R, Kirk SE, Gall A, Heck T, Ozen M, Orsburn BC, Robinson S, Jantzie LL. Chorioamnionitis disrupts erythropoietin and melatonin homeostasis through the placental-fetal-brain axis during critical developmental periods. Front Physiol 2023; 14:1201699. [PMID: 37546540 PMCID: PMC10398572 DOI: 10.3389/fphys.2023.1201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: Novel therapeutics are emerging to mitigate damage from perinatal brain injury (PBI). Few newborns with PBI suffer from a singular etiology. Most experience cumulative insults from prenatal inflammation, genetic and epigenetic vulnerability, toxins (opioids, other drug exposures, environmental exposure), hypoxia-ischemia, and postnatal stressors such as sepsis and seizures. Accordingly, tailoring of emerging therapeutic regimens with endogenous repair or neuro-immunomodulatory agents for individuals requires a more precise understanding of ligand, receptor-, and non-receptor-mediated regulation of essential developmental hormones. Given the recent clinical focus on neurorepair for PBI, we hypothesized that there would be injury-induced changes in erythropoietin (EPO), erythropoietin receptor (EPOR), melatonin receptor (MLTR), NAD-dependent deacetylase sirtuin-1 (SIRT1) signaling, and hypoxia inducible factors (HIF1α, HIF2α). Specifically, we predicted that EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α alterations after chorioamnionitis (CHORIO) would reflect relative changes observed in human preterm infants. Similarly, we expected unique developmental regulation after injury that would reveal potential clues to mechanisms and timing of inflammatory and oxidative injury after CHORIO that could inform future therapeutic development to treat PBI. Methods: To induce CHORIO, a laparotomy was performed on embryonic day 18 (E18) in rats with transient uterine artery occlusion plus intra-amniotic injection of lipopolysaccharide (LPS). Placentae and fetal brains were collected at 24 h. Brains were also collected on postnatal day 2 (P2), P7, and P21. EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α levels were quantified using a clinical electrochemiluminescent biomarker platform, qPCR, and/or RNAscope. MLT levels were quantified with liquid chromatography mass spectrometry. Results: Examination of EPO, EPOR, and MLTR1 at 24 h showed that while placental levels of EPO and MLTR1 mRNA were decreased acutely after CHORIO, cerebral levels of EPO, EPOR and MLTR1 mRNA were increased compared to control. Notably, CHORIO brains at P2 were SIRT1 mRNA deficient with increased HIF1α and HIF2α despite normalized levels of EPO, EPOR and MLTR1, and in the presence of elevated serum EPO levels. Uniquely, brain levels of EPO, EPOR and MLTR1 shifted at P7 and P21, with prominent CHORIO-induced changes in mRNA expression. Reductions at P21 were concomitant with increased serum EPO levels in CHORIO rats compared to controls and variable MLT levels. Discussion: These data reveal that commensurate with robust inflammation through the maternal placental-fetal axis, CHORIO impacts EPO, MLT, SIRT1, and HIF signal transduction defined by dynamic changes in EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α mRNA, and EPO protein. Notably, ligand-receptor mismatch, tissue compartment differential regulation, and non-receptor-mediated signaling highlight the importance, complexity and nuance of neural and immune cell development and provide essential clues to mechanisms of injury in PBI. As the placenta, immune cells, and neural cells share many common, developmentally regulated signal transduction pathways, further studies are needed to clarify the perinatal dynamics of EPO and MLT signaling and to capitalize on therapies that target endogenous neurorepair mechanisms.
Collapse
Affiliation(s)
- Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nethra K. Madurai
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah Hamimi
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan L. Hellinger
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - O. Angel Odukoya
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sindhu Ramachandra
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sankar Muthukumar
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vikram Vasan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Riley Sevensky
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shannon E. Kirk
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexander Gall
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Timothy Heck
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maide Ozen
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Benjamin C. Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
4
|
Molloy EJ, El-Dib M, Juul SE, Benders M, Gonzalez F, Bearer C, Wu YW, Robertson NJ, Hurley T, Branagan A, Michael Cotten C, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Bonifacio S, Soul JS, Gunn AJ. Neuroprotective therapies in the NICU in term infants: present and future. Pediatr Res 2022:10.1038/s41390-022-02295-2. [PMID: 36195634 PMCID: PMC10070589 DOI: 10.1038/s41390-022-02295-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/13/2023]
Abstract
Outcomes of neonatal encephalopathy (NE) have improved since the widespread implementation of therapeutic hypothermia (TH) in high-resource settings. While TH for NE in term and near-term infants has proven beneficial, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. There is therefore a critical need to find additional pharmacological and non-pharmacological interventions that improve the outcomes for these children. There are many potential candidates; however, it is unclear whether these interventions have additional benefits when used with TH. Although primary and delayed (secondary) brain injury starting in the latent phase after HI are major contributors to neurodisability, the very late evolving effects of tertiary brain injury likely require different interventions targeting neurorestoration. Clinical trials of seizure management and neuroprotection bundles are needed, in addition to current trials combining erythropoietin, stem cells, and melatonin with TH. IMPACT: The widespread use of therapeutic hypothermia (TH) in the treatment of neonatal encephalopathy (NE) has reduced the associated morbidity and mortality. However, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. This review details the pathophysiology of NE along with the evidence for the use of TH and other beneficial neuroprotective strategies used in term infants. We also discuss treatment strategies undergoing evaluation at present as potential adjuvant treatments to TH in NE.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland. .,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland. .,Neonatology, CHI at Crumlin, Dublin, Ireland. .,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Manon Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yvonne W Wu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | | | - Sidhartha Tan
- Pediatrics, Division of Neonatology, Children's Hospital of Michigan, Detroit, MI, USA.,Wayne State University School of Medicine, Detroit, MI, 12267, USA.,Pediatrics, Division of Neonatology, Central Michigan University, Mount Pleasant, MI, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, RI, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK.,Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Sonia Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 750 Welch Road, Suite 315, Palo Alto, CA, 94304, USA
| | - Janet S Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
5
|
Ma Y, Zhou Z, Yang GY, Ding J, Wang X. The Effect of Erythropoietin and Its Derivatives on Ischemic Stroke Therapy: A Comprehensive Review. Front Pharmacol 2022; 13:743926. [PMID: 35250554 PMCID: PMC8892214 DOI: 10.3389/fphar.2022.743926] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Numerous studies explored the therapeutic effects of erythropoietin (EPO) on neurodegenerative diseases. Few studies provided comprehensive and latest knowledge of EPO treatment for ischemic stroke. In the present review, we introduced the structure, expression, function of EPO, and its receptors in the central nervous system. Furthermore, we comprehensively discussed EPO treatment in pre-clinical studies, clinical trials, and its therapeutic mechanisms including suppressing inflammation. Finally, advanced studies of the therapy of EPO derivatives in ischemic stroke were also discussed. We wish to provide valuable information on EPO and EPO derivatives’ treatment for ischemic stroke for basic researchers and clinicians to accelerate the process of their clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Endogenous erythropoietin at birth is associated with neurodevelopmental morbidity in early childhood. Pediatr Res 2022; 92:307-314. [PMID: 34465877 PMCID: PMC9411059 DOI: 10.1038/s41390-021-01679-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND New biomarkers that predict later neurodevelopmental morbidity are needed. This study evaluated the associations between umbilical cord serum erythropoietin (us-EPO) and neurodevelopmental morbidity by the age of 2-6.5 years in a Finnish cohort. METHODS This study included 878 non-anomalous children born alive in 2012 to 2016 in Helsinki University Hospitals and whose us-EPO concentration was determined at birth. Data of these children were linked to data from the Finnish Medical Birth Register and the Finnish Hospital Discharge Register. Neurodevelopmental morbidity included cerebral palsy, epilepsy, intellectual disability, autism spectrum disorder, sensorineural defects, and minor neurodevelopmental disorders. RESULTS In the cohort including both term and preterm children, us-EPO levels correlated with gestational age (r = 0.526) and were lower in premature children. High us-EPO levels (>100 IU/l) were associated with an increased risk of severe neurodevelopmental morbidity (OR: 4.87; 95% CI: 1.05-22.58) when adjusted for the gestational age. The distribution of us-EPO levels did not differ in children with or without the later neurodevelopmental diagnosis. CONCLUSIONS Although high us-EPO concentration at birth was associated with an increased risk of neurodevelopmental morbidity in early childhood, the role of us-EPO determination in clinical use appears to be minor. IMPACT We determined whether endogenous umbilical cord serum erythropoietin would be a new useful biomarker to predict the risk of neurodevelopmental morbidity. This study evaluated the role of endogenous erythropoietin at birth in neurodevelopmental morbidity with a study population of good size and specific diagnoses based on data from high-quality registers. Although high umbilical cord serum erythropoietin concentration at birth was associated with an increased risk of neurodevelopmental morbidity in early childhood, the clinical value of erythropoietin determination appears to be minor.
Collapse
|
7
|
Cascant-Vilaplana MM, Vento M. Seeking biomarkers that predict neurodevelopmental impairment in preterm infants. EBioMedicine 2021; 73:103657. [PMID: 34740113 PMCID: PMC8577321 DOI: 10.1016/j.ebiom.2021.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Máximo Vento
- Health Research Institute La Fe, Valencia, Spain; Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain.
| |
Collapse
|
8
|
Wood TR, Parikh P, Comstock BA, Law JB, Bammler TK, Kuban KC, Mayock DE, Heagerty PJ, Juul S. Early Biomarkers of Hypoxia and Inflammation and Two-Year Neurodevelopmental Outcomes in the Preterm Erythropoietin Neuroprotection (PENUT) Trial. EBioMedicine 2021; 72:103605. [PMID: 34619638 PMCID: PMC8498235 DOI: 10.1016/j.ebiom.2021.103605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In the Preterm Erythropoietin (Epo) NeUroproTection (PENUT) Trial, potential biomarkers of neurological injury were measured to determine their association with outcomes at two years of age and whether Epo treatment decreased markers of inflammation in extremely preterm (<28 weeks' gestation) infants. METHODS Plasma Epo was measured (n=391 Epo, n=384 placebo) within 24h after birth (baseline), 30min after study drug administration (day 7), 30min before study drug (day 9), and on day 14. A subset of infants (n=113 Epo, n=107 placebo) had interferon-gamma (IFN-γ), Interleukin (IL)-6, IL-8, IL-10, Tau, and tumour necrosis factor-α (TNF-α) levels evaluated at baseline, day 7 and 14. Infants were then evaluated at 2 years using the Bayley Scales of Infant and Toddler Development, 3rd Edition (BSID-III). FINDINGS Elevated baseline Epo was associated with increased risk of death or severe disability (BSID-III Motor and Cognitive subscales <70 or severe cerebral palsy). No difference in other biomarkers were seen between treatment groups at any time, though Epo appeared to mitigate the association between elevated baseline IL-6 and lower BSID-III scores in survivors. Elevated baseline, day 7 and 14 Tau concentrations were associated with worse BSID-III Cognitive, Motor, and Language skills at two years. INTERPRETATION Elevated Epo at baseline and elevated Tau in the first two weeks after birth predict poor outcomes in infants born extremely preterm. However, no clear prognostic cut-off values are apparent, and further work is required before these biomarkers can be widely implemented in clinical practice. FUNDING PENUT was funded by the National Institute of Neurological Disorders and Stroke (U01NS077955 and U01NS077953).
Collapse
Affiliation(s)
- Thomas R. Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
| | - Pratik Parikh
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
| | | | - Janessa B. Law
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Karl C. Kuban
- Department of Pediatrics, Boston University School of Medicine, Boston, MA
| | - Dennis E. Mayock
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
| | | | - Sandra Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
| | - for the PENUT Trial consortium
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
- Department of Biostatistics, University of Washington, Seattle, WA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
- Department of Pediatrics, Boston University School of Medicine, Boston, MA
| |
Collapse
|
9
|
Lee BH, Park YM, Hwang JA, Kim YK. Variable alterations in plasma erythropoietin and brain-derived neurotrophic factor levels in patients with major depressive disorder with and without a history of suicide attempt. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110324. [PMID: 33857523 DOI: 10.1016/j.pnpbp.2021.110324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
It is hypothesized that major depression disorder (MDD) is associated with impaired neuronal plasticity, and that antidepressant treatments restore neuroplasticity. Brain-derived neurotrophic factor (BDNF) and erythropoietin (Epo) show neurotrophic and neuroprotective effects. We evaluated plasma Epo and BDNF levels in 50 MDD inpatients before treatment and in 50 healthy controls. The MDD inpatients consisted of 20 MDD patients without and 30 MDD patients with a recent suicide attempt. The plasma Epo level was significantly higher in nonsuicidal and suicidal MDD patients than in healthy controls (p ≤ 0.001), while the plasma BDNF level was significantly lower in suicidal MDD than in nonsuicidal MDD patients and healthy controls (p ≤ 0.001). When classifying study participants into low-Epo and high-Epo and low-BDNF and high-BDNF subgroups based on the cutoff of Epo or BDNF calculated using receiver operating characteristics (ROC) curve analysis, logistic regression analysis revealed that high-Epo and low-BDNF status correlated with a respective significant odds ratio of 7.367 (p = 0.015) and 33.123 (p ≤ 0.001) for suicidal MDD. In conclusion, plasma BDNF level was decreased in untreated MDD patients, which was presumed to be a dysfunctional effect of the onset of MDD. However, an increase in plasma Epo was observed in MDD in connection with a recent suicide attempt, indicating that this triggers hypoxic stress to induce a compensatory increase in Epo.
Collapse
Affiliation(s)
- Bun-Hee Lee
- Department of Psychiatry, Maum & Maum Psychiatric Clinic, Seoul 02566, Republic of Korea
| | - Young-Min Park
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Republic of Korea
| | - Jung-A Hwang
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea.
| |
Collapse
|
10
|
Delaney KM, Guillet R, Pressman EK, Ganz T, Nemeth E, O'Brien KO. Umbilical Cord Erythroferrone Is Inversely Associated with Hepcidin, but Does Not Capture the Most Variability in Iron Status of Neonates Born to Teens Carrying Singletons and Women Carrying Multiples. J Nutr 2021; 151:2590-2600. [PMID: 34236433 PMCID: PMC8417932 DOI: 10.1093/jn/nxab156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The developing fetus requires adequate iron and produces its own hormones to regulate this process. Erythroferrone (ERFE) is a recently identified iron regulatory hormone, and normative data on ERFE concentrations and relations between iron status and other iron regulatory hormones at birth are needed. OBJECTIVES The objective of this study was to characterize cord ERFE concentrations at birth and assess interrelations between ERFE, iron regulatory hormones, and iron status biomarkers in 2 cohorts of newborns at higher risk of neonatal anemia. METHODS Umbilical cord ERFE concentrations were measured in extant serum samples collected from neonates born to women carrying multiples (age: 21-43 y; n = 127) or teens (age: 14-19 y; n = 164). Relations between cord blood ERFE and other markers of iron status or erythropoiesis in cord blood were assessed by linear regression and mediation analysis. RESULTS Cord ERFE was detectable in all newborns delivered between 30 and 42 weeks of gestation, and mean concentration at birth was 0.73 ng/mL (95% CI: 0.63, 0.85 ng/mL). Cord ERFE was on average 0.25 ng/mL lower in newborns of black as opposed to white ancestry (P = 0.04). Cord ERFE was significantly associated with transferrin receptor (β: 1.17, P < 0.001), ferritin (β: -0.27, P < 0.01), and hemoglobin (Hb) (β: 0.04, P < 0.05). However, cord hepcidin and the hepcidin:erythropoietin (EPO) ratio captured the most variance in newborn iron and hematologic status (>25% of variance explained). CONCLUSIONS Neonates born to teens and women carrying multiples were able to produce ERFE in response to neonatal cord iron status and erythropoietic demand. ERFE, however, did not capture significant variance in newborn iron or Hb concentrations. In these newborns, cord hepcidin and the hepcidin:EPO ratio explained the most variance in iron status indicators at birth.
Collapse
Affiliation(s)
| | - Ronnie Guillet
- Division of Neonatology, Department of Pediatrics, University of Rochester
School of Medicine, Rochester, NY, USA
| | - Eva K Pressman
- Department of Obstetrics and Gynecology, University of Rochester School of
Medicine, Rochester, NY, USA
| | - Tomas Ganz
- Center for Iron Disorders, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, CA, USA
| | - Elizabeta Nemeth
- Center for Iron Disorders, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
11
|
Fahim NM, Georgieff MK, Zhang L, Naisbitt S, Rao RB, Inder TE. Endogenous erythropoietin concentrations and association with retinopathy of prematurity and brain injury in preterm infants. PLoS One 2021; 16:e0252655. [PMID: 34077474 PMCID: PMC8171927 DOI: 10.1371/journal.pone.0252655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Background Endogenous erythropoietin (EPO) concentrations vary widely in preterm infants and may be associated with perinatal risk factors and neurological outcomes. Erythropoietin is elevated in fetal hypoxia but is also a potential neuroprotectant. Methods In a prospective study of 27 infants ≤ 30 weeks gestation, serum erythropoietin concentrations were measured during the first month of life, on day 1 and weeks 1, 2, and 4, and related to perinatal risk factors and outcomes including retinopathy of prematurity and cerebral injury evaluated near term-equivalent post menstrual age using magnetic resonance imaging with quantitative scoring. Results Lower birth weight was associated with higher EPO concentrations throughout the first 2 weeks of life (r = -0.6, p < 0.01). Higher day 1 and week 1 EPO concentrations were associated with lower Apgar score at 1 minute (r = - 0.5) and 5 minutes (r = -0.7), respectively (p < 0.01). Higher day 1 EPO concentrations and 2-week area under the curve were associated with increased risk (p = 0.01) and severity (r = 0.5, p < 0.02) of retinopathy of prematurity. Higher EPO concentrations at 2 weeks were associated with increased total brain injury score (r = 0.5, p < 0.05). Conclusion Elevated endogenous erythropoietin concentrations in the first two weeks of life are associated with lower birth weight and increased risk of adverse outcomes.
Collapse
Affiliation(s)
- Nancy M. Fahim
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| | - Michael K. Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Lei Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States of America
| | - Scott Naisbitt
- Independent Researcher, Minneapolis, MN, United States of America
| | - Raghavendra B. Rao
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Terrie E. Inder
- Departments of Pediatrics, Neurology and Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
12
|
Toleubayev M, Dmitriyeva M, Kozhakhmetov S, Igissinov N, Turebayev M, Omarbekov A, Adaibayev K, Shakenov A, Izimbergenov M. Regenerative Properties of Recombinant Human Erythropoietin in the Wound Healing. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND: Erythropoietin (EPO) is the main stimulator of erythropoiesis, but EPO also has non-hematopoietic effects. The recent data show the positive effects of EPO on tissue regeneration.
AIM: This review aims to know highlights the pathophysiological mechanisms of EPO at different stages of tissue regeneration, and possible clinical applications in wound healing.
METHODS: A review of the literature considering reviews, clinical studies, original papers, and articles from electronic data has been used.
RESULTS: Analysis of animal studies and several clinical trials using EPO in context of wound healing revealed that EPO has a positive effect on all stages of regeneration process and may be a promising therapeutic strategy for the treatment of chronic wounds.
CONCLUSION: An improved understanding of the functions and regulatory mechanisms of EPO in the context of wound healing may lead to new considerations of this growth hormone for its regular clinical application in patients.
Collapse
|
13
|
Klemetti MM, Teramo K, Kautiainen H, Wasenius N, Eriksson JG, Laine MK. Late-Pregnancy Fetal Hypoxia Is Associated With Altered Glucose Metabolism and Adiposity in Young Adult Offspring of Women With Type 1 Diabetes. Front Endocrinol (Lausanne) 2021; 12:738570. [PMID: 34777246 PMCID: PMC8578885 DOI: 10.3389/fendo.2021.738570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To investigate associations between exposure to fetal hypoxia and indicators of metabolic health in young adult offspring of women with type 1 diabetes (OT1D). METHODS 156 OT1D born between 7/1995 and 12/2000 at Helsinki University Hospital, Finland, were invited for follow-up between 3/2019 and 11/2019. A control group of 442 adults born from non-diabetic pregnancies, matched for date and place of birth, was obtained from the Finnish Medical Birth Register. In total, 58 OT1D and 86 controls agreed to participate. All OT1D had amniotic fluid (AF) sampled for erythropoietin (EPO) measurement within two days before delivery in order to diagnose fetal hypoxia. In total, 29 OTID had an AF EPO concentration <14.0 mU/l, defined as normal, and were categorized into the low EPO (L-EPO) group. The remaining 29 OT1D had AF EPO ≥14.0 mU/ml, defined as fetal hypoxia, and were categorized into the high EPO (H-EPO) group. At the age of 18-23 years, participants underwent a 2-h 75g oral glucose tolerance test (OGTT) in addition to height, weight, waist circumference, body composition, blood pressure, HbA1c, cholesterol, triglyceride, high-sensitivity CRP and leisure-time physical activity measurements. RESULTS Two OT1D were diagnosed with diabetes and excluded from further analyses. At young adult age, OT1D in the H-EPO group had a higher BMI than those in the L-EPO group. In addition, among female participants, waist circumference and body fat percentage were highest in the H-EPO group. In the OGTTs, the mean (SD) 2-h post-load plasma glucose (mmol/L) was higher in the H-EPO [6.50 (2.11)] than in the L-EPO [5.21 (1.10)] or control [5.67 (1.48)] offspring (p=0.009). AF EPO concentrations correlated positively with 2-h post-load plasma glucose [r=0.35 (95% CI: 0.07 to 0.62)] and serum insulin [r=0.44 (95% CI: 0.14 to 0.69)] concentrations, even after adjusting for maternal BMI, birth weight z-score, gestational age at birth and adult BMI. Control, L-EPO and H-EPO groups did not differ with regards to other assessed parameters. CONCLUSIONS High AF EPO concentrations in late pregnancy, indicating fetal hypoxia, are associated with increased adiposity and elevated post-load glucose and insulin concentrations in young adult OT1D.
Collapse
Affiliation(s)
- Miira M. Klemetti
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Medical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, South Karelia Central Hospital, Lappeenranta, Finland
- *Correspondence: Miira M. Klemetti,
| | - Kari Teramo
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannu Kautiainen
- Folkhälsan Research Center, Helsinki, Finland
- Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland
| | | | - Johan G. Eriksson
- Folkhälsan Research Center, Helsinki, Finland
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Obstetrics and Gynaecology and Human Potential Translational Research Programme, Singapore, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | |
Collapse
|
14
|
Maxwell JR, Ohls RK. Update on Erythropoiesis-Stimulating Agents Administered to Neonates for Neuroprotection. Neoreviews 2020; 20:e622-e635. [PMID: 31676737 DOI: 10.1542/neo.20-11-e622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Erythropoiesis-stimulating agents (ESAs) such as erythropoietin and darbepoetin have been studied as red blood cell growth factors in preterm and term infants for more than 30 years. Recently, studies have focused on the potential neuroprotective effects of ESAs. In this review, we summarize preclinical animal models and recent clinical trials that provide evidence for ESAs as potential treatments to improve neurodevelopmental outcomes in preterm and term infants.
Collapse
Affiliation(s)
- Jessie R Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, NM
| | - Robin K Ohls
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| |
Collapse
|
15
|
Åmark H, Sirotkina M, Westgren M, Papadogiannakis N, Persson M. Is obesity in pregnancy associated with signs of chronic fetal hypoxia? Acta Obstet Gynecol Scand 2020; 99:1649-1656. [PMID: 32557543 DOI: 10.1111/aogs.13941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The prevalence of obesity in pregnancy is increasing worldwide. Maternal obesity increases risks of severe fetal and neonatal complications. The underlying pathophysiological mechanisms are unclear. One possible contributing factor could be chronic fetal hypoxia. The aim of this study was to compare placentas from women with and without obesity with respect to placental lesions, which could reflect compensatory mechanisms in response to chronic fetal hypoxia as well as lesions possibly leading to chronic fetal hypoxia. In addition, levels of erythropoietin in cord blood were compared between offspring of lean and obese women. MATERIAL AND METHODS This cohort study included 180 women with uneventful, full-term, singleton pregnancies, out of which 91 lean women had a body mass index (BMI) of 18.5-24.9 kg/m2 and 89 women had obesity (BMI ≥30 kg/m2 ). Women were recruited at Södersjukhuset between 16 October 2018 and 2 December 2019. Placentas were investigated by two senior perinatal pathologists, who were blinded for maternal BMI. Cord blood was analyzed for levels of erythropoietin. RESULTS Levels of erythropoietin in cord blood increased with maternal BMI (P = .01, β = 0.97, 95% CI 0.27-1.68). There was no difference between placentas of obese and lean women in number of placental lesions reflecting chronic fetal hypoxia or in lesions that could possibly lead to chronic fetal hypoxia. CONCLUSIONS This study of term and uneventful pregnancies demonstrated a positive association between maternal obesity and concentrations of erythropoietin in cord blood at birth. This finding supports the hypothesis of chronic fetal hypoxia as a risk factor for complications in the pregnancies of obese women. There were no differences in lesions associated with hypoxia between placentas of obese and lean women.
Collapse
Affiliation(s)
- Hanna Åmark
- Department of Clinical Science and Education, Unit of Obstetrics and Gynecology, Karolinska Institute, Södersjukhuset Hospital, Stockholm, Sweden
| | - Meeli Sirotkina
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Magnus Westgren
- Department of Clinical Sciences, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Nikos Papadogiannakis
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Martina Persson
- Department of Clinical Science and Education, Unit of Obstetrics and Gynecology, Karolinska Institute, Södersjukhuset Hospital, Stockholm, Sweden.,Department of Medicine, Clinical Epidemiology Unit, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Lin X, Ma X, Cui X, Zhang R, Pan H, Gao W. Effects of Erythropoietin on Lung Injury Induced by Cardiopulmonary Bypass After Cardiac Surgery. Med Sci Monit 2020; 26:e920039. [PMID: 32310911 PMCID: PMC7191960 DOI: 10.12659/msm.920039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lung injury after cardiopulmonary bypass (CPB) is a serious postoperative complication and can affect the postoperative recovery. The purpose of this study was to explore whether erythropoietin (EPO) has an effect on lung injury caused by CPB. MATERIAL AND METHODS Sixty patients who received the CPB were randomly divided into a saline group and the EPO group. All the patients received saline or EPO preoperatively, respectively. The ventilation function, including dynamic compliance, peak airway pressure, and plateau pressure, were recorded. The level of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1ß, and IL-10 in serum and arterial blood gas were analyzed. The mechanical ventilation time in the intensive care unit (ICU), the length of time spent in the ICU, the time from operation to discharge, and the total time of hospitalization were recorded. Adverse events in the ICU were monitored and recorded. RESULTS EPO significantly decreased the level of TNF-alpha and IL-1ß, but increased the level of IL-10 after CPB. EPO significantly improved pulmonary ventilated function and gas exchange function after CPB. EPO significantly shortened the mechanical ventilation time and stay in the ICU. CONCLUSIONS Preoperative EPO injection reduced lung injury and promoted lung function in patients who underwent CPB. The protection effect of EPO may be associated with inhibition of inflammatory response.
Collapse
Affiliation(s)
- Xue Lin
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Xiaobei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Xiaoguang Cui
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Ruiqin Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Hong Pan
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Wei Gao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
17
|
Bahr TM, Henry E, Hulse W, Baer VL, Prchal JT, Bhutani VK, Christensen RD. Early Hyperbilirubinemia in Neonates with Down Syndrome. J Pediatr 2020; 219:140-145. [PMID: 32014279 DOI: 10.1016/j.jpeds.2019.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To compare total serum bilirubin (TSB) levels, phototherapy usage, and hospital readmission for jaundice among neonates with Down syndrome vs controls. STUDY DESIGN A retrospective cohort study using 15 years of multihospital data. We created control reference intervals (5th, median, and 95th percentiles) for initial TSB values hourly during the first days after birth, and determined the proportion of neonates with Down syndrome whose TSB exceeded the 95th percentile control interval. We determined the proportion with an initial TSB exceeding the upper control reference interval, the highest TSB recorded, the percentage of neonates receiving phototherapy, and the rate of hospital readmission for jaundice treatment. RESULTS We compared 357 neonates with Down syndrome with 377 368 controls. Compared with controls, those with Down syndrome had 4.7 times the risk (95% CI, 3.9-5.7; P < .0001) of an initial TSB exceeding the 95th percentile control interval (23.5% vs 5.0%), 8.9 times (95% CI, 8.1-9.8; P < .0001) the phototherapy usage (62.2% vs 7.0%), and 3.6 times (95% CI, 1.6-8.2; P = .0075) the readmission rate for jaundice (17.4 vs 4.8 per 1000 live births). CONCLUSIONS Neonates with Down syndrome have a substantial risk of early hyperbilirubinemia. The American Academy of Pediatrics currently advises obtaining an early screening complete blood count from neonates with Down syndrome. We submit that assessing their TSB is also advisable.
Collapse
Affiliation(s)
- Timothy M Bahr
- Division of Neonatology, Department of Pediatrics, University of Utah Health, Salt Lake City, UT.
| | - Erick Henry
- Women and Newborn's Clinical Program, Intermountain Healthcare, Salt Lake City, UT
| | - Whitley Hulse
- Division of Neonatology, Department of Pediatrics, University of Utah Health, Salt Lake City, UT
| | - Vickie L Baer
- Women and Newborn's Clinical Program, Intermountain Healthcare, Salt Lake City, UT
| | - Josef T Prchal
- Division of Hematology/Oncology, Department of Internal Medicine, University of Utah Health and Salt Lake City VA Hospital, Salt Lake City, UT
| | - Vinod K Bhutani
- Division of Neonatology, Department of Pediatrics, Stanford University School of Medicine and Lucille Packard Children's Hospital, Stanford, CA
| | - Robert D Christensen
- Division of Neonatology, Department of Pediatrics, University of Utah Health, Salt Lake City, UT; Women and Newborn's Clinical Program, Intermountain Healthcare, Salt Lake City, UT; Division of Hematology-Oncology, Department of Pediatrics, University of Utah Health, Salt Lake City, UT
| |
Collapse
|
18
|
Yin L, Wang S, Zhang N, Bai X, Xie J, Wen Q, Huang L, Qian L, Jiang L. Elevation of stromal cell-derived factor 1 and C-X-C chemokine receptor type 4 in white matter damage treatment with recombinant human erythropoietin and human umbilical cord mesenchymal stem cells in a rat model of preterm birth. Int J Dev Neurosci 2020; 80:247-256. [PMID: 32108377 DOI: 10.1002/jdn.10021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To investigate the role of stromal cell-derived factor 1 (SDF-1) and C-X-C chemokine receptor type 4 (CXCR-4) in the premature brain with white matter damage (WMD) undergoing treatment with human umbilical cord mesenchymal stem cells (hUC-MSCs) and recombinant human erythropoietin (rhEPO). EXPERIMENTAL DESIGN Three-day-old Sprague-Dawley (SD) rats were randomly divided into sham operation group, hypoxia-ischemia (HI) group, rhEPO treated HI group, hUC-MSCs treated HI group, and rhEPO + hUC-MSCs treated HI group. WMD was established in all groups except the Sham group. SDF-1 and CXCR-4 levels in each group were detected at postnatal day (P) 5, P7, and P14. Pathological changes were assessed via HE staining at P14 and neuroethological tests were performed at P28. OBSERVATIONS AND CONCLUSIONS The rhEPO and hUC-MSCs intervention reduced injury area, increased body weight at P7, and improved neurobehavioral scores at P28. Furthermore, their combined use proved even more beneficial. SDF-1 levels in the rhEPO group were higher than those in the other groups and highest in the hUC-MSCs + rhEPO group (all p < .01). SDF-1 levels in the hUC-MSCs + rhEPO and rhEPO groups were increased at P5 and reached a peak at P7. CXCR-4 levels in the hUC-MSCs group were higher than those in the other groups and highest in the hUC-MSCs + rhEPO group (all p < .01). CXCR-4 levels were also increased at P5 and highest at P14. SIGNIFICANCE hUC-MSCs + rhEPO might reduce nerve cell damage and improve neurobehavioral development, in connection with increased SDF-1 and CXCR-4 expression, in premature rats with WMD due to hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Liping Yin
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China.,Teaching and Research Section of Pediatrics, Medical College, Southeast University, Nanjing, China
| | - Shiyu Wang
- Department of Pediatrics, Xuanwu Hospital Medical University, Beijing, China
| | - Ning Zhang
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China.,Teaching and Research Section of Pediatrics, Medical College, Southeast University, Nanjing, China
| | - Xiang Bai
- Neonatal Intensive Care Unit, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Jiali Xie
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China.,Teaching and Research Section of Pediatrics, Medical College, Southeast University, Nanjing, China
| | - Quan Wen
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China.,Teaching and Research Section of Pediatrics, Medical College, Southeast University, Nanjing, China
| | - Li Huang
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China.,Teaching and Research Section of Pediatrics, Medical College, Southeast University, Nanjing, China
| | - Lijuan Qian
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China.,Teaching and Research Section of Pediatrics, Medical College, Southeast University, Nanjing, China
| | - Li Jiang
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China.,Teaching and Research Section of Pediatrics, Medical College, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Teramo K, Piñeiro-Ramos JD. Fetal chronic hypoxia and oxidative stress in diabetic pregnancy. Could fetal erythropoietin improve offspring outcomes? Free Radic Biol Med 2019; 142:32-37. [PMID: 30898666 DOI: 10.1016/j.freeradbiomed.2019.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022]
Abstract
Oxidative stress is responsible for microvascular complications (hypertension, nephropathy, retinopathy, peripheral neuropathy) of diabetes, which during pregnancy increase both maternal and fetal complications. Chronic hypoxia and hyperglycemia result in increased oxidative stress and decreased antioxidant enzyme activity. However, oxidative stress induces also anti-oxidative reactions both in pregnant diabetes patients and in their fetuses. Not all type 1 diabetes patients with long-lasting disease develop microvascular complications, which suggests that some of these patients have protective mechanisms against these complications. Fetal erythropoietin (EPO) is the main regulator of red cell production in the mother and in the fetus, but it has also protective effects in various maternal and fetal tissues. This dual effect of EPO is based on EPO receptor (EPO-R) isoforms, which differ structurally and functionally from the hematopoietic EPO-R isoform. The tissue protective effects of EPO are based on its anti-apoptotic, anti-oxidative, anti-inflammatory, cell proliferative and angiogenic properties. Recent experimental and clinical studies have shown that EPO has also positive metabolic effects on hyperglycemia and diabetes, although these have not yet been fully delineated. Whether the tissue protective and metabolic effects of EPO could have clinical benefits, are important topics for future research in diabetic pregnancies.
Collapse
Affiliation(s)
- Kari Teramo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | | |
Collapse
|
20
|
Altinoz MA, Guloksuz S, Schmidt-Kastner R, Kenis G, Ince B, Rutten BPF. Involvement of hemoglobins in the pathophysiology of Alzheimer's disease. Exp Gerontol 2019; 126:110680. [PMID: 31382012 DOI: 10.1016/j.exger.2019.110680] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/03/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Hemoglobins (Hbs) are heme-containing proteins binding oxygen, carbon monoxide, and nitric oxide. While erythrocytes are the most well-known location of Hbs, Hbs also exist in neurons, glia and oligodendroglia and they are primarily localized in the inner mitochondrial membrane of neurons with likely roles in cellular respiration and buffering protons. Recently, studies have suggested links between hypoxia and neurodegenerative disorders such as Alzheimer Disease (AD) and furthermore suggested involvement of Hbs in the pathogenesis of AD. While cellular immunohistochemical studies on AD brains have observed reduced levels of Hb in the cytoplasm of pre-tangle and tangle-bearing neurons, other studies on homogenates of AD brain samples observed increased Hb levels. This potential discrepancy may result from differential presence and function of intracellular versus extracellular Hbs. Intracellular Hbs may protect neurons against hypoxia and hyperoxia. On the other hand, extracellular free Hb and its degradation products may trigger inflammatory immune and oxidative reactions against neural macromolecules and/or damage the blood-brain barrier. Therefore, biological processes leading to reduction of Hb transcription (including clinically silent Hb mutations) may influence intra-erythrocytic and neural Hbs, and reduce the transport of oxygen, carbon monoxide and nitric oxide which may be involved in the (patho)physiology of neurodegenerative disorders such as AD. Agents such as erythropoietin, which stimulate both erythropoiesis, reduce eryptosis and induce intracellular neural Hbs may exert multiple beneficial effects on the onset and course of AD. Thus, evidence accumulates for a role of Hbs in the central nervous system while Hbs deserve more attention as possible candidate molecules involved in AD.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Sinan Guloksuz
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rainald Schmidt-Kastner
- Integrated Medical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University (FAU), Boca Raton, FL, USA
| | - Gunter Kenis
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bahri Ince
- Department of Psychiatry, Mazhar Osman Bakirkoy Mental Diseases Research and Education Hospital, Istanbul, Turkey
| | - Bart P F Rutten
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
21
|
Jantzie L, El Demerdash N, Newville JC, Robinson S. Time to reconsider extended erythropoietin treatment for infantile traumatic brain injury? Exp Neurol 2019; 318:205-215. [PMID: 31082389 DOI: 10.1016/j.expneurol.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023]
Abstract
Pediatric traumatic brain injury (TBI) remains a leading cause of childhood morbidity and mortality worldwide. Most efforts to reduce the chronic impact of pediatric TBI involve prevention and minimization of secondary injury. Currently, no treatments are used in routine clinical care during the acute and subacute phases to actively repair injury to the developing brain. The endogenous pluripotent cytokine erythropoietin (EPO) holds promise as an emerging neuroreparative agent in perinatal brain injury (PBI). EPO signaling in the central nervous system (CNS) is essential for multiple stages of neurodevelopment, including the genesis, survival and differentiation of multiple lineages of neural cells. Postnatally, EPO signaling decreases markedly as the CNS matures. Importantly, high-dose, extended EPO regimens have shown efficacy in preclinical controlled cortical impact (CCI) models of infant TBI at two different, early ages by independent research groups. Specifically, extended high-dose EPO treatment after infantile CCI prevents long-term cognitive deficits in adult rats. Because of the striking differences in the molecular and cellular responses to both injury and recovery in the developing and mature CNS, and the excellent safety profile of EPO in infants and children, extended courses of EPO are currently in Phase III trials for neonates with PBI. Extended, high-dose EPO may also warrant testing for infants and young children with TBI.
Collapse
Affiliation(s)
- Lauren Jantzie
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States..
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jessie C Newville
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|