1
|
Guo J, Li N, Liu Q, Hao Z, Zhu G, Wang X, Wang H, Pan Q, Xu B, Han Y, Zhang G, Lian Y, Zhang W, Gu Y, Lin N, Zeng X, Jin Z, Lan W, Jiang J, Gao D, Dong L, Yuan H, Liang C, Qin J. KMT2C deficiency drives transdifferentiation of double-negative prostate cancer and confer resistance to AR-targeted therapy. Cancer Cell 2025:S1535-6108(25)00139-4. [PMID: 40280125 DOI: 10.1016/j.ccell.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/25/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Double-negative prostate cancer (DNPC), characterized by an androgen receptor (AR)- and neuroendocrine-null phenotype, frequently emerges following androgen deprivation therapy (ADT). However, our understanding of the origins and regulatory mechanisms of DNPC remains limited. Here, we discover that tumors with KMT2C mutation or loss are highly susceptible to transitioning into DNPC following ADT. We clarify that DNPC primarily stems from luminal cell transdifferentiation rather than basal cell transformation. Antiandrogen treatment induces KMT2C binding at enhancers of a subset of AR-regulated genes, preserving the adenocarcinoma lineage. KMT2C maintains ASPP2 expression via enhancer-promoter communication post-AR inhibition, while its inactivation reduces ASPP2, triggering ΔNp63-dependent transdifferentiation. This DNPC transition maintains fatty acid (FA) synthesis through ΔNp63-mediated SREBP1c transactivation, fueling DNPC growth via HRAS palmitoylation and MAPK signaling activation. These findings highlight KMT2C as an epigenetic checkpoint against DNPC development and suggest the therapeutic potential of targeting fatty acid synthesis.
Collapse
Affiliation(s)
- Jiacheng Guo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ni Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China.
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongyao Hao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230022, China
| | - Guanghui Zhu
- West China School of Public Health, West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610000, China
| | - Xuege Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hanling Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiang Pan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Beitao Xu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ying Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Guoying Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yannan Lian
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yongqiang Gu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Naiheng Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xin Zeng
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zige Jin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Huairui Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230022, China.
| | - Jun Qin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
2
|
Xu X, Fei W, Wu M, He Y, Yang B, Lv C. Construction and validation of a nomogram for identifying the patients at risk for rapid progression of advanced hormone-sensitive prostate cancer. BMC Cancer 2025; 25:634. [PMID: 40200224 PMCID: PMC11980332 DOI: 10.1186/s12885-025-14035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND This study aimed to evaluate the prognostic significance of lactate dehydrogenase (LDH) and fasting triglyceride-glucose (TyG) index in advanced hormone-sensitive prostate cancer (HSPC) patients, with the ultimate goal of developing and validating a nomogram for predicting castration-resistant prostate cancer (CRPC) free survival. MATERIALS AND METHODS The follow-up data of 207 CRPC patients who had androgen deprivation therapy as their initial and only treatment before progression were retrospectively reviewed. To assess prognostic variables, univariate and multivariate Cox regression analyses were performed. The concordance index (C-index), calibration curves, receiver operating characteristic (ROC) curves, and decision curve analyses (DCA) were utilized to construct and test a novel nomogram model. RESULTS TyG index, LDH, M stage and Gleason sum were determined to be independent prognostic markers and were combined to create a nomogram. This nomogram worked well in the tailored prediction of CRPC development at the sixth, twelve, eighteen, and twenty-fourth months. The C-indexes for the training and validation sets were 0.798 and 0.790, respectively. The ROC curves, calibration plots, and DCA all indicated good discrimination and prediction performance. Furthermore, the nomogram had a higher prognostic ability than the M stage and the Gleason sum. The nomogram-related risk score classified the patient population into two groups with significant progression differences. CONCLUSIONS The created nomogram could help identify patients at high risk for rapid progression of advanced HSPC, allowing for the formulation of tailored therapy regimens and follow-up methods in a timely manner.
Collapse
Affiliation(s)
- Xiaolong Xu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Weiyu Fei
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mingshuang Wu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yi He
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Bo Yang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Cuicui Lv
- Department of Endocrine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
3
|
Wei X, Zhao J, Nie L, Shi Y, Zhao F, Shen Y, Chen J, Sun G, Zhang X, Liang J, Hu X, Shen P, Chen N, Zeng H, Liu Z. Assessing the predictive value of intraductal carcinoma of the prostate (IDC-P) in determining abiraterone efficacy for metastatic hormone-sensitive prostate cancer (mHSPC) patients. Prostate 2025; 85:130-139. [PMID: 39465570 DOI: 10.1002/pros.24809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND This study explored the value of intraductal carcinoma of the prostate (IDC-P) in predicting the efficacy of abiraterone treatment in metastatic hormone-sensitive prostate cancer (mHSPC) patients. METHODS A retrospective study of 925 patients who underwent prostate biopsies to detect IDC-P was conducted, with participants divided into two cohorts. The first cohort of 165 mHSPC patients receiving abiraterone treatment was analyzed to compare therapeutic effectiveness between IDC-P positive and negative cases. Utilizing propensity score matching (PSM) to reduce bias, outcomes such as PSA response, progression-free survival (PSA-PFS), radiographic progression-free survival (rPFS), and overall survival were assessed. Additionally, the second cohort of 760 mHSPC patients compared the efficacy of abiraterone with conventional hormone therapy, focusing on differences between IDC-P positive and negative individuals. RESULTS After PSM, our first cohort included 108 patients with similar baseline characteristics. Among them, 50% (54/108) were diagnosed with IDC-P, with 22.2% (12/54) having IDC-P pattern 1 and 77.8% (42/54) with IDC-P pattern 2. While no notable difference was seen in PSA responses between IDC-P positive and negative patients, IDC-P presence linked to worse clinical outcomes (PSA-PFS: 18.6 months vs. not reached [NR], p = 0.009; rPFS: 23.6 months vs. NR, p = 0.020). Further analysis showed comparable outcomes for IDC-P pattern 1 but significantly worse prognosis for IDC-P pattern 2 (PSA-PFS: 18.6 months vs. NR, p = 0.002; rPFS: 22.4 months vs. NR, p = 0.010). Subgroup analysis revealed IDC-P pattern 2 consistently predicted poorer outcomes across patient subgroups. Remarkably, both IDC-P positive and negative patients gained more from androgen deprivation therapy with abiraterone than conventional treatment, with IDC-P negative patients showing a more significant survival advantage, supported by better hazard ratios (0.47 and 0.66). CONCLUSION This study found that IDC-P, especially pattern 2, predicts poor prognosis in mHSPC patients on abiraterone therapy. Also, abiraterone's advantage over hormone therapy is reduced in cases with IDC-P compared to those without.
Collapse
Affiliation(s)
- Xinyuan Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fengnian Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Rahman M, Akter K, Ahmed KR, Fahim MMH, Aktary N, Park MN, Shin SW, Kim B. Synergistic Strategies for Castration-Resistant Prostate Cancer: Targeting AR-V7, Exploring Natural Compounds, and Optimizing FDA-Approved Therapies. Cancers (Basel) 2024; 16:2777. [PMID: 39199550 PMCID: PMC11352813 DOI: 10.3390/cancers16162777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) remains a significant therapeutic challenge due to its resistance to standard androgen deprivation therapy (ADT). The emergence of androgen receptor splice variant 7 (AR-V7) has been implicated in CRPC progression, contributing to treatment resistance. Current treatments, including first-generation chemotherapy, androgen receptor blockers, radiation therapy, immune therapy, and PARP inhibitors, often come with substantial side effects and limited efficacy. Natural compounds, particularly those derived from herbal medicine, have garnered increasing interest as adjunctive therapeutic agents against CRPC. This review explores the role of AR-V7 in CRPC and highlights the promising benefits of natural compounds as complementary treatments to conventional drugs in reducing CRPC and overcoming therapeutic resistance. We delve into the mechanisms of action underlying the anti-CRPC effects of natural compounds, showcasing their potential to enhance therapeutic outcomes while mitigating the side effects associated with conventional therapies. The exploration of natural compounds offers promising avenues for developing novel treatment strategies that enhance therapeutic outcomes and reduce the adverse effects of conventional CRPC therapies. These compounds provide a safer, more effective approach to managing CRPC, representing a significant advancement in improving patient care.
Collapse
Affiliation(s)
- Muntajin Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Khadija Akter
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Md. Maharub Hossain Fahim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Nahida Aktary
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Sang-Won Shin
- Department of Humanities & Social Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
5
|
Yu A, Hazra A, Jiao JJ, Hellemans P, Mitselos A, Tian H, Ruixo JJP, Haddish-Berhane N, Ouellet D, Russu A. Demonstrating Bioequivalence for Two Dose Strengths of Niraparib and Abiraterone Acetate Dual-Action Tablets Versus Single Agents: Utility of Clinical Study Data Supplemented with Modeling and Simulation. Clin Pharmacokinet 2024; 63:511-527. [PMID: 38436924 PMCID: PMC11052869 DOI: 10.1007/s40262-023-01340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 03/05/2024]
Abstract
BACKGROUND AND OBJECTIVE The combination of niraparib and abiraterone acetate (AA) plus prednisone is under investigation for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC) and metastatic castration-sensitive prostate cancer (mCSPC). Regular-strength (RS) and lower-strength (LS) dual-action tablets (DATs), comprising niraparib 100 mg/AA 500 mg and niraparib 50 mg/AA 500 mg, respectively, were developed to reduce pill burden and improve patient experience. A bioequivalence (BE)/bioavailability (BA) study was conducted under modified fasting conditions in patients with mCRPC to support approval of the DATs. METHODS This open-label randomized BA/BE study (NCT04577833) was conducted at 14 sites in the USA and Europe. The study had a sequential design, including a 21-day screening phase, a pharmacokinetic (PK) assessment phase comprising three periods [namely (1) single-dose with up to 1-week run-in, (2) daily dose on days 1-11, and (3) daily dose on days 12-22], an extension where both niraparib and AA as single-agent combination (SAC; reference) or AA alone was continued from day 23 until discontinuation, and a 30-day follow-up phase. Patients were randomly assigned in a parallel-group design (four-sequence randomization) to receive a single oral dose of niraparib 100 mg/AA 1000 mg as a LS-DAT or SAC in period 1, and patients continued as randomized into a two-way crossover design during periods 2 and 3 where they received niraparib 200 mg/AA 1000 mg once daily as a RS-DAT or SAC. The design was powered on the basis of crossover assessment of RS-DAT versus SAC. During repeated dosing (periods 2 and 3, and extension phase), all patients also received prednisone/prednisolone 5 mg twice daily. Plasma samples were collected for measurement of niraparib and abiraterone plasma concentrations. Statistical assessment of the RS-DAT and LS-DAT versus SAC was performed on log-transformed pharmacokinetic parameters data from periods 2 and 3 (crossover) and from period 1 (parallel), respectively. Additional paired analyses and model-based bioequivalence assessments were conducted to evaluate the similarity between the LS-DAT and SAC. RESULTS For the RS-DAT versus SAC, the 90% confidence intervals (CI) of geometric mean ratios (GMR) for maximum concentration at a steady state (Cmax,ss) and area under the plasma concentration-time curve from 0-24 h at a steady state (AUC 0-24h,ss) were respectively 99.18-106.12% and 97.91-104.31% for niraparib and 87.59-106.69 and 86.91-100.23% for abiraterone. For the LS-DAT vs SAC, the 90% CI of GMR for AUC0-72h of niraparib was 80.31-101.12% in primary analysis, the 90% CI of GMR for Cmax,ss and AUC 0-24h,ss of abiraterone was 85.41-118.34% and 86.51-121.64% respectively, and 96.4% of simulated LS-DAT versus SAC BE trials met the BE criteria for both niraparib and abiraterone. CONCLUSIONS The RS-DAT met BE criteria (range 80%-125%) versus SAC based on 90% CI of GMR for Cmax,ss and AUC 0-24h,ss. The LS-DAT was considered BE to SAC on the basis of the niraparib component meeting the BE criteria in the primary analysis for AUC 0-72h; abiraterone meeting the BE criteria in additional paired analyses based on Cmax,ss and AUC 0-24h,ss; and the percentage of simulated LS-DAT versus SAC BE trials meeting the BE criteria for both. CLINICALTRIALS GOV IDENTIFIER NCT04577833.
Collapse
Affiliation(s)
- Alex Yu
- Janssen Research and Development, LLC, 1400 McKean Rd, Springhouse, PA, USA.
| | - Anasuya Hazra
- Janssen Research and Development, LLC, 1400 McKean Rd, Springhouse, PA, USA
- Regeneron, Tarrytown, NY, USA
| | - James Juhui Jiao
- Janssen Research and Development, LLC, 920 US Highway 202, Raritan, NJ, USA
| | - Peter Hellemans
- Janssen Pharmaceutica NV, Research and Development BE, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Anna Mitselos
- Janssen Pharmaceutica NV, Research and Development BE, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Hui Tian
- Janssen Research and Development, LLC, 1400 McKean Rd, Springhouse, PA, USA
| | | | | | - Daniele Ouellet
- Janssen Research and Development, LLC, 1400 McKean Rd, Springhouse, PA, USA
| | - Alberto Russu
- Janssen-Cilag SpA, Via Michelangelo Buonarroti 23, 20093, Cologno Monzese, Italy
| |
Collapse
|
6
|
Li X, Bai Y, Feng K, Chu Z, Li H, Lin Z, Tian L. Therapeutic, diagnostic and prognostic values of TRIM proteins in prostate cancer. Pharmacol Rep 2023; 75:1445-1453. [PMID: 37921966 DOI: 10.1007/s43440-023-00534-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 11/05/2023]
Abstract
Prostate cancer is the second most prevalent cancer in men worldwide. The TRIM (tripartite motif) family of proteins is involved in the regulation of various cellular processes, including antiviral immunity, apoptosis, and cancer progression. In recent years, several TRIM proteins have been found to play important roles in prostate cancer initiation and progression. TRIM proteins have indicated oncogenic activity in prostate cancer by enhancing androgen or estrogen receptor signaling and promoting cancer cell growth. Inhibition of TRIM proteins has been raised as a potential therapeutic strategy for the treatment of prostate cancer. Overall, these studies suggest that TRIM family proteins exert tumor-promoting effects in prostate cancer, and targeting these proteins can provide a promising therapeutic strategy for prostate cancer treatment. On the other hand, some TRIM proteins can be differentially expressed in prostate cancer cells compared to normal cells, thus providing novel diagnostic/prognostic biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Xiaojiang Li
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yuzhuo Bai
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Ke Feng
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Zhendong Chu
- Department of Orthopedics, Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Haijun Li
- Department of Orthopedics, Tonghua County Hospital of Traditional Chinese Medicine, Tonghua, 134100, China
| | - Zhicheng Lin
- Department of Internal Medicine, Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China.
| |
Collapse
|
7
|
Rebhan K, Stelzer PD, Pradere B, Rajwa P, Kramer G, Hofmann B, Resch I, Yurdakul O, Laccone FA, Bujalkova MG, Smogavec M, Tan YY, Ristl R, Shariat SF, Egger G, Hassler MR. Performance of clinical risk scores and prediction models to identify pathogenic germline variants in patients with advanced prostate cancer. World J Urol 2023; 41:2091-2097. [PMID: 37528288 PMCID: PMC10415416 DOI: 10.1007/s00345-023-04535-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/11/2023] [Indexed: 08/03/2023] Open
Abstract
PURPOSE Determining the frequency and distribution of pathogenic germline variants (PGVs) in Austrian prostate cancer (PCa) patients and to assess the accuracy of different clinical risk scores to correctly predict PGVs. METHODS This cross-sectional study included 313 men with advanced PCa. A comprehensive personal and family history was obtained based on predefined questionnaires. Germline DNA sequencing was performed between 2019 and 2021 irrespective of family history, metastatic or castration status or age at diagnosis. Clinical risk scores for hereditary cancer syndromes were evaluated and a PCa-specific score was developed to assess the presence of PGVs. RESULTS PGV presence was associated with metastasis (p = 0.047) and castration resistance (p = 0.011), but not with personal cancer history or with relatives with any type of cancer. Clinical risk scores (Manchester score, PREMM5 score, Amsterdam II criteria or Johns Hopkins criteria) showed low sensitivities (3.3-20%) for assessing the probability of PGV presence. A score specifically designed for PCa patients stratifying patients into low- or high-risk regarding PGV probability, correctly classified all PGV carriers as high-risk, whereas a third of PCa patients without PGVs was classified as low risk of the presence of PGVs. CONCLUSION Application of common clinical risk scores based on family history are not suitable to identify PCa patients with high PGV probabilities. A PCa-specific score stratified PCa patients into low- or high-risk of PGV presence with sufficient accuracy, and germline DNA sequencing may be omitted in patients with a low score. Further studies are needed to evaluate the score.
Collapse
Affiliation(s)
- Katharina Rebhan
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Departments of Urology and Pediatric Urology, Klinik Ottakring, Vienna, Austria
| | - Philipp D Stelzer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Benjamin Pradere
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Department of Urology, La Croix Du Sud Hospital, Quint Fonsegrives, France
| | - Pawel Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Gero Kramer
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Bernd Hofmann
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Irene Resch
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ozan Yurdakul
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Franco A Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Mateja Smogavec
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Yen Y Tan
- Department of Obstetrics, Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Robin Ristl
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Departments of Urology, Weill Cornell Medical College, New York, NY, USA
- Department of Urology, University of Texas Southwestern, Dallas, TX, USA
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Melanie R Hassler
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Al Salhi Y, Sequi MB, Valenzi FM, Fuschi A, Martoccia A, Suraci PP, Carbone A, Tema G, Lombardo R, Cicione A, Pastore AL, De Nunzio C. Cancer Stem Cells and Prostate Cancer: A Narrative Review. Int J Mol Sci 2023; 24:ijms24097746. [PMID: 37175453 PMCID: PMC10178135 DOI: 10.3390/ijms24097746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer stem cells (CSCs) are a small and elusive subpopulation of self-renewing cancer cells with the remarkable ability to initiate, propagate, and spread malignant disease. In the past years, several authors have focused on the possible role of CSCs in PCa development and progression. PCa CSCs typically originate from a luminal prostate cell. Three main pathways are involved in the CSC development, including the Wnt, Sonic Hedgehog, and Notch signaling pathways. Studies have observed an important role for epithelial mesenchymal transition in this process as well as for some specific miRNA. These studies led to the development of studies targeting these specific pathways to improve the management of PCa development and progression. CSCs in prostate cancer represent an actual and promising field of research.
Collapse
Affiliation(s)
- Yazan Al Salhi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Manfredi Bruno Sequi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Fabio Maria Valenzi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Andrea Fuschi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Alessia Martoccia
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Paolo Pietro Suraci
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Antonio Carbone
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Giorgia Tema
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Riccardo Lombardo
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonio Cicione
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonio Luigi Pastore
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Cosimo De Nunzio
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
9
|
Let’s Go 3D! New Generation of Models for Evaluating Drug Response and Resistance in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065293. [PMID: 36982368 PMCID: PMC10049142 DOI: 10.3390/ijms24065293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PC) is the third most frequently diagnosed cancer worldwide and the second most frequent in men. Several risk factors can contribute to the development of PC, and those include age, family history, and specific genetic mutations. So far, drug testing in PC, as well as in cancer research in general, has been performed on 2D cell cultures. This is mainly because of the vast benefits these models provide, including simplicity and cost effectiveness. However, it is now known that these models are exposed to much higher stiffness; lose physiological extracellular matrix on artificial plastic surfaces; and show changes in differentiation, polarization, and cell–cell communication. This leads to the loss of crucial cellular signaling pathways and changes in cell responses to stimuli when compared to in vivo conditions. Here, we emphasize the importance of a diverse collection of 3D PC models and their benefits over 2D models in drug discovery and screening from the studies done so far, outlining their benefits and limitations. We highlight the differences between the diverse types of 3D models, with the focus on tumor–stroma interactions, cell populations, and extracellular matrix composition, and we summarize various standard and novel therapies tested on 3D models of PC for the purpose of raising awareness of the possibilities for a personalized approach in PC therapy.
Collapse
|