1
|
Brune MM, Savic Prince S, Vlajnic T, Chijioke O, Roma L, König D, Bubendorf L. MTAP as an emerging biomarker in thoracic malignancies. Lung Cancer 2024; 197:107963. [PMID: 39357262 DOI: 10.1016/j.lungcan.2024.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
S-methyl-5'-thioadenosine phosphorylase (MTAP) deficiency is an emerging biomarker in non-small cell lung cancer (NSCLC) and beyond. The MTAP gene is located in the chromosomal region 9p21.3, which shows one of the most common homozygous deletions across all human cancers (9p21 loss). Loss of 9p21 is found in the majority of pleural mesotheliomas, where it serves as an established diagnostic marker. Until recently, fluorescence in situ hybridization (FISH) was the gold standard for the detection of 9p21 losses, but loss of MTAP expression by immunohistochemistry (IHC) gains increasing importance as an easy to apply and cost-effective diagnostic surrogate marker. Besides, MTAP loss, which has been reported in 13% of NSCLC, is becoming an emerging predictive biomarker in two different scenarios in NSCLC and other cancer types: 1) MTAP loss seems to negatively predict the response to immune checkpoint inhibitor (ICI) treatment via silencing of the tumor microenvironment, and 2) MTAP loss serves as a predictive biomarker for novel targeted treatment strategies. MTAP deficiency leads to an impaired function of the protein arginine methyltransferase 5 (PRMT5) due to its partial inhibition by MTAP's accumulating substrate methylthioadenosine (MTA). This process leaves MTAP deficient tumor cells heavily dependent on the remaining function of PRMT5, making it a perfect target for synthetic lethality. Indeed, MTA-cooperative PRMT5-inhibitors are now tested in several clinical trials with promising early results in solid malignancies. With its emergence as a predictive biomarker, the implementation of MTAP IHC into diagnostic routine for NSCLC and other tumors is likely to take place soon. In this review article, we summarize the current literature on the role of MTAP in thoracic tumors and evaluate different testing methods, including IHC, FISH and next generation sequencing.
Collapse
Affiliation(s)
- Magdalena M Brune
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland
| | - Spasenija Savic Prince
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland
| | - Tatjana Vlajnic
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland
| | - Obinna Chijioke
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland
| | - Luca Roma
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland
| | - David König
- Division of Medical Oncology, University Hospital Basel, Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland.
| |
Collapse
|
2
|
Yang Z, Zhang X, Zhan N, Lin L, Zhang J, Peng L, Qiu T, Luo Y, Liu C, Pan C, Hu J, Ye Y, Jiang Z, Liu X, Sun M, Zhang Y. Exosome-related lncRNA score: A value-based individual treatment strategy for predicting the response to immunotherapy in clear cell renal cell carcinoma. Cancer Med 2024; 13:e7308. [PMID: 38808948 PMCID: PMC11135019 DOI: 10.1002/cam4.7308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Exosomes play a crucial role in intercellular communication in clear cell renal cell carcinoma (ccRCC), while the long non-coding RNAs (lncRNAs) are implicated in tumorigenesis and progression. AIMS The purpose of this study is to construction a exosomes-related lncRNA score and a ceRNA network to predict the response to immunotherapy and potential targeted drug in ccRCC. METHODS Data of ccRCC patients were obtained from the TCGA database. Pearson correlation analysis was used to identify eExosomes-related lncRNAs (ERLRs) from Top10 exosomes-related genes that have been screened. The entire cohort was randomly divided into a training cohort and a validation cohort in equal scale. LASSO regression and multivariate cox regression was used to construct the ERLRs-based score. Differences in clinicopathological characteristics, immune microenvironment, immune checkpoints, and drug susceptibility between the high- and low-risk groups were also investigated. Finally, the relevant ceRNA network was constructed by machine learning to analyze their potential targets in immunotherapy and drug use of ccRCC patients. RESULTS A score consisting of 4ERLRs was identified, and patients with higher ERLRs-based score tended to have a worse prognosis than those with lower ERLRs-based score. ROC curves and multivariate Cox regression analysis demonstrated that the score could be considered as a risk factor for prognosis in both training and validation cohorts. Moreover, patients with high scores are predisposed to experience poor overall survival, a larger prevalence of advanced stage (III-IV), a greater tumor mutational burden, a higher infiltration of immunosuppressive cells, and a greater likelihood of responding favorably to immunotherapy. The importance of EMX2OS was determined by mechanical learning, and the ceRNA network was constructed, and EMX2OS may be a potential therapeutic target, possibly exerting its function through the EMX2OS/hsa-miR-31-5p/TLN2 axis. CONCLUSIONS Based on machine learning, a novel ERLRs-based score was constructed for predicting the survival of ccRCC patients. The ERLRs-based score is a promising potential independent prognostic factor that is closely correlated with the immune microenvironment and clinicopathological characteristics. Meanwhile, we screened out key lncRNAEMX2OS and identified the EMX2OS/hsa-miR-31-5p/TLN2 axis, which may provide new clues for the targeted therapy of ccRCC.
Collapse
Affiliation(s)
- Zhan Yang
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Xiaoting Zhang
- Stomatology Hospital, School of StomatologyZhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhouZhejiang ProvinceChina
| | - Ning Zhan
- Stomatology Hospital, School of StomatologyZhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhouZhejiang ProvinceChina
| | - Lining Lin
- Stomatology Hospital, School of StomatologyZhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhouZhejiang ProvinceChina
| | - Jingyu Zhang
- Stomatology Hospital, School of StomatologyZhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhouZhejiang ProvinceChina
| | - Lianjie Peng
- Stomatology Hospital, School of StomatologyZhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhouZhejiang ProvinceChina
| | - Tao Qiu
- Stomatology Hospital, School of StomatologyZhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhouZhejiang ProvinceChina
| | - Yaxian Luo
- Stomatology Hospital, School of StomatologyZhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhouZhejiang ProvinceChina
| | - Chundi Liu
- Stomatology Hospital, School of StomatologyZhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhouZhejiang ProvinceChina
| | - Chaoran Pan
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Junhao Hu
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Yifan Ye
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Zilong Jiang
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Xinyu Liu
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Mouyuan Sun
- Stomatology Hospital, School of StomatologyZhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhouZhejiang ProvinceChina
| | - Yan Zhang
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
3
|
Deng W, Xie Z, Chen L, Li W, Li M. Disulfidptosis status influences prognosis and therapeutic response in clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:1249-1275. [PMID: 38271056 PMCID: PMC10866437 DOI: 10.18632/aging.205405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Disulfidptosis is a recently identified type of programmed cell death. It is characterized by aberrant accumulation of intracellular disulfides. The clinical implications of disulfidptosis in clear cell renal cell carcinoma (ccRCC) remain unclear. A series of bioinformatics approaches were employed to analyze ten disulfidptosis-related molecules. Firstly, the expression patterns of the disulfidptosis-related molecules were different between normal and ccRCC tissues. A comprehensive cohort of patients with ccRCC was then assembled from three public databases and subjected to cluster analysis based on disulfidptosis-related molecules. Consensus cluster analysis revealed three distinct disulfidptosis clusters. We then conducted weighted gene co-expression network analysis (WGCNA) to identify highly correlated genes. 267 hub genes were screened out through WGCNA, and three gene clusters were then determined. Finally, we identified 87 genes with prognostic value and then used them to develop a disulfidptosis scoring (DSscore) system, which was proven to independently predict survival in ccRCC. Patients in the high-DSscore group exhibited a significant survival advantage and better immunotherapeutic responses compared with those in the low-DSscore group. However, the patients in the low-DSscore group exhibited a greater degree of chemotherapeutic response. In addition, the expression of disulfidptosis-related molecules was validated by qRT-PCR, and the potential of disulfidptosis-related molecules to indicate distinct cell subtypes were validated by single-cell RNA-sequencing. In conclusion, DSscore is a promising index for predicting the prognosis and efficacy of immunotherapy in patients with ccRCC and may provide a basis for novel strategies for future studies.
Collapse
Affiliation(s)
- Weiming Deng
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhenwei Xie
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Libo Chen
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjin Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingyong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Gjuka D, Adib E, Garrison K, Chen J, Zhang Y, Li W, Boutz D, Lamb C, Tanno Y, Nassar A, El Zarif T, Kale N, Rakaee M, Mouhieddine TH, Alaiwi SA, Gusev A, Rogers T, Gao J, Georgiou G, Kwiatkowski DJ, Stone E. Enzyme-mediated depletion of methylthioadenosine restores T cell function in MTAP-deficient tumors and reverses immunotherapy resistance. Cancer Cell 2023; 41:1774-1787.e9. [PMID: 37774699 PMCID: PMC10591910 DOI: 10.1016/j.ccell.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Chromosomal region 9p21 containing tumor suppressors CDKN2A/B and methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic deletions in cancer. 9p21 loss is correlated with reduced tumor-infiltrating lymphocytes (TILs) and resistance to immune checkpoint inhibitor (ICI) therapy. Previously thought to be caused by CDKN2A/B loss, we now show that it is loss of MTAP that leads to poor outcomes on ICI therapy and reduced TIL density. MTAP loss causes accumulation of methylthioadenosine (MTA) both intracellularly and extracellularly and profoundly impairs T cell function via the inhibition of protein arginine methyltransferase 5 (PRMT5) and by adenosine receptor agonism. Administration of MTA-depleting enzymes reverses this immunosuppressive effect, increasing TILs and drastically impairing tumor growth and importantly, synergizes well with ICI therapy. As several studies have shown ICI resistance in 9p21/MTAP null/low patients, we propose that MTA degrading therapeutics may have substantial therapeutic benefit in these patients by enhancing ICI effectiveness.
Collapse
Affiliation(s)
- Donjeta Gjuka
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Elio Adib
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kendra Garrison
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuxue Zhang
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenjiao Li
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Boutz
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Candice Lamb
- Department of Chemical Engineering, University of Texas, Austin, TX, USA; Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Yuri Tanno
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Amin Nassar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Talal El Zarif
- Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Neil Kale
- Worcester Polytechnic Institute, Worcester, MA, USA
| | - Mehrdad Rakaee
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA
| | - Sarah Abou Alaiwi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Gusev
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Rogers
- Children's Medical Center Research Institute, University of Texas Southwestern, Dallas, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas, Austin, TX, USA; Department of Molecular Biosciences, University of Texas, Austin, TX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, TX, USA
| | | | - Everett Stone
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA; Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, TX, USA.
| |
Collapse
|
5
|
MALIK MUNEEBA, MAQBOOL MAMOONA, NISAR TOOBA, AKHTER TAZEEM, UJAN JAVEDAHMED, ALGARNI ALANOODS, JOUFI FAKHRIAAAL, ALANAZI SULTANSHAFIK, ALMOTARED MOHAMMADHADI, BEKHIT MOUNIRMSALEM, JAMIL MUHAMMAD. Deciphering key genes involved in cisplatin resistance in kidney renal clear cell carcinoma through a combined in silico and in vitro approach. Oncol Res 2023; 31:899-916. [PMID: 37744271 PMCID: PMC10513959 DOI: 10.32604/or.2023.030760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/29/2023] [Indexed: 09/26/2023] Open
Abstract
The low survival rate of Kidney renal clear cell carcinoma (KIRC) patients is largely attributed to cisplatin resistance. Rather than focusing solely on individual proteins, exploring protein-protein interactions could offer greater insight into drug resistance. To this end, a series of in silico and in vitro experiments were conducted to identify hub genes in the intricate network of cisplatin resistance-related genes in KIRC chemotherapy. The genes involved in cisplatin resistance across KIRC were retrieved from the National Center for Biotechnology Information (NCBI) database using search terms as "Kidney renal clear cell carcinoma" and "Cisplatin resistance". The genes retrieved were analyzed for hub gene identification using the STRING database and Cytoscape tool. Expression and promoter methylation profiling of the hub genes was done using UALCAN, GEPIA, OncoDB, and HPA databases. Mutational, survival, functional enrichment, immune cell infiltration, and drug prediction analyses of the hub genes were performed using the cBioPortal, GEPIA, GSEA, TIMER, and DrugBank databases. Lastly, expression and methylation levels of the hub genes were validated on two cisplatin-resistant RCC cell lines (786-O and A-498) and a normal renal tubular epithelial cell line (HK-2) using two high throughput techniques, including targeted bisulfite sequencing (bisulfite-seq) and RT-qPCR. A total of 124 genes were identified as being associated with cisplatin resistance in KIRC. Out of these genes, MCL1, IGF1R, CCND1, and PTEN were identified as hub genes and were found to have significant (p < 0.05) variations in their mRNA and protein expressions and effects on the overall survival (OS) of the KIRC patients. Moreover, an aberrant promoter methylation pattern was found to be associated with the dysregulation of the hub genes. In addition to this, hub genes were also linked with different cisplatin resistance-causing pathways. Thus, hub genes can be targeted with Alvocidib, Estradiol, Tretinoin, Capsaicin, Dronabinol, Metribolone, Calcitriol, Acetaminophen, Acitretin, Cyclosporine, Azacitidine, Genistein, and Resveratrol drugs. As the pathogenesis of KIRC is complex, targeting hub genes and associated pathways involved in cisplatin resistance could bring a milestone change in the drug discovery and management of drug resistance, which might uplift overall survival among KIRC patients.
Collapse
Affiliation(s)
| | | | | | - TAZEEM AKHTER
- Public Health Department, University of Health Sciences, Lahore, Pakistan
| | - JAVED AHMED UJAN
- Department of Zoology, Shah Abdul Latif University, Khairpur, Pakistan
- Department of Animal Sciences, University of Florida, Gainesville, USA
| | - ALANOOD S. ALGARNI
- Pharmacology and Toxicology Department College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - FAKHRIA A. AL JOUFI
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Saudi Arabia
| | | | | | - MOUNIR M. SALEM BEKHIT
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - MUHAMMAD JAMIL
- PARC Arid Zone Research Center, Dera Ismail Khan, Pakistan
| |
Collapse
|
6
|
Chang WH, Hsu SW, Zhang J, Li JM, Yang DC, Chu CW, Yoo EH, Zhang W, Yu SL, Chen CH. MTAP deficiency contributes to immune landscape remodelling and tumour evasion. Immunology 2023; 168:331-345. [PMID: 36183155 PMCID: PMC9840685 DOI: 10.1111/imm.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/28/2022] [Indexed: 01/17/2023] Open
Abstract
Methylthioadenosine phosphorylase (MTAP) deficiency occurs in various malignancies and is associated with poor survival in cancer patients. However, the mechanisms underlying tumour progression due to MTAP loss are yet to be elucidated. Utilizing integrated analyses of the transcriptome, proteome and secretome, we demonstrated that MTAP deficiency alters tumour-intrinsic, immune-related pathways and reprograms cytokine profiles towards a tumour-favourable environment. Additionally, MTAP-knockout cells exhibited a marked increase in the immune checkpoint protein PD-L1. Upon co-culturing primary T cells with cancer cells, MTAP loss-mediated PD-L1 upregulation inhibited T cell-mediated killing activity and induced several T cell exhaustion markers. In two xenograft tumour models, we showed a modest increase in average volume of tumours derived from MTAP-deficient cells than that of MTAP-proficient tumours. Surprisingly, a remarkable increase in tumour size was observed in humanized mice bearing MTAP-deficient tumours, as compared to their MTAP-expressing counterparts. Following immunophenotypic characterization of tumour-infiltrating leukocytes by mass cytometry analysis, MTAP-deficient tumours were found to display decreased immune infiltrates with lower proportions of both T lymphocytes and natural killer cells and higher proportions of immunosuppressive cells as compared to MTAP-expressing tumour xenografts. Taken together, our results suggest that MTAP deficiency restructures the tumour immune microenvironment, promoting tumour progression and immune evasion.
Collapse
Affiliation(s)
- Wen-Hsin Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, California, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Ssu-Wei Hsu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, California, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Jun Zhang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, California, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Ji-Min Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, California, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - David C. Yang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, California, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Chih-Wei Chu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, California, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Estelle H. Yoo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, California, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, California, USA
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsien Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, California, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
7
|
Shen CY, Chang WH, Chen YJ, Weng CW, Regmi P, Kier MKK, Su KY, Chang GC, Chen JS, Chen YJ, Yu SL. Tissue Proteogenomic Landscape Reveals the Role of Uncharacterized SEL1L3 in Progression and Immunotherapy Response in Lung Adenocarcinoma. J Proteome Res 2022; 22:1056-1070. [PMID: 36349894 DOI: 10.1021/acs.jproteome.2c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The fundamental pursuit to complete the human proteome atlas and the unmet clinical needs in lung adenocarcinoma have prompted us to study the functional role of uncharacterized proteins and explore their implications in cancer biology. In this study, we characterized SEL1L3, a previously uncharacterized protein encoded from chromosome 4 as a dysregulated protein in lung adenocarcinoma from the large-scale tissue proteogenomics data set established using the cohort of Taiwan Cancer Moonshot. SEL1L3 was expressed in abundance in the tumor parts compared with paired adjacent normal tissues in 90% of the lung adenocarcinoma patients in our cohorts. Moreover, survival analysis revealed the association of SEL1L3 with better clinical outcomes. Intriguingly, silencing of SEL1L3 imposed a reduction in cell viability and activation of ER stress response pathways, indicating a role of SEL1L3 in the regulation of cell stress. Furthermore, the immune profiles of patients with higher SEL1L3 expression were corroborated with its active role in immunophenotype and favorable clinical outcomes in lung adenocarcinoma. Taken together, our study revealed that SEL1L3 might play a vital role in the regulation of cell stress, interaction with cancer cells and the immune microenvironment. Our research findings provide promising insights for further investigation of its molecular signaling network and also suggest SEL1L3 as a potential emerging adjuvant for immunotherapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Chi-Ya Shen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei10048, Taiwan
| | - Wen-Hsin Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California─Davis, Davis, California95616, United States.,Division of Nephrology, Department of Internal Medicine, University of California─Davis, Davis, California95616, United States
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei11529, Taiwan
| | - Chia-Wei Weng
- Institute of Medicine, Chung Shan Medical University, Taichung40201, Taiwan
| | - Prabha Regmi
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei10048, Taiwan
| | - Mickiela K K Kier
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei10048, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei10048, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei10002, Taiwan
| | - Gee-Chen Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung40201, Taiwan
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei10002, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei11529, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei10048, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei10002, Taiwan.,Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei10051, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei10051, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei10002, Taiwan
| |
Collapse
|
8
|
Chang W, Chen Y, Hsiao Y, Chiang C, Wang C, Chang Y, Hong Q, Lin C, Lin S, Chang G, Chen H, Chen Y, Chen C, Yang P, Yu S. Reduced symmetric dimethylation stabilizes vimentin and promotes metastasis in
MTAP‐
deficient lung cancer. EMBO Rep 2022; 23:e54265. [PMID: 35766227 PMCID: PMC9346486 DOI: 10.15252/embr.202154265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wen‐Hsin Chang
- Institute of Molecular Medicine College of Medicine, National Taiwan University Taipei Taiwan
| | - Yi‐Ju Chen
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Yi‐Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Ching‐Cheng Chiang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Chia‐Yu Wang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Ya‐Ling Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Qi‐Sheng Hong
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Chien‐Yu Lin
- Institute of Statistical Science Academia Sinica Taipei Taiwan
| | - Shr‐Uen Lin
- Graduate Institute of Oncology College of Medicine, National Taiwan University Taipei Taiwan
| | - Gee‐Chen Chang
- Division of Chest Medicine, Department of Internal Medicine Taichung Veterans General Hospital Taichung Taiwan
- School of Medicine Chung Shan Medical University Taichung Taiwan
| | - Hsuan‐Yu Chen
- Institute of Statistical Science Academia Sinica Taipei Taiwan
| | - Yu‐Ju Chen
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Ching‐Hsien Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine Department of Internal Medicine University of California Davis Davis CA USA
- Division of Nephrology, Department of Internal Medicine University of California Davis Davis CA USA
- Comprehensive Cancer Center University of California Davis Davis CA USA
| | - Pan‐Chyr Yang
- Institute of Molecular Medicine College of Medicine, National Taiwan University Taipei Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University Taipei Taiwan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Sung‐Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
- Institute of Medical Device and Imaging, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Pathology, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine National Taiwan University Taipei Taiwan
- Department of Laboratory Medicine National Taiwan University Hospital Taipei Taiwan
| |
Collapse
|
9
|
Choueiri TK, Albiges L, Atkins MB, Bakouny Z, Bratslavsky G, Braun DA, Haas NB, Haanen JB, Hakimi AA, Jewett MA, Jonasch E, Kaelin WG, Kapur P, Labaki C, Lewis B, McDermott DF, Pal SK, Pels K, Poteat S, Powles T, Rathmell WK, Rini BI, Signoretti S, Tannir NM, Uzzo RG, Hammers HJ. From Basic Science to Clinical Translation in Kidney Cancer: A Report from the Second Kidney Cancer Research Summit. Clin Cancer Res 2022; 28:831-839. [PMID: 34965942 PMCID: PMC9223120 DOI: 10.1158/1078-0432.ccr-21-3238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
The second Kidney Cancer Research Summit was held virtually in October 2020. The meeting gathered worldwide experts in the field of kidney cancer, including basic, translational, and clinical scientists as well as patient advocates. Novel studies were presented, addressing areas of unmet need related to different topics. These include novel metabolic targets, promising immunotherapeutic regimens, predictive genomic and transcriptomic biomarkers, and variant histologies of renal cell carcinoma (RCC). With the development of pioneering technologies, and an unprecedented commitment to kidney cancer research, the field has tremendously evolved. This perspective aims to summarize the different sessions of the conference, outline major advances in the understanding of RCC and discuss current challenges faced by the field.
Collapse
Affiliation(s)
- Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Michael B. Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gennady Bratslavsky
- Department of Urology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - David A. Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Naomi B. Haas
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John B.A.G. Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Ari Hakimi
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael A.S. Jewett
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G. Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chris Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - David F. McDermott
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Sumanta K. Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Kevin Pels
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Thomas Powles
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Brian I. Rini
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Nizar M. Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert G. Uzzo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hans J. Hammers
- Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Lin E, Zhu P, Ye C, Huang M, Liu X, Tian K, Tang Y, Zeng J, Cheng S, Liu J, Liu Y, Yu Y. Integrative Analysis of the Genomic and Immune Microenvironment Characteristics Associated With Clear Cell Renal Cell Carcinoma Progression: Implications for Prognosis and Immunotherapy. Front Immunol 2022; 13:830220. [PMID: 35677048 PMCID: PMC9168804 DOI: 10.3389/fimmu.2022.830220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Unlike early clear cell renal cell carcinoma (ccRCC), locally advanced and metastatic ccRCC present poor treatment outcomes and prognosis. As immune checkpoint inhibitors have achieved favorable results in the adjuvant treatment of metastatic ccRCC, we aimed to investigate the immunogenomic landscape during ccRCC progression and its potential impact on immunotherapy and prognosis. Using multi-omics and immunotherapy ccRCC datasets, an integrated analysis was performed to identify genomic alterations, immune microenvironment features, and related biological processes during ccRCC progression and evaluate their relevance to immunotherapy response and prognosis. We found that aggressive and metastatic ccRCC had higher proportions of genomic alterations, including SETD2 mutations, Del(14q), Del(9p), and higher immunosuppressive cellular and molecular infiltration levels. Of these, the Del(14q) might mediate immune escape in ccRCC via the VEGFA-VEGFR2 signaling pathway. Furthermore, immune-related pathways associated with ccRCC progression did not affect the immunotherapeutic response to ccRCC. Conversely, cell cycle pathways not only affected ccRCC progression and prognosis, but also were related to ccRCC immunotherapeutic response resistance. Overall, we described the immunogenomic characteristics of ccRCC progression and their correlations with immunotherapeutic response and prognosis, providing new insights into their prediction and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Enyu Lin
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - ManLi Huang
- Department of Operating Room, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xuechao Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanlin Tang
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
A Novel Renoprotective Strategy: Upregulation of PD-L1 Mitigates Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms222413304. [PMID: 34948109 PMCID: PMC8706395 DOI: 10.3390/ijms222413304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
The innate and adaptive immunities have been documented to participate in the pathogenesis of nephrotoxic acute kidney injury (AKI); however, the mechanisms controlling these processes have yet to be established. In our cisplatin-induced AKI mouse model, we show pathological damage to the kidneys, with the classical markers elevated, consistent with the response to cisplatin treatment. Through assessments of the components of the immune system, both locally and globally, we demonstrate that the immune microenvironment of injured kidneys was associated with an increased infiltration of CD4+ T cells and macrophages concomitant with decreased Treg cell populations. Our cell-based assays and animal studies further show that cisplatin exposure downregulated the protein levels of programmed death-ligand 1 (PD-L1), an immune checkpoint protein, in primary renal proximal tubular epithelial cells, and that these inhibitions were dose-dependent. After orthotopic delivery of PD-L1 gene into the kidneys, cisplatin-exposed mice displayed lower levels of both serum urea nitrogen and creatinine upon PD-L1 expression. Our data suggest a renoprotective effect of the immune checkpoint protein, and thereby provide a novel therapeutic strategy for cisplatin-induced AKI.
Collapse
|
12
|
Barekatain Y, Ackroyd JJ, Yan VC, Khadka S, Wang L, Chen KC, Poral AH, Tran T, Georgiou DK, Arthur K, Lin YH, Satani N, Ballato ES, Behr EI, deCarvalho AC, Verhaak RGW, de Groot J, Huse JT, Asara JM, Kalluri R, Muller FL. Homozygous MTAP deletion in primary human glioblastoma is not associated with elevation of methylthioadenosine. Nat Commun 2021; 12:4228. [PMID: 34244484 PMCID: PMC8270912 DOI: 10.1038/s41467-021-24240-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Homozygous deletion of methylthioadenosine phosphorylase (MTAP) in cancers such as glioblastoma represents a potentially targetable vulnerability. Homozygous MTAP-deleted cell lines in culture show elevation of MTAP’s substrate metabolite, methylthioadenosine (MTA). High levels of MTA inhibit protein arginine methyltransferase 5 (PRMT5), which sensitizes MTAP-deleted cells to PRMT5 and methionine adenosyltransferase 2A (MAT2A) inhibition. While this concept has been extensively corroborated in vitro, the clinical relevance relies on exhibiting significant MTA accumulation in human glioblastoma. In this work, using comprehensive metabolomic profiling, we show that MTA secreted by MTAP-deleted cells in vitro results in high levels of extracellular MTA. We further demonstrate that homozygous MTAP-deleted primary glioblastoma tumors do not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma. These findings highlight metabolic discrepancies between in vitro models and primary human tumors that must be considered when developing strategies for precision therapies targeting glioblastoma with homozygous MTAP deletion. The metabolite methylthioadenosine (MTA) inhibits PRMT5. Therefore, MTA accumulation due to MTA phosphorylase (MTAP) deletion has been proposed as a vulnerability for PRMT5-targeted therapy in cancer. Here, the authors show that MTA does not accumulate in MTAP-deficient cancer cells but is secreted and metabolized by MTAP-intact cells in the tumour microenvironment.
Collapse
Affiliation(s)
- Yasaman Barekatain
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Jeffrey J Ackroyd
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Victoria C Yan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sunada Khadka
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Lin Wang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ko-Chien Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Anton H Poral
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Theresa Tran
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenisha Arthur
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Hsi Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nikunj Satani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elliot S Ballato
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eliot I Behr
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana C deCarvalho
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - John de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Asara
- Department of Medicine, Harvard Medical School, and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian L Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,SPOROS Bioventures, Houston, TX, USA.
| |
Collapse
|
13
|
IGF1-mediated HOXA13 overexpression promotes colorectal cancer metastasis through upregulating ACLY and IGF1R. Cell Death Dis 2021; 12:564. [PMID: 34075028 PMCID: PMC8169856 DOI: 10.1038/s41419-021-03833-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Metastasis is the major reason for the high mortality of colorectal cancer (CRC) patients and its molecular mechanism remains unclear. Here, we report a novel role of Homeobox A13 (HOXA13), a member of the Homeobox (HOX) family, in promoting CRC metastasis. The elevated expression of HOXA13 was positively correlated with distant metastasis, higher AJCC stage, and poor prognosis in two independent CRC cohorts. Overexpression of HOXA13 promoted CRC metastasis whereas downregulation of HOXA13 suppressed CRC metastasis. Mechanistically, HOXA13 facilitated CRC metastasis by transactivating ATP-citrate lyase (ACLY) and insulin-like growth factor 1 receptor (IGF1R). Knockdown of ACLY and IGFIR inhibited HOXA13-medicated CRC metastasis, whereas ectopic overexpression of ACLY and IGFIR rescued the decreased CRC metastasis induced by HOXA13 knockdown. Furthermore, Insulin-like growth factor 1 (IGF1), the ligand of IGF1R, upregulated HOXA13 expression through the PI3K/AKT/HIF1α pathway. Knockdown of HOXA13 decreased IGF1-mediated CRC metastasis. In addition, the combined treatment of ACLY inhibitor ETC-1002 and IGF1R inhibitor Linsitinib dramatically suppressed HOXA13-mediated CRC metastasis. In conclusion, HOXA13 is a prognostic biomarker in CRC patients. Targeting the IGF1-HOXA13-IGF1R positive feedback loop may provide a potential therapeutic strategy for the treatment of HOXA13-driven CRC metastasis.
Collapse
|
14
|
Marjon K, Kalev P, Marks K. Cancer Dependencies: PRMT5 and MAT2A in MTAP/p16-Deleted Cancers. ANNUAL REVIEW OF CANCER BIOLOGY 2021. [DOI: 10.1146/annurev-cancerbio-030419-033444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Discovery of targeted therapies that selectively exploit the genetic inactivation of specific tumor suppressors remains a major challenge. This includes the prevalent deletion of the CDKN2A/ MTAP locus, which was first reported nearly 40 years ago. The more recent advent of RNA interference and functional genomic screening technologies led to the identification of hidden collateral lethalities occurring with passenger deletions of MTAP in cancer cells. In particular, small-molecule inhibition of the type II arginine methyltransferase PRMT5 and the S-adenosylmethionine-producing enzyme MAT2A each presents a precision medicine approach for the treatment of patients whose tumors have homozygous loss of MTAP. In this review, we highlight key aspects of MTAP, PRMT5, and MAT2A biology to provide a conceptual framework for developing novel therapeutic strategies in tumors with MTAP deletion and to summarize ongoing efforts to drug PRMT5 and MAT2A.
Collapse
Affiliation(s)
- Katya Marjon
- Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA
| | - Peter Kalev
- Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA
| | - Kevin Marks
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
15
|
Zarisfi M, Nguyen T, Nedrow JR, Le A. The Heterogeneity Metabolism of Renal Cell Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:117-126. [PMID: 34014538 DOI: 10.1007/978-3-030-65768-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to data from the American Cancer Society, cancer is one of the deadliest health problems globally. Annually, renal cell carcinoma (RCC) causes more than 100,000 deaths worldwide [1-4], posing an urgent need to develop effective treatments to increase patient survival outcomes. New therapies are expected to address a major factor contributing to cancer's resistance to standard therapies: oncogenic heterogeneity. Gene expression can vary tremendously among different types of cancers, different patients of the same tumor type, and even within individual tumors; various metabolic phenotypes can emerge, making singletherapy approaches insufficient. Novel strategies targeting the diverse metabolism of cancers aim to overcome this obstacle. Though some have yielded positive results, it remains a challenge to uncover all of the distinct metabolic profiles of RCC. In the quest to overcome this obstacle, the metabolic oriented research focusing on these cancers has offered freshly new perspectives, which are expected to contribute heavily to the development of new treatments.
Collapse
Affiliation(s)
- Mohammadreza Zarisfi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tu Nguyen
- University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jessie R Nedrow
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
16
|
Zhao Z, Xing Y, Liu Y, Jing S. Lung cancer‑associated transcript 1 facilitates tumorigenesis in laryngeal squamous cell carcinoma through the targeted inhibition of miR‑493. Mol Med Rep 2020; 23:59. [PMID: 33215214 PMCID: PMC7705996 DOI: 10.3892/mmr.2020.11697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve important roles in the tumorigenesis of a diverse range of cancer types. The lung cancer-associated transcript 1 (LUCAT1), has been reported to promote the proliferation, migration and invasion of oral squamous cell carcinoma cells. However, the exact role of LUCAT1 in laryngeal squamous cell carcinoma (LSCC) remains to fully understood. The present study aimed to interrogate the role and modulatory mechanism of LUCAT1 in LSCC. Reverse transcription-quantitative PCR and western blotting were used to investigate the expression of LUCAT1 and miR-493, as well as the protein expression of cyclin-dependent kinase 2, cyclin E1, p21, matrix metalloproteinase (MMP)2, MMP9, vascular endothelial growth factor-C, Bcl-2, Bax, cleaved caspase-3 and procaspase-3. Cell Counting Kit-8, flow cytometry, wound healing and Transwell assays were performed to analyze the proliferation, cell cycle, apoptosis levels, and the migratory and invasive abilities, respectively, of the LSCC AMC-HN-8 cell line. In addition, dual-luciferase reporter and ribonucleoprotein immunoprecipitation assays were used to investigate the binding between LUCAT1 and microRNA (miR)-493. The results of the present study revealed that the expression levels of LUCAT1 were upregulated in AMC-HN-8 cells. The genetic knockdown of LUCAT1 expression levels significantly suppressed the cell proliferation, alongside downregulating the expression levels of CDK2 and cyclin E1 and upregulating p21 expression levels. In addition, the knockdown of LUCAT1 inhibited cell migration and invasion, as demonstrated using the wound healing and Transwell assays, respectively. Moreover, LUCAT1 knockdown promoted cell apoptosis and upregulated the expression levels of Bax and cleaved caspase-3, whilst downregulating the expression levels of Bcl-2. Furthermore, LUCAT1 was discovered to directly bind to and inhibit the well-known tumor suppressor, miR-493. Notably, the specific inhibition of miR-493 partly blocked the anticancer effects of LUCAT1 knockdown in AMC-HN-8 cells. In conclusion, these results suggested that LUCAT1 may facilitate tumorigenesis in LSCC through the targeted inhibition of miR-493, which provides evidence for a novel target for the treatment of LSCC.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Otorhinolaryngology‑Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yan Xing
- The Third Department of Rehabilitation, Shijiazhuang No. 1 Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Yan Liu
- Department of Otorhinolaryngology‑Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shanghua Jing
- Department of Otorhinolaryngology‑Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|