1
|
Li K, Lu E, Wang Q, Xu R, Yuan W, Wu R, Lu L, Li P. Serum vitamin D deficiency is associated with increased risk of γδ T cell exhaustion in HBV-infected patients. Immunology 2024; 171:31-44. [PMID: 37702282 DOI: 10.1111/imm.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Previous studies have demonstrated that T cell exhaustion is associated with poor clearance of Hepatitis B virus (HBV). However, whether the expression of exhaustion markers on innate-like circulating γδ T cells derived from patients with HBV infection correlates with the serum level of vitamin D is not completely understood. In this study, we found that the frequency of circulating Vδ2+ T cell and serum levels of vitamin 25(OH)D3 were significantly decreased in patients with HBV. And serum 25(OH)D3 levels in HBV-infected patients were negatively correlated with HBV DNA load and PD-1 expression on γδ T cells. Interestingly, 1α,25(OH)2 D3 alleviated the exhaustion phenotype of Vδ2 T cells in HBV-infected patients and promoted IFN-β expression in human cytotoxic Vδ2 T cells in vitro. Collectively, these findings demonstrate that vitamin D plays a pivotal role in reversing γδ T-cell exhaustion and is highly promising target for ameliorating HBV infection.
Collapse
Affiliation(s)
- Ke Li
- Department of Geriatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Eying Lu
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Qian Wang
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Ruirong Xu
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Wenhui Yuan
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Ruan Wu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Peng Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
2
|
Wang X, Zhang Y, Chung Y, Tu CR, Zhang W, Mu X, Wang M, Chan GC, Leung W, Lau Y, Liu Y, Tu W. Tumor vaccine based on extracellular vesicles derived from γδ-T cells exerts dual antitumor activities. J Extracell Vesicles 2023; 12:e12360. [PMID: 37654012 PMCID: PMC10471836 DOI: 10.1002/jev2.12360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
γδ-T cells are innate-like T cells with dual antitumor activities. They can directly eradicate tumor cells and function as immunostimulatory cells to promote antitumor immunity. Previous studies have demonstrated that small extracellular vesicles (EVs) derived from γδ-T cells (γδ-T-EVs) inherited the dual antitumor activities from their parental cells. However, it remains unknown whether γδ-T-EVs can be designed as tumors vaccine to improve therapeutic efficacy. Here, we found that γδ-T-EVs had immune adjuvant effects on antigen-presenting cells, as revealed by enhanced expression of antigen-presenting and co-stimulatory molecules, secretion of pro-inflammatory cytokines and antigen-presenting ability of DCs after γδ-T-EVs treatment. The γδ-T-EVs-based vaccine was designed by loading tumor-associated antigens (TAAs) into γδ-T-EVs. Compared with γδ-T-EVs, the γδ-T-EVs-based vaccine effectively promoted more tumor-specific T-cell responses. In addition, the vaccine regimen preserved direct antitumor effects and induced tumor cell apoptosis. Interestingly, the allogeneic γδ-T-EVs-based vaccine showed comparable preventive and therapeutic antitumor effects to their autologous counterparts, indicating a better way of centralization and standardization in clinical practice. Furthermore, the allogeneic γδ-T-EVs-based vaccine displayed advantages over the DC-EVs-based vaccine through their dual antitumor activities. This study provides a proof-of-concept for using the allogeneic γδ-T-EVs-based vaccine in cancer control.
Collapse
Affiliation(s)
- Xiwei Wang
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Yanmei Zhang
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Yuet Chung
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Chloe Ran Tu
- Department of Data Sciences, Dana‐Farber Cancer InstituteHarvard UniversityBostonMassachusettsUSA
| | - Wenyue Zhang
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Xiaofeng Mu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Manni Wang
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Godfrey Chi‐Fung Chan
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Wing‐Hang Leung
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Yu‐Lung Lau
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Yinping Liu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Wenwei Tu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
3
|
Shao L, Su Y, Zhang Y, Yang F, Zhang J, Tang T, Yu F. Nine-valent oleanolic acid conjugates as potent inhibitors blocking the entry of influenza A virus. Eur J Med Chem 2023; 258:115562. [PMID: 37354741 DOI: 10.1016/j.ejmech.2023.115562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
The influenza pandemic remains a major public health challenge that endangers the lives of many vulnerable and immune-compromised individuals worldwide. The high infectivity and genetic variability of influenza virus make it particularly challenging to design effective drugs to inhibit the virus. In previous studies, we determined that oleanolic acid (OA) and its derivatives block interactions between influenza and host cells, thus endowing OA with anti-viral efficacy. Inspired by the role of cluster glycosides in the interactions between hemagglutinins (HA) and sialic acid receptors (SA), we designed and synthesized a series of OA nonamers via the CuAAC reaction, and evaluated their anti-viral activities in vitro. We determined that among these nonamers, compound 15 displayed the highest potency (IC50 = 5.23 μM), equivalent to the antiviral drug oseltamivir which is routinely prescribed for influenza A virus strain A/WSN/33 (H1N1). In addition, these compounds also displayed antiviral activity against influenza B. Mechanistic experiments indicated that OA nonamers can effectively target the influenza HA protein. This study collectively demonstrates that multivalent structure-activity binding strategy is an effective method for designing influenza virus inhibitors.
Collapse
Affiliation(s)
- Liang Shao
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yangqing Su
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yuan Zhang
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Fan Yang
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jihong Zhang
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Tao Tang
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Fei Yu
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
4
|
Chen D, Guo Y, Jiang J, Wu P, Zhang T, Wei Q, Huang J, Wu D. γδ T cell exhaustion: Opportunities for intervention. J Leukoc Biol 2022; 112:1669-1676. [PMID: 36000310 PMCID: PMC9804355 DOI: 10.1002/jlb.5mr0722-777r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/25/2022] [Indexed: 01/05/2023] Open
Abstract
T lymphocytes are the key protective contributors in chronic infection and tumor, but experience exhaustion by persistent antigen stimulation. As an unconventional lineage of T cells, γδ T cells can rapidly response to varied infectious and tumor challenges in a non-MHC-restricted manner and play key roles in immune surveillance via pleiotropic effector functions, showing promising as candidates for cellular tumor immunotherapy. Activated γδ T cells can also acquire exhaustion signature with elevated expression of immune checkpoints, such as PD-1, decreased cytokine production, and functional impairment. However, the exhaustion features of γδ T cells are distinct from conventional αβ T cells. Here, we review the researches regarding the characteristics, heterogeneity, and mechanisms of γδ T cell exhaustion. These studies provide insights into the combined strategies to overcome the exhaustion of γδ T cells and enhance antitumor immunity. Summary sentence: Review of the characteristics, heterogeneity, and mechanisms of γδ T cell exhaustion provides insights into the combined strategies to enhance γδ T cell-based antitumor immunotherapy.
Collapse
Affiliation(s)
- Di Chen
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Yinglu Guo
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jiahuan Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Department of Breast Surgery, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Pin Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Department of Thoracic Surgery, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Ting Zhang
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qichun Wei
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Department of Breast Surgery, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Dang Wu
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| |
Collapse
|
5
|
Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis. Nat Commun 2022; 13:5842. [PMID: 36195611 PMCID: PMC9532436 DOI: 10.1038/s41467-022-33488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus.
Collapse
|
6
|
Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes. Cell Mol Immunol 2022; 19:944-956. [PMID: 35821253 PMCID: PMC9338301 DOI: 10.1038/s41423-022-00894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/11/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have an increased risk of cancer. The effect of glucose metabolism on γδ T cells and their impact on tumor surveillance remain unknown. Here, we showed that high glucose induced Warburg effect type of bioenergetic profile in Vγ9Vδ2 T cells, leading to excessive lactate accumulation, which further inhibited lytic granule secretion by impairing the trafficking of cytolytic machinery to the Vγ9Vδ2 T-cell-tumor synapse by suppressing AMPK activation and resulted in the loss of antitumor activity in vitro, in vivo and in patients. Strikingly, activating the AMPK pathway through glucose control or metformin treatment reversed the metabolic abnormalities and restored the antitumor activity of Vγ9Vδ2 T cells. These results suggest that the impaired antitumor activity of Vγ9Vδ2 T cells induced by dysregulated glucose metabolism may contribute to the increased cancer risk in T2DM patients and that metabolic reprogramming by targeting the AMPK pathway with metformin may improve tumor immunosurveillance.
Collapse
|
7
|
Gay L, Mezouar S, Cano C, Frohna P, Madakamutil L, Mège JL, Olive D. Role of Vγ9vδ2 T lymphocytes in infectious diseases. Front Immunol 2022; 13:928441. [PMID: 35924233 PMCID: PMC9340263 DOI: 10.3389/fimmu.2022.928441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
The T cell receptor Vγ9Vδ2 T cells bridge innate and adaptive antimicrobial immunity in primates. These Vγ9Vδ2 T cells respond to phosphoantigens (pAgs) present in microbial or eukaryotic cells in a butyrophilin 3A1 (BTN3) and butyrophilin 2A1 (BTN2A1) dependent manner. In humans, the rapid expansion of circulating Vγ9Vδ2 T lymphocytes during several infections as well as their localization at the site of active disease demonstrates their important role in the immune response to infection. However, Vγ9Vδ2 T cell deficiencies have been observed in some infectious diseases such as active tuberculosis and chronic viral infections. In this review, we are providing an overview of the mechanisms of Vγ9Vδ2 T cell-mediated antimicrobial immunity. These cells kill infected cells mainly by releasing lytic mediators and pro-inflammatory cytokines and inducing target cell apoptosis. In addition, the release of chemokines and cytokines allows the recruitment and activation of immune cells, promoting the initiation of the adaptive immune response. Finaly, we also describe potential new therapeutic tools of Vγ9Vδ2 T cell-based immunotherapy that could be applied to emerging infections.
Collapse
Affiliation(s)
- Laetitia Gay
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- ImCheck Therapeutics, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
| | | | | | | | - Jean-Louis Mège
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, APHM, Hôpital de la Conception, Laboratoire d’Immunologie, Marseille, France
| | - Daniel Olive
- Centre pour la Recherche sur le Cancer de Marseille (CRCM), Inserm UMR1068, Centre national de la recherche scientifique (CNRS) UMR7258, Institut Paoli Calmettes, Marseille, France
| |
Collapse
|
8
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Cervantes O, Talavera IC, Every E, Coler B, Li M, Li A, Li H, Adams Waldorf K. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev 2022; 308:123-148. [PMID: 35373371 PMCID: PMC9189035 DOI: 10.1111/imr.13078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023]
Abstract
Pregnant women infected with pathogenic respiratory viruses, such as influenza A viruses (IAV) and coronaviruses, are at higher risk for mortality, hospitalization, preterm birth, and stillbirth. Several factors are likely to contribute to the susceptibility of pregnant individuals to severe lung disease including changes in pulmonary physiology, immune defenses, and effector functions of some immune cells. Pregnancy is also a physiologic state characterized by higher levels of multiple hormones that may impact the effector functions of immune cells, such as progesterone, estrogen, human chorionic gonadotropin, prolactin, and relaxin. Each of these hormones acts to support a tolerogenic immune state of pregnancy, which helps prevent fetal rejection, but may also contribute to an impaired antiviral response. In this review, we address the unique role of adaptive and innate immune cells in the control of pathogenic respiratory viruses and how pregnancy and specific hormones can impact their effector actions. We highlight viruses with sex-specific differences in infection outcomes and why pregnancy hormones may contribute to fetal protection but aid the virus at the expense of the mother's health.
Collapse
Affiliation(s)
- Orlando Cervantes
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Irene Cruz Talavera
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emma Every
- University of Washington School of Medicine, Spokane, Washington, United States of America
| | - Brahm Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Case Western Reserve, Cleveland, Ohio, United States of America
| | - Hanning Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Pei Y, Xiang Z, Wen K, Tu CR, Wang X, Zhang Y, Mu X, Liu Y, Tu W. CD137 Costimulation Enhances the Antitumor Activity of Vγ9Vδ2-T Cells in IL-10-Mediated Immunosuppressive Tumor Microenvironment. Front Immunol 2022; 13:872122. [PMID: 35784354 PMCID: PMC9247142 DOI: 10.3389/fimmu.2022.872122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although γδ-T cell-based tumor immunotherapy using phosphoantigens to boost γδ-T cell immunity has shown success in some cancer patients, the clinical application is limited due to the rapid exhaustion of Vγ9Vδ2-T cells caused by repetitive stimulation from phosphoantigens and the profoundly immunosuppressive tumor microenvironment (TME). In this study, using a cell culture medium containing human and viral interleukin-10 (hIL-10 and vIL-10) secreted from EBV-transformed lymphoblastoid B cell lines (EBV-LCL) to mimic the immunosuppressive TEM, we found that the antitumor activity of Vγ9Vδ2-T cells was highly suppressed by endogenous hIL-10 and vIL-10 within the TME. CD137 costimulation could provide an anti-exhaustion signal to mitigate the suppressive effects of IL-10 in TME by suppressing IL-10R1 expression on Vγ9Vδ2-T cells. CD137 costimulation also improved the compromised antitumor activity of Vγ9Vδ2-T cells in TME with high levels of IL-10 in Rag2-/- γc-/- mice. In humanized mice, CD137 costimulation boosted the therapeutic effects of aminobisphosphonate pamidronate against EBV-induced lymphoma. Our study offers a novel approach to overcoming the obstacle of the hIL-10 and vIL-10-mediated immunosuppressive microenvironment by costimulating CD137 and enhancing the efficacy of γδ-T cell-based tumor therapy.
Collapse
Affiliation(s)
- Yujun Pei
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kun Wen
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chloe Ran Tu
- Computational and Systems Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wenwei Tu,
| |
Collapse
|
11
|
Song Y, Liu Y, Teo HY, Liu H. Targeting Cytokine Signals to Enhance γδT Cell-Based Cancer Immunotherapy. Front Immunol 2022; 13:914839. [PMID: 35747139 PMCID: PMC9210953 DOI: 10.3389/fimmu.2022.914839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
γδT cells represent a small percentage of T cells in circulation but are found in large numbers in certain organs. They are considered to be innate immune cells that can exert cytotoxic functions on target cells without MHC restriction. Moreover, γδT cells contribute to adaptive immune response via regulating other immune cells. Under the influence of cytokines, γδT cells can be polarized to different subsets in the tumor microenvironment. In this review, we aimed to summarize the current understanding of antigen recognition by γδT cells, and the immune regulation mediated by γδT cells in the tumor microenvironment. More importantly, we depicted the polarization and plasticity of γδT cells in the presence of different cytokines and their combinations, which provided the basis for γδT cell-based cancer immunotherapy targeting cytokine signals.
Collapse
Affiliation(s)
- Yuan Song
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Yee Teo
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Haiyan Liu,
| |
Collapse
|
12
|
Yin XT, Baugnon NK, Krishnan R, Potter CA, Yarlagadda S, Keadle TL, Stuart PM. CD137 costimulation is associated with reduced herpetic stromal keratitis and with developing normal CD8 + T cells in trigeminal ganglia. J Gen Virol 2022; 103. [PMID: 35766977 PMCID: PMC10027025 DOI: 10.1099/jgv.0.001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Costimulatory interactions can be critical in developing immune responses to infectious agents. We recently reported that herpes simplex type 1 (HSV-1) infections of the cornea require a functional CD28-CD80/86 interaction to not only reduce the likelihood of encephalitis, but also to mediate herpetic stromal keratitis (HSK) following viral reactivation. In this same spirit we decided to determine the role that CD137 costimulation plays during HSK. Using both B6-CD137L-/- mice, as well as antagonistic and agonistic antibodies to CD137 we characterize the immune response and to what extent CD137 plays an important role during this disease. Immune responses were measured in both the cornea and in the trigeminal ganglia where the virus forms a latent infection. We demonstrate that CD137 costimulation leads to reduced corneal disease. Interestingly, we observed that lack of CD137 costimulation resulted in significantly reduced CD8+ T expansion and function in the trigeminal ganglia. Finally, we showed that viruses that have been genetically altered to express CD137 display significantly reduced corneal disease, though they did present similar levels of trigeminal infection and peripheral virus production following reactivation of a latent infection. CD137 interactions lead to reduced HSK and are necessary to develop robust trigeminal CD8+ T cell responses.
Collapse
Affiliation(s)
- Xiao-Tang Yin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Nicholas K Baugnon
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Rohini Krishnan
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Chloe A Potter
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sudha Yarlagadda
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Tammie L Keadle
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Patrick M Stuart
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Dong R, Zhang Y, Xiao H, Zeng X. Engineering γδ T Cells: Recognizing and Activating on Their Own Way. Front Immunol 2022; 13:889051. [PMID: 35603176 PMCID: PMC9120431 DOI: 10.3389/fimmu.2022.889051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adoptive cell therapy (ACT) with engineered T cells has emerged as a promising strategy for the treatment of malignant tumors. Among them, there is great interest in engineered γδ T cells for ACT. With both adaptive and innate immune characteristics, γδ T cells can be activated by γδ TCRs to recognize antigens in a MHC-independent manner, or by NK receptors to recognize stress-induced molecules. The dual recognition system enables γδ T cells with unique activation and cytotoxicity profiles, which should be considered for the design of engineered γδ T cells. However, the current designs of engineered γδ T cells mostly follow the strategies that used in αβ T cells, but not making good use of the specific characteristics of γδ T cells. Therefore, it is no surprising that current engineered γδ T cells in preclinical or clinical trials have limited efficacy. In this review, we summarized the patterns of antigen recognition of γδ T cells and the features of signaling pathways for the functions of γδ T cells. This review will additionally discuss current progress in engineered γδ T cells and provide insights in the design of engineered γδ T cells based on their specific characteristics.
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Li Z, Yang Q, Tang X, Chen Y, Wang S, Qi X, Zhang Y, Liu Z, Luo J, Liu H, Ba Y, Guo L, Wu B, Huang F, Cao G, Yin Z. Single-cell RNA-seq and chromatin accessibility profiling decipher the heterogeneity of mouse γδ T cells. Sci Bull (Beijing) 2022; 67:408-426. [PMID: 36546093 DOI: 10.1016/j.scib.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/06/2023]
Abstract
The distinct characteristics of γδ T cells determine their vital roles in the formation of local immune responses and contribute to tissue homeostasis. However, the heterogeneity of γδ T cells across tissues remains unclear. By combining transcriptional and chromatin analyses with a truly unbiased fashion, we constructed a single-cell transcriptome and chromatin accessibility landscape of mouse γδ T cells in the lymph, spleen, and thymus. We also revealed the heterogeneity of γδ T1 and γδ T17 cells across these tissues and inferred their potential regulatory mechanisms. In the thymus, we reconstructed the developmental trajectory and gained further insights into the signature genes from the mature stage, intermediate stage, and immature stage of γδ T cells on the basis of single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing data. Notably, a novel Gzma+ γδ T cell subset was identified with immature properties and only localized to the thymus. Finally, NR1D1, a circadian transcription factor (TF), was validated as a key and negative regulator of γδ T17 cell differentiation by performing a combined analysis of TF motif enrichment, regulon enrichment, and Nr1d1 knockout mice. In summary, our data represent a comprehensive mapping on the transcriptome and chromatin accessibility dynamics of mouse γδ T cells, providing a valuable resource and reference for future studies on γδ T cells.
Collapse
Affiliation(s)
- Zhenhua Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Xin Tang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China; The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510000, China
| | - Yiming Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Shanshan Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Xiaojie Qi
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yawen Zhang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Jing Luo
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China; The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510000, China
| | - Hui Liu
- Emergency Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510000, China
| | - Yongbing Ba
- OE Biotech Co., Ltd., Shanghai 201114, China
| | - Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510700, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510700, China
| | - Fang Huang
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
15
|
Herold N, Schöllhorn A, Feile A, Gaißler A, Mohrholz A, Pawelec G, Löffler MW, Dimitrov S, Gouttefangeas C, Wistuba-Hamprecht K. Integrin activation enables rapid detection of functional Vδ1+ and Vδ2+ γδ T cells. Eur J Immunol 2022; 52:730-736. [PMID: 35133647 DOI: 10.1002/eji.202149682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Abstract
Conformational change of the β2 integrin lymphocyte function-associated antigen 1 (LFA-1) is an early marker of T cell activation. A protocol using the monoclonal antibody (mAb) clone m24 recognizing the active, extended high-affinity conformation has been previously described for the assessment of functional CD4+ and CD8+ T cells in response to MHC-peptide stimulation. We investigated the applicability of the m24 mAb to detect the activation of γδ T cells in response to different soluble and immobilized stimuli. m24 mAb staining was associated with the expression of cytokines and was detectable as early as 10 min after stimulation, but with different kinetics depending on the nature of the stimulus. Hence, we conclude that this assay is suitable for the detection of functional γδ T cells and allows the assessment of activation more rapidly than alternative methods such as cytokine detection. Intracellular staining, protein trafficking inhibitors or prior knowledge of the stimulating moiety recognized are no longer required for monitoring γδ T cell activation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nicola Herold
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Anna Schöllhorn
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Adrian Feile
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Gaißler
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Anne Mohrholz
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Markus W Löffler
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180), "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180), "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Section for Clinical Bioinformatics, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Huang C, Xiang Z, Zhang Y, Li Y, Xu J, Zhang H, Zeng Y, Tu W. NKG2D as a Cell Surface Marker on γδ-T Cells for Predicting Pregnancy Outcomes in Patients With Unexplained Repeated Implantation Failure. Front Immunol 2021; 12:631077. [PMID: 33777016 PMCID: PMC7988228 DOI: 10.3389/fimmu.2021.631077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/16/2021] [Indexed: 02/04/2023] Open
Abstract
Maternal immune tolerance to semi-allogeneic fetus is essential for a successful implantation and pregnancy. Growing evidence indicated that low cytotoxic activity of γδ-T cells, which is mediated by activation and inhibitory receptors, is important for establishment of maternal immune tolerant microenvironment. However, the correlation between receptors on peripheral blood γδ-T cells, such as NKG2D, CD158a, and CD158b, and pregnancy outcome in patients with unexplained repeated implantation failure (uRIF) remains unclear. In this study, the association between the expression level of these receptors and pregnancy outcome in patients with uRIF was investigated. Thirty-eight women with uRIF were enrolled and divided into two groups: successful group and failed group, according to the pregnancy outcome on different gestational periods. The percentage of NKG2D+ γδ-T cells in lymphocytes was significantly higher in uRIF patients who had failed clinical pregnancy in subsequent cycle, compared with those who had successful clinical pregnancy. However, there were no differences about the frequencies of CD158a+ and CD158b+ γδ-T cells between the successful and failed groups. The receiver operating characteristic curve exhibited that the optimal cut-off value of NKG2D+ γδ-T cells was 3.24%, with 92.3% sensitivity and 66.7% specificity in predicting clinical pregnancy failure in uRIF patients. The patients with uRIF were further divided into two groups, group 1 (NKG2D+ γδ-T cells <3.24%) and group 2 (NKG2D+ γδ-T cells ≥3.24%), based on the cut-off value. The live birth rate of patients in the group 1 and group 2 were 61.5 and 28.0%, respectively. Kaplan-Meier survival curve further suggested that the frequency of NKG2D+ γδ-T cells in lymphocytes negatively correlated with live birth rate in patients with uRIF. In conclusion, our study demonstrated that the frequency of peripheral blood NKG2D+ γδ-T cells among lymphocytes is a potential predictor for pregnancy outcome in uRIF patients.
Collapse
Affiliation(s)
- Chunyu Huang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yongnu Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jian Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Hongzhan Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Park JH, Lee HK. Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp Mol Med 2021; 53:318-327. [PMID: 33707742 PMCID: PMC8080836 DOI: 10.1038/s12276-021-00576-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
T cells of the γδ lineage are unconventional T cells with functions not restricted to MHC-mediated antigen presentation. Because of their broad antigen specificity and NK-like cytotoxicity, γδ T-cell importance in tumor immunology has been emphasized. However, some γδ T-cell subsets, especially those expressing IL-17, are immunosuppressive or tumor-promoting cells. Their cytokine profile and cytotoxicity are seemingly determined by cross-talk with microenvironment components, not by the γδTCR chain. Furthermore, much about the TCR antigen of γδ T cells remains unknown compared with the extreme diversity of their TCR chain pairs. Thus, the investigation and application of γδ T cells have been relatively difficult. Nevertheless, γδ T cells remain attractive targets for antitumor therapy because of their independence from MHC molecules. Because tumor cells have the ability to evade the immune system through MHC shedding, heterogeneous antigens, and low antigen spreading, MHC-independent γδ T cells represent good alternative targets for immunotherapy. Therefore, many approaches to using γδ T cells for antitumor therapy have been attempted, including induction of endogenous γδ T cell activation, adoptive transfer of expanded cells ex vivo, and utilization of chimeric antigen receptor (CAR)-T cells. Here, we discuss the function of γδ T cells in tumor immunology and their application to cancer therapy.
Collapse
Affiliation(s)
- Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|