1
|
De Bartolo A, Angelone T, Rocca C. Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging. Vascul Pharmacol 2025; 158:107462. [PMID: 39805379 DOI: 10.1016/j.vph.2025.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.e., chronic low-grade inflammation-inflammaging), oxidative stress, and mitochondrial dysfunction in aging vascular compartment. We focus on the interplay between these events, which contribute to generating a vicious cycle driving the progressive alterations in vascular structure and function during cardiovascular aging. We also discuss the primary role of senescent endothelial cells and vascular smooth muscle cells, and the potential link between vascular and myeloid cells, in impairing plaque stability and promoting the progression of atherosclerosis. The aim of this summary is to provide potential novel insights into targeting these processes for therapeutic benefit.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
2
|
Wu C, Xiong Y, Fu F, Zhang F, Qin F, Yuan J. The Role of Autophagy in Erectile Dysfunction. World J Mens Health 2025; 43:28-40. [PMID: 38606869 PMCID: PMC11704175 DOI: 10.5534/wjmh.230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 04/13/2024] Open
Abstract
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
Collapse
Affiliation(s)
- Changjing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fudong Fu
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Fuxun Zhang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Hu M, Guan XH, Wang LF, Xu HM, Ke SF, Yuan QY, Tan HL, Wu J, Yu GH, Huang QM, Liu Y, Hu L, Deng KY, Xin HB. Endothelial CD38-induced endothelial-to-mesenchymal transition is a pivotal driver in pulmonary fibrosis. Cell Mol Life Sci 2024; 82:30. [PMID: 39725783 DOI: 10.1007/s00018-024-05548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease with high mortality. CD38 is a main enzyme for intracellular nicotinamide adenine dinucleotide (NAD+) degradation in mammals. It has been reported that CD38 participated in pulmonary fibrosis through promoting alveolar epithelial cells senescence. However, the roles of endothelial CD38 in pulmonary fibrosis remain unknown. In the present study, we observed that the elevated expression of CD38 was related to endothelial-to-mesenchymal transition (EndMT) of lung tissues in IPF patients and bleomycin (BLM)-induced pulmonary fibrosis mice and also in human umbilical vein endothelial cells (HUVECs) treated with BLM. Micro-computed tomography (MCT) and histopathological staining showed that endothelial cell-specific CD38 knockout (CD38EndKO) remarkably attenuated BLM-induced pulmonary fibrosis. In addition, CD38EndKO significantly inhibited TGFβ-Smad3 pathway-mediated excessive extracellular matrix (ECM), reduced Toll-like receptor4-Myeloid differentiation factor88-Mitogen-activated protein kinases (TLR4-MyD88-MAPK) pathway-mediated endothelial inflammation and suppressed nicotinamide adenine dinucleotide phosphate oxidases1 (NOX1)-mediated oxidative stress. Furthermore, we demonstrated that 3-TYP, a SIRT3-specific inhibitor, markedly reversed the protective effect of HUVECsCD38KD cells and 78 C, a CD38-specific inhibitor, on BLM-induced EndMT in HUVECs. Therefore, we concluded that CD38EndKO significantly ameliorated BLM-induced pulmonary fibrosis through inhibiting ECM, endothelial inflammation and oxidative stress, further alleviating EndMT in mice. Our findings suggest that endothelial CD38 may be a new therapeutic target for the prevention and treatment of pulmonary fibrosis clinically.
Collapse
Affiliation(s)
- Min Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hao-Min Xu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Shu-Fen Ke
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qing-Yun Yuan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hui-Lan Tan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jie Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Guan-Hui Yu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qi-Ming Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yu Liu
- Department of Respiratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Long Hu
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Li H, Hu Q, Zhu D, Wu D. The Role of NAD + Metabolism in Cardiovascular Diseases: Mechanisms and Prospects. Am J Cardiovasc Drugs 2024:10.1007/s40256-024-00711-y. [PMID: 39707143 DOI: 10.1007/s40256-024-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a promising anti-aging molecule that plays a role in cellular energy metabolism and maintains redox homeostasis. Additionally, NAD+ is involved in regulating deacetylases, DNA repair enzymes, inflammation, and epigenetics, making it indispensable in maintaining the basic functions of cells. Research on NAD+ has become a hotspot, particularly regarding its potential in cardiovascular disease (CVD). Many studies have demonstrated that NAD+ plays a crucial role in the occurrence and development of CVD. This review summarizes the biosynthesis and consumption of NAD+, along with its precursors and their effects on raising NAD+ levels. We also discuss new mechanisms of NAD+ regulation in cardiovascular risk factors and its effects of NAD+ on atherosclerosis, aortic aneurysm, heart failure, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, and dilated cardiomyopathy, elucidating different mechanisms and potential treatments. NAD+-centered therapy holds promising advantages and prospects in the field of CVD.
Collapse
Affiliation(s)
- Huimin Li
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
5
|
Li TX, Yang YY, Zong JB, Li M, Fu XX, Jiang XX, Wang WT, Li XQ, Qi HZ, Yu T. Activated neutrophil membrane-coated tRF-Gly-CCC nanoparticles for the treatment of aortic dissection/aneurysm. J Control Release 2024; 378:334-349. [PMID: 39672274 DOI: 10.1016/j.jconrel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Aortic dissection/aneurysm (AAD) is a critical and life-threatening condition marked by a lack of effective pharmacological treatments. Gene therapy has emerged as a promising approach to treat AAD and slow its advancement. However, the clinical utility of gene therapy is impeded by significant challenges, including the scarcity of innovative genetic drugs in current medical practices and the absence of a streamlined gene delivery mechanism. Our investigation centered on a unique gene target, tRF-Gly-CCC, belonging to tsRNAs, essential for maintaining vascular smooth muscle cell function and regulating inflammatory cell responses. To enhance in vivo treatment, we developed a kind of activated neutrophil membrane bionic nanoparticles (neu MCs), incorporating tRF-Gly-CCC-loaded polymer nanoparticles as the core and activated neutrophil membrane as the outer layer. The utilization of activated neutrophil membrane cloaking serves a dual purpose by safeguarding tRF-Gly-CCC and facilitating targeted delivery to the AAD site. Neu MCs exhibit improved stability in circulation, enabling precise delivery to aortic lesions and reducing AAD mortality. Notably, studies suggest that neu MCs offer a superior approach for immediate intervention to reduce vascular rupture. In conclusion, our study utilized a novel genetic drug and an effective delivery system to enable early intervention in AAD.
Collapse
Affiliation(s)
- Tian-Xiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Yan-Yan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jin-Bao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266000, People's Republic of China
| | - Min Li
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266000, People's Republic of China
| | - Xiu-Xiu Fu
- Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Xiao-Xin Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Wen-Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Xiao-Qian Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Hong-Zhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China; Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| |
Collapse
|
6
|
Lv Y, Wang X, Zeng Y, Tang Z, Nie F, Guo R. PF-477736 modulates vascular smooth muscle cells phenotypic transition through Chk1/p53/CD44 pathway. Tissue Cell 2024; 93:102682. [PMID: 39689385 DOI: 10.1016/j.tice.2024.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION The phenotypic transition of vascular smooth muscle cells (VSMCs) from a quiescent, contractile type to a secretory phenotype with high proliferation and mobility is a key event in vascular remodeling. PF-477736 is an ATP-competitive inhibitor of Chk1 which induces the accumulation of DNA damage by increasing the level of replicative stress, and ultimately inhibiting cell proliferation or causing cell death. Although this compound has been utilized as an anti-tumor drug, its role in vascular remodeling remains unclear. METHODS In vitro, Human aortic smooth muscle cell line (HAVSMC) and primary rat aortic smooth muscle cells were used to establish phenotype transformation model with PDGF-bb; Western blot was used to detect the expression of VSMCs phenotype marker α-SMA, Vimentin; MTT and EdU assays were used to evaluate the proliferation ability of VSMCs; wound healing assay was used to evaluate the migration ability of VSMCs. In vivo, we established ballon injury of carotid artery in rats, and the function of the PF-477736 was evaluated by several histological stainings. RESULTS The results exhibit that PF-477736 effectively inhibited VSMCs phenotypic transition, resulting in G1/S phase arrest and decreased proliferation and migration ability of VSMCs. Furthermore, while PDGF-bb down-regulated p53 protein and up-regulated CD44 expression, PF-477736 significantly countered these effects. Pretreatment of VSMCs with p53 siRNA blocked the effect of PF-477736, up-regulated the expression of CD44, and promoted VSMCs' proliferation and migration. Conversely, CD44 silencing through siRNA mitigated the phenotypic transition of VSMCs. In addition, the H&E, Masson' staining and the immunohistochemistry of PCNA, p53 and CD44 showed that PF-477736 substantially inhibits vascular remodeling in the balloon injury model. CONCLUSION Our findings show that PF-477736 exerts anti-vascular remodeling effect by inhibiting phenotypic transition through the Chk1/p53/CD44 pathway in VSMCs, providing novel therapeutic strategies for preventing and treating vascular remodeling.
Collapse
Affiliation(s)
- Yu Lv
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xia Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Youjie Zeng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zizhao Tang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Fangqin Nie
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Department of Pharmacy, Hospital/School Of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
7
|
Yousef A, Fang L, Heidari M, Kranrod J, Seubert JM. The role of CYP-sEH derived lipid mediators in regulating mitochondrial biology and cellular senescence: implications for the aging heart. Front Pharmacol 2024; 15:1486717. [PMID: 39703395 PMCID: PMC11655241 DOI: 10.3389/fphar.2024.1486717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart. The link between mitochondrial processes and cellular senescence contributed to the age-related decline in cardiac function. These include changes in mitochondrial functions and behaviours that arise from various factors, including impaired dynamics, dysregulated biogenesis, mitophagy, mitochondrial DNA (mtDNA), reduced respiratory capacity, and mitochondrial structural changes. Thus, regulation of mitochondrial biology has a role in cellular senescence and cardiac function in aging hearts. Targeting senescent cells may provide a novel therapeutic approach for treating and preventing CVD associated with aging. CYP epoxygenases metabolize N-3 and N-6 polyunsaturated fatty acids (PUFA) into epoxylipids that are readily hydrolyzed to diol products by soluble epoxide hydrolase (sEH). Increasing epoxylipids levels or inhibition of sEH has demonstrated protective effects in the aging heart. Evidence suggests they may play a role in cellular senescence by regulating mitochondria, thus reducing adverse effects of aging in the heart. In this review, we discuss how mitochondria induce cellular senescence and how epoxylipids affect the senescence process in the aged heart.
Collapse
Affiliation(s)
- Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mobina Heidari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Zhao WJ, Qian Y, Zhang YF, Yang AH, Cao JX, Qian HY, Liu Y, Zhu WZ. Endothelial FOSL1 drives angiotensin II-induced myocardial injury via AT1R-upregulated MYH9. Acta Pharmacol Sin 2024:10.1038/s41401-024-01410-9. [PMID: 39592734 DOI: 10.1038/s41401-024-01410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024] Open
Abstract
Vascular remodeling represents a pathological basis for myocardial pathologies, including myocardial hypertrophy and myocardial infarction, which can ultimately lead to heart failure. The molecular mechanism of angiotensin II (Ang II)-induced vascular remodeling following myocardial infarction reperfusion is complex and not yet fully understood. In this study, we examined the effect of Ang II infusion on cardiac vascular remodeling in mice. Single-cell sequencing showed Ang II induced cytoskeletal pathway enrichment and that FOS like-1 (FOSL1) affected mouse cardiac endothelial dysfunction by pseudotime analysis. Myosin heavy chain 9 (MYH9) was predominantly expressed in primary cardiac endothelial cells. The Ang II type I receptor blocker telmisartan and the protein kinase C inhibitor staurosporine suppressed Ang II-induced upregulation of MYH9 and FOSL1 phosphorylation in human umbilical vein endothelial cells. Silencing MYH9 abolished Ang II-mediated inhibition of angiogenesis in human umbilical vein endothelial cells, and attenuated AngII-induced vascular hyperpermeability. We found that FOSL1 directly bound to the MYH9 promoter and thus activated transcription of MYH9 by the dual luciferase reporter and chromatin immunoprecipitation assays, leading to vascular dysfunction. In vivo, 6 weeks after injecting adeno-associated virus-ENT carrying the TEK tyrosine kinase (tie) promoter-driven short hairpin RNA for silencing FOSL1 (AAV-tie-shFOSL1), cardiac function represented by the ejection fraction and fractional shortening was improved, myocardial fibrosis was decreased, protein levels of phosphorylated FOSL1, MYH9, and collagen type I alpha were reduced, and cardiac vascular density was recovered in mice with endothelial Fosl1-specific knockdown in Ang II-infused mice. In ischemia-reperfusion mice, AAV-shFosl1 mice had a reduced infarct size and preserved cardiac function compared with control AAV mice. Our findings suggest a critical role of the FOSL1/MYH9 axis in hindering Ang II-induced vascular remodeling, and we identified FOSL1 as a potential therapeutic target in endothelial cell injuries induced by myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
- Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, 226006, China
| | - Yi Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Yi-Feng Zhang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Ai-Hua Yang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Jia-Xin Cao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Hong-Yan Qian
- Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, 226006, China
| | - Yi Liu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Wei-Zhong Zhu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China.
| |
Collapse
|
9
|
Yao G, Zheng X, Hu Y, Zhao Y, Kong B, Ti Y, Bu PL. FBLN7 mediates vascular smooth muscle cell phenotype switching and vascular remodeling in hypertension. Theranostics 2024; 14:7569-7588. [PMID: 39659565 PMCID: PMC11626941 DOI: 10.7150/thno.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/26/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Arterial remodeling serves as a pivotal mechanism underlying the development of diseases such as hypertension. Fibulin-7 (FBLN7), an adhesion protein, remains enigmatic regarding its role in these pathological processes. This study aims to explore whether FBLN7 influences vascular remodeling and its underlying mechanisms. Methods: We generated FBLN7 knockout mice and smooth muscle-specific FBLN7 overexpression mice. Vascular remodeling models were established by administering angiotensin II (Ang II) for 28 days. RNA sequencing, western blot, and immunofluorescence assays were employed to investigate the biological function of FBLN7 in vascular smooth muscle cells (VSMCs). The interaction mechanism between FBLN7 and cell membrane receptors was explored through mass spectrometry analysis, co-immunoprecipitation techniques and molecular dynamics simulations. Results: Bioinformatics analysis revealed an upregulation of FBLN7 expression in the vascular remodeling model, with FBLN7 predominantly localized in VSMCs. Subsequent in vivo validation demonstrated that FBLN7 knockout attenuated Ang II-induced vascular remodeling, reducing aortic wall thickness and collagen formation. Conversely, VSMC-specific overexpression of FBLN7 via AAV vectors exacerbating the remodeling phenotype. Functionally speaking, FBLN7 potentiates Ang II-mediated phenotypic transformation. Mechanistically, FBLN7 interacts with the extracellular and transmembrane domains of syndecan-4 (SDC4) via its C-terminal region, affecting SDC4 signaling and dimer formation. This interaction inhibits SDC4-mediated activation of the Rho-associated protein kinase pathway, subsequently reducing nuclear translocation of myocardin-related transcription factor A, leading to decreased transcription of genes associated with the contractile VSMCs phenotype. Conclusions: These findings reveal FBLN7 promotes the transition of VSMCs from a contractile to a synthetic phenotype, thereby aggravating vascular remodeling. This provides further insights into the pathogenesis of vascular remodeling and potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun Ti
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Pei li Bu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| |
Collapse
|
10
|
Gu M, Liu Y, Zheng W, Jing Z, Li X, Guo W, Zhao Z, Yang X, Liu Z, Zhu X, Gao W. Combined targeting of senescent cells and senescent macrophages: A new idea for integrated treatment of lung cancer. Semin Cancer Biol 2024; 106-107:43-57. [PMID: 39214157 DOI: 10.1016/j.semcancer.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer is one of the most common cancers worldwide and a leading cause of cancer-related deaths. Macrophages play a key role in the immune response and the tumour microenvironment. As an important member of the immune system, macrophages have multiple functions, including phagocytosis and clearance of pathogens, modulation of inflammatory responses, and participation in tissue repair and regeneration. In lung cancer, macrophages are considered to be the major cellular component of the tumor-associated inflammatory response and are closely associated with tumorigenesis, progression and metastasis. However, macrophages gradually undergo a senescence process with age and changes in pathological states. Macrophage senescence is an important change in the functional and metabolic state of macrophages and may have a significant impact on lung cancer development. In lung cancer, senescent macrophages interact with other cells in the tumor microenvironment (TME) by secreting senescence-associated secretory phenotype (SASP) factors, which can either promote the proliferation, invasion and metastasis of tumor cells or exert anti-tumor effects through reprogramming or clearance under specific conditions. Therefore, senescent macrophages are considered important potential targets for lung cancer therapy. In this paper, a systematic review of macrophages and their senescence process, and their role in tumors is presented. A variety of inhibitory strategies against senescent macrophages, including enhancing autophagy, inhibiting SASP, reducing DNA damage, and modulating metabolic pathways, were also explored. These strategies are expected to improve lung cancer treatment outcomes by restoring the anti-tumor function of macrophages.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Wei Gao
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
11
|
Grootaert MOJ. Cell senescence in cardiometabolic diseases. NPJ AGING 2024; 10:46. [PMID: 39433786 PMCID: PMC11493982 DOI: 10.1038/s41514-024-00170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
Cellular senescence has been implicated in many age-related pathologies including atherosclerosis, heart failure, age-related cardiac remodeling, diabetic cardiomyopathy and the metabolic syndrome. Here, we will review the characteristics of senescent cells and their endogenous regulators, and summarize the metabolic stressors that induce cell senescence. We will discuss the evidence of cell senescence in the onset and progression of several cardiometabolic diseases and the therapeutic potential of anti-senescence therapies.
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Endocrinology, Diabetes and Nutrition, UCLouvain, Brussels, Belgium.
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Shi C, Wen Z, Yang Y, Shi L, Liu D. NAD+ metabolism and therapeutic strategies in cardiovascular diseases. ATHEROSCLEROSIS PLUS 2024; 57:1-12. [PMID: 38974325 PMCID: PMC11223091 DOI: 10.1016/j.athplu.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a central and pleiotropic metabolite involved in cellular energy metabolism, cell signaling, DNA repair, and protein modifications. Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic stress and aging directly affect the cardiovascular system. Compelling data suggest that NAD + levels decrease with age, obesity, and hypertension, which are all notable risk factors for CVD. In addition, the therapeutic elevation of NAD + levels reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular disorders. In preclinical models, NAD + boosting can also expand the health span, prevent metabolic syndrome, and decrease blood pressure. Moreover, NAD + storage by genetic, pharmacological, or natural dietary NAD + -increasing strategies has recently been shown to be effective in improving the pathophysiology of cardiac and vascular health in different animal models, and human health. Here, we review and discuss NAD + -related mechanisms pivotal for vascular health and summarize recent experimental evidence in NAD + research directly related to vascular disease, including atherosclerosis, and coronary artery disease. Finally, we comparatively assess distinct NAD + precursors for their clinical efficacy and the efficiency of NAD + elevation in the treatment of major CVD. These findings may provide ideas for new therapeutic strategies to prevent and treat CVD in the clinic.
Collapse
Affiliation(s)
- Chongxu Shi
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
| | - Zhaozhi Wen
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
| | - Yihang Yang
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
| | - Linsheng Shi
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
- Co-Innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| |
Collapse
|
13
|
Smith HL, Goodlett BL, Navaneethabalakrishnan S, Mitchell BM. Elevated Salt or Angiotensin II Levels Induce CD38+ Innate Immune Cells in the Presence of Granulocyte-Macrophage Colony Stimulating Factor. Cells 2024; 13:1302. [PMID: 39120331 PMCID: PMC11311366 DOI: 10.3390/cells13151302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Hypertension (HTN) impacts almost half of adults, predisposing them to cardiovascular disease and renal damage. Salt-sensitive HTN (SSHTN) and angiotensin II (A2)-induced HTN (A2HTN) both involve immune system activation and renal innate immune cell infiltration. Subpopulations of activated [Cluster of differentiation 38 (CD38)] innate immune cells, such as macrophages and dendritic cells (DCs), play distinct roles in modulating renal function and blood pressure. It is unknown how these cells become CD38+ or which subtypes are pro-hypertensive. When bone marrow-derived monocytes (BMDMs) were grown in granulocyte-macrophage colony stimulating factor (GM-CSF) and treated with salt or A2, CD38+ macrophages and CD38+ DCs increased. The adoptive transfer of GM-CSF-primed BMDMs into mice with either SSHTN or A2HTN increased renal CD38+ macrophages and CD38+ DCs. Flow cytometry revealed increased renal M1 macrophages and type-2 conventional DCs (cDC2s), along with their CD38+ counterparts, in mice with either SSHTN or A2HTN. These results were replicable in vitro. Either salt or A2 treatment of GM-CSF-primed BMDMs significantly increased bone marrow-derived (BMD)-M1 macrophages, CD38+ BMD-M1 macrophages, BMD-cDC2s, and CD38+ BMD-cDC2s. Overall, these data suggest that GM-CSF is necessary for the salt or A2 induction of CD38+ innate immune cells, and that CD38 distinguishes pro-hypertensive immune cells. Further investigation of CD38+ M1 macrophages and CD38+ cDC2s could provide new therapeutic targets for both SSHTN and A2HTN.
Collapse
Affiliation(s)
| | | | | | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX 77807, USA; (H.L.S.)
| |
Collapse
|
14
|
Liu ZL, Li Y, Lin YJ, Shi MM, Fu MX, Li ZQ, Ning DS, Zeng XM, Liu X, Cui QH, Peng YM, Zhou XM, Hu YR, Liu JS, Liu YJ, Wang M, Zhang CX, Kong W, Ou ZJ, Ou JS. Aging aggravates aortic aneurysm and dissection via miR-1204-MYLK signaling axis in mice. Nat Commun 2024; 15:5985. [PMID: 39013850 PMCID: PMC11252124 DOI: 10.1038/s41467-024-50036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
The mechanism by which aging induces aortic aneurysm and dissection (AAD) remains unclear. A total of 430 participants were recruited for the screening of differentially expressed plasma microRNAs (miRNAs). We found that miR-1204 is significantly increased in both the plasma and aorta of elder patients with AAD and is positively correlated with age. Cell senescence induces the expression of miR-1204 through p53 interaction with plasmacytoma variant translocation 1, and miR-1204 induces vascular smooth muscle cell (VSMC) senescence to form a positive feedback loop. Furthermore, miR-1204 aggravates angiotensin II-induced AAD formation, and inhibition of miR-1204 attenuates β-aminopropionitrile monofumarate-induced AAD development in mice. Mechanistically, miR-1204 directly targets myosin light chain kinase (MYLK), leading to the acquisition of a senescence-associated secretory phenotype (SASP) by VSMCs and loss of their contractile phenotype. MYLK overexpression reverses miR-1204-induced VSMC senescence, SASP and contractile phenotypic changes, and the decrease of transforming growth factor-β signaling pathway. Our findings suggest that aging aggravates AAD via the miR-1204-MYLK signaling axis.
Collapse
Affiliation(s)
- Ze-Long Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Yi-Jun Lin
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Mao-Mao Shi
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Meng-Xia Fu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Zhi-Qing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, P.R. China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P.R. China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Xiang-Ming Zeng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Xiang Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Qing-Hua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, P.R. China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Xin-Min Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Ye-Rong Hu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Yu-Jia Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Mian Wang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chun-Xiang Zhang
- Department of Pharmacology and Cardiovascular Research Center, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, P.R. China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P.R. China.
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China.
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China.
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China.
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China.
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
15
|
Xu S, Han X, Wang X, Yu Y, Qu C, Liu X, Yang B. The role of oxidative stress in aortic dissection: a potential therapeutic target. Front Cardiovasc Med 2024; 11:1410477. [PMID: 39070552 PMCID: PMC11272543 DOI: 10.3389/fcvm.2024.1410477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The incidence of aortic dissection (AD) is steadily increasing, driven by the rising prevalence of chronic conditions such as hypertension and the global aging of the population. Oxidative stress emerges as a pivotal pathophysiological mechanism contributing to the progression of AD. Oxidative stress triggers apoptosis in vascular smooth muscle cells, reshapes the extracellular matrix (ECM), and governs ECM degradation and remodeling, subsequently impacting aortic compliance. Furthermore, oxidative stress not only facilitates the infiltration of macrophages and mononuclear lymphocytes but also disrupts the integral structure and functionality of endothelial cells, thereby inducing endothelial cell dysfunction and furthering the degeneration of the middle layer of the aortic wall. Investigating antioxidants holds promise as a therapeutic avenue for addressing AD.
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Totoń-Żurańska J, Mikolajczyk TP, Saju B, Guzik TJ. Vascular remodelling in cardiovascular diseases: hypertension, oxidation, and inflammation. Clin Sci (Lond) 2024; 138:817-850. [PMID: 38920058 DOI: 10.1042/cs20220797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Optimal vascular structure and function are essential for maintaining the physiological functions of the cardiovascular system. Vascular remodelling involves changes in vessel structure, including its size, shape, cellular and molecular composition. These changes result from multiple risk factors and may be compensatory adaptations to sustain blood vessel function. They occur in diverse cardiovascular pathologies, from hypertension to heart failure and atherosclerosis. Dynamic changes in the endothelium, fibroblasts, smooth muscle cells, pericytes or other vascular wall cells underlie remodelling. In addition, immune cells, including macrophages and lymphocytes, may infiltrate vessels and initiate inflammatory signalling. They contribute to a dynamic interplay between cell proliferation, apoptosis, migration, inflammation, and extracellular matrix reorganisation, all critical mechanisms of vascular remodelling. Molecular pathways underlying these processes include growth factors (e.g., vascular endothelial growth factor and platelet-derived growth factor), inflammatory cytokines (e.g., interleukin-1β and tumour necrosis factor-α), reactive oxygen species, and signalling pathways, such as Rho/ROCK, MAPK, and TGF-β/Smad, related to nitric oxide and superoxide biology. MicroRNAs and long noncoding RNAs are crucial epigenetic regulators of gene expression in vascular remodelling. We evaluate these pathways for potential therapeutic targeting from a clinical translational perspective. In summary, vascular remodelling, a coordinated modification of vascular structure and function, is crucial in cardiovascular disease pathology.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz P Mikolajczyk
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Blessy Saju
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| | - Tomasz J Guzik
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
17
|
Heng Y, Wei W, Cheng L, Wu F, Dong H, Li J, Fu J, Yang B, Liang X, Liu C, Li H, Liu H, Zhang P. FGF21 overexpression alleviates VSMC senescence in diabetic mice by modulating the SYK-NLRP3 inflammasome-PPARγ-catalase pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:892-904. [PMID: 38733164 PMCID: PMC11214975 DOI: 10.3724/abbs.2024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/16/2024] [Indexed: 05/13/2024] Open
Abstract
Diabetes accelerates vascular senescence, which is the basis for atherosclerosis and stiffness. The activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress are closely associated with progressive senescence in vascular smooth muscle cells (VSMCs). The vascular protective effect of FGF21 has gradually gained increasing attention, but its role in diabetes-induced vascular senescence needs further investigation. In this study, diabetic mice and primary VSMCs are transfected with an FGF21 activation plasmid and treated with a peroxisome proliferator-activated receptor γ (PPARγ) agonist (rosiglitazone), an NLRP3 inhibitor (MCC950), and a spleen tyrosine kinase (SYK)-specific inhibitor, R406, to detect senescence-associated markers. We find that FGF21 overexpression significantly restores the level of catalase (CAT), vascular relaxation, inhibits the intensity of ROSgreen fluorescence and p21 immunofluorescence, and reduces the area of SA-β-gal staining and collagen deposition in the aortas of diabetic mice. FGF21 overexpression restores CAT, inhibits the expression of p21, and limits the area of SA-β-gal staining in VSMCs under high glucose conditions. Mechanistically, FGF21 inhibits SYK phosphorylation, the production of the NLRP3 dimer, the expression of NLRP3, and the colocalization of NLRP3 with PYCARD (ASC), as well as NLRP3 with caspase-1, to reverse the cleavage of PPARγ, preserve CAT levels, suppress ROSgreen density, and reduce the expression of p21 in VSMCs under high glucose conditions. Our results suggest that FGF21 alleviates vascular senescence by regulating the SYK-NLRP3 inflammasome-PPARγ-catalase pathway in diabetic mice.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Syk Kinase/metabolism
- Syk Kinase/genetics
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Inflammasomes/metabolism
- Mice
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Cellular Senescence
- Male
- Signal Transduction
- Mice, Inbred C57BL
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Yanyan Heng
- Department of NephrologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Wei Wei
- Department of PharmacologyChangzhi Medical CollegeChangzhi046000China
- Department of EndocrinologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
- Department of Clinical Central LaboratoryHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Linzhong Cheng
- Department of National Institute for Clinical Trials of Drugs and Phase I Clinical Trial LaboratoryHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Feifei Wu
- Department of EndocrinologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Haoyu Dong
- Department of EndocrinologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Jingxia Li
- Department of AnesthesiaChangzhi Medical CollegeChangzhi046000China
| | - Jianing Fu
- Department of StomatologyChangzhi Medical CollegeChangzhi046000China
| | - Bingjie Yang
- Department of StomatologyChangzhi Medical CollegeChangzhi046000China
| | - Xinyue Liang
- Department of Medical ImageologyChangzhi Medical CollegeChangzhi046000China
| | - Chunyan Liu
- Department of AnesthesiaChangzhi Medical CollegeChangzhi046000China
| | - Haiju Li
- Department of PharmacologyChangzhi Medical CollegeChangzhi046000China
- Department of National Institute for Clinical Trials of Drugs and Phase I Clinical Trial LaboratoryHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Haihua Liu
- Department of EndocrinologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| | - Pengfei Zhang
- Department of NephrologyHeping Hospital Affiliated to Changzhi Medical CollegeChangzhi046000China
| |
Collapse
|
18
|
Nguyen CT, Nakayama M, Ishigaki H, Kitagawa Y, Kakino A, Ohno M, Shingai M, Suzuki Y, Sawamura T, Kida H, Itoh Y. Increased expression of CD38 on endothelial cells in SARS-CoV-2 infection in cynomolgus macaques. Virology 2024; 594:110052. [PMID: 38507920 DOI: 10.1016/j.virol.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
SARS-CoV-2 infection causes activation of endothelial cells (ECs), leading to dysmorphology and dysfunction. To study the pathogenesis of endotheliopathy, the activation of ECs in lungs of cynomolgus macaques after SARS-CoV-2 infection and changes in nicotinamide adenine dinucleotide (NAD) metabolism in ECs were investigated, with a focus on the CD38 molecule, which degrades NAD in inflammatory responses after SARS-CoV-2 infection. Activation of ECs was seen from day 3 after SARS-CoV-2 infection in macaques, with increases of intravascular fibrin and NAD metabolism-associated enzymes including CD38. In vitro, upregulation of CD38 mRNA in human ECs was detected after interleukin 6 (IL-6) trans-signaling induction, which was increased in the infection. In the presence of IL-6 trans-signaling stimulation, however, CD38 mRNA silencing induced significant IL-6 mRNA upregulation in ECs and promoted EC apoptosis after stimulation. These results suggest that upregulation of CD38 in patients with COVID-19 has a protective role against IL-6 trans-signaling stimulation induced by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cong Thanh Nguyen
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Misako Nakayama
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Akemi Kakino
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan; Central Research Laboratory, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
19
|
Zhang W, Ou M, Yang P, Ning M. The role of extracellular vesicle immune checkpoints in cancer. Clin Exp Immunol 2024; 216:230-239. [PMID: 38518192 PMCID: PMC11097917 DOI: 10.1093/cei/uxae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 03/24/2024] Open
Abstract
Immune checkpoints (ICPs) play a crucial role in regulating the immune response. In the tumor, malignant cells can hijack the immunosuppressive effects of inhibitory ICPs to promote tumor progression. Extracellular vesicles (EVs) are produced by a variety of cells and contain bioactive molecules on their surface or within their lumen. The expression of ICPs has also been detected in EVs. In vitro and in vivo studies have shown that extracellular vesicle immune checkpoints (EV ICPs) have immunomodulatory effects and are involved in tumor immunity. EV ICPs isolated from the peripheral blood of cancer patients are closely associated with the tumor progression and the prognosis of cancer patients. Blocking inhibitory ICPs has been recognized as an effective strategy in cancer treatment. However, the efficacy of immune checkpoint inhibitors (ICIs) in cancer treatment is hindered by the emergence of therapeutic resistance, which limits their widespread use. Researchers have demonstrated that EV ICPs are correlated with clinical response to ICIs therapy and were involved in therapeutic resistance. Therefore, it is essential to investigate the immunomodulatory effects, underlying mechanisms, and clinical significance of EV ICPs in cancer. This review aims to comprehensively explore these aspects. We have provided a comprehensive description of the cellular origins, immunomodulatory effects, and clinical significance of EV ICPs in cancer, based on relevant studies.
Collapse
Affiliation(s)
- Weiming Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingrong Ou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing Jiangsu, China
| | - Ping Yang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingzhe Ning
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Yu ZP, Wang YK, Wang XY, Gong LN, Tan HL, Jiang MX, Wang LF, Yu GH, Deng KY, Xin HB. Smooth-Muscle-Cell-Specific Deletion of CD38 Protects Mice from AngII-Induced Abdominal Aortic Aneurysm through Inhibiting Vascular Remodeling. Int J Mol Sci 2024; 25:4356. [PMID: 38673941 PMCID: PMC11049988 DOI: 10.3390/ijms25084356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.
Collapse
MESH Headings
- Animals
- Male
- Mice
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/genetics
- Angiotensin II
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Disease Models, Animal
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
- Signal Transduction
- Vascular Remodeling/genetics
Collapse
Affiliation(s)
- Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yi-Kai Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Li-Na Gong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Mei-Xiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Ling-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Guan-Hui Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| |
Collapse
|
21
|
Long Y, Yang B, Lei Q, Gao F, Chen L, Chen W, Chen S, Ren W, Cao Y, Xu L, Wu D, Qu J, Li H, Yu Y, Zhang A, Wang S, Chen W, Wang H, Chen T, Chen Z, Li Q. Targeting Senescent Alveolar Epithelial Cells Using Engineered Mesenchymal Stem Cell-Derived Extracellular Vesicles To Treat Pulmonary Fibrosis. ACS NANO 2024; 18:7046-7063. [PMID: 38381372 PMCID: PMC10919282 DOI: 10.1021/acsnano.3c10547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Type 2 alveolar epithelial cell (AEC2) senescence is crucial to the pathogenesis of pulmonary fibrosis (PF). The nicotinamide adenine dinucleotide (NAD+)-consuming enzyme cluster of differentiation 38 (CD38) is a marker of senescent cells and is highly expressed in AEC2s of patients with PF, thus rendering it a potential treatment target. Umbilical cord mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) have emerged as a cell-free treatment with clinical application prospects in antiaging and antifibrosis treatments. Herein, we constructed CD38 antigen receptor membrane-modified MSC-EVs (CD38-ARM-MSC-EVs) by transfecting MSCs with a lentivirus loaded with a CD38 antigen receptor-CD8 transmembrane fragment fusion plasmid to target AEC2s and alleviate PF. Compared with MSC-EVs, the CD38-ARM-MSC-EVs engineered in this study showed a higher expression of the CD38 antigen receptor and antifibrotic miRNAs and targeted senescent AEC2s cells highly expressing CD38 in vitro and in naturally aged mouse models after intraperitoneal administration. CD38-ARM-MSC-EVs effectively restored the NAD+ levels, reversed the epithelial-mesenchymal transition phenotype, and rejuvenated senescent A549 cells in vitro, thereby mitigating multiple age-associated phenotypes and alleviating PF in aged mice. Thus, this study provides a technology to engineer MSC-EVs and support our CD38-ARM-MSC-EVs to be developed as promising agents with high clinical potential against PF.
Collapse
Affiliation(s)
- Yaoying Long
- Department
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bianlei Yang
- Department
of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Lei
- West
China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Gao
- Department
of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Li Chen
- Department
of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Wenlan Chen
- Department
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyi Chen
- Department
of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenxiang Ren
- Department
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulin Cao
- Department
of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liuyue Xu
- Department
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Wu
- Department
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiao Qu
- Department
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - He Li
- Department
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yali Yu
- Department
of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anyuan Zhang
- Department
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shan Wang
- Department
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiqun Chen
- Key
Laboratory for Molecular Diagnosis of Hubei Province, The Central
Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hongxiang Wang
- Department
of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ting Chen
- Hubei Engineering
Research Center for Application of Extracellular Vesicle, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhichao Chen
- Department
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiubai Li
- Department
of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering
Research Center for Application of Extracellular Vesicle, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
22
|
Yu Y, Bian S, Jiang Y, Li B, Cui X, Ding S, Dai Z, Chen R, Zhong W, Yuan W. An Ex Vivo Aorta Culture Model to Study Vascular Cellular Senescence. Adv Biol (Weinh) 2024; 8:e2300140. [PMID: 38051940 DOI: 10.1002/adbi.202300140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/29/2023] [Indexed: 12/07/2023]
Abstract
Animal studies on vascular aging pose a few limitations. One of the most important reasons for this is the absence of a fast and efficient model of vascular tissue aging. In this study, ex vivo aortic culture and Matrigel subcutaneous implantation are combined to develop a new model for studying vascular cellular senescence. Eight-week-old C57BL/6J mice are used to obtain aortas. Bleomycin is used to induce aortas senescence in vitro. Then, aortas are transplanted to the acceptor mice with Matrigel. Senescence is evaluated using western blotting, quantitative polymerase chain reaction, and senescence-associated beta-galactosidase activity. Inflammatory cytokines are detected using Luminex Liquid Suspension Chip. RNA levels are analyzed by transcriptome sequencing. The results revealed that vessels in the bleomycin group exhibited significant senescence than those in the control group that can be enhanced by stripping vessel adventitia. The levels of cytokines such as interleukin (IL-2, IL-1β, and IL-6 increased significantly in the ex vivo model. Furthermore, transcriptome sequencing revealed 56 significantly differentially expressed genes (DEGs) in ex vivo model vessels compared with those in naturally aging aortas. In conclusion, this study introduces a cost-effective and time-saving vessel senescence model for vascular cellular senescence.
Collapse
Affiliation(s)
- Yijie Yu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Shihui Bian
- Department of Geriatrics, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Yu Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Bo Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Xinggang Cui
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Shu Ding
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Zhiyin Dai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Wei Zhong
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| |
Collapse
|
23
|
Xia Y, Ye X, Chen W, You C, Deng C, Zhou Y. Evaluation of diagnostic potential of CD38 in rickets. Mol Cell Probes 2024; 73:101950. [PMID: 38237701 DOI: 10.1016/j.mcp.2024.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Rickets occurs in infants and children (aged 2 months to 3 years), compromising their skeletal development and damaging nervous, hematopoietic, immune, and other system functions. This study aimed to explore the significance of CD38 in rickets. METHODS The microarray dataset GSE22523 was analyzed to obtain differentially expressed genes in rickets patients. A total of 36 rickets patients and healthy controls were recruited for the study, and their blood samples were collected, followed by detecting mRNA levels of CD38 using quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, the significance of CD38 in rickets patients was analyzed by receiver operating characteristic (ROC) analysis, while the correlation between CD38 and 25-hydroxy-vitamin D (25OHD)/parathyroid hormone (PTH) was analyzed with Pearson's correlation. RESULTS Results showed that CD38 mRNA levels and PTH contents were significantly increased in the rickets patients while 25OHD contents were decreased. Correlation analysis indicated that CD38 was positively correlated with PTH and negatively correlated with 25OHD in both serum and plasma samples of rickets patients. Moreover, ROC analysis showed that serum CD38 was 0.9005 (95 % CI: 0.8313-0.9696), and the AUCs of plasma CD38 was 0.7215 (95 % CI: 0.6031-0.8398) in differentiating rickets patients from healthy persons, advocating serum CD38 had better diagnostic value. CONCLUSION CD38 mRNA levels were upregulated in rickets patients and closely correlated with PTH and 25OHD contents, indicating CD38 might be a diagnostic marker of rickets patients. Further research on the diagnostic utility of CD38 is necessary for the diagnosis and treatment of ricketsin rickets in the future.
Collapse
Affiliation(s)
- Yongjie Xia
- Department of Orthopedic, Shenzhen Children's Hospital, China.
| | - Xiaoshuo Ye
- Department of General Surgery, Shenzhen Children's Hospital, China
| | - Wei Chen
- Department of Endocrinology, Shenzhen Children's Hospital, China
| | - Chao You
- Department of Orthopedic, Shenzhen Children's Hospital, China
| | - Chao Deng
- Department of Orthopedic, Shenzhen Children's Hospital, China
| | - Yibiao Zhou
- Department of Orthopedic, Shenzhen Children's Hospital, China
| |
Collapse
|
24
|
Chen Y, He S, Zeng A, He S, Jin X, Li C, Mei W, Lu Q. Inhibitory Effect of β-Sitosterol on the Ang II-Induced Proliferation of A7r5 Aortic Smooth Muscle Cells. Anal Cell Pathol (Amst) 2023; 2023:2677020. [PMID: 38028434 PMCID: PMC10645495 DOI: 10.1155/2023/2677020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To explore the effects of β-sitosterol on VSMC proliferation. Materials and Methods A7r5 cells were pretreated with 2 µM angiotensin II (Ang II) for 24 hr to establish an excessive VSMC proliferation model, followed by treatment with β-sitosterol for 24 hr. Cells were divided into five groups: control, Ang II, and Ang II + β-sitosterol (2, 4, 8 µM). CCK-8 assay, flow cytometry, and Ad-mCherry-GFP-LC3B assay analyzed cell proliferation, cell cycle, cell apoptosis, and autophagic flux. Additionally, the expression of proteins was detected by the western blotting. Results β-Sitosterol effectively inhibited Ang II-induced A7r5 cell proliferation (IC50 : 6.841 µM at 24 hr). It achieved this by arresting cell cycle progression, promoting apoptosis, inhibiting autophagy, and suppressing the contractile-synthetic phenotypic switch. Mechanistically, β-sitosterol downregulated PCNA, Cyclin D1, and Bcl-2, while upregulating pro-caspase 3, cleaved-caspase 3, and Bax to induce cell cycle arrest and apoptosis. Additionally, it suppressed the contractile-synthetic phenotypic transformation by downregulating OPN and upregulating α-SMA. The Ad-mCherry-GFP-LC3B Assay and western blotting revealed β-sitosterol's autophagy inhibitory effects by downregulating LC3, ULK1, and Beclin-1 while upregulating P62 expression. Discussion and Conclusion. This study found for the first time that β-sitosterol could inhibit the proliferation of A7r5 cells induced by Ang II. β-Sitosterol treatment may be recommended as a therapeutic strategy to prevent the cardiovascular diseases.
Collapse
Affiliation(s)
- Yuankun Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shumiao He
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ao Zeng
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
| | - Siqing He
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunmei Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Engineering and Technology Center for Molecular Probe and Bio-medicine Imaging, Guangzhou, China
| | - Wenjie Mei
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qun Lu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Engineering and Technology Center for Molecular Probe and Bio-medicine Imaging, Guangzhou, China
| |
Collapse
|
25
|
Liu S, Xue YJ, Yin RP, Wu BS, Yu YW, Zhou YY, Wang J, Ji KT. 3, 4-Benzopyrene (Bap) aggravated abdominal aortic aneurysm formation by targeting pyroptosis in smooth muscle cells through ET-1 mediated NLRP3-inflammasome activation. Int Immunopharmacol 2023; 124:110851. [PMID: 37651853 DOI: 10.1016/j.intimp.2023.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
According to epidemiological studies, smoking is one of the leading causes of the high incidence of abdominal aortic aneurysms (AAA).3,4-Benzopyrene (Bap) is a by-product of coal tar and tobacco combustion produced by the incomplete combustion of organic fuels. It is an essential component of both automobile exhaust and tobacco smoke, it is also an important member of the air pollutants. However, the exact mechanism by which Bap can worsen the condition of patients with AAA and increase the mortality of patients with AAA remains unknown. This research aims to investigate the role of Bap in inducing pyroptosis in AAA. In vitro experiments, we revealed that pyroptosis-Gasdermin D (GSDMD) increased when Bap was used. Additionally, the release of inflammatory factors, such as IL-1β and IL-18 were also rising. An mRNA sequencing analysis revealed that macrophages expressed a high level of the endothelin gene when cells were stimulated by Bap. It seemed that smooth muscle cells pyroptosis was related to macrophages. Experiments revealed that endothelin could increase the calcium ion concentration in smooth muscle cells, resulting in a large amount of ROS and activation of NLRP3 inflammasomes. We discovered that treatment with endothelin receptor antagonist (ABT-546) in vivo and calcium ion chelator (BAPTA) in vitro decreased AAA diameter, downregulated NLRP3 inflammasomes and ROS, and significantly reduced the number of activated GSDMD. Inflammatory mediators were released at a lower level. These findings suggest that Bap-induced pyroptosis may be mediated by the ET-1-Ca2+-inflammasome pathway, providing a new way to reduce mortality in AAA patients.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Cardiology, The First People's Hospital oF Jiashan, Jiaxing, Zhejiang 314100, China
| | - Yang-Jing Xue
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ri-Peng Yin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bo-Sen Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yong-Wei Yu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ying-Ying Zhou
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jie Wang
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Kang-Ting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
26
|
Zhu J, Wang Y, Rivett A, Yang G. H 2S regulation of iron homeostasis by IRP1 improves vascular smooth muscle cell functions. Cell Signal 2023; 110:110826. [PMID: 37487913 DOI: 10.1016/j.cellsig.2023.110826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Either H2S or iron is essential for cellular processes. Abnormal metabolism of H2S and iron has increased risk for cardiovascular diseases. The aim of the present study is to examine the mutual interplay of iron and H2S signals in regulation of vascular smooth muscle cell (SMC) functions. Here we found that deficiency of cystathionine gamma-lyase (CSE, a major H2S-producing enzyme in vascular system) induced but NaHS (a H2S donor) administration attenuated iron accumulation in aortic tissues from angiotensin II-infused mice. In vitro, iron overload induced labile iron levels, promoted cell proliferation, disrupted F-actin filaments, and inhibited protein expressions of SMC-specific markers (αSMA and calponin) more significantly in SMCs from CSE knockout mice (KO-SMCs) than the cells from wild-type mice (WT-SMCs), which could be reversed by exogenously applied NaHS. In contrast, KO-SMCs were more vulnerable to iron starvation-induced cell death. Either iron overload or NaHS did not affect elastin level and gelatinolytic activity. We further found that H2S induced more aconitase activity of iron regulatory protein 1 (IRP1) but inhibited its RNA binding activity accompanied with increased protein levels of ferritin and ferriportin, which would contribute to the lower level of labile iron level inside the cells. In addition, iron was able to suppress CSE-derived H2S generation, while iron also non-enzymatically induced H2S release from cysteine. This study reveals the mutual interaction between iron and H2S signals in regulating SMC phenotypes and functions; CSE/H2S system would be a target for preventing iron metabolic disorder-related vascular diseases.
Collapse
Affiliation(s)
- Jiechun Zhu
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Alexis Rivett
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
27
|
Lin MJ, Hu SL, Tian Y, Zhang J, Liang N, Sun R, Gong SX, Wang AP. Targeting Vascular Smooth Muscle Cell Senescence: A Novel Strategy for Vascular Diseases. J Cardiovasc Transl Res 2023; 16:1010-1020. [PMID: 36973566 DOI: 10.1007/s12265-023-10377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Vascular diseases are a major threat to human health, characterized by high rates of morbidity, mortality, and disability. VSMC senescence contributes to dramatic changes in vascular morphology, structure, and function. A growing number of studies suggest that VSMC senescence is an important pathophysiological mechanism for the development of vascular diseases, including pulmonary hypertension, atherosclerosis, aneurysm, and hypertension. This review summarizes the important role of VSMC senescence and senescence-associated secretory phenotype (SASP) secreted by senescent VSMCs in the pathophysiological process of vascular diseases. Meanwhile, it concludes the progress of antisenescence therapy targeting VSMC senescence or SASP, which provides new strategies for the prevention and treatment of vascular diseases.
Collapse
Affiliation(s)
- Meng-Juan Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shi-Liang Hu
- Department of Rheumatology, Shaoyang Central Hospital, Shaoyang, 422000, China
| | - Ying Tian
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Jing Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Na Liang
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Rong Sun
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Ai-Ping Wang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
| |
Collapse
|
28
|
Qiu Y, Xu S, Chen X, Wu X, Zhou Z, Zhang J, Tu Q, Dong B, Liu Z, He J, Zhang X, Liu S, Su C, Huang H, Xia W, Tao J. NAD + exhaustion by CD38 upregulation contributes to blood pressure elevation and vascular damage in hypertension. Signal Transduct Target Ther 2023; 8:353. [PMID: 37718359 PMCID: PMC10505611 DOI: 10.1038/s41392-023-01577-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 09/19/2023] Open
Abstract
Hypertension is characterized by endothelial dysfunction and arterial stiffness, which contribute to the pathogenesis of atherosclerotic cardiovascular diseases. Nicotinamide adenine dinucleotide (NAD+) is an indispensable cofactor in all living cells that is involved in fundamental biological processes. However, in hypertensive patients, alterations in NAD+ levels and their relation with blood pressure (BP) elevation and vascular damage have not yet been studied. Here we reported that hypertensive patients exhibited lower NAD+ levels, as detected by high-performance liquid chromatography-mass spectrometry (HPLC-MS), in both peripheral blood mononuclear cells (PBMCs) and aortas, which was parallel to vascular dysfunction. NAD+ boosting therapy with nicotinamide mononucleotide (NMN) supplement reduced BP and ameliorated vascular dysfunction in hypertensive patients (NCT04903210) and AngII-induced hypertensive mice. Upregulation of CD38 in endothelial cells led to endothelial NAD+ exhaustion by reducing NMN bioavailability. Pro-inflammatory macrophages infiltration and increase in IL-1β generation derived from pro-inflammatory macrophages resulted in higher CD38 expression by activating JAK1-STAT1 signaling pathway. CD38 KO, CD38 inhibitors treatment, or adeno-associated virus (AAV)-mediated endothelial CD38 knockdown lowered BP and improved vascular dysfunction in AngII-induced hypertensive mice. The present study demonstrated for the first time that endothelial CD38 activation and subsequently accelerated NAD+ degradation due to enhanced macrophage-derived IL-1β production was responsible for BP elevation and vascular damage in hypertension. NAD+ boosting therapy can be used as a novel therapeutic strategy for the management of hypertensive patients.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Shiyue Xu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Xi Chen
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Xing Wu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Zhe Zhou
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Jianning Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Qiang Tu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Bing Dong
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Zhefu Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Jiang He
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Xiaoyu Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Shuangshuang Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Chen Su
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 518033, Shenzhen, China.
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China.
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China.
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, 530022, Nanning, China.
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, 510080, Guangzhou, China.
- Key Laboratory on Assisted Circulation, Ministry of Health, 510080, Guangzhou, China.
| |
Collapse
|
29
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
30
|
Yin S, Zhou Z, Fu P, Jin C, Wu P, Ji C, Shan Y, Shi L, Xu M, Qian H. Roles of extracellular vesicles in ageing-related chronic kidney disease: demon or angel. Pharmacol Res 2023:106795. [PMID: 37211241 DOI: 10.1016/j.phrs.2023.106795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Ageing is a universal and unavoidable phenomenon that significantly increases the risk of developing chronic kidney disease (CKD). It has been reported that ageing is associated with functional disruption and structural damage to the kidneys. Extracellular vesicles (EVs), which are nanoscale membranous vesicles containing lipids, proteins, and nucleic acids, are secreted by cells into the extracellular spaces. They have diverse functions such as repairing and regenerating different forms of ageing-related CKD and playing a crucial role in intercellular communication. This paper reviews the etiology of ageing in CKD, with particular attention paid to the roles of EVs as carriers of ageing signals and anti-ageing therapeutic strategies in CKD. In this regard, the double-edged role of EVs in ageing-related CKD is examined, along with the potential for their application in clinical settings.
Collapse
Affiliation(s)
- Siqi Yin
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zixuan Zhou
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Peiwen Fu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chaoying Jin
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Cheng Ji
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yunjie Shan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Linru Shi
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Min Xu
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China.
| | - Hui Qian
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
31
|
Fang J, Chen W, Hou P, Liu Z, Zuo M, Liu S, Feng C, Han Y, Li P, Shi Y, Shao C. NAD + metabolism-based immunoregulation and therapeutic potential. Cell Biosci 2023; 13:81. [PMID: 37165408 PMCID: PMC10171153 DOI: 10.1186/s13578-023-01031-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a critical metabolite that acts as a cofactor in energy metabolism, and serves as a cosubstrate for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ metabolism can regulate functionality attributes of innate and adaptive immune cells and contribute to inflammatory responses. Thus, the manipulation of NAD+ bioavailability can reshape the courses of immunological diseases. Here, we review the basics of NAD+ biochemistry and its roles in the immune response, and discuss current challenges and the future translational potential of NAD+ research in the development of therapeutics for inflammatory diseases, such as COVID-19.
Collapse
Affiliation(s)
- Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Wangwang Chen
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Pengbo Hou
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Zhanhong Liu
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Muqiu Zuo
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Shisong Liu
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chao Feng
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Yuyi Han
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Peishan Li
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
32
|
Afsar B, Afsar RE. Hypertension and cellular senescence. Biogerontology 2023:10.1007/s10522-023-10031-4. [PMID: 37010665 DOI: 10.1007/s10522-023-10031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Essential or primary hypertension is a wordwide health problem. Elevated blood pressure (BP) is closely associated not only with increased chronological aging but also with biological aging. There are various common pathways that play a role in cellular aging and BP regulation. These include but not limited to inflammation, oxidative stress, mitochondrial dysfunction, air pollution, decreased klotho activity increased renin angiotensin system activation, gut dysbiosis etc. It has already been shown that some anti-hypertensive drugs have anti-senescent actions and some senolytic drugs have BP lowering effects. In this review, we have summarized the common mechanisms underlying cellular senescence and HT and their relationships. We further reviewed the effect of various antihypertensive medications on cellular senescence and suggest further issues to be studied.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
33
|
Yin X, Abudupataer M, Ming Y, Xiang B, Lai H, Wang C, Li J, Zhu K. Nicotinamide Mononucleotide Alleviates Angiotensin II-Induced Human Aortic Smooth Muscle Cell Senescence in a Microphysiological Model. J Cardiovasc Pharmacol 2023; 81:280-291. [PMID: 36652727 DOI: 10.1097/fjc.0000000000001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
ABSTRACT The occurrence and development of aortic aneurysms are accompanied by senescence of human aortic smooth muscle cells (HASMCs). Because the mechanism of HASMC senescence has not been fully elucidated, the efficacy of various antisenescence treatments varies. Decreased nicotinamide adenine dinucleotide (NAD + ) levels are one of the mechanisms of cell senescence, and there is a lack of evidence on whether increasing NAD + levels could alleviate HASMC senescence and further retard the progression of aortic aneurysms.We constructed an HASMC-based organ-on-a-chip microphysiological model. RNA sequencing was performed on cell samples from the vehicle control and angiotensin II groups to explore biological differences. We detected cellular senescence markers and NAD + levels in HASMC-based organ-on-a-chip. Subsequently, we pretreated HASMC using the synthetic precursor of NAD + , nicotinamide mononucleotide, and angiotensin II treatment, and used rhythmic stretching to investigate whether nicotinamide mononucleotide could delay HASMC senescence.The HASMC-based organ-on-a-chip model can simulate the biomechanical microenvironment of HASMCs in vivo, and the use of angiotensin II in the model replicated senescence in HASMCs. The senescence of HASMCs was accompanied by downregulation of the expression level of nicotinamide phosphoribosyltransferase and NAD + . Pretreatment with nicotinamide mononucleotide significantly increased the NAD + level and alleviated the senescence of HASMCs, but did not change the expression level of nicotinamide phosphoribosyltransferase.Our study provides a complementary research platform between traditional cell culture and animal experiments to explore HASMC senescence in aortic aneurysms. Furthermore, it provides evidence for NAD + boosting therapy in the clinical treatment of aortic aneurysms.
Collapse
Affiliation(s)
- Xiujie Yin
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 20032, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
The Role of CD38 in the Pathogenesis of Cardiorenal Metabolic Disease and Aging, an Approach from Basic Research. Cells 2023; 12:cells12040595. [PMID: 36831262 PMCID: PMC9954496 DOI: 10.3390/cells12040595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Aging is a major risk factor for the leading causes of mortality, and the incidence of age-related diseases including cardiovascular disease, kidney disease and metabolic disease increases with age. NAD+ is a classic coenzyme that exists in all species, and that plays a crucial role in oxidation-reduction reactions. It is also involved in the regulation of many cellular functions including inflammation, oxidative stress and differentiation. NAD+ declines with aging in various organs, and the reduction in NAD+ is possibly involved in the development of age-related cellular dysfunction in cardiorenal metabolic organs through the accumulation of inflammation and oxidative stress. Levels of NAD+ are regulated by the balance between its synthesis and degradation. CD38 is the main NAD+-degrading enzyme, and CD38 is activated in response to inflammation with aging, which is associated with the reduction in NAD+ levels. In this review, focusing on CD38, we discuss the role of CD38 in aging and the pathogenesis of age-related diseases, including cardiorenal metabolic disease.
Collapse
|
35
|
Yu J, Wang W, Yang J, Zhang Y, Gong X, Luo H, Cao N, Xu Z, Tian M, Yang P, Mei Q, Chen Z, Li Z, Li C, Duan X, Lyu QR, Gao C, Zhang B, Wang Y, Wu G, Zeng C. LncRNA PSR Regulates Vascular Remodeling Through Encoding a Novel Protein Arteridin. Circ Res 2022; 131:768-787. [PMID: 36134578 PMCID: PMC9588624 DOI: 10.1161/circresaha.122.321080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
RATIONALE Vascular smooth muscle cells (VSMCs) phenotype switch from contractile to proliferative phenotype is a pathological hallmark in various cardiovascular diseases. Recently, a subset of long noncoding RNAs was identified to produce functional polypeptides. However, the functional impact and regulatory mechanisms of long noncoding RNAs in VSMCs phenotype switching remain to be fully elucidated. OBJECTIVES To illustrate the biological function and mechanism of a VSMC-enriched long noncoding RNA and its encoded peptide in VSMC phenotype switching and vascular remodeling. RESULTS We identified a VSMC-enriched transcript encoded by a previously uncharacterized gene, which we called phenotype switching regulator (PSR), which was markedly upregulated during vascular remodeling. Although PSR was annotated as a long noncoding RNA, we demonstrated that the lncPSR (PSR transcript) also encoded a protein, which we named arteridin. In VSMCs, both arteridin and lncPSR were necessary and sufficient to induce phenotype switching. Mechanistically, arteridin and lncPSR regulate downstream genes by directly interacting with a transcription factor YBX1 (Y-box binding protein 1) and modulating its nuclear translocation and chromatin targeting. Intriguingly, the PSR transcription was also robustly induced by arteridin. More importantly, the loss of PSR gene or arteridin protein significantly attenuated the vascular remodeling induced by carotid arterial injury. In addition, VSMC-specific inhibition of lncPSR using adeno-associated virus attenuated Ang II (angiotensin II)-induced hypertensive vascular remodeling. CONCLUSIONS PSR is a VSMC-enriched gene, and its transcript IncPSR and encoded protein (arteridin) coordinately regulate transcriptional reprogramming through a shared interacting partner, YBX1. This is a previously uncharacterized regulatory circuit in VSMC phenotype switching during vascular remodeling, with lncPSR/arteridin as potential therapeutic targets for the treatment of VSMC phenotype switching-related vascular remodeling.
Collapse
Affiliation(s)
- Junyi Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jining Yang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, The Third Military Medical University, Chongqing, P.R. China
| | - Ye Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Xue Gong
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Nian Cao
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Miao Tian
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Peili Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Qiao Mei
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Zhi Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Zhuxin Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Chuanwei Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Xudong Duan
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, P. R. China
| | - Qing Rex Lyu
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, P. R. China
| | - Chen Gao
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, OH, USA
| | - Bing Zhang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yibin Wang
- Signature Program in Cardiovascular and Metabolic Diseases, Duke-NUS School of Medicine, Singapore
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, P. R. China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Cardiology, Chongqing General Hospital, Chongqing, P. R. China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing
| |
Collapse
|
36
|
Abstract
Sirtuins are NAD+-dependent deacetylase and deacylase enzymes that control important cellular processes, including DNA damage repair, cellular metabolism, mitochondrial function and inflammation. Consequently, mammalian sirtuins are regarded as crucial regulators of cellular function and organism healthspan. Sirtuin activity and NAD+ levels decrease with age in many tissues, and reduced sirtuin expression is associated with several cardiovascular diseases. By contrast, increased sirtuin expression and activity slows disease progression and improves cardiovascular function in preclinical models and delays various features of cellular ageing. The potential cardiometabolic benefits of sirtuins have resulted in clinical trials with sirtuin-modulating agents; although expectations are high, these drugs have not yet been proven to improve healthspan. In this Review, we examine the role of sirtuins in atherosclerosis, summarize advances in the development of compounds that activate or inhibit sirtuin activity and critically evaluate the therapeutic potential of these agents.
Collapse
|
37
|
Pan Z, Dong H, Huang N, Fang J. Oxidative stress and inflammation regulation of sirtuins: New insights into common oral diseases. Front Physiol 2022; 13:953078. [PMID: 36060706 PMCID: PMC9437461 DOI: 10.3389/fphys.2022.953078] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 12/22/2022] Open
Abstract
Sirtuins are a family of nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylases, comprising seven members SIRT1-SIRT7. Sirtuins have been extensively studied in regulating ageing and age-related diseases. Sirtuins are also pivotal modulators in oxidative stress and inflammation, as they can regulate the expression and activation of downstream transcriptional factors (such as Forkhead box protein O3 (FOXO3a), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB)) as well as antioxidant enzymes, through epigenetic modification and post-translational modification. Most importantly, studies have shown that aberrant sirtuins are involved in the pathogenesis of infectious and inflammatory oral diseases, and oral cancer. In this review, we provide a comprehensive overview of the regulatory patterns of sirtuins at multiple levels, and the essential roles of sirtuins in regulating inflammation, oxidative stress, and bone metabolism. We summarize the involvement of sirtuins in several oral diseases such as periodontitis, apical periodontitis, pulpitis, oral candidiasis, oral herpesvirus infections, dental fluorosis, and oral cancer. At last, we discuss the potential utilization of sirtuins as therapeutic targets in oral diseases.
Collapse
Affiliation(s)
- Zijian Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Fang,
| |
Collapse
|
38
|
Yin B, Wang YB, Li X, Hou XW. β‑aminoisobutyric acid ameliorates hypertensive vascular remodeling via activating the AMPK/SIRT1 pathway in VSMCs. Bioengineered 2022; 13:14382-14401. [PMID: 36694438 PMCID: PMC9995136 DOI: 10.1080/21655979.2022.2085583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play a fundamental role in the pathogenesis of hypertension-related vascular remodeling. β-aminoisobutyric acid (BAIBA) is a nonprotein β-amino acid with multiple pharmacological actions. Recently, BAIBA has been shown to attenuate salt‑sensitive hypertension, but the role of BAIBA in hypertension-related vascular remodeling has yet to be fully clarified. This study examined the potential roles and underlying mechanisms of BAIBA in VSMC proliferation and migration induced by hypertension. Primary VSMCs were cultured from the aortas of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Our results showed that BAIBA pretreatment obviously alleviated the phenotypic transformation, proliferation, and migration of SHR-derived VSMCs. Exogenous BAIBA significantly inhibited the release of inflammatory cytokines by diminishing phosphorylation and nuclear translocation of p65 NFκB, retarding IκBα phosphorylation and degradation, as well as erasing STAT3 phosphorylation in VSMCs. Supplementation of BAIBA triggered Nrf2 dissociation from Keap1 and inhibited oxidative stress in VSMCs from SHR. Mechanistically, activation of the AMPK/sirtuin 1 (SIRT1) axis was required for BAIBA to cube hypertension-induced VSMC proliferation, migration, oxidative damage and inflammatory response. Most importantly, exogenous BAIBA alleviated hypertension, ameliorated vascular remodeling and fibrosis, abated vascular oxidative burst and inflammation in SHR, an effect that was abolished by deficiency of AMPKα1 and SIRT1. BAIBA might serve as a novel therapeutic agent to prevent vascular remodeling in the context of hypertension.
Collapse
Affiliation(s)
- Bo Yin
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu-Bin Wang
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiang Li
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xu-Wei Hou
- Department of Human Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
39
|
Abdellatif M, Bugger H, Kroemer G, Sedej S. NAD + and Vascular Dysfunction: From Mechanisms to Therapeutic Opportunities. J Lipid Atheroscler 2022; 11:111-132. [PMID: 35656147 PMCID: PMC9133775 DOI: 10.12997/jla.2022.11.2.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential and pleiotropic coenzyme involved not only in cellular energy metabolism, but also in cell signaling, epigenetic regulation, and post-translational protein modifications. Vascular disease risk factors are associated with aberrant NAD+ metabolism. Conversely, the therapeutic increase of NAD+ levels through the administration of NAD+ precursors or inhibitors of NAD+-consuming enzymes reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular pathologies. As such, NAD+ has emerged as a potential target for combatting age-related cardiovascular and cerebrovascular disorders. This review discusses NAD+-regulated mechanisms critical for vascular health and summarizes new advances in NAD+ research directly related to vascular aging and disease, including hypertension, atherosclerosis, coronary artery disease, and aortic aneurysms. Finally, we enumerate challenges and opportunities for NAD+ repletion therapy while anticipating the future of this exciting research field, which will have a major impact on vascular medicine.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
40
|
Zeidler JD, Hogan KA, Agorrody G, Peclat TR, Kashyap S, Kanamori KS, Gomez LS, Mazdeh DZ, Warner GM, Thompson KL, Chini CCS, Chini EN. The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. Am J Physiol Cell Physiol 2022; 322:C521-C545. [PMID: 35138178 PMCID: PMC8917930 DOI: 10.1152/ajpcell.00451.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases. NAD metabolism is dynamic and maintained by synthesis and degradation. The enzyme CD38, one of the main NAD-consuming enzymes, is a key component of NAD homeostasis. The majority of CD38 is localized in the plasma membrane with its catalytic domain facing the extracellular environment, likely for the purpose of controlling systemic levels of NAD. Several cell types express CD38, but its expression predominates on endothelial cells and immune cells capable of infiltrating organs and tissues. Here we review potential roles of CD38 in health and disease and postulate ways in which CD38 dysregulation causes changes in NAD homeostasis and contributes to the pathophysiology of multiple conditions. Indeed, in animal models the development of infectious diseases, autoimmune disorders, fibrosis, metabolic diseases, and age-associated diseases including cancer, heart disease, and neurodegeneration are associated with altered CD38 enzymatic activity. Many of these conditions are modified in CD38-deficient mice or by blocking CD38 NADase activity. In diseases in which CD38 appears to play a role, CD38-dependent NAD decline is often a common denominator of pathophysiology. Thus, understanding dysregulation of NAD homeostasis by CD38 may open new avenues for the treatment of human diseases.
Collapse
Affiliation(s)
- Julianna D Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kelly A Hogan
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Guillermo Agorrody
- Departamento de Fisiopatología, Hospital de Clínicas, Montevideo, Uruguay
- Laboratorio de Patologías del Metabolismo y el Envejecimiento, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Thais R Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Karina S Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Delaram Z Mazdeh
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gina M Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Katie L Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Claudia C S Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
41
|
Hu C, Zhang X, Teng T, Ma ZG, Tang QZ. Cellular Senescence in Cardiovascular Diseases: A Systematic Review. Aging Dis 2022; 13:103-128. [PMID: 35111365 PMCID: PMC8782554 DOI: 10.14336/ad.2021.0927] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a prominent risk factor for cardiovascular diseases, which is the leading cause of death around the world. Recently, cellular senescence has received potential attention as a promising target in preventing cardiovascular diseases, including acute myocardial infarction, atherosclerosis, cardiac aging, pressure overload-induced hypertrophy, heart regeneration, hypertension, and abdominal aortic aneurysm. Here, we discuss the mechanisms underlying cellular senescence and describe the involvement of senescent cardiovascular cells (including cardiomyocytes, endothelial cells, vascular smooth muscle cells, fibroblasts/myofibroblasts and T cells) in age-related cardiovascular diseases. Then, we highlight the targets (SIRT1 and mTOR) that regulating cellular senescence in cardiovascular disorders. Furthermore, we review the evidence that senescent cells can exert both beneficial and detrimental implications in cardiovascular diseases on a context-dependent manner. Finally, we summarize the emerging pro-senescent or anti-senescent interventions and discuss their therapeutic potential in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
42
|
Liu Y, Hao H, Lan T, Jia R, Cao M, Zhou L, Zhao Z, Pan W. Physiological and pathological roles of Ang II and Ang- (1-7) in the female reproductive system. Front Endocrinol (Lausanne) 2022; 13:1080285. [PMID: 36619582 PMCID: PMC9817105 DOI: 10.3389/fendo.2022.1080285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
The local Renin-Angiotensin System (RAS) has been demonstrated to exist in a wide range of tissues and organs, In the female reproductive system, it is mainly found in the ovary, uterus and placenta. The RAS system is made up of a series of active substances and enzymes, in addition to the circulating endocrine renin-angiotensin system. The active peptides Angiotensin II (Ang II) and Angiotensin (1-7) (Ang-(1-7)), in particular, appear to have distinct activities in the local RAS system, which also controls blood pressure and electrolytes. Therefore, in addition to these features, angiotensin and its receptors in the reproductive system seemingly get involved in reproductive processes, such as follicle growth and development, as well as physiological functions of the placenta and uterus. In addition, changes in local RAS components may induce reproductive diseases as well as pathological states such as cancer. In most tissues, Ang II and Ang- (1-7) seem to maintain antagonistic effects, but this conclusion is not always true in the reproductive system, where they play similar functions in some physiological and pathological roles. This review investigated how Ang II, Ang- (1-7) and their receptors were expressed, localized, and active in the female reproductive system. This review also summarized their effects on follicle development, uterine and placental physiological functions. The changes of local RAS components in a series of reproductive system diseases including infertility related diseases and cancer and their influence on the occurrence and development of diseases were elucidated. This article reviews the physiological and pathological roles of Ang II and Ang- (1-7) in female reproductive system,a very intricate system of tissue factors that operate as agonists and antagonists was found. Besides, the development of novel therapeutic strategies targeting components of this system may be a research direction in future.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haomeng Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Lan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Jia
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Mingya Cao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Zhou
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| | - Wensen Pan
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| |
Collapse
|
43
|
Xie L, Wen K, Li Q, Huang CC, Zhao JL, Zhao QH, Xiao YF, Guan XH, Qian YS, Gan L, Wang LF, Deng KY, Xin HB. CD38 Deficiency Protects Mice from High Fat Diet-Induced Nonalcoholic Fatty Liver Disease through Activating NAD +/Sirtuins Signaling Pathways-Mediated Inhibition of Lipid Accumulation and Oxidative Stress in Hepatocytes. Int J Biol Sci 2021; 17:4305-4315. [PMID: 34803499 PMCID: PMC8579443 DOI: 10.7150/ijbs.65588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes. CD38 was initially identified as a lymphocyte surface antigen and then has been found to exist in a variety of cell types. Our previous studies showed that CD38-/- mice were resistant to high-fat diet (HFD)-induced obesity. However, the role and mechanism of CD38 in HFD-induced NAFLD is still unclear. Here, we reported that CD38-/- mice significantly alleviated HFD-induced hepatic steatosis. HFD or oleic acid (OA) remarkably increased the mRNA and protein expressions of CD38 in mouse hepatic tissues and primary hepatocytes or hepatic cell lines in vitro and in vivo, suggesting that CD38 might play a role in HFD-induced hepatic steatosis. We observed that CD38 deficiency markedly decreased HFD- or OA-induced the lipid accumulation and oxidative stress in CD38-/- livers or primary hepatocytes, respectively. In contrast, overexpression of CD38 in Hep1-6 cells aggravated OA-induced lipid accumulation and oxidative stress. Furthermore, CD38 deficiency markedly inhibited HFD- or OA-induced the expressions of NOX4, and increased the expression of PPARα, CPT1, ACOX1 and SOD2 in liver tissue and hepatocytes from CD38-/- mice, indicating that CD38 deficiency-mediated the enhancement of fatty acid oxidation and the inhibition of oxidative stress contributed to protecting NAFLD. More importantly, Ex527 (Sirt1 inhibitor) and 3-TYP (Sirt3 inhibitor) significantly enhanced OA-induced lipid accumulation and oxidative stress in CD38-/- primary hepatocytes, suggesting that the anti-lipid accumulation of CD38 deficiency might be dependent on NAD/Sirtuins-mediated enhancement of FAA β-oxidation and suppression of oxidative stress in hepatocytes. In conclusion, we demonstrated that CD38 deficiency protected mice from HFD-induced NAFLD by reducing lipid accumulation and suppressing oxidative stress via activating NAD/Sirtuins signaling pathways.
Collapse
Affiliation(s)
- Lin Xie
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Ke Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Pharmacy, Nanchang University, Nanchang 330031, P.R. China
| | - Qian Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Cong-Cong Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Jia-Le Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Qi-Hang Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Yi-Song Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Pharmacy, Nanchang University, Nanchang 330031, P.R. China
- School of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Pharmacy, Nanchang University, Nanchang 330031, P.R. China
- School of Life Science, Nanchang University, Nanchang 330031, P.R. China
| |
Collapse
|