1
|
Al Shihabi A, Tebon PJ, Nguyen HTL, Chantharasamee J, Sartini S, Davarifar A, Jensen AY, Diaz-Infante M, Cox H, Gonzalez AE, Norris S, Sperry J, Nakashima J, Tavanaie N, Winata H, Fitz-Gibbon ST, Yamaguchi TN, Jeong JH, Dry S, Singh AS, Chmielowski B, Crompton JG, Kalbasi AK, Eilber FC, Hornicek F, Bernthal NM, Nelson SD, Boutros PC, Federman NC, Yanagawa J, Soragni A. The landscape of drug sensitivity and resistance in sarcoma. Cell Stem Cell 2024; 31:1524-1542.e4. [PMID: 39305899 DOI: 10.1016/j.stem.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Sarcomas are rare malignancies with over 100 distinct histological subtypes. Their rarity and heterogeneity pose significant challenges to identifying effective therapies, and approved regimens show varied responses. Novel, personalized approaches to therapy are needed to improve patient outcomes. Patient-derived tumor organoids (PDTOs) model tumor behavior across an array of malignancies. We leverage PDTOs to characterize the landscape of drug resistance and sensitivity in sarcoma, collecting 194 specimens from 126 patients spanning 24 distinct sarcoma subtypes. Our high-throughput organoid screening pipeline tested single agents and combinations, with results available within a week from surgery. Drug sensitivity correlated with clinical features such as tumor subtype, treatment history, and disease trajectory. PDTO screening can facilitate optimal drug selection and mirror patient outcomes in sarcoma. We could identify at least one FDA-approved or NCCN-recommended effective regimen for 59% of the specimens, demonstrating the potential of our pipeline to provide actionable treatment information.
Collapse
Affiliation(s)
- Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyton J Tebon
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jomjit Chantharasamee
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sara Sartini
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ardalan Davarifar
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexandra Y Jensen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miranda Diaz-Infante
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hannah Cox
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Summer Norris
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Nasrin Tavanaie
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Helena Winata
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sorel T Fitz-Gibbon
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jae H Jeong
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Dry
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arun S Singh
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bartosz Chmielowski
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph G Crompton
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Division of Surgical Oncology David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anusha K Kalbasi
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fritz C Eilber
- Division of Surgical Oncology David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francis Hornicek
- Department of Orthopedic Surgery, University of Miami, Miami, FL, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah C Federman
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane Yanagawa
- Department of Surgery, Division of Thoracic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Cho YE, Kim SC, Kim HJ, Han I, Ku JL. Establishment and characterization of 18 Sarcoma Cell Lines: Unraveling the Molecular Mechanisms of Doxorubicin Resistance in Sarcoma Cell Lines. J Transl Med 2024; 22:889. [PMID: 39358756 PMCID: PMC11445991 DOI: 10.1186/s12967-024-05700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Sarcomas, malignant tumors from mesenchymal tissues, exhibit poor prognosis despite advancements in treatment modalities such as surgery, radiotherapy, and chemotherapy, with doxorubicin being a cornerstone treatment. Resistance to doxorubicin remains a significant hurdle in therapy optimization. This study aims to dissect the molecular bases of doxorubicin resistance in sarcoma cell lines, which could guide the development of tailored therapeutic strategies. Eighteen sarcoma cell lines from 14 patients were established under ethical approvals and classified into seven subtypes. Molecular, genomic, and transcriptomic analyses included whole-exome sequencing, RNA sequencing, drug sensitivity assays, and pathway enrichment studies to elucidate the resistance mechanisms. Variability in doxorubicin sensitivity was linked to specific genetic alterations, including mutations in TP53 and variations in the copy number of genomic loci like 11q24.2. Transcriptomic profiling divided cell lines into clusters by karyotype complexity, influencing drug responses. Additionally, pathway analyses highlighted the role of signaling pathways like WNT/BETA-CATENIN and HEDGEHOG in doxorubicin-resistant lines. Comprehensive molecular profiling of sarcoma cell lines has revealed complex interplays of genetic and transcriptomic factors dictating doxorubicin resistance, underscoring the need for personalized medicine approaches in sarcoma treatment. Further investigations into these resistance mechanisms could facilitate the development of more effective, customized therapy regimens.
Collapse
Affiliation(s)
- Young-Eun Cho
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soon-Chan Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ha Jeong Kim
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ilkyu Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
3
|
Nakagawa R, Beardsley A, Durney S, Hayward MK, Subramanyam V, Meyer NP, Wismer H, Goodarzi H, Weaver VM, Van de Mark D, Goga A. Tumor Cell Spatial Organization Directs EGFR/RAS/RAF Pathway Primary Therapy Resistance through YAP Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615226. [PMID: 39386679 PMCID: PMC11463411 DOI: 10.1101/2024.09.26.615226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Non-small cell lung cancers (NSCLC) harboring common mutations in EGFR and KRAS characteristically respond transiently to targeted therapies against those mutations, but invariably, tumors recur and progress. Resistance often emerges through mutations in the therapeutic target or activation of alternative signaling pathways. Mechanisms of acute tumor cell resistance to initial EGFR (EGFRi) or KRASG12C (G12Ci) pathway inhibition remain poorly understood. Our study reveals that acute response to EGFR/RAS/RAF-pathway inhibition is spatial and culture context specific. In vivo, EGFR mutant tumor xenografts shrink by > 90% following acute EGFRi therapy, and residual tumor cells are associated with dense stroma and have increased nuclear YAP. Interestingly, in vitro EGFRi induced cell cycle arrest in NSCLC cells grown in monolayer, while 3D spheroids preferentially die upon inhibitor treatment. We find differential YAP nuclear localization and activity, driven by the distinct culture conditions, as a common resistance mechanism for selective EGFR/KRAS/BRAF pathway therapies. Forced expression of the YAPS127A mutant partially protects cells from EGFR-mediated cell death in spheroid culture. These studies identify YAP activation in monolayer culture as a non-genetic mechanism of acute EGFR/KRAS/BRAF therapy resistance, highlighting that monolayer vs spheroid cell culture systems can model distinct stages of patient cancer progression.
Collapse
Affiliation(s)
- Rachel Nakagawa
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Andrew Beardsley
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
- Department Of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Sophia Durney
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Mary-Kate Hayward
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Nathaniel P. Meyer
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Harrison Wismer
- Biological Imaging Development CoLab, UCSF, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Valerie M Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Daniel Van de Mark
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
- Department Of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Bennett NE, Beadle EP, Parker DV, Coe EJ, Cottam MA, Baum JE, Miller JS, Serrenho JA, Rhoades JA. Gli2 Overexpression Alters the Differentiation Status of Dedifferentiated Liposarcoma Cells and Results in an Immunosuppressive Myeloid Phenotype in Orthotopic Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613793. [PMID: 39345596 PMCID: PMC11429783 DOI: 10.1101/2024.09.18.613793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Sarcomas are a rare classification of tumor derived from tissues of mesenchymal origin including bone, fat, muscle, cartilage, and blood vessels. These tumors often grow rapidly and have limited treatment options with few significant therapeutic advances in recent years. Liposarcomas (LPSs), the most common type of malignant soft tissue sarcoma, are derived from mesenchymal progenitors that have undergone an adipogenic lineage commitment compared to their multipotent counterparts. Interestingly, the grade of differentiation within LPS can vary highly, and the differentiation status of these tumors can drastically affect prognosis and likelihood of metastasis, making tumor differentiation a potential mechanism to target in liposarcoma development. Here, we show that overexpression of the Hedgehog transcription factor Gli2 in dedifferentiated liposarcoma (DDLPS) cells represses adipogenic differentiation while simultaneously activating markers of osteoblast differentiation in vitro . In addition, we observed marked differences in cytokine expression and secretion, prompting us to perform orthotopic fat pad injections of control and Gli2 overexpressing DDLPS cells. Using flow cytometry, we observed distinct changes in fat pad macrophage populations, with a particular increase in M2-like macrophages. Taken together, we find that overexpression of Gli2 in DDLPS cells alters their differentiation capacity and interactions between tumor cells and macrophages, highlighting a novel role for this developmental transcription factor in liposarcoma pathogenesis.
Collapse
|
5
|
Giusti V, Miserocchi G, Sbanchi G, Pannella M, Hattinger CM, Cesari M, Fantoni L, Guerrieri AN, Bellotti C, De Vita A, Spadazzi C, Donati DM, Torsello M, Lucarelli E, Ibrahim T, Mercatali L. Xenografting Human Musculoskeletal Sarcomas in Mice, Chick Embryo, and Zebrafish: How to Boost Translational Research. Biomedicines 2024; 12:1921. [PMID: 39200384 PMCID: PMC11352184 DOI: 10.3390/biomedicines12081921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Musculoskeletal sarcomas pose major challenges to researchers and clinicians due to their rarity and heterogeneity. Xenografting human cells or tumor fragments in rodents is a mainstay for the generation of cancer models and for the preclinical trial of novel drugs. Lately, though, technical, intrinsic and ethical concerns together with stricter regulations have significantly curbed the employment of murine patient-derived xenografts (mPDX). In alternatives to murine PDXs, researchers have focused on embryonal systems such as chorioallantoic membrane (CAM) and zebrafish embryos. These systems are time- and cost-effective hosts for tumor fragments and near-patient cells. The CAM of the chick embryo represents a unique vascularized environment to host xenografts with high engraftment rates, allowing for ease of visualization and molecular detection of metastatic cells. Thanks to the transparency of the larvae, zebrafish allow for the tracking of tumor development and metastatization, enabling high-throughput drug screening. This review will focus on xenograft models of musculoskeletal sarcomas to highlight the intrinsic and technically distinctive features of the different hosts, and how they can be exploited to elucidate biological mechanisms beneath the different phases of the tumor's natural history and in drug development. Ultimately, the review suggests the combination of different models as an advantageous approach to boost basic and translational research.
Collapse
Affiliation(s)
- Veronica Giusti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Giulia Sbanchi
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Marilena Cesari
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Leonardo Fantoni
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Davide Maria Donati
- Orthopaedic Oncology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Monica Torsello
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Laura Mercatali
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| |
Collapse
|
6
|
Dell’Anno F, Giugliano R, Listorti V, Razzuoli E. A Review on Canine and Human Soft Tissue Sarcomas: New Insights on Prognosis Factors and Treatment Measures. Vet Sci 2024; 11:362. [PMID: 39195816 PMCID: PMC11358912 DOI: 10.3390/vetsci11080362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Soft tissue sarcomas (STSs) represent a diverse group of tumors arising from mesenchymal cells, affecting both humans and animals, including dogs. Although STSs represent a class of rare tumors, especially in humans, they pose significant clinical challenges due to their potential for local recurrence and distant metastasis. Dogs, as a model for human STSs, offer several advantages, including exposure to similar environmental risk factors, genetic diversity among breeds, and the spontaneous development of tumors. Furthermore, canine tumors closely mimic the heterogeneity and complexity of human tumors, making them valuable for research into disease progression and treatment effectiveness. Current treatment approaches for STSs in both dogs and humans primarily involve surgery, radiation therapy, and chemotherapy, with treatment decisions based on tumor characteristics and patient factors. However, the development of novel therapeutic strategies is essential, given the high failure rate of new drugs in clinical trials. To better design new tailored treatments, comprehension of the tumor microenvironment (TME) is fundamental, since it plays a crucial role in STS initiation and progression by modulating tumor behavior, promoting angiogenesis, and suppressing immune responses. Notably, TME features include cancer-associated fibroblasts (CAFs), extracellular matrix (ECM) alterations, and tumor-associated macrophages (TAMs) that, depending on their polarization state, can affect immune responses and thus the patient's prognosis. In this review, new therapeutical approaches based on immunotherapy will be deeply explored as potential treatment options for both dogs and humans with STSs. In conclusion, this review provides an overview of the current understanding of STSs in dogs and humans, emphasizing the importance of the TME and potential treatment strategies.
Collapse
Affiliation(s)
- Filippo Dell’Anno
- National Reference Center of Veterinary and comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (F.D.); (V.L.); (E.R.)
- Department of Public Health, Experimental and Forensic Medicine, Section of Biostatistics and Clinical Epidemiology, University of Pavia, 27100 Pavia, Italy
| | - Roberta Giugliano
- National Reference Center of Veterinary and comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (F.D.); (V.L.); (E.R.)
| | - Valeria Listorti
- National Reference Center of Veterinary and comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (F.D.); (V.L.); (E.R.)
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (F.D.); (V.L.); (E.R.)
| |
Collapse
|
7
|
Walker RL, Hornicek FJ, Duan Z. Transcriptional regulation and therapeutic potential of cyclin-dependent kinase 9 (CDK9) in sarcoma. Biochem Pharmacol 2024; 226:116342. [PMID: 38848777 DOI: 10.1016/j.bcp.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.
Collapse
Affiliation(s)
- Robert L Walker
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA.
| |
Collapse
|
8
|
Virgili AC, Salazar J, Gallardo A, López-Pousa A, Terés R, Bagué S, Orellana R, Fumagalli C, Mangues R, Alba-Castellón L, Unzueta U, Casanova I, Sebio A. CXCR4 Expression as a Prognostic Biomarker in Soft Tissue Sarcomas. Diagnostics (Basel) 2024; 14:1195. [PMID: 38893721 PMCID: PMC11172351 DOI: 10.3390/diagnostics14111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Poor long-term survival in localized high-risk soft tissue sarcomas (STSs) of the extremities and trunk highlights the need to identify new prognostic factors. CXCR4 is a chemokine receptor involved in tumor progression, angiogenesis, and metastasis. The aim of this study was to evaluate the association between CXCR4 expression in tumor tissue and survival in STSs patients treated with neoadjuvant therapy. CXCR4 expression was retrospectively determined by immunohistochemical analysis in serial specimens including initial biopsies, tumors post-neoadjuvant treatment, and tumors after relapse. We found that a positive cytoplasmatic expression of CXCR4 in tumors after neoadjuvant treatment was a predictor of poor recurrence-free survival (RFS) (p = 0.003) and overall survival (p = 0.019) in synovial sarcomas. We also found that positive nuclear CXCR4 expression in the initial biopsies was associated with poor RFS (p = 0.022) in undifferentiated pleomorphic sarcomas. In conclusion, our study adds to the evidence that CXCR4 expression in tumor tissue is a promising prognostic factor for STSs.
Collapse
Affiliation(s)
- Anna C. Virgili
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Juliana Salazar
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Antonio López-Pousa
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Raúl Terés
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Silvia Bagué
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Ruth Orellana
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Caterina Fumagalli
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Ramon Mangues
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Lorena Alba-Castellón
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ugutz Unzueta
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Isolda Casanova
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ana Sebio
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| |
Collapse
|
9
|
Evans D, Rothschild S, Tordella C, Chacón M. Leveraging Patient Engagement Through Collaboration for Improved Global Health Outcomes in Sarcoma. Am Soc Clin Oncol Educ Book 2024; 44:e438934. [PMID: 38862132 DOI: 10.1200/edbk_438934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
In the dynamic landscape of oncology, collaborative efforts between the medical community and patient advocacy groups are pivotal in shaping standards of care and advancing research. Nowhere is this collaboration more evident than in sarcoma, a group of rare cancers posing unique challenges to diagnosis, management, and treatment, which profoundly affect patient outcomes. Here, we explore the vital role of patient-centric collaboration in improving global health outcomes in sarcoma, emphasizing the transformative power of collective action and shared expertise. Challenges in sarcoma care, including diagnostic complexities, disparities in access to care, and genomic tumor heterogeneity, underscore the urgent need for collaborative solutions. Initiatives like the Sarcoma European and Latin American Network (SELNET) and The Life Raft Group (LRG) exemplify successful models of collaborative research and patient advocacy, driving advancements in diagnosis, treatment, and disease understanding. Stakeholders across disciplines are uniting to improve sarcoma care and outcomes through the development of clinical practice guidelines, continuous medical education, patient registries, virtual tumor boards, and consortium-driven research endeavors, all of which foster the growth of global collaborative groups. The success of these collaborative efforts serves as a model for other rare diseases, highlighting the potential of collective action to drive progress and innovation in health care.
Collapse
Affiliation(s)
| | | | | | - Matías Chacón
- Instituto Alexander Fleming, Buenos Aires, Argentina
| |
Collapse
|
10
|
Qiu Y, Qin A, Zhao R, Ding J, Jia WWG, Singh M, Murad Y, Tan Q, Kichenadasse G. Oncolytic virotherapy stimulates anti‑tumor immune response and demonstrates activity in advanced sarcoma: Report of two cases. Oncol Lett 2024; 27:244. [PMID: 38638849 PMCID: PMC11024735 DOI: 10.3892/ol.2024.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 04/20/2024] Open
Abstract
Sarcoma is derived from mesenchymal neoplasms and has numerous subtypes, accounting for 1% of all adult malignancies and 15% of childhood malignancies. The prognosis of metastatic or recurrent sarcoma remains poor. The current study presents two cases of sarcoma enrolled in a phase I dose escalation trial for solid tumor, who had previously failed all standard therapies. These patients were treated with VG161, an immune-stimulating herpes simplex virus type 1 oncolytic virus with payloads of IL-12, IL-15 and IL-15 receptor α unit, and a programmed cell death 1 (PD-1)/PD-1 ligand 1 blocking peptide. Both cases demonstrated stable disease as the best response, accompanied by a noteworthy prolongation of progression-free survival (11.8 months for chondrosarcoma and 11.9 months for soft tissue sarcoma, respectively) at a dose of 2.5×108 PFU/cycle. In addition, the treatment led to the activation of anti-cancer immunity, as evident from cytokine, lymphocyte subset and related pathway analyses of peripheral blood and/or tumor biopsy samples. These promising results suggest that VG161 monotherapy holds promise as an effective treatment for sarcoma and warrants further investigation through clinical trials. The two reported patients were part of a phase I clinical trial conducted and registered on the Australian New Zealand Clinical Trials Registry in Australia (registration no. ACTRN12620000244909; registration date, 26 February, 2020).
Collapse
Affiliation(s)
- Yeting Qiu
- Shanghai Virogin Biotech Ltd., Shanghai 200240, P.R. China
| | - Aijun Qin
- Shanghai Virogin Biotech Ltd., Shanghai 200240, P.R. China
| | - Ronghua Zhao
- Shanghai Virogin Biotech Ltd., Shanghai 200240, P.R. China
- Virogin Biotech Canada Ltd., Richmond, BC V6V 3A4, Canada
- China National Biotec Group (CNBG) - Virogin Biotech (Shanghai) Co., Ltd., Shanghai 200240, P.R. China
| | - Jun Ding
- Shanghai Virogin Biotech Ltd., Shanghai 200240, P.R. China
- Virogin Biotech Canada Ltd., Richmond, BC V6V 3A4, Canada
| | - William Wei-Guo Jia
- Shanghai Virogin Biotech Ltd., Shanghai 200240, P.R. China
- Virogin Biotech Canada Ltd., Richmond, BC V6V 3A4, Canada
- China National Biotec Group (CNBG) - Virogin Biotech (Shanghai) Co., Ltd., Shanghai 200240, P.R. China
| | - Manu Singh
- Virogin Biotech Canada Ltd., Richmond, BC V6V 3A4, Canada
| | - Yanal Murad
- Virogin Biotech Canada Ltd., Richmond, BC V6V 3A4, Canada
| | - Qian Tan
- Shanghai Virogin Biotech Ltd., Shanghai 200240, P.R. China
| | - Ganessan Kichenadasse
- Department of Medical Oncology, Southern Oncology Clinical Research Unit, Flinders Private Hospital, Adelaide, South Australia 5042, Australia
| |
Collapse
|
11
|
Fang Y, Barrows D, Dabas Y, Carroll T, Singer S, Tap W, Nacev B. ATRX guards against aberrant differentiation in mesenchymal progenitor cells. Nucleic Acids Res 2024; 52:4950-4968. [PMID: 38477352 PMCID: PMC11109985 DOI: 10.1093/nar/gkae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Alterations in the tumor suppressor ATRX are recurrently observed in mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs. This includes adipogenic pathways where ATRX loss induced expression of adipogenic transcription factors and enhanced adipogenic differentiation in response to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased chromatin accessibility and gains of active chromatin marks. We additionally observed depletion of H3K9me3 at transposable elements, which are derepressed including near mesenchymal genes where they could serve as regulatory elements. Finally, we demonstrated that loss of ATRX in a mesenchymal malignancy, undifferentiated pleomorphic sarcoma, results in similar epigenetic disruption and de-repression of transposable elements. Together, our results reveal a role for ATRX in maintaining epigenetic states and transcriptional repression in mesenchymal progenitors and tumor cells and in preventing aberrant differentiation in the progenitor context.
Collapse
Affiliation(s)
- Yan Fang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065, USA
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Douglas Barrows
- Bioinformatics Resource Center, The Rockefeller University, New York, NY10065, USA
| | - Yakshi Dabas
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY10065, USA
| | - Sam Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY10065, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065, USA
| | - Benjamin A Nacev
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Khan R, Sunthankar KI, Yasinzai AQK, Tareen B, Zarak MS, Khan J, Nasir H, Nakasaki M, Jahangir E, Heneidi S, Ullah A. Primary cardiac sarcoma: demographics, genomic study correlation, and survival benefits of surgery with adjuvant therapy in U.S. population. Clin Res Cardiol 2024; 113:694-705. [PMID: 37246988 DOI: 10.1007/s00392-023-02236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Cardiac sarcomas are rare and aggressive tumors with little known about the demographics, genetics, or treatment outcomes. OBJECTIVES The objectives of this study were to characterize the demographics, treatment modality, and survival associated with cardiac sarcomas and evaluate the potential for mutation-directed therapies. METHODS All cases from 2000 to 2018 of cardiac sarcoma were extracted from the SEER database. Genomic comparison utilized The Cancer Genome Atlas (TCGA) database, as well as reviews and re-analysis of past applicable genomic studies. RESULTS Cardiac sarcomas occurred most often in White patients, compared with national census data cardiac sarcomas occurred at a significantly higher rate in Asians. The majority of cases were undifferentiated (61.7%) and without distant metastases (71%). Surgery was the most common primary treatment modality and offered survival benefit (HR 0.391 (p = 0.001) that was most pronounced and sustained as compared to patients who received chemotherapy (HR 0.423 (p = 0.001) or radiation (HR 0.826 (p = 0.241) monotherapy. There was no difference in survival when stratified by race or sex; however, younger patients (< 50) had better survival. Genomics data on histologically undifferentiated cardiac sarcomas revealed a significant number were likely poorly differentiated pulmonary intimal sarcomas and angiosarcomas. CONCLUSIONS Cardiac sarcoma is a rare disease with surgery continuing to be a cornerstone of therapy followed by traditional chemotherapy. Case studies have indicated the potential for therapies directed to specific genetic aberrations to improve survival for these patients and utilization of next-generation sequencing (NGS) will help improve both classification and these therapies for cardiac sarcoma patients.
Collapse
Affiliation(s)
- Rozi Khan
- Department of Medicine, Medical University of South Carolina, Florence, SC, USA
| | - Kathryn I Sunthankar
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Jaffar Khan
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hassan Nasir
- St. George's University, School of Medicine, University Centre Grenada, West Indies, Grenada
| | - Manando Nakasaki
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eiman Jahangir
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saleh Heneidi
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Asad Ullah
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Lee JH, Gwon MR, Kim JI, Hwang SY, Seong SJ, Yoon YR, Kim M, Kim H. Alterations in Plasma Lipid Profile before and after Surgical Removal of Soft Tissue Sarcoma. Metabolites 2024; 14:250. [PMID: 38786727 PMCID: PMC11123356 DOI: 10.3390/metabo14050250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Soft tissue sarcoma (STS) is a relatively rare malignancy, accounting for about 1% of all adult cancers. It is known to have more than 70 subtypes. Its rarity, coupled with its various subtypes, makes early diagnosis challenging. The current standard treatment for STS is surgical removal. To identify the prognosis and pathophysiology of STS, we conducted untargeted metabolic profiling on pre-operative and post-operative plasma samples from 24 STS patients who underwent surgical tumor removal. Profiling was conducted using ultra-high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry. Thirty-nine putative metabolites, including phospholipids and acyl-carnitines were identified, indicating changes in lipid metabolism. Phospholipids exhibited an increase in the post-operative samples, while acyl-carnitines showed a decrease. Notably, the levels of pre-operative lysophosphatidylcholine (LPC) O-18:0 and LPC O-16:2 were significantly lower in patients who experienced recurrence after surgery compared to those who did not. Metabolic profiling may identify aggressive tumors that are susceptible to lipid synthase inhibitors. We believe that these findings could contribute to the elucidation of the pathophysiology of STS and the development of further metabolic studies in this rare malignancy.
Collapse
Affiliation(s)
- Jae-Hwa Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.-H.L.); (M.-R.G.); (S.-J.S.); (Y.-R.Y.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Mi-Ri Gwon
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.-H.L.); (M.-R.G.); (S.-J.S.); (Y.-R.Y.)
- Clinical Omics Institute, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Jeung-Il Kim
- Department of Orthopaedic Surgery and Biomedical Research Institute, School of Medicine, Pusan National University, Busan 49241, Republic of Korea;
| | - Seung-young Hwang
- Pharmacokinetics Laboratory, Clinical Trial Center, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Sook-Jin Seong
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.-H.L.); (M.-R.G.); (S.-J.S.); (Y.-R.Y.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Young-Ran Yoon
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.-H.L.); (M.-R.G.); (S.-J.S.); (Y.-R.Y.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Myungsoo Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Hyojeong Kim
- Department of Internal Medicine, Division of Hemato-Oncology, Maryknoll Hospital, Busan 48972, Republic of Korea
| |
Collapse
|
14
|
Hasegawa N, Hayashi T, Niizuma H, Kikuta K, Imanishi J, Endo M, Ikeuchi H, Sasa K, Sano K, Hirabayashi K, Takagi T, Ishijima M, Kato S, Kohsaka S, Saito T, Suehara Y. Detection of Novel Tyrosine Kinase Fusion Genes as Potential Therapeutic Targets in Bone and Soft Tissue Sarcomas Using DNA/RNA-based Clinical Sequencing. Clin Orthop Relat Res 2024; 482:549-563. [PMID: 38014853 PMCID: PMC10871756 DOI: 10.1097/corr.0000000000002901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Approximately 1% of clinically treatable tyrosine kinase fusions, including anaplastic lymphoma kinase, neurotrophic tyrosine receptor kinase, RET proto-oncogene, and ROS proto-oncogene 1, have been identified in soft tissue sarcomas via comprehensive genome profiling based on DNA sequencing. Histologic tumor-specific fusion genes have been reported in approximately 20% of soft tissue sarcomas; however, unlike tyrosine kinase fusion genes, these fusions cannot be directly targeted in therapy. Approximately 80% of tumor-specific fusion-negative sarcomas, including myxofibrosarcoma and leiomyosarcoma, that are defined in complex karyotype sarcomas remain genetically uncharacterized; this mutually exclusive pattern of mutations suggests that other mutually exclusive driver oncogenes are yet to be discovered. Tumor-specific, fusion-negative sarcomas may be associated with unique translocations, and oncogenic fusion genes, including tyrosine kinase fusions, may have been overlooked in these sarcomas. QUESTIONS/PURPOSES (1) Can DNA- or RNA-based analysis reveal any characteristic gene alterations in bone and soft tissue sarcomas? (2) Can useful and potential tyrosine kinase fusions in tumors from tumor-specific, fusion-negative sarcomas be detected using an RNA-based screening system? (3) Do the identified potential fusion tumors, especially in neurotrophic tyrosine receptor kinase gene fusions in bone sarcoma, transform cells and respond to targeted drug treatment in in vitro assays? (4) Can the identified tyrosine kinase fusion genes in sarcomas be useful therapeutic targets? METHODS Between 2017 and 2020, we treated 100 patients for bone and soft tissue sarcomas at five institutions. Any biopsy or surgery from which a specimen could be obtained was included as potentially eligible. Ninety percent (90 patients) of patients were eligible; a further 8% (8 patients) were excluded because they were either lost to follow-up or their diagnosis was changed, leaving 82% (82 patients) for analysis here. To answer our first and second questions regarding gene alterations and potential tyrosine kinase fusions in eight bone and 74 soft tissue sarcomas, we used the TruSight Tumor 170 assay to detect mutations, copy number variations, and gene fusions in the samples. To answer our third question, we performed functional analyses involving in vitro assays to determine whether the identified tyrosine kinase fusions were associated with oncogenic abilities and drug responses. Finally, to determine usefulness as therapeutic targets, two pediatric patients harboring an NTRK fusion and an ALK fusion were treated with tyrosine kinase inhibitors in clinical trials. RESULTS DNA/RNA-based analysis demonstrated characteristic alterations in bone and soft tissue sarcomas; DNA-based analyses detected TP53 and copy number alterations of MDM2 and CDK4 . These single-nucleotide variants and copy number variations were enriched in specific fusion-negative sarcomas. RNA-based screening detected fusion genes in 24% (20 of 82) of patients. Useful potential fusions were detected in 19% (11 of 58) of tumor-specific fusion-negative sarcomas, with nine of these patients harboring tyrosine kinase fusion genes; five of these patients had in-frame tyrosine kinase fusion genes ( STRN3-NTRK3, VWC2-EGFR, ICK-KDR, FOXP2-MET , and CEP290-MET ) with unknown pathologic significance. The functional analysis revealed that STRN3-NTRK3 rearrangement that was identified in bone had a strong transforming potential in 3T3 cells, and that STRN3-NTRK3 -positive cells were sensitive to larotrectinib in vitro. To confirm the usefulness of identified tyrosine kinase fusion genes as therapeutic targets, patients with well-characterized LMNA-NTRK1 and CLTC-ALK fusions were treated with tyrosine kinase inhibitors in clinical trials, and a complete response was achieved. CONCLUSION We identified useful potential therapeutic targets for tyrosine kinase fusions in bone and soft tissue sarcomas using RNA-based analysis. We successfully identified STRN3-NTRK3 fusion in a patient with leiomyosarcoma of bone and determined the malignant potential of this fusion gene via functional analyses and drug effects. In light of these discoveries, comprehensive genome profiling should be considered even if the sarcoma is a bone sarcoma. There seem to be some limitations regarding current DNA-based comprehensive genome profiling tests, and it is important to use RNA testing for proper diagnosis and accurate identification of fusion genes. Studies on more patients, validation of results, and further functional analysis of unknown tyrosine kinase fusion genes are required to establish future treatments. CLINICAL RELEVANCE DNA- and RNA-based screening systems may be useful for detecting tyrosine kinase fusion genes in specific fusion-negative sarcomas and identifying key therapeutic targets, leading to possible breakthroughs in the treatment of bone and soft tissue sarcomas. Given that current DNA sequencing misses fusion genes, RNA-based screening systems should be widely considered as a worldwide test for sarcoma. If standard treatments such as chemotherapy are not effective, or even if the sarcoma is of bone, RNA sequencing should be considered to identify as many therapeutic targets as possible.
Collapse
Affiliation(s)
- Nobuhiko Hasegawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidetaka Niizuma
- Department of Pediatrics, Tohoku University School of Medicine, Miyagi, Japan
| | - Kazutaka Kikuta
- Division of Musculoskeletal Oncology and Orthopaedic Surgery, Tochigi Cancer Center, Tochigi, Japan
| | - Jungo Imanishi
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Oncology and Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Keita Sasa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei Sano
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaoru Hirabayashi
- Division of Diagnostic Pathology, Tochigi Cancer Center, Tochigi, Japan
| | - Tatsuya Takagi
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shunsuke Kato
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Brandenberger D, White LM. Radiomics in Musculoskeletal Tumors. Semin Musculoskelet Radiol 2024; 28:49-61. [PMID: 38330970 DOI: 10.1055/s-0043-1776428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Sarcomas are heterogeneous rare tumors predominantly affecting the musculoskeletal (MSK) system. Due to significant variations in their natural history and variable response to conventional treatments, the discovery of novel diagnostic and prognostic biomarkers to guide therapeutic decision-making is an active and ongoing field of research. As new cellular, molecular, and metabolic biomarkers continue to be discovered, quantitative radiologic imaging is becoming increasingly important in sarcoma management. Radiomics offers the potential for discovering novel imaging diagnostic and predictive biomarkers using standard-of-care medical imaging. In this review, we detail the core concepts of radiomics and the application of radiomics to date in MSK sarcoma research. Also described are specific challenges related to radiomic studies, as well as viewpoints on clinical adoption and future perspectives in the field.
Collapse
Affiliation(s)
- Daniel Brandenberger
- Department of Medical Imaging, Musculoskeletal Imaging, University of Toronto, Toronto, Ontario, Canada
- Institut für Radiologie und Nuklearmedizin, Kantonsspital Baselland, Liestal, Switzerland
- Toronto Joint Department of Medical Imaging, University Health Network, Sinai Health System, and Women's College Hospital, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Lawrence M White
- Department of Medical Imaging, Musculoskeletal Imaging, University of Toronto, Toronto, Ontario, Canada
- Toronto Joint Department of Medical Imaging, University Health Network, Sinai Health System, and Women's College Hospital, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Wang J, Wang G, Hu T, Wang H, Zhou Y. Identification of an ADME-related gene for forecasting the prognosis and responding to immunotherapy in sarcomas. Eur J Med Res 2024; 29:45. [PMID: 38212774 PMCID: PMC10782529 DOI: 10.1186/s40001-023-01624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024] Open
Abstract
There are more than 170 subtypes of sarcomas (SARC), which pose a challenge for diagnosis and patient management. Relatively simple or complex karyotypes play an indispensable role in the early diagnosis and effective treatment of SARC. The genes related to absorption, distribution, metabolism, and excretion (ADME) of a drug can serve as prognostic biomarkers of cancer and potential drug targets. In this study, a risk score signature was created. The SARC cohort was downloaded from The Cancer Genome Atlas (TCGA) database, and divided into high-risk group and low-risk group according to the median value of risk score. Compared with high-risk group, low-risk group has a longer survival time, which is also verified in osteosarcoma cohort from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. In addition, the relationship between the signature and immunophenotypes, including status of immune cell infiltration and immune checkpoint expression, was explored. Then, we found that high-risk group is in immunosuppressive status. Finally, we verified that PPARD played a role as a carcinogen in osteosarcoma, which provided a direction for targeted treatment of osteosarcoma in the future. Generally speaking, the signature can not only help clinicians predict the prognosis of patients with SARC, but also provide a theoretical basis for developing more effective targeted drugs in the future.
Collapse
Affiliation(s)
- Jianlong Wang
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guowei Wang
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Tianrui Hu
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Hongyi Wang
- Medical College, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yong Zhou
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
17
|
Hwang MS, Park J, Ham Y, Lee IH, Chun KH. Roles of Protein Post-Translational Modifications During Adipocyte Senescence. Int J Biol Sci 2023; 19:5245-5256. [PMID: 37928271 PMCID: PMC10620833 DOI: 10.7150/ijbs.86404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
Adipocytes are adipose tissues that supply energy to the body through lipids. The two main types of adipocytes comprise white adipocytes (WAT) that store energy, and brown adipocytes (BAT), which generate heat by burning stored fat (thermogenesis). Emerging evidence indicates that dysregulated adipocyte senescence may disrupt metabolic homeostasis, leading to various diseases and aging. Adipocytes undergo senescence via irreversible cell-cycle arrest in response to DNA damage, oxidative stress, telomere dysfunction, or adipocyte over-expansion upon chronic lipid accumulation. The amount of detectable BAT decreases with age. Activation of cell cycle regulators and dysregulation of adipogenesis-regulating factors may constitute a molecular mechanism that accelerates adipocyte senescence. To better understand the regulation of adipocyte senescence, the effects of post-translational modifications (PTMs), is essential for clarifying the activity and stability of these proteins. PTMs are covalent enzymatic protein modifications introduced following protein biosynthesis, such as phosphorylation, acetylation, ubiquitination, or glycosylation. Determining the contribution of PTMs to adipocyte senescence may identify new therapeutic targets for the regulation of adipocyte senescence. In this review, we discuss a conceptual case in which PTMs regulate adipocyte senescence and explain the mechanisms underlying protein regulation, which may lead to the development of effective strategies to combat metabolic diseases.
Collapse
Affiliation(s)
- Min-Seon Hwang
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Institute of Genetic Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jingyeong Park
- Department of Life Science, College of Natural Science, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yunha Ham
- Department of Life Science, College of Natural Science, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - In Hye Lee
- Department of Life Science, College of Natural Science, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Institute of Genetic Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
18
|
Payá-Milans M, Peña-Chilet M, Loucera C, Esteban-Medina M, Dopazo J. Functional Profiling of Soft Tissue Sarcoma Using Mechanistic Models. Int J Mol Sci 2023; 24:14732. [PMID: 37834179 PMCID: PMC10572617 DOI: 10.3390/ijms241914732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Soft tissue sarcoma is an umbrella term for a group of rare cancers that are difficult to treat. In addition to surgery, neoadjuvant chemotherapy has shown the potential to downstage tumors and prevent micrometastases. However, finding effective therapeutic targets remains a research challenge. Here, a previously developed computational approach called mechanistic models of signaling pathways has been employed to unravel the impact of observed changes at the gene expression level on the ultimate functional behavior of cells. In the context of such a mechanistic model, RNA-Seq counts sourced from the Recount3 resource, from The Cancer Genome Atlas (TCGA) Sarcoma project, and non-diseased sarcomagenic tissues from the Genotype-Tissue Expression (GTEx) project were utilized to investigate signal transduction activity through signaling pathways. This approach provides a precise view of the relationship between sarcoma patient survival and the signaling landscape in tumors and their environment. Despite the distinct regulatory alterations observed in each sarcoma subtype, this study identified 13 signaling circuits, or elementary sub-pathways triggering specific cell functions, present across all subtypes, belonging to eight signaling pathways, which served as predictors for patient survival. Additionally, nine signaling circuits from five signaling pathways that highlighted the modifications tumor samples underwent in comparison to normal tissues were found. These results describe the protective role of the immune system, suggesting an anti-tumorigenic effect in the tumor microenvironment, in the process of tumor cell detachment and migration, or the dysregulation of ion homeostasis. Also, the analysis of signaling circuit intermediary proteins suggests multiple strategies for therapy.
Collapse
Affiliation(s)
- Miriam Payá-Milans
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Joaquín Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
- FPS/ELIXIR-ES, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| |
Collapse
|
19
|
Griffin KH, Thorpe SW, Sebastian A, Hum NR, Coonan TP, Sagheb IS, Loots GG, Randall RL, Leach JK. Engineered bone marrow as a clinically relevant ex vivo model for primary bone cancer research and drug screening. Proc Natl Acad Sci U S A 2023; 120:e2302101120. [PMID: 37729195 PMCID: PMC10523456 DOI: 10.1073/pnas.2302101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone cancer in children and adolescents. While numerous other cancers now have promising therapeutic advances, treatment options for OS have remained unchanged since the advent of standard chemotherapeutics and offer less than a 25% 5-y survival rate for those with metastatic disease. This dearth of clinical progress underscores a lack of understanding of OS progression and necessitates the study of this disease in an innovative system. Here, we adapt a previously described engineered bone marrow (eBM) construct for use as a three-dimensional platform to study how microenvironmental and immune factors affect OS tumor progression. We form eBM by implanting acellular bone-forming materials in mice and explanting the cellularized constructs after 8 wk for study. We interrogate the influence of the anatomical implantation site on eBM tissue quality, test ex vivo stability under normoxic (5% O2) and standard (21% O2) culture conditions, culture OS cells within these constructs, and compare them to human OS samples. We show that eBM stably recapitulates the composition of native bone marrow. OS cells exhibit differential behavior dependent on metastatic potential when cultured in eBM, thus mimicking in vivo conditions. Furthermore, we highlight the clinical applicability of eBM as a drug-screening platform through doxorubicin treatment and show that eBM confers a protective effect on OS cells that parallel clinical responses. Combined, this work presents eBM as a cellular construct that mimics the complex bone marrow environment that is useful for mechanistic bone cancer research and drug screening.
Collapse
Affiliation(s)
- Katherine H. Griffin
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA95817
- School of Veterinary Medicine, University of California, Davis, CA95616
| | - Steven W. Thorpe
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA95817
| | - Aimy Sebastian
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Nicholas R. Hum
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Thomas P. Coonan
- Department of Biomedical Engineering, University of California, Davis, CA95616
| | - Isabel S. Sagheb
- Department of Biomedical Engineering, University of California, Davis, CA95616
| | - Gabriela G. Loots
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA95817
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - R. Lor Randall
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA95817
| | - J. Kent Leach
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA95817
- Department of Biomedical Engineering, University of California, Davis, CA95616
| |
Collapse
|
20
|
Lanzi C, Arrighetti N, Pasquali S, Cassinelli G. Targeting EZH2 in SMARCB1-deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 2023; 215:115727. [PMID: 37541451 DOI: 10.1016/j.bcp.2023.115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Soft tissue sarcomas (STSs) are rare mesechymal malignancies characterized by distintive molecular, histological and clinical features. Many STSs are considered as predominatly epigenetic diseases due to underlying chromatin deregulation. Discovery of deregulated functional antagonism between the chromatin remodeling BRG1/BRM-associated (BAFs) and the histone modifying Polycomb repressor complexes (PRCs) has provided novel actionable targets. In epithelioid sarcoma (ES), extracranial, extrarenal malignant rhabdoid tumors (eMRTs) and synovial sarcoma (SS), the total or partial loss of the BAF core subunit SMARCB1, driven by different alterations, is associated with PRC2 deregulation and dependency on its enzymatic subunit, EZH2. In these SMARCB1-deficient STSs, aberrant EZH2 expression and/or activity emerged as a druggable vulnerability. Although preclinical investigation supported EZH2 targeting as a promising therapeutic option, clinical studies demonstrated a variable response to EZH2 inhibitors. Actually, whereas the clinical benefit recorded in ES patients prompted the FDA approval of the EZH2 inhibitor tazemetostat, the modest and sporadic responses observed in eMRT and SS patients highlighted the need to deepen mechanistic as well as pharmacological investigations to improve drug effectiveness. We summarize the current knowledge of different mechanisms driving SMARCB1 deficiency and EZH2 deregulation in ES, eMRT and SS along with preclinical and clinical studies of EZH2-targeting agents. Possible implication of the PRC2- and enzymatic-independent functions of EZH2 and of its homolog, EZH1, in the response to anti-EZH2 agents will be discussed together with combinatorial strategies under investigation to improve the efficacy of EZH2 targeting in these tumors.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
21
|
Zou Q, Gan S, Li Y, Huang Q, Wang S, Li S, Gu C. Case Report: Giant paratesticular liposarcoma was resected and refused radical orchiectomy. Front Oncol 2023; 13:1223081. [PMID: 37637056 PMCID: PMC10450914 DOI: 10.3389/fonc.2023.1223081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Paratesticular liposarcoma (PLS) causes scrotal mass changes, rarely in the urinary system. Before surgery, PLS causes scrotal mass changes that are difficult to distinguish from other causes. There has been a report of a giant paratestis liposarcoma resection and refusal to undergo orchiectomy. A 65-year-old man presented with finding the left scrotal mass after 2 years. Physical examination showed that the left scrotal mass was obviously difficult to retract. Pelvic CT showed that the left scrotal mass and flaky fat density shadow accompanied with left inguinal hernia. During surgery, laparoscopic exploration was performed to rule out inguinal hernia, and a scrotal exploration was also performed concurrently. The intraoperative frozen pathology considered lipogenic tumor, and the patient's wife refused to undergo simultaneous left radical orchiectomy. Later the mass was completely removed, and postoperative pathology confirmed paratestis liposarcoma. During a 15-month routine follow-up, the tumor did not recur locally or metastasize distantly. PLS should be focused on early diagnosis and treatment, preoperative examinations and postoperative pathology should be combined, and highly personalized treatment will be implemented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chiming Gu
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Fang Y, Barrows D, Dabas Y, Carroll TS, Tap WD, Nacev BA. ATRX guards against aberrant differentiation in mesenchymal progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552433. [PMID: 37609273 PMCID: PMC10441338 DOI: 10.1101/2023.08.08.552433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Alterations in the tumor suppressor ATRX are recurrently observed in several cancer types including sarcomas, which are mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs. This includes adipogenic pathways where ATRX loss induced expression of adipogenic transcription factors (Pparγ and Cebpα) and enhanced adipogenic differentiation in response to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased chromatin accessibility and gains of active chromatin marks at putative enhancer elements and promoters. Finally, we observed depletion of H3K9me3 at transposable elements, which are derepressed including near mesenchymal genes where they could serve as regulatory elements. Our results demonstrate that ATRX functions to buffer against differentiation in mesenchymal progenitor cells, which has implications for understanding ATRX loss of function in sarcomas.
Collapse
Affiliation(s)
- Yan Fang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY10065
| | - Douglas Barrows
- Bioinformatics Resource Center, The Rockefeller University, New York, NY10065
| | - Yakshi Dabas
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY10065
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY10065
| | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Benjamin A. Nacev
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| |
Collapse
|
23
|
Landuzzi L, Manara MC, Pazzaglia L, Lollini PL, Scotlandi K. Innovative Breakthroughs for the Treatment of Advanced and Metastatic Synovial Sarcoma. Cancers (Basel) 2023; 15:3887. [PMID: 37568703 PMCID: PMC10416854 DOI: 10.3390/cancers15153887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Synovial sarcoma (SyS) is a rare aggressive soft tissue sarcoma carrying the chromosomal translocation t(X;18), encoding the fusion transcript SS18::SSX. The fusion oncoprotein interacts with both BAF enhancer complexes and polycomb repressor complexes, resulting in genome-wide epigenetic perturbations and a unique altered genetic signature. Over 80% of the patients are initially diagnosed with localized disease and have a 5-year survival rate of 70-80%, but metastatic relapse occurs in 50% of the cases. Advanced, unresectable, or metastatic disease has a 5-year survival rate below 10%, representing a critical issue. This review summarizes the molecular mechanisms behind SyS and illustrates current treatments in front line, second line, and beyond settings. We analyze the use of immune check point inhibitors (ICI) in SyS that do not behave as an ICI-sensitive tumor, claiming the need for predictive genetic signatures and tumor immune microenvironment biomarkers. We highlight the clinical translation of innovative technologies, such as proteolysis targeting chimera (PROTAC) protein degraders or adoptive transfer of engineered immune cells. Adoptive cell transfer of engineered T-cell receptor cells targeting selected cancer/testis antigens has shown promising results against metastatic SyS in early clinical trials and further improvements are awaited from refinements involving immune cell engineering and tumor immune microenvironment enhancement.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| | - Maria Cristina Manara
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| | - Laura Pazzaglia
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| |
Collapse
|
24
|
Bernardo T, Behrends C, Klein D, Kuntze A, Timmermann B, von Neubeck C. Similar additive effects of doxorubicin in combination with photon or proton irradiation in soft tissue sarcoma models. Front Oncol 2023; 13:1211984. [PMID: 37503316 PMCID: PMC10368985 DOI: 10.3389/fonc.2023.1211984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
High-precision radiotherapy with proton beams is frequently used in the management of aggressive soft tissue sarcoma (STS) and is often combined with doxorubicin (Dox), the first-line chemotherapy for STS. However, current treatment approaches continue to result in high local recurrence rates often occurring within the treatment field. This strongly indicates the need of optimized treatment protocols taking the vast heterogeneity of STS into account, thereby fostering personalized treatment approaches. Here, we used preclinical STS models to investigate the radiation response following photon (X) or proton (H) irradiation alone and in combination with different treatment schedules of Dox. As preclinical models, fibrosarcoma (HT-1080), undifferentiated pleiomorphic sarcoma (GCT), and embryonal rhabdomyosarcoma (RD) cell lines were used; the latter two are mutated for TP53. The cellular response regarding clonogenic survival, apoptosis, cell-cycle distribution, proliferation, viability, morphology, and motility was investigated. The different STS cell types revealed a dose-dependent radiation response with reduced survival, proliferation, viability, and motility whereas G2/M phase arrest as well as apoptosis were induced. RD cells showed the most radiosensitive phenotype; the linear quadratic model fit could not be applied. In combined treatment schedules, Dox showed the highest efficiency when applied after or before and after radiation; Dox treatment only before radiation was less efficient. GCT cells were the most chemoresistant cell line in this study most probably due to their TP53 mutation status. Interestingly, similar additive effects could be observed for X or H irradiation in combination with Dox treatment. However, the additive effects were determined more frequently for X than for H irradiation. Thus, further investigations are needed to specify alternative drug therapies that display superior efficacy when combined with H therapy.
Collapse
Affiliation(s)
- Teresa Bernardo
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carina Behrends
- West German Proton Therapy Center Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany
- Faculty of Physics, Technical University (TU) Dortmund University, Dortmund, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Kuntze
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- West German Proton Therapy Center Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Bosoteanu M, Deacu M, Aschie M, Vamesu S, Cozaru GC, Mitroi AF, Voda RI, Orasanu CI, Vlad SE, Penciu RC, Chirila SI. The Role of Pathogenesis Associated with the Tumor Microclimate in the Differential Diagnosis of Uterine Myocytic Tumors. J Clin Med 2023; 12:4161. [PMID: 37373854 DOI: 10.3390/jcm12124161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Myocytic tumors of the uterus present vast morphological heterogeneity, which makes differential diagnosis between the different entities necessary. This study aims to enrich the existing data and highlight new potential therapeutic targets regarding aspects related to the pathogenic process and the tumor microenvironment in order to improve the quality of life of women. We performed a 5-year retrospective study, including particular cases of uterine myocyte tumors. Immunohistochemical analyses of pathogenic pathways (p53, RB1, and PTEN) and tumor microclimate using markers (CD8, PD-L1, and CD105), as well as genetic testing of the PTEN gene, were performed. The data were statistically analyzed using the appropriate parameters. In cases of atypical leiomyoma, a significant association was observed between PTEN deletion and an increased number of PD-L1+ T lymphocytes. For malignant lesions and STUMP, PTEN deletion was associated with the advanced disease stage. Advanced cases were also associated with an increased mean CD8+ T cell count. An increased number of lymphocytes was associated with an increased percentage of RB1+ nuclei. The study corroborated clinical and histogenetic data, highlighting the importance of the differential diagnosis of these tumors to improve the management of patients and increase their quality of life.
Collapse
Affiliation(s)
- Madalina Bosoteanu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Mariana Deacu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Mariana Aschie
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
- Academy of Medical Sciences of Romania, 030171 Bucharest, Romania
| | - Sorin Vamesu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
- Clinical Service of Pathology, Department of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
- Clinical Service of Pathology, Department of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Cristian Ionut Orasanu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Sabina Elena Vlad
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Roxana Cleopatra Penciu
- Department of Obstetrics and Gynecology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Sergiu Ioachim Chirila
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, Ovidius University, 900527 Constanta, Romania
| |
Collapse
|
26
|
Wang Y, Zhang H, La Ferlita A, Sp N, Goryunova M, Sarchet P, Hu Z, Sorkin M, Kim A, Huang H, Zhu H, Tsung A, Pollock RE, Beane JD. Phosphorylation of IWS1 by AKT maintains liposarcoma tumor heterogeneity through preservation of cancer stem cell phenotypes and mesenchymal-epithelial plasticity. Oncogenesis 2023; 12:30. [PMID: 37237004 DOI: 10.1038/s41389-023-00469-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Chemotherapy remains the mainstay of treatment for patients with advanced liposarcoma (LPS), but response rates are only 25% and the overall survival at 5 years is dismal at 20-34%. Translation of other therapies have not been successful and there has been no significant improvement in prognosis for nearly 20 years. The aberrant activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been implicated in the aggressive clinical behavior LPS and in resistance to chemotherapy, but the precise mechanism remains elusive and efforts to target AKT clinically have failed. Here we show that the AKT-mediated phosphorylation of the transcription elongation factor IWS1, promotes the maintenance of cancer stem cells in both cell and xenograft models of LPS. In addition, phosphorylation of IWS1 by AKT contributes to a "metastable" cell phenotype, characterized by mesenchymal/epithelial plasticity. The expression of phosphorylated IWS1 also promotes anchorage-dependent and independent growth, cell migration, invasion, and tumor metastasis. In patients with LPS, IWS1 expression is associated with reduced overall survival, increased frequency of recurrence, and shorter time to relapse after resection. These findings indicate that IWS1-mediated transcription elongation is an important regulator of human LPS pathobiology in an AKT-dependent manner and implicate IWS1 as an important molecular target to treat LPS.
Collapse
Affiliation(s)
- Yu Wang
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongji Zhang
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alessandro La Ferlita
- Department of Cancer Biology and Genetics, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Nipin Sp
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Marina Goryunova
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Patricia Sarchet
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Zhiwei Hu
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael Sorkin
- Department of Plastic and Reconstructive Surgery, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alex Kim
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hai Huang
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hua Zhu
- Department of Surgery, Division of Cardiac Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Allan Tsung
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Raphael E Pollock
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joal D Beane
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
27
|
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Self-Renewal and Pluripotency in Osteosarcoma Stem Cells' Chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin Interplay with Embryonic Markers. Int J Mol Sci 2023; 24:8401. [PMID: 37176108 PMCID: PMC10179672 DOI: 10.3390/ijms24098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Osteosarcoma is a highly malignant bone tumor derived from mesenchymal cells that contains self-renewing cancer stem cells (CSCs), which are responsible for tumor progression and chemotherapy resistance. Understanding the signaling pathways that regulate CSC self-renewal and survival is crucial for developing effective therapies. The Notch, Hedgehog, and Wnt/β-Catenin developmental pathways, which are essential for self-renewal and differentiation of normal stem cells, have been identified as important regulators of osteosarcoma CSCs and also in the resistance to anticancer therapies. Targeting these pathways and their interactions with embryonic markers and the tumor microenvironment may be a promising therapeutic strategy to overcome chemoresistance and improve the prognosis for osteosarcoma patients. This review focuses on the role of Notch, Hedgehog, and Wnt/β-Catenin signaling in regulating CSC self-renewal, pluripotency, and chemoresistance, and their potential as targets for anti-cancer therapies. We also discuss the relevance of embryonic markers, including SOX-2, Oct-4, NANOG, and KLF4, in osteosarcoma CSCs and their association with the aforementioned signaling pathways in overcoming drug resistance.
Collapse
Affiliation(s)
- Sara R. Martins-Neves
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gabriela Sampaio-Ribeiro
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Célia M. F. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
28
|
Chico MA, Mesas C, Doello K, Quiñonero F, Perazzoli G, Ortiz R, Prados J, Melguizo C. Cancer Stem Cells in Sarcomas: In Vitro Isolation and Role as Prognostic Markers: A Systematic Review. Cancers (Basel) 2023; 15:cancers15092449. [PMID: 37173919 PMCID: PMC10177331 DOI: 10.3390/cancers15092449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Sarcomas are a diverse group of neoplasms with an incidence rate of 15% of childhood cancers. They exhibit a high tendency to develop early metastases and are often resistant to available treatments, resulting in poor prognosis and survival. In this context, cancer stem cells (CSCs) have been implicated in recurrence, metastasis, and drug resistance, making the search for diagnostic and prognostic biomarkers of the disease crucial. The objective of this systematic review was to analyze the expression of CSC biomarkers both after isolation from in vitro cell lines and from the complete cell population of patient tumor samples. A total of 228 publications from January 2011 to June 2021 was retrieved from different databases, of which 35 articles were included for analysis. The studies demonstrated significant heterogeneity in both the markers detected and the CSC isolation techniques used. ALDH was identified as a common marker in various types of sarcomas. In conclusion, the identification of CSC markers in sarcomas may facilitate the development of personalized medicine and improve treatment outcomes.
Collapse
Affiliation(s)
- Maria Angeles Chico
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Cristina Mesas
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Francisco Quiñonero
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Department of Medicine, Faculty of Health Sciences, University of Almería, 04120 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Consolacion Melguizo
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
29
|
Belyaeva E, Loginova N, Schroeder BA, Goldlust IS, Acharya A, Kumar S, Timashev P, Ulasov I. The spectrum of cell death in sarcoma. Biomed Pharmacother 2023; 162:114683. [PMID: 37031493 DOI: 10.1016/j.biopha.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The balance between cell death and cell survival is a highly coordinated process by which cells break down and remove unnecessary or harmful materials in a controlled, highly regulated, and compartmentalized manner. Cell exposure to various stresses, such as oxygen starvation, a lack of nutrients, or exposure to radiation, can initiate autophagy. Autophagy is a carefully orchestrated process with multiple steps, each regulated by specific genes and proteins. Autophagy proteins impact cellular maintenance and cell fate in response to stress, and targeting this process is one of the most promising methods of anti-tumor therapy. It is currently not fully understood how autophagy affects different types of tumor cells, which makes it challenging to predict outcomes when this process is manipulated. In this review, we will explore the mechanisms of autophagy and investigate it as a potential and promising therapeutic target for aggressive sarcomas.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Nina Loginova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ian S Goldlust
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Arbind Acharya
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sandeep Kumar
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
30
|
Sorimachi Y, Kobayashi H, Shiozawa Y, Koide S, Nakato R, Shimizu Y, Okamura T, Shirahige K, Iwama A, Goda N, Takubo K, Takubo K. Mesenchymal loss of p53 alters stem cell capacity and models human soft tissue sarcoma traits. Stem Cell Reports 2023; 18:1211-1226. [PMID: 37059101 DOI: 10.1016/j.stemcr.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/16/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a heterogeneous group of tumors that originate from mesenchymal cells. p53 is frequently mutated in human STS. In this study, we found that the loss of p53 in mesenchymal stem cells (MSCs) mainly causes adult undifferentiated soft tissue sarcoma (USTS). MSCs lacking p53 show changes in stem cell properties, including differentiation, cell cycle progression, and metabolism. The transcriptomic changes and genetic mutations in murine p53-deficient USTS mimic those seen in human STS. Furthermore, single-cell RNA sequencing revealed that MSCs undergo transcriptomic alterations with aging-a risk factor for certain types of USTS-and that p53 signaling decreases simultaneously. Moreover, we found that human STS can be transcriptomically classified into six clusters with different prognoses, different from the current histopathological classification. This study paves the way for understanding MSC-mediated tumorigenesis and provides an efficient mouse model for sarcoma studies.
Collapse
Affiliation(s)
- Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yusuke Shiozawa
- Department of Pediatrics, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryuichiro Nakato
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo 100-0004, Japan.
| |
Collapse
|
31
|
Kim T, Bui NQ. The Next Frontier in Sarcoma: Molecular Pathways and Associated Targeted Therapies. Cancers (Basel) 2023; 15:cancers15061692. [PMID: 36980578 PMCID: PMC10046114 DOI: 10.3390/cancers15061692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Soft tissue sarcomas (STS) are a rare, complex, heterogeneous group of mesenchymal neoplasms with over 150 different histological subtypes. Treatments for this malignancy have been especially challenging due to the heterogeneity of the disease and the modest efficacy of conventional chemotherapy. The next frontier lies in discerning the molecular pathways in which these mesenchymal neoplasms arise, metastasize, and develop drug-resistance, thereby helping guide new therapeutic targets for the treatment of STS. This comprehensive review will discuss the current understanding of tumorigenesis of specific STS subtypes, including oncogenic pathway alterations involved in cell cycle regulation, angiogenesis, NOTCH signaling, and aberrant genetic rearrangements. It will then review current therapies that have been recently developed to target these pathways, including a review of ongoing clinical studies for targeted sarcoma treatment, as well as discuss new potential avenues for therapies against known molecular pathways of sarcomagenesis.
Collapse
|
32
|
The First-In-Class Anti-AXL×CD3ε Pronectin™-Based Bispecific T-Cell Engager Is Active in Preclinical Models of Human Soft Tissue and Bone Sarcomas. Cancers (Basel) 2023; 15:cancers15061647. [PMID: 36980534 PMCID: PMC10046451 DOI: 10.3390/cancers15061647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Sarcomas are heterogeneous malignancies with limited therapeutic options and a poor prognosis. We developed an innovative immunotherapeutic agent, a first-in-class Pronectin™-based Bispecific T-Cell Engager (pAXL×CD3ε), for the targeting of AXL, a TAM family tyrosine kinase receptor highly expressed in sarcomas. AXL expression was first analyzed by flow cytometry, qRT-PCR, and Western blot on a panel of sarcoma cell lines. The T-cell-mediated pAXL×CD3ε cytotoxicity against sarcoma cells was investigated by flow cytometry, luminescence assay, and fluorescent microscopy imaging. The activation and degranulation of T cells induced by pAXL×CD3ε were evaluated by flow cytometry. The antitumor activity induced by pAXL×CD3ε in combination with trabectedin was also investigated. In vivo activity studies of pAXL×CD3ε were performed in immunocompromised mice (NSG), engrafted with human sarcoma cells and reconstituted with human peripheral blood mononuclear cells from healthy donors. Most sarcoma cells showed high expression of AXL. pAXL×CD3ε triggered T-lymphocyte activation and induced dose-dependent T-cell-mediated cytotoxicity. The combination of pAXL×CD3ε with trabectedin increased cytotoxicity. pAXL×CD3ε inhibited the in vivo growth of human sarcoma xenografts, increasing the survival of treated mice. Our data demonstrate the antitumor efficacy of pAXL×CD3ε against sarcoma cells, providing a translational framework for the clinical development of pAXL×CD3ε in the treatment of human sarcomas, aggressive and still-incurable malignancies.
Collapse
|
33
|
Yang H, Qin Z, He X, Xue Q, Zhou H, Sun J, Li X, Zhao T. Tislelizumab immunotherapy combined with chemotherapy in the treatment of a patient with primary anterior mediastinal undifferentiated pleomorphic sarcoma with high PD-L1 expression: A case report and literature review. Front Oncol 2023; 13:1110997. [PMID: 37091183 PMCID: PMC10113508 DOI: 10.3389/fonc.2023.1110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is a rare and aggressive soft tissue tumor with a high degree of malignancy and rapid progression, usually occurring in the extremities, retroperitoneum, and abdomen, whereas it rarely arises in the mediastinum, and is treated mainly by surgical resection. The prognosis of patients with advanced sarcoma is poor, and doxorubicin monotherapy is the standard first-line chemotherapy for most advanced soft tissue sarcomas (STS), but the prognosis is generally unsatisfactory. Immune checkpoint inhibitors (ICIs) have been established as therapies for many solid cancers in recent years; however, evidence on the efficacy of ICIs in undifferentiated sarcoma is scarce, mostly consisting of small studies, and no ICIs are currently approved for use in sarcomas. We report a case of a middle-aged man with primary mediastinal UPS with high PD-L1 expression (TPS was approximately 80%) and TLS positive. The patient was treated with sequential tislelizumab monotherapy maintenance after 6 cycles of tislelizumab combined with epirubicin, efficacy evaluation was partial remission (PR), progression-free survival (PFS) was 8.5 months, and grade 1 fatigue was identified as an adverse event.
Collapse
Affiliation(s)
- Hujuan Yang
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Zhiquan Qin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xianglei He
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qian Xue
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Hongying Zhou
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jie Sun
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaoyi Li
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Tongwei Zhao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- *Correspondence: Tongwei Zhao,
| |
Collapse
|
34
|
Chu B, Zheng H, Zheng X, Feng X, Hong Z. Cuproptosis-associated lncRNAs discern prognosis and immune microenvironment in sarcoma victims. Front Cell Dev Biol 2022; 10:989882. [PMID: 36589745 PMCID: PMC9800909 DOI: 10.3389/fcell.2022.989882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Cuproptosis is a fresh form of the copper-elesclomol-triggered, mitochondrial tricarboxylic acid (TCA) dependent cell death. Yet, the subsumed mechanism of cuproptosis-associated lncRNAs in carcinoma is not wholly clarified. Here, We appraised 580 cuproptosis-associated lncRNAs in sarcoma and thereafter construed a module composing of 6 cuproptosis lncRNAs, entitled CuLncScore, utilizing a machine learning methodology. It could outstandingly discern the prognosis of patients in parallel with discriminating tumor immune microenvironment traits. Moreover, we simulate the classification system of cuproptosis lncRNAs by unsupervised learning method to facilitate differentiation of clinical denouement and immunotherapy modality options. Notably, Our Taizhou cohort validated the stability of CuLncScore and the classification system. Taking a step further, we checked these 6 cuproptosis lncRNAs by Quantitative real-time polymerase chain reaction (qRT-PCR) to ascertain their authenticity. All told, our investigations highlight that cuproptosis lncRNAs are involved in various components of sarcoma and assist in the formation of the tumor immune microenvironment. These results provide partial insights to further comprehend the molecular mechanisms of cuproptosis lncRNAs in sarcoma and could be helpful for the development of personalized therapeutic strategies targeting cuproptosis or cuproptosis lncRNAs.
Collapse
Affiliation(s)
- Binxiang Chu
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Haihong Zheng
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaohe Zheng
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xingbing Feng
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China,*Correspondence: Xingbing Feng, ; Zhenghua Hong,
| | - Zhenghua Hong
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China,*Correspondence: Xingbing Feng, ; Zhenghua Hong,
| |
Collapse
|
35
|
Aoki Y, Han Q, Tome Y, Yamamoto J, Kubota Y, Masaki N, Obara K, Hamada K, Wang JD, Inubushi S, Bouvet M, Clarke SG, Nishida K, Hoffman RM. Reversion of methionine addiction of osteosarcoma cells to methionine independence results in loss of malignancy, modulation of the epithelial-mesenchymal phenotype and alteration of histone-H3 lysine-methylation. Front Oncol 2022; 12:1009548. [PMID: 36408173 PMCID: PMC9671209 DOI: 10.3389/fonc.2022.1009548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 02/01/2024] Open
Abstract
Methionine addiction, a fundamental and general hallmark of cancer, known as the Hoffman Effect, is due to altered use of methionine for increased and aberrant transmethylation reactions. However, the linkage of methionine addiction and malignancy of cancer cells is incompletely understood. An isogenic pair of methionine-addicted parental osteosarcoma cells and their rare methionine-independent revertant cells enabled us to compare them for malignancy, their epithelial-mesenchymal phenotype, and pattern of histone-H3 lysine-methylation. Methionine-independent revertant 143B osteosarcoma cells (143B-R) were selected from methionine-addicted parental cells (143B-P) by their chronic growth in low-methionine culture medium for 4 passages, which was depleted of methionine by recombinant methioninase (rMETase). Cell-migration capacity was compared with a wound-healing assay and invasion capability was compared with a transwell assay in 143B-P and 143B-R cells in vitro. Tumor growth and metastatic potential were compared after orthotopic cell-injection into the tibia bone of nude mice in vivo. Epithelial-mesenchymal phenotypic expression and the status of H3 lysine-methylation were determined with western immunoblotting. 143B-P cells had an IC50 of 0.20 U/ml and 143B-R cells had an IC50 of 0.68 U/ml for treatment with rMETase, demonstrating that 143B-R cells had regained the ability to grow in low methionine conditions. 143B-R cells had reduced cell migration and invasion capability in vitro, formed much smaller tumors than 143B-P cells and lost metastatic potential in vivo, indicating loss of malignancy in 143B-R cells. 143B-R cells showed gain of the epithelial marker, ZO-1 and loss of mesenchymal markers, vimentin, Snail, and Slug and, an increase of histone H3K9me3 and H3K27me3 methylation and a decrease of H3K4me3, H3K36me3, and H3K79me3 methylation, along with their loss of malignancy. These results suggest that shifting the balance in histone methylases might be a way to decrease the malignant potential of cells. The present results demonstrate the rationale to target methionine addiction for improved sarcoma therapy.
Collapse
Affiliation(s)
- Yusuke Aoki
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Jun Yamamoto
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Yutaro Kubota
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Noriyuki Masaki
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Koya Obara
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Kazuyuki Hamada
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Justin D. Wang
- School of Medicine, California University of Science and Medicine, Colton, CA, United States
| | | | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, United States
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Robert M. Hoffman
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
36
|
Knani I, Yanku Y, Gross-Cohen M, Ilan N, Vlodavsky I. Heparanase 2 (Hpa2) attenuates the growth of human sarcoma. Matrix Biol 2022; 113:22-38. [PMID: 36122821 DOI: 10.1016/j.matbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
The pro-tumorigenic properties of heparanase are well documented and established. In contrast, the role of heparanase 2 (Hpa2), a close homolog of heparanase, in cancer is not entirely clear. In carcinomas, Hpa2 is thought to attenuate tumor growth, possibly by inhibiting heparanase enzymatic activity. Here, we examine the role of Hpa2 in sarcoma, a group of rare tumors of mesenchymal origin, accounting for approximately 1% of all malignant tumors. Consistently, we found that overexpression of Hpa2 attenuates tumor growth while Hpa2 gene silencing results in bigger tumors. Mechanistically, attenuation of tumor growth by Hpa2 was associated with increased tumor stress conditions, involving ER stress, hypoxia, and JNK phosphorylation, leading to increased apoptotic cell death. In addition, overexpression of Hpa2 induces the expression of the p53 family member, p63 which, in sarcoma, functions to attenuate tumor growth. Moreover, we show that Hpa2 profoundly reduces stem cell characteristics of the sarcoma cells (stemness), most evident by failure of Hpa2 cells to grow as spheroids typical of stem cells. Likewise, expression of CD44, a well-established stem cell marker, was prominently decreased in Hpa2 cells. CD44 is also a cell surface receptor for hyaluronic acid (HA), a nonsulfated glycosaminoglycan that is enriched in connective tissues. Reduced expression of CD44 by Hpa2 may thus represent impaired cross-talk between Hpa2 and the extracellular matrix. Clinically, we found that Hpa2 is expressed by leiomyosarcoma tumor biopsies. Interestingly, nuclear localization of Hpa2 was associated with low-stage tumors. This finding opens a new direction in Hpa2 research.
Collapse
Affiliation(s)
- Ibrahim Knani
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yifat Yanku
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Miriam Gross-Cohen
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
37
|
Liu H, Zhang H, Han Y, Hu Y, Geng Z, Su J. Bacterial extracellular vesicles-based therapeutic strategies for bone and soft tissue tumors therapy. Theranostics 2022; 12:6576-6594. [PMID: 36185613 PMCID: PMC9516228 DOI: 10.7150/thno.78034] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Bone and soft tissue tumors are complex mesenchymal neoplasms that seriously endanger human health. Over the past decade, the relationship between microorganisms and human health and diseases is getting more attention. The extracellular vesicles derived from bacteria have been shown to regulate bacterial-host cell communication by transferring their contents, including nucleic acids, proteins, metabolites, lipopolysaccharides, and peptidoglycans. Bacteria extracellular vesicles (BEVs) are promising lipid-bilayer nanocarriers for the treatment of many diseases due to their low toxicity, drug loading capacity, ease of modification and industrialization. Specially, BEVs-based cancer therapy has attracted much attention because of their ability to effectively stimulate immune responses. In this review, we provide an overview of the biogenesis, composition, isolation, classification, and internalization of BEVs. We then comprehensively summarize the sources of BEVs in cancer therapy and the BEVs-related cancer treatment strategies. We further highlight the great potential of BEVs in bone and soft tissue tumors. Finally, we conclude the major advantages and challenges of BEVs-based cancer therapy. We believe that the comprehensive understanding of BEVs in the field of cancer therapy will generate innovative solutions to bone and soft tissue tumors and achieve clinical applications.
Collapse
Affiliation(s)
- Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
38
|
Pavone G, Romano C, Martorana F, Motta L, Salvatorelli L, Zanghì AM, Magro G, Vigneri P. Giant Paratesticular Liposarcoma: Molecular Characterization and Management Principles with a Review of the Literature. Diagnostics (Basel) 2022; 12:diagnostics12092160. [PMID: 36140560 PMCID: PMC9498211 DOI: 10.3390/diagnostics12092160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022] Open
Abstract
Paratesticular liposarcomas are extremely rare malignant tumors originating from fat tissues, with an often-challenging diagnosis. We present here the case of a 76-year-old man with a giant paratesticular liposarcoma, initially misdiagnosed as a scrotal hernia. After two years, the progressively enlarging mass underwent surgical resection, and a diagnosis of well-differentiated liposarcoma (lipoma-like subtype) was made. Post-operative treatments were not indicated, and the patient remains relapse free. Next generation sequencing performed on the neoplastic tissue showed co-amplification of MDM2 and CDK4. These alterations are molecular hallmarks of well-differentiated liposarcomas and corroborate the histological diagnosis. Clinical and molecular features of the presented case are in line with the majority of previously published experiences. In conclusion, the presence of a liposarcoma should be taken into account during the diagnostic workup of scrotal masses, in order to minimize the rate of misdiagnosis and improper management. Molecular analysis may support histological characterization of these rare entities and potentially disclose novel therapeutic targets.
Collapse
Affiliation(s)
- Giuliana Pavone
- Division of Medical Oncology, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 78, 95123 Catania, Italy
- Correspondence:
| | - Chiara Romano
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 78, 95123 Catania, Italy
- Department of Medical and Surgical Sciences and Advanced Technology G. F. Ingrassia, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 87, 95123 Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Motta
- Division of Medical Oncology, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 78, 95123 Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technology G. F. Ingrassia, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 87, 95123 Catania, Italy
| | - Antonio Maria Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology G. F. Ingrassia, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 87, 95123 Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technology G. F. Ingrassia, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 87, 95123 Catania, Italy
| | - Paolo Vigneri
- Division of Medical Oncology, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 78, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 78, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
39
|
Panagi M, Pilavaki P, Constantinidou A, Stylianopoulos T. Immunotherapy in soft tissue and bone sarcoma: unraveling the barriers to effectiveness. Theranostics 2022; 12:6106-6129. [PMID: 36168619 PMCID: PMC9475460 DOI: 10.7150/thno.72800] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/21/2022] [Indexed: 11/05/2022] Open
Abstract
Sarcomas are uncommon malignancies of mesenchymal origin that can arise throughout the human lifespan, at any part of the body. Surgery remains the optimal treatment modality whilst response to conventional treatments, such as chemotherapy and radiation, is minimal. Immunotherapy has emerged as a novel approach to treat different cancer types but efficacy in soft tissue sarcoma and bone sarcoma is limited to distinct subtypes. Growing evidence shows that cancer-stroma cell interactions and their microenvironment play a key role in the effectiveness of immunotherapy. However, the pathophysiological and immunological properties of the sarcoma tumor microenvironment in relation to immunotherapy advances, has not been broadly reviewed. Here, we provide an up-to-date overview of the different immunotherapy modalities as potential treatments for sarcoma, identify barriers posed by the sarcoma microenvironment to immunotherapy, highlight their relevance for impeding effectiveness, and suggest mechanisms to overcome these barriers.
Collapse
Affiliation(s)
- Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | | - Anastasia Constantinidou
- Medical School, University of Cyprus, Nicosia, Cyprus
- Bank of Cyprus Oncology Centre, Nicosia, Cyprus
- Cyprus Cancer Research Institute, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
40
|
Shi D, Mu S, Pu F, Zhong B, Hu B, Muhtar M, Tong W, Shao Z, Zhang Z, Liu J. Pan-sarcoma characterization of lncRNAs in the crosstalk of EMT and tumour immunity identifies distinct clinical outcomes and potential implications for immunotherapy. Cell Mol Life Sci 2022; 79:427. [PMID: 35842562 PMCID: PMC11071722 DOI: 10.1007/s00018-022-04462-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a reversible process that may interact with tumour immunity through multiple approaches. There is increasing evidence demonstrating the interconnections among EMT-related processes, the tumour microenvironment, and immune activity, as well as its potential influence on the immunotherapy response. Long non-coding RNAs (lncRNAs) are emerging as critical modulators of gene expression. They play fundamental roles in tumour immunity and act as promising biomarkers of immunotherapy response. However, the potential roles of lncRNA in the crosstalk of EMT and tumour immunity are still unclear in sarcoma. We obtained multi-omics profiling of 1440 pan-sarcoma patients from 19 datasets. Through an unsupervised consensus clustering approach, we categorised EMT molecular subtypes. We subsequently identified 26 EMT molecular subtype and tumour immune-related lncRNAs (EILncRNA) across pan-sarcoma types and developed an EILncRNA signature-based weighted scoring model (EILncSig). The EILncSig exhibited favourable performance in predicting the prognosis of sarcoma, and a high-EILncSig was associated with exclusive tumour microenvironment (TME) characteristics with desert-like infiltration of immune cells. Multiple altered pathways, somatically-mutated genes and recurrent CNV regions associated with EILncSig were identified. Notably, the EILncSig was associated with the efficacy of immune checkpoint inhibition (ICI) therapy. Using a computational drug-genomic approach, we identified compounds, such as Irinotecan that may have the potential to convert the EILncSig phenotype. By integrative analysis on multi-omics profiling, our findings provide a comprehensive resource for understanding the functional role of lncRNA-mediated immune regulation in sarcomas, which may advance the understanding of tumour immune response and the development of lncRNA-based immunotherapeutic strategies for sarcoma.
Collapse
Affiliation(s)
- Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shidai Mu
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Muradil Muhtar
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jianxiang Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
41
|
Vanni S, De Vita A, Gurrieri L, Fausti V, Miserocchi G, Spadazzi C, Liverani C, Cocchi C, Calabrese C, Bongiovanni A, Riva N, Mercatali L, Pieri F, Casadei R, Lucarelli E, Ibrahim T. Myxofibrosarcoma landscape: diagnostic pitfalls, clinical management and future perspectives. Ther Adv Med Oncol 2022; 14:17588359221093973. [PMID: 35782752 PMCID: PMC9244941 DOI: 10.1177/17588359221093973] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
Myxofibrosarcoma (MFS) is a common entity of adult soft tissue sarcomas (STS) characterized by a predilection of the extremities and a high local recurrence rate. Originally classified as a myxoid variant of malignant fibrous histiocytoma, this musculoskeletal tumor has been recognized since 2002 as a distinct histotype showing a spectrum of malignant fibroblastic lesions with myxoid stroma, pleomorphism and curvilinear vessels. Currently, the molecular pathogenesis of MFS is still poorly understood and its genomic profile exhibits a complex karyotype with a number of aberrations including amplifications, deletions and loss of function. The diagnosis is challenging due to the unavailability of specific immunohistochemical markers and is based on the analysis of cytomorphologic features. The mainstay of treatment for localized disease is represented by surgical resection, with (neo)-adjuvant radio- and chemotherapy. In the metastatic setting, chemotherapy represents the backbone of treatments, however its role is still controversial and the outcome is very poor. Recent advent of genomic profiling, targeted therapies and larger enrollment of patients in translational and clinical studies, have improved the understanding of biological behavior and clinical outcome of such a disease. This review will provide an overview of current diagnostic pitfalls and clinical management of MFS. Finally, a look at future directions will be discussed.
Collapse
Affiliation(s)
- Silvia Vanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Via P. Maroncelli 40, Meldola 47014, Forlì-Cesena, Italy
| | - Lorena Gurrieri
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Valentina Fausti
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Claudia Cocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Nada Riva
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Federica Pieri
- Pathology Unit, 'Morgagni-Pierantoni' Hospital, Forlì, Italy
| | - Roberto Casadei
- Orthopedic Unit, 'Morgagni-Pierantoni' Hospital, Forlì, Italy
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
42
|
Van Renterghem B, Wozniak A, Castro PG, Franken P, Pencheva N, Sciot R, Schöffski P. Enapotamab Vedotin, an AXL-Specific Antibody-Drug Conjugate, Demonstrates Antitumor Efficacy in Patient-Derived Xenograft Models of Soft Tissue Sarcoma. Int J Mol Sci 2022; 23:7493. [PMID: 35886842 PMCID: PMC9322120 DOI: 10.3390/ijms23147493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (doxo) remains the standard of care for patients with advanced soft tissue sarcoma (STS), even though response rates to doxo are only around 14% to 18%. We evaluated enapotamab vedotin (EnaV), an AXL-specific antibody-drug conjugate (ADC), in a panel of STS patient-derived xenografts (PDX). Eight models representing multiple STS subtypes were selected from our STS PDX platform (n = 45) by AXL immunostaining on archived passages. Models were expanded by unilateral transplantation of tumor tissue into the left flank of 20 NMRI nu/nu mice. Once tumors were established, mice were randomized into an EnaV treatment group, or a group treated with isotype control ADC. Treatment efficacy was assessed by tumor volume evaluation, survival analysis, and histological evaluation of tumors, and associated with AXL expression. EnaV demonstrated significant tumor growth delay, regression, and/or prolonged survival compared to isotype control ADC in 5/8 STS PDX models investigated. Experimental passages of responding models were all found positive for AXL at varying levels, but no linear relationship could be identified between the level of expression and level of response to EnaV. One model was found negative for AXL on experimental passage and did not respond to EnaV. This study provides a preclinical rationale for the evaluation of AXL-targeting ADCs in the treatment of AXL-expressing sarcomas.
Collapse
Affiliation(s)
- Britt Van Renterghem
- Laboratory of Experimental Oncology, Catholic University of Leuven, 3000 Leuven, Belgium; (B.V.R.); (A.W.)
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Catholic University of Leuven, 3000 Leuven, Belgium; (B.V.R.); (A.W.)
| | | | - Patrick Franken
- Genmab, 3584 Utrecht, The Netherlands; (P.G.C.); (P.F.); (N.P.)
| | - Nora Pencheva
- Genmab, 3584 Utrecht, The Netherlands; (P.G.C.); (P.F.); (N.P.)
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, Catholic University of Leuven, 3000 Leuven, Belgium;
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Catholic University of Leuven, 3000 Leuven, Belgium; (B.V.R.); (A.W.)
- Department of General Medical Oncology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
43
|
Sudarshan D, Avvakumov N, Lalonde ME, Alerasool N, Joly-Beauparlant C, Jacquet K, Mameri A, Lambert JP, Rousseau J, Lachance C, Paquet E, Herrmann L, Thonta Setty S, Loehr J, Bernardini MQ, Rouzbahman M, Gingras AC, Coulombe B, Droit A, Taipale M, Doyon Y, Côté J. Recurrent chromosomal translocations in sarcomas create a megacomplex that mislocalizes NuA4/TIP60 to Polycomb target loci. Genes Dev 2022; 36:664-683. [PMID: 35710139 DOI: 10.1101/gad.348982.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.
Collapse
Affiliation(s)
- Deepthi Sudarshan
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nikita Avvakumov
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marie-Eve Lalonde
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Joly-Beauparlant
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Karine Jacquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Amel Mameri
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jean-Philippe Lambert
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Justine Rousseau
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Catherine Lachance
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Eric Paquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Lara Herrmann
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Samarth Thonta Setty
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marcus Q Bernardini
- Department of Gynecologic Oncology, Princess Margaret Cancer Center, University Health Network, Sinai Health System, Toronto, Ontario M5B 2M9, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Arnaud Droit
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jacques Côté
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
44
|
Savary C, Picard C, Corradini N, Castets M. Complex Elucidation of Cells-of-Origin in Pediatric Soft Tissue Sarcoma: From Concepts to Real Life, Hide-and-Seek through Epigenetic and Transcriptional Reprogramming. Int J Mol Sci 2022; 23:6310. [PMID: 35682989 PMCID: PMC9181261 DOI: 10.3390/ijms23116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Soft tissue sarcoma (STS) comprise a large group of mesenchymal malignant tumors with heterogeneous cellular morphology, proliferative index, genetic lesions and, more importantly, clinical features. Full elucidation of this wide diversity remains a central question to improve their therapeutic management and the identity of cell(s)-of-origin from which these tumors arise is part of this enigma. Cellular reprogramming allows transitions of a mature cell between phenotypes, or identities, and represents one key driver of tumoral heterogeneity. Here, we discuss how cellular reprogramming mediated by driver genes in STS can profoundly reshape the molecular and morphological features of a transformed cell and lead to erroneous interpretation of its cell-of-origin. This review questions the fact that the epigenetic context in which a genetic alteration arises has to be taken into account as a key determinant of STS tumor initiation and progression. Retracing the cancer-initiating cell and its clonal evolution, notably via epigenetic approach, appears as a key lever for understanding the origin of these tumors and improving their clinical management.
Collapse
Affiliation(s)
- Clara Savary
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Cécile Picard
- Department of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, 69002 Lyon, France;
| | - Nadège Corradini
- Department of Pediatric Oncology, Institut d’Hematologie et d’Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France;
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Marie Castets
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
45
|
Lanzi C, Cassinelli G. Combinatorial strategies to potentiate the efficacy of HDAC inhibitors in fusion-positive sarcomas. Biochem Pharmacol 2022; 198:114944. [DOI: 10.1016/j.bcp.2022.114944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
46
|
Damerell V, Ambele MA, Salisbury S, Neumann-Mufweba A, Durandt C, Pepper MS, Prince S. The c-Myc/TBX3 Axis Promotes Cellular Transformation of Sarcoma-Initiating Cells. Front Oncol 2022; 11:801691. [PMID: 35145908 PMCID: PMC8821881 DOI: 10.3389/fonc.2021.801691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022] Open
Abstract
Sarcomas are highly aggressive cancers of mesenchymal origin whose clinical management is highly complex. This is partly due to a lack of understanding of the molecular mechanisms underpinning the transformation of mesenchymal stromal/stem cells (MSCs) which are presumed to be the sarcoma-initiating cells. c-Myc is amplified/overexpressed in a range of sarcomas where it has an established oncogenic role and there is evidence that it contributes to the malignant transformation of MSCs. T-box transcription factor 3 (TBX3) is upregulated by c-Myc in a host of sarcoma subtypes where it promotes proliferation, tumor formation, migration, and invasion. This study investigated whether TBX3 is a c-Myc target in human MSCs (hMSCs) and whether overexpressing TBX3 in hMSCs can phenocopy c-Myc overexpression to promote malignant transformation. Using siRNA, qRT-PCR, luciferase reporter and chromatin-immunoprecipitation assays, we show that c-Myc binds and directly activates TBX3 transcription in hMSCs at a conserved E-box motif. When hMSCs were engineered to stably overexpress TBX3 using lentiviral gene transfer and the resulting cells characterised in 2D and 3D, the overexpression of TBX3 was shown to promote self-renewal, bypass senescence, and enhance proliferation which corresponded with increased levels of cell cycle progression markers (cyclin A, cyclin B1, CDK2) and downregulation of the p14ARF/MDM2/p53 tumor suppressor pathway. Furthermore, TBX3 promoted the migratory and invasive ability of hMSCs which associated with increased levels of markers of migration (Vimentin, SLUG, SNAIL, TWIST1) and invasion (MMP2, MMP9). Transcriptomic analysis revealed that genes upregulated upon TBX3 overexpression overlapped with c-myc targets, were involved in cell cycle progression, and were associated with sarcomagenesis. Together, the data described indicate that the c-Myc/TBX3 oncogenic molecular pathway may be a key mechanism that transforms hMSCs into sarcomas.
Collapse
Affiliation(s)
- Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Melvin Anyasi Ambele
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Shanel Salisbury
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alexis Neumann-Mufweba
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Chrisna Durandt
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Michael Sean Pepper
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- *Correspondence: Sharon Prince,
| |
Collapse
|
47
|
Willmer T, Damerell V, Smyly S, Sims D, Du Toit M, Ncube S, Sinkala M, Govender D, Sturrock E, Blackburn JM, Prince S. Targeting the oncogenic TBX3:nucleolin complex to treat multiple sarcoma subtypes. Am J Cancer Res 2021; 11:5680-5700. [PMID: 34873487 PMCID: PMC8640805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023] Open
Abstract
Sarcomas are diverse cancers of mesenchymal origin, with compromised clinical management caused by insufficient diagnostic biomarkers and limited treatment options. The transcription factor TBX3 is upregulated in a diverse range of sarcoma subtypes, where it plays a direct oncogenic role, and it may thus represent a novel therapeutic target. To identify versatile ways to target TBX3, we performed affinity purification coupled by mass spectrometry to identify putative TBX3 protein cofactors that regulate its oncogenic activity in sarcomas. Here we identify and validate the multifunctional phosphoprotein nucleolin as a TBX3 cofactor. We show that nucleolin is co-expressed with TBX3 in several sarcoma subtypes and their expression levels positively correlate in sarcoma patients which are associated with poor prognosis. Furthermore, we demonstrate that nucleolin and TBX3 interact in chondrosarcoma, liposarcoma and rhabdomyosarcoma cells where they act together to enhance proliferation and migration and regulate a common set of tumor suppressor genes. Importantly, the nucleolin targeting aptamer, AS1411, exhibits selective anti-cancer activity in these cells and mislocalizes TBX3 and nucleolin to the cytoplasm which correlates with the re-expression of the TBX3/nucleolin target tumor suppressors CDKN1A (p21CIP1) and CDKN2A (p14ARF). Our findings provide the first evidence that TBX3 requires nucleolin to promote features of sarcomagenesis and that disruption of the oncogenic TBX3-nucleolin interaction by AS1411 may be a novel approach for treating sarcomas.
Collapse
Affiliation(s)
- Tarryn Willmer
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research CouncilTygerberg 7505, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch UniversityTygerberg 7505, South Africa
| | - Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| | - Shannon Smyly
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| | - Danica Sims
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| | - Michelle Du Toit
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| | - Stephanie Ncube
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| | - Musalula Sinkala
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town 7925, South Africa
| | - Dhirendra Govender
- Anatomical Pathology, PathcareCape Town 7925, South Africa
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, NHLS-Groote Schuur HospitalCape Town 7925, South Africa
| | - Edward Sturrock
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town 7925, South Africa
| | - Jonathan M Blackburn
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town 7925, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| |
Collapse
|
48
|
Aleksakhina SN, Imyanitov EN. Cancer Therapy Guided by Mutation Tests: Current Status and Perspectives. Int J Mol Sci 2021; 22:ijms222010931. [PMID: 34681592 PMCID: PMC8536080 DOI: 10.3390/ijms222010931] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
The administration of many cancer drugs is tailored to genetic tests. Some genomic events, e.g., alterations of EGFR or BRAF oncogenes, result in the conformational change of the corresponding proteins and call for the use of mutation-specific compounds. Other genetic perturbations, e.g., HER2 amplifications, ALK translocations or MET exon 14 skipping mutations, cause overproduction of the entire protein or its kinase domain. There are multilocus assays that provide integrative characteristics of the tumor genome, such as the analysis of tumor mutation burden or deficiency of DNA repair. Treatment planning for non-small cell lung cancer requires testing for EGFR, ALK, ROS1, BRAF, MET, RET and KRAS gene alterations. Colorectal cancer patients need to undergo KRAS, NRAS, BRAF, HER2 and microsatellite instability analysis. The genomic examination of breast cancer includes testing for HER2 amplification and PIK3CA activation. Melanomas are currently subjected to BRAF and, in some instances, KIT genetic analysis. Predictive DNA assays have also been developed for thyroid cancers, cholangiocarcinomas and urinary bladder tumors. There is an increasing utilization of agnostic testing which involves the analysis of all potentially actionable genes across all tumor types. The invention of genomically tailored treatment has resulted in a spectacular improvement in disease outcomes for a significant portion of cancer patients.
Collapse
Affiliation(s)
- Svetlana N. Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 Saint-Petersburg, Russia;
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 Saint-Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 Saint-Petersburg, Russia;
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 Saint-Petersburg, Russia
- Correspondence: ; Tel.: +7-812-439-95-28
| |
Collapse
|
49
|
A Highly Reliable Convolutional Neural Network Based Soft Tissue Sarcoma Metastasis Detection from Chest X-ray Images: A Retrospective Cohort Study. Cancers (Basel) 2021; 13:cancers13194961. [PMID: 34638445 PMCID: PMC8508001 DOI: 10.3390/cancers13194961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Soft tissue sarcomas are relatively rare malignant diseases. Part of the diagnosis and follow-up includes medical imaging of the thorax for detection of lung metastases. A Python script was created and trained using a set of lung X-rays and concordant CT scans from a high-volume German-speaking sarcoma center. It is capable of detecting malignant metastasis in the lung with a precision of 71.2%, specificity of 90.5%, sensitivity of 94% and accuracy of 91.2%. Furthermore, the program was able to detect even small nodules with a size <1 cm in conventional X-rays of the thorax. This algorithm was implemented into our daily clinical practice alongside with the radiologists’ findings. With this tool we aim to improve the quality of our service and reduce the expenditure of time. Abstract Introduction: soft tissue sarcomas are a subset of malignant tumors that are relatively rare and make up 1% of all malignant tumors in adulthood. Due to the rarity of these tumors, there are significant differences in quality in the diagnosis and treatment of these tumors. One paramount aspect is the diagnosis of hematogenous metastases in the lungs. Guidelines recommend routine lung imaging by means of X-rays. With the ever advancing AI-based diagnostic support, there has so far been no implementation for sarcomas. The aim of the study was to utilize AI to obtain analyzes regarding metastasis on lung X-rays in the most possible sensitive and specific manner in sarcoma patients. Methods: a Python script was created and trained using a set of lung X-rays with sarcoma metastases from a high-volume German-speaking sarcoma center. 26 patients with lung metastasis were included. For all patients chest X-ray with corresponding lung CT scans, and histological biopsies were available. The number of trainable images were expanded to 600. In order to evaluate the biological sensitivity and specificity, the script was tested on lung X-rays with a lung CT as control. Results: in this study we present a new type of convolutional neural network-based system with a precision of 71.2%, specificity of 90.5%, sensitivity of 94%, recall of 94% and accuracy of 91.2%. A good detection of even small findings was determined. Discussion: the created script establishes the option to check lung X-rays for metastases at a safe level, especially given this rare tumor entity.
Collapse
|