1
|
Zhou D, Luo Y, Ma Q, Xu Y, Yao X. The characteristics of TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. Virulence 2024; 15:2421987. [PMID: 39468707 PMCID: PMC11540089 DOI: 10.1080/21505594.2024.2421987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
The COVID-19 pandemic and large-scale administration of multiple SARS-CoV-2 vaccines have attracted global attention to the short-term and long-term effects on the human immune system. An analysis of the "traces" left by the body's T-cell immune response is needed, especially for the prevention and treatment of breakthrough infections and long COVID-19 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant infections. T-cell receptor complementarity determining region 3 (TCR CDR3) repertoire serves as a target molecule for monitoring the effects, mechanisms, and memory of the T-cell response. Furthermore, it has been extensively applied in the elucidation of the infectious mechanism and vaccine refinement of hepatitis B virus (HBV), influenza virus, human immunodeficiency virus (HIV), and SARS-CoV. Laboratories worldwide have utilized high-throughput sequencing (HTS) and scTCR-seq to characterize, share, and apply the TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. This article focuses on the comparative analysis of the diversity, clonality, V&J gene usage and pairing, CDR3 length, shared CDR3 sequences or motifs, and other characteristics of TCR CDR3 repertoire. These findings provide molecular targets for evaluating T-cell response effects and short-term and long-term impacts on the adaptive immune system following SARS-CoV-2 infection or vaccination and establish a comparative archive of T-cell response "traces."
Collapse
Affiliation(s)
- Dewei Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Clinical Laboratory, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| | - Yan Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qingqing Ma
- Department of Central Laboratory, Guizhou Aerospace Hospital, Zunyi, China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Gu W, Madrid DMDC, Clements S, Touchard L, Bivins N, Zane G, Zhou M, Lee K, Driver JP. Single-Cell Antigen Receptor Sequencing in Pigs with Influenza. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.617920. [PMID: 39464079 PMCID: PMC11507742 DOI: 10.1101/2024.10.13.617920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding the pulmonary adaptive immune system of pigs is important as respiratory pathogens present a major challenge for swine producers and pigs are increasingly used to model human pulmonary diseases. Single-cell RNA sequencing (scRNAseq) has accelerated the characterization of cellular phenotypes in the pig respiratory tract under both healthy and diseased conditions. However, combining scRNAseq with recovery of paired T cell receptor (TCR) α and β chains as well as B cell receptor (BCR) heavy and light chains to interrogate their repertoires has not to our knowledge been demonstrated for pigs. Here, we developed primers to enrich porcine TCR α and β chains along with BCR κ and λ light chains and IgM, IgA, and IgG heavy chains that are compatible with the 10x Genomics VDJ sequencing protocol. Using these pig-specific assays, we sequenced the T and B cell receptors of cryopreserved lung cells from CD1D-expressing and -deficient pigs after one or two infections with influenza A virus (IAV) to examine whether natural killer T (NKT) cells alter pulmonary TCR and BCR repertoire selection. We also performed paired single-cell RNA and receptor sequencing of FACS-sorted T cells longitudinally sampled from the lungs of IAV-vaccinated and -infected pigs to track clonal expansion in response to IAV exposure. All pigs presented highly diverse repertoires. Pigs re-exposed to influenza antigens from either vaccination or infection exhibited higher numbers of expanded CD4 and CD8 T cell clonotypes with activated phenotypes, suggesting potential IAV reactive T cell populations. Our results demonstrate the utility of high throughput single-cell TCR and BCR sequencing in pigs.
Collapse
Affiliation(s)
- Weihong Gu
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Darling Melany de Carvahlo Madrid
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Sadie Clements
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurie Touchard
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Nathan Bivins
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Grant Zane
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Mingyi Zhou
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Li X, Wang Y, Guan R, Sheng N, Zhang S. Multi-Omics Profiling Unveils the Complexity and Dynamics of Immune Infiltrates in Intrahepatic Cholangiocarcinoma. BIOLOGY 2024; 13:816. [PMID: 39452125 PMCID: PMC11504529 DOI: 10.3390/biology13100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly heterogeneous malignancy. The reasons behind the global rise in the incidence of ICC remain unclear, and there exists limited knowledge regarding the immune cells within the tumor microenvironment (TME). In this study, a more comprehensive analysis of multi-omics data was performed using machine learning methods. The study found that the immunoactivity of B cells, macrophages, and T cells in the infiltrating immune cells of ICC exhibits a significantly higher level of immunoactivity in comparison to other immune cells. During the immune sensing and response, the effect of antigen-presenting cells (APCs) such as B cells and macrophages on activating NK cells was weakened, while the effect of activating T cells became stronger. Simultaneously, four distinct subpopulations, namely BLp, MacrophagesLp, BHn, and THn, have been identified from the infiltrating immune cells, and their corresponding immune-related marker genes have been identified. The immune sensing and response model of ICC has been revised and constructed based on our current comprehension. This study not only helps to deepen the understanding the heterogeneity of infiltrating immune cells in ICC, but also may provide valuable insights into the diagnosis, evaluation, treatment, and prognosis of ICC.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Yan Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Renchu Guan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Nan Sheng
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Shuangquan Zhang
- School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Gao J, Zhang C, Wheelock ÅM, Xin S, Cai H, Xu L, Wang XJ. Immunomics in one health: understanding the human, animal, and environmental aspects of COVID-19. Front Immunol 2024; 15:1450380. [PMID: 39295871 PMCID: PMC11408184 DOI: 10.3389/fimmu.2024.1450380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underscores the critical need to integrate immunomics within the One Health framework to effectively address zoonotic diseases across humans, animals, and environments. Employing advanced high-throughput technologies, this interdisciplinary approach reveals the complex immunological interactions among these systems, enhancing our understanding of immune responses and yielding vital insights into the mechanisms that influence viral spread and host susceptibility. Significant advancements in immunomics have accelerated vaccine development, improved viral mutation tracking, and broadened our comprehension of immune pathways in zoonotic transmissions. This review highlights the role of animals, not merely as carriers or reservoirs, but as essential elements of ecological networks that profoundly influence viral epidemiology. Furthermore, we explore how environmental factors shape immune response patterns across species, influencing viral persistence and spillover risks. Moreover, case studies demonstrating the integration of immunogenomic data within the One Health framework for COVID-19 are discussed, outlining its implications for future research. However, linking humans, animals, and the environment through immunogenomics remains challenging, including the complex management of vast amounts of data and issues of scalability. Despite challenges, integrating immunomics data within the One Health framework significantly enhances our strategies and responses to zoonotic diseases and pandemic threats, marking a crucial direction for future public health breakthroughs.
Collapse
Affiliation(s)
- Jing Gao
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Pulmonary Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Chutian Zhang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, China
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Siming Xin
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hui Cai
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Xiao-Jun Wang
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
5
|
Lakshmikanth T, Consiglio C, Sardh F, Forlin R, Wang J, Tan Z, Barcenilla H, Rodriguez L, Sugrue J, Noori P, Ivanchenko M, Piñero Páez L, Gonzalez L, Habimana Mugabo C, Johnsson A, Ryberg H, Hallgren Å, Pou C, Chen Y, Mikeš J, James A, Dahlqvist P, Wahlberg J, Hagelin A, Holmberg M, Degerblad M, Isaksson M, Duffy D, Kämpe O, Landegren N, Brodin P. Immune system adaptation during gender-affirming testosterone treatment. Nature 2024; 633:155-164. [PMID: 39232147 PMCID: PMC11374716 DOI: 10.1038/s41586-024-07789-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/04/2024] [Indexed: 09/06/2024]
Abstract
Infectious, inflammatory and autoimmune conditions present differently in males and females. SARS-CoV-2 infection in naive males is associated with increased risk of death, whereas females are at increased risk of long COVID1, similar to observations in other infections2. Females respond more strongly to vaccines, and adverse reactions are more frequent3, like most autoimmune diseases4. Immunological sex differences stem from genetic, hormonal and behavioural factors5 but their relative importance is only partially understood6-8. In individuals assigned female sex at birth and undergoing gender-affirming testosterone therapy (trans men), hormone concentrations change markedly but the immunological consequences are poorly understood. Here we performed longitudinal systems-level analyses in 23 trans men and found that testosterone modulates a cross-regulated axis between type-I interferon and tumour necrosis factor. This is mediated by functional attenuation of type-I interferon responses in both plasmacytoid dendritic cells and monocytes. Conversely, testosterone potentiates monocyte responses leading to increased tumour necrosis factor, interleukin-6 and interleukin-15 production and downstream activation of nuclear factor kappa B-regulated genes and potentiation of interferon-γ responses, primarily in natural killer cells. These findings in trans men are corroborated by sex-divergent responses in public datasets and illustrate the dynamic regulation of human immunity by sex hormones, with implications for the health of individuals undergoing hormone therapy and our understanding of sex-divergent immune responses in cisgender individuals.
Collapse
Affiliation(s)
| | - Camila Consiglio
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Fabian Sardh
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Rikard Forlin
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jun Wang
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ziyang Tan
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Hugo Barcenilla
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Lucie Rodriguez
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jamie Sugrue
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Peri Noori
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Margarita Ivanchenko
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Laura Piñero Páez
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Laura Gonzalez
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | | | - Anette Johnsson
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Henrik Ryberg
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Hallgren
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Christian Pou
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yang Chen
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jaromír Mikeš
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Anna James
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Anders Hagelin
- ANOVA, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Holmberg
- ANOVA, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Degerblad
- ANOVA, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Magnus Isaksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Olle Kämpe
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Nils Landegren
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden.
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
- Medical Research Council, Laboratory of Medical Sciences, London, UK.
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
6
|
He S, Liu SQ, Teng XY, He JY, Liu Y, Gao JH, Wu Y, Hu W, Dong ZJ, Bei JX, Xu JH. Comparative single-cell RNA sequencing analysis of immune response to inactivated vaccine and natural SARS-CoV-2 infection. J Med Virol 2024; 96:e29577. [PMID: 38572977 DOI: 10.1002/jmv.29577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.
Collapse
Affiliation(s)
- Shuai He
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shu-Qiang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiang-Yun Teng
- Medical Laboratory Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| | - Jin-Yong He
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Hui Gao
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yue Wu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Wei Hu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Zhong-Jun Dong
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Hua Xu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- Medical Laboratory Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| |
Collapse
|
7
|
Culebras E, Martínez M, Novella C, León JM, Marcos E, Delgado-Iribarren A, Ríos E. Cell immunity to SARS-CoV-2 after natural infection and/or different vaccination regimens. Front Cell Infect Microbiol 2024; 14:1370859. [PMID: 38572317 PMCID: PMC10987831 DOI: 10.3389/fcimb.2024.1370859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Background The aim of the study was to evaluate the humoral and cellular immunity after SARS-CoV-2 infection and/or vaccination according to the type of vaccine, number of doses and combination of vaccines. Methods Volunteer subjects were sampled between September 2021 and July 2022 in Hospital Clínico San Carlos, Madrid (Spain). Participants had different immunological status against SARS-CoV-2: vaccinated and unvaccinated, with or without previous COVID-19 infection, including healthy and immunocompromised individuals. Determination of IgG against the spike protein S1 subunit receptor-binding domain (RBD) was performed by chemiluminescence microparticle immunoassay (CMIA) using the Architect i10000sr platform (Abbott). The SARS-CoV-2-specific T-cell responses were assessed by quantification of interferon gamma release using QuantiFERON SARS-CoV-2 assay (Qiagen). Results A total of 181 samples were collected, 170 were from vaccinated individuals and 11 from unvaccinated. Among the participants, 41 were aware of having previously been infected by SARS-CoV-2. Vaccinated people received one or two doses of the following vaccines against SARS-CoV-2: ChAdOx1-S (University of Oxford-AstraZeneca) (AZ) and/orBNT162b2 (Pfizer-BioNTech)(PZ). Subjects immunized with a third-booster dose received PZ or mRNA-1273 (Moderna-NIAID)(MD) vaccines. All vaccinees developed a positive humoral response (>7.1 BAU/ml), but the cellular response varied depending on the vaccination regimen. Only AZ/PZ combination and 3 doses of vaccination elicited a positive cellular response (median concentration of IFN- γ > 0.3 IU/ml). Regarding a two-dose vaccination regimen, AZ/PZ combination induced the highest humoral and cellular immunity. A booster with mRNA vaccine resulted in increases in median levels of IgG-Spike antibodies and IFN-γ as compared to those of two-dose of any vaccine. Humoral and cellular immunity levels were significantly higher in participants with previous infection compared to those without infection. Conclusion Heterologous vaccination (AZ/PZ) elicited the strongest immunity among the two-dose vaccination regimens. The immunity offered by the third-booster dose of SARS-CoV-2 vaccine depends not only on the type of vaccine administered but also on previous doses and prior infection. Previous exposure to SARS-CoV-2 antigens by infection strongly affect immunity of vaccinated individuals.
Collapse
Affiliation(s)
- Esther Culebras
- Servicio de Microbiología Clínica, Instituto Medicina Laboratorio (IML), Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Mercedes Martínez
- Servicio de Microbiología Clínica, Instituto Medicina Laboratorio (IML), Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Consuelo Novella
- Sala de extracciones, IML, Hospital Clínico San Carlos, Madrid, Spain
| | - Jose Manuel León
- Sala de extracciones, IML, Hospital Clínico San Carlos, Madrid, Spain
| | - Esther Marcos
- Sala de extracciones, IML, Hospital Clínico San Carlos, Madrid, Spain
| | - Alberto Delgado-Iribarren
- Servicio de Microbiología Clínica, Instituto Medicina Laboratorio (IML), Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther Ríos
- Servicio de Microbiología Clínica, Instituto Medicina Laboratorio (IML), Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
8
|
Le Bert N, Samandari T. Silent battles: immune responses in asymptomatic SARS-CoV-2 infection. Cell Mol Immunol 2024; 21:159-170. [PMID: 38221577 PMCID: PMC10805869 DOI: 10.1038/s41423-024-01127-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
SARS-CoV-2 infections manifest with a broad spectrum of presentations, ranging from asymptomatic infections to severe pneumonia and fatal outcomes. This review centers on asymptomatic infections, a widely reported phenomenon that has substantially contributed to the rapid spread of the pandemic. In such asymptomatic infections, we focus on the role of innate, humoral, and cellular immunity. Notably, asymptomatic infections are characterized by an early and robust innate immune response, particularly a swift type 1 IFN reaction, alongside a rapid and broad induction of SARS-CoV-2-specific T cells. Often, antibody levels tend to be lower or undetectable after asymptomatic infections, suggesting that the rapid control of viral replication by innate and cellular responses might impede the full triggering of humoral immunity. Even if antibody levels are present in the early convalescent phase, they wane rapidly below serological detection limits, particularly following asymptomatic infection. Consequently, prevalence studies reliant solely on serological assays likely underestimate the extent of community exposure to the virus.
Collapse
Affiliation(s)
- Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Taraz Samandari
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
9
|
Chang JT, Liu LB, Wang PG, An J. Single-cell RNA sequencing to understand host-virus interactions. Virol Sin 2024; 39:1-8. [PMID: 38008383 PMCID: PMC10877424 DOI: 10.1016/j.virs.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has allowed for the profiling of host and virus transcripts and host-virus interactions at single-cell resolution. This review summarizes the existing scRNA-seq technologies together with their strengths and weaknesses. The applications of scRNA-seq in various virological studies are discussed in depth, which broaden the understanding of the immune atlas, host-virus interactions, and immune repertoire. scRNA-seq can be widely used for virology in the near future to better understand the pathogenic mechanisms and discover more effective therapeutic strategies.
Collapse
Affiliation(s)
- Jia-Tong Chang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Li-Bo Liu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
He F, Fei R, Gao M, Su L, Zhang X, Xu D. Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model for Cell Type Identification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577455. [PMID: 38352605 PMCID: PMC10862733 DOI: 10.1101/2024.01.27.577455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Single-cell sequencing transformed biology and medicine, providing an unprecedented high-resolution view at the cellular level. However, the vast variability inherent in single-cell sequencing data impedes its utility for in-depth downstream analysis. Inspired by the foundation models in natural language processing, recent advancements have led to the development of single-cell Large Language Models (scLLMs). These models are designed to discern universal patterns across diverse single-cell datasets, thereby enhancing the signal-to-noise ratio. Despite their potential, multiple studies indicate existing scLLMs do not perform well in zero-short settings, highlighting a pressing need for more effective adaptation techniques. This research proposes several adaptation techniques for scLLMs by preserving the original model parameters while selectively updating newly introduced tensors. This approach aims to overcome the limitations associated with traditional fine-tuning practices, such as catastrophic forgetting and computational inefficiencies. We introduce two Parameter-Efficient Fine-Tuning (PEFT) strategies specifically tailored to refine scLLMs for cell type identification. Our investigations utilizing scGPT demonstrate that PEFT can enhance performance, with the added benefit of up to a 90% reduction in parameter training compared to conventional fine-tuning methodologies. This work paves the way for a new direction in leveraging single-cell models with greater efficiency and efficacy in single-cell biology.
Collapse
Affiliation(s)
- Fei He
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ruixin Fei
- School of Information Science and Technology, Northeast Normal University, Changchun Jilin 130017, China
| | - Mingyue Gao
- School of Information Science and Technology, Northeast Normal University, Changchun Jilin 130017, China
| | - Li Su
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Xinyu Zhang
- School of Information Science and Technology, Northeast Normal University, Changchun Jilin 130017, China
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
11
|
Gilis J, Perin L, Malfait M, Van den Berge K, Takele Assefa A, Verbist B, Risso D, Clement L. Differential detection workflows for multi-sample single-cell RNA-seq data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.17.572043. [PMID: 38187695 PMCID: PMC10769270 DOI: 10.1101/2023.12.17.572043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In single-cell transcriptomics, differential gene expression (DE) analyses typically focus on testing differences in the average expression of genes between cell types or conditions of interest. Single-cell transcriptomics, however, also has the promise to prioritise genes for which the expression differ in other aspects of the distribution. Here we develop a workflow for assessing differential detection (DD), which tests for differences in the average fraction of samples or cells in which a gene is detected. After benchmarking eight different DD data analysis strategies, we provide a unified workflow for jointly assessing DE and DD. Using simulations and two case studies, we show that DE and DD analysis provide complementary information, both in terms of the individual genes they report and in the functional interpretation of those genes.
Collapse
Affiliation(s)
- Jeroen Gilis
- These authors contributed equally
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
- Data Mining and Modeling for Biomedicine, VIB Flemish Institute for Biotechnology, Ghent, 9000, Belgium
| | - Laura Perin
- These authors contributed equally
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Milan Malfait
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
| | - Koen Van den Berge
- Statistics and Decision Sciences, Johnson and Johnson Innovative Medicine, Beerse, Belgium
| | - Alemu Takele Assefa
- Statistics and Decision Sciences, Johnson and Johnson Innovative Medicine, Beerse, Belgium
| | - Bie Verbist
- Statistics and Decision Sciences, Johnson and Johnson Innovative Medicine, Beerse, Belgium
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova, Italy
- Padua Center for Network Medicine, University of Padova, Padova, Italy
| | - Lieven Clement
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
12
|
Wang Y, Luu LDW, Liu S, Zhu X, Huang S, Li F, Huang X, Guo L, Zhang J, Ge H, Sun Y, Hui Y, Qu Y, Wang H, Wang X, Na W, Zhou J, Qu D, Tai J. Single-cell transcriptomic analysis reveals a systemic immune dysregulation in COVID-19-associated pediatric encephalopathy. Signal Transduct Target Ther 2023; 8:398. [PMID: 37848421 PMCID: PMC10582072 DOI: 10.1038/s41392-023-01641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 10/19/2023] Open
Abstract
Unraveling the molecular mechanisms for COVID-19-associated encephalopathy and its immunopathology is crucial for developing effective treatments. Here, we utilized single-cell transcriptomic analysis and integrated clinical observations and laboratory examination to dissect the host immune responses and reveal pathological mechanisms in COVID-19-associated pediatric encephalopathy. We found that lymphopenia was a prominent characteristic of immune perturbation in COVID-19 patients with encephalopathy, especially those with acute necrotizing encephalopathy (AE). This was characterized a marked reduction of various lymphocytes (e.g., CD8+ T and CD4+ T cells) and significant increases in other inflammatory cells (e.g., monocytes). Further analysis revealed activation of multiple cell apoptosis pathways (e.g., granzyme/perforin-, FAS- and TNF-induced apoptosis) may be responsible for lymphopenia. A systemic S100A12 upregulation, primarily from classical monocytes, may have contributed to cytokine storms in patients with AE. A dysregulated type I interferon (IFN) response was observed which may have further exacerbated the S100A12-driven inflammation in patients with AE. In COVID-19 patients with AE, myeloid cells (e.g., monocytic myeloid-derived suppressor cells) were the likely contributors to immune paralysis. Finally, the immune landscape in COVID-19 patients with encephalopathy, especially for AE, were also characterized by NK and T cells with widespread exhaustion, higher cytotoxic scores and inflammatory response as well as a dysregulated B cell-mediated humoral immune response. Taken together, this comprehensive data provides a detailed resource for elucidating immunopathogenesis and will aid development of effective COVID-19-associated pediatric encephalopathy treatments, especially for those with AE.
Collapse
Affiliation(s)
- Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. China.
| | | | - Shuang Liu
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Xiong Zhu
- Central & Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, 572000, P. R. China
| | - Siyuan Huang
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Fang Li
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Linying Guo
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Jin Zhang
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Haiyan Ge
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Yuanyuan Sun
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Yi Hui
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Yanning Qu
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Huicong Wang
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Xiaoxia Wang
- Central & Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, 572000, P. R. China
| | - Weilan Na
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Juan Zhou
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Dong Qu
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China.
| | - Jun Tai
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China.
| |
Collapse
|
13
|
Feng B, Zheng D, Yang L, Su Z, Tang L, Zhu Y, Xu X, Wang Q, Lin Q, Hu J, Lin M, Huang L, Zhou X, Liu H, Li S, Pan W, Shi R, Lu Y, Wu B, Ding B, Wang Z, Guo J, Zhang Z, Zheng G, Liu Y. Post-hospitalization rehabilitation alleviates long-term immune repertoire alteration in COVID-19 convalescent patients. Cell Prolif 2023; 56:e13450. [PMID: 36938980 PMCID: PMC10542649 DOI: 10.1111/cpr.13450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023] Open
Abstract
The global pandemic of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an once-in-a-lifetime public health crisis. Among hundreds of millions of people who have contracted with or are being infected with COVID-19, the question of whether COVID-19 infection may cause long-term health concern, even being completely recovered from the disease clinically, especially immune system damage, needs to be addressed. Here, we performed seven-chain adaptome immune repertoire analyses on convalescent COVID-19 patients who have been discharged from hospitals for at least 6 months. Surprisingly, we discovered lymphopenia, reduced number of unique CDR3s, and reduced diversity of the TCR/BCR immune repertoire in convalescent COVID-19 patients. In addition, the BCR repertoire appears to be activated, which is consistent with the protective antibody titres, but serological experiments reveal significantly lower IL-4 and IL-7 levels in convalescent patients compared to those in healthy controls. Finally, in comparison with convalescent patients who did not receive post-hospitalization rehabilitation, the convalescent patients who received post-hospitalization rehabilitation had attenuated immune repertoire abnormality, almost back to the level of healthy control, despite no detectable clinic demographic difference. Overall, we report the potential long-term immunological impairment for COVID-19 infection, and correction of this impairment via post-hospitalization rehabilitation may offer a new prospect for COVID-19 recovery strategy.
Collapse
|
14
|
García-García A, Pérez de Diego R, Flores C, Rinchai D, Solé-Violán J, Deyà-Martínez À, García-Solis B, Lorenzo-Salazar JM, Hernández-Brito E, Lanz AL, Moens L, Bucciol G, Almuqamam M, Domachowske JB, Colino E, Santos-Perez JL, Marco FM, Pignata C, Bousfiha A, Turvey SE, Bauer S, Haerynck F, Ocejo-Vinyals JG, Lendinez F, Prader S, Naumann-Bartsch N, Pachlopnik Schmid J, Biggs CM, Hildebrand K, Dreesman A, Cárdenes MÁ, Ailal F, Benhsaien I, Giardino G, Molina-Fuentes A, Fortuny C, Madhavarapu S, Conway DH, Prando C, Schidlowski L, Martínez de Saavedra Álvarez MT, Alfaro R, Rodríguez de Castro F, Meyts I, Hauck F, Puel A, Bastard P, Boisson B, Jouanguy E, Abel L, Cobat A, Zhang Q, Casanova JL, Alsina L, Rodríguez-Gallego C. Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. J Exp Med 2023; 220:e20220170. [PMID: 36880831 PMCID: PMC9998661 DOI: 10.1084/jem.20220170] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4-dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8-207.8, P < 0.001). The patients' susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.
Collapse
Affiliation(s)
- Ana García-García
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jordi Solé-Violán
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Intensive Care Medicine, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Àngela Deyà-Martínez
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Blanca García-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Elisa Hernández-Brito
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Anna-Lisa Lanz
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Mohamed Almuqamam
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | | | - Elena Colino
- Unidad de Enfermedades Infecciosas, Complejo Hospitalario Universitario Insular-Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Juan Luis Santos-Perez
- Unidad de Gestión Clínica de Pediatría y Cirugía Pediátrica, Hospital Virgen de las Nieves-IBS, Granada, Spain
| | - Francisco M. Marco
- Dept. of Immunology, Alicante University General Hospital Doctor Balmis, Alicante, Spain
- Alicante Institute for Health and Biomedical Research, Alicante, Spain
| | - Claudio Pignata
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Aziz Bousfiha
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Stuart E. Turvey
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Stefanie Bauer
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Filomeen Haerynck
- Dept. of Pediatric Immunology and Pulmonology, Centre for Primary Immune Deficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Dept. of Internal Medicine and Pediatrics, PID Research Laboratory, Ghent University, Ghent, Belgium
| | | | - Francisco Lendinez
- Dept. of Pediatric Oncohematology, Hospital Materno Infantil Torrecárdenas, Almería, Spain
| | - Seraina Prader
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Nora Naumann-Bartsch
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Jana Pachlopnik Schmid
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Catherine M. Biggs
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Kyla Hildebrand
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | | | - Miguel Ángel Cárdenes
- Dept. of Internal Medicine, Unit of Infectious Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Fatima Ailal
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Giuliana Giardino
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Claudia Fortuny
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain; Translational Research Network in Pediatric Infectious Diseases, Madrid, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Swetha Madhavarapu
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Daniel H. Conway
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Carolina Prando
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Laire Schidlowski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | | | - Rafael Alfaro
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Dept. of Respiratory Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Fabian Hauck
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology and Immunology Unit, Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Laia Alsina
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Carlos Rodríguez-Gallego
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
15
|
Li M, Song J, Yin P, Chen H, Wang Y, Xu C, Jiang F, Wang H, Han B, Du X, Wang W, Li G, Zhong D. Single-cell analysis reveals novel clonally expanded monocytes associated with IL1β-IL1R2 pair in acute inflammatory demyelinating polyneuropathy. Sci Rep 2023; 13:5862. [PMID: 37041166 PMCID: PMC10088807 DOI: 10.1038/s41598-023-32427-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Guillain-Barré syndrome (GBS) is an autoimmune disorder wherein the composition and gene expression patterns of peripheral blood immune cells change significantly. It is triggered by antigens with similar epitopes to Schwann cells that stimulate a maladaptive immune response against peripheral nerves. However, an atlas for peripheral blood immune cells in patients with GBS has not yet been constructed. This is a monocentric, prospective study. We collected 5 acute inflammatory demyelinating polyneuropathy (AIDP) patients and 3 healthy controls hospitalized in the First Affiliated Hospital of Harbin Medical University from December 2020 to May 2021, 3 AIDP patients were in the peak stage and 2 were in the convalescent stage. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from these patients. Furthermore, we performed cell clustering, cell annotation, cell-cell communication, differentially expressed genes (DEGs) identification and pseudotime trajectory analysis. Our study identified a novel clonally expanded CD14+ CD163+ monocyte subtype in the peripheral blood of patients with AIDP, and it was enriched in cellular response to IL1 and chemokine signaling pathways. Furthermore, we observed increased IL1β-IL1R2 cell-cell communication between CD14+ and CD16+ monocytes. In short, by analyzing the single-cell landscape of the PBMCs in patients with AIDP we hope to widen our understanding of the composition of peripheral immune cells in patients with GBS and provide a theoretical basis for future studies.
Collapse
Affiliation(s)
- Meng Li
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jihe Song
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Pengqi Yin
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Hongping Chen
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yingju Wang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Chen Xu
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Fangchao Jiang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Haining Wang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Baichao Han
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xinshu Du
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Wei Wang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Guozhong Li
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, 150081, Heilongjiang, China.
| | - Di Zhong
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
16
|
Wang X, Liu Y, Li K, Hao Z. Roles of p53-Mediated Host–Virus Interaction in Coronavirus Infection. Int J Mol Sci 2023; 24:ijms24076371. [PMID: 37047343 PMCID: PMC10094438 DOI: 10.3390/ijms24076371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence of the SARS-CoV-2 coronavirus has garnered global attention due to its highly pathogenic nature and the resulting health crisis and economic burden. Although drugs such as Remdesivir have been considered a potential cure by targeting the virus on its RNA polymerase, the high mutation rate and unique 3’ to 5’ exonuclease with proofreading function make it challenging to develop effective anti-coronavirus drugs. As a result, there is an increasing focus on host–virus interactions because coronaviruses trigger stress responses, cell cycle changes, apoptosis, autophagy, and the dysregulation of immune function and inflammation in host cells. The p53 tumor suppressor molecule is a critical regulator of cell signaling pathways, cellular stress responses, DNA repair, and apoptosis. However, viruses can activate or inhibit p53 during viral infections to enhance viral replication and spread. Given its pivotal role in cell physiology, p53 represents a potential target for anti-coronavirus drugs. This review aims to summarize the relationship between p53 and coronaviruses from various perspectives, to shed light on potential targets for antiviral drug development and vaccine design.
Collapse
Affiliation(s)
| | | | | | - Zhihui Hao
- Correspondence: ; Tel./Fax: +86-010-6273-1192
| |
Collapse
|
17
|
Jung S, Lee JS. Single-Cell Genomics for Investigating Pathogenesis of Inflammatory Diseases. Mol Cells 2023; 46:120-129. [PMID: 36859476 PMCID: PMC9982059 DOI: 10.14348/molcells.2023.0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent technical advances have enabled unbiased transcriptomic and epigenetic analysis of each cell, known as "single-cell analysis". Single-cell analysis has a variety of technical approaches to investigate the state of each cell, including mRNA levels (transcriptome), the immune repertoire (immune repertoire analysis), cell surface proteins (surface proteome analysis), chromatin accessibility (epigenome), and accordance with genome variants (eQTLs; expression quantitative trait loci). As an effective tool for investigating robust immune responses in coronavirus disease 2019 (COVID-19), many researchers performed single-cell analysis to capture the diverse, unbiased immune cell activation and differentiation. Despite challenges elucidating the complicated immune microenvironments of chronic inflammatory diseases using existing experimental methods, it is now possible to capture the simultaneous immune features of different cell types across inflamed tissues using various single-cell tools. In this review, we introduce patient-based and experimental mouse model research utilizing single-cell analyses in the field of chronic inflammatory diseases, as well as multi-organ atlas targeting immune cells.
Collapse
Affiliation(s)
- Seyoung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
18
|
Wang S, Sun ST, Zhang XY, Ding HR, Yuan Y, He JJ, Wang MS, Yang B, Li YB. The Evolution of Single-Cell RNA Sequencing Technology and Application: Progress and Perspectives. Int J Mol Sci 2023; 24:ijms24032943. [PMID: 36769267 PMCID: PMC9918030 DOI: 10.3390/ijms24032943] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
As an emerging sequencing technology, single-cell RNA sequencing (scRNA-Seq) has become a powerful tool for describing cell subpopulation classification and cell heterogeneity by achieving high-throughput and multidimensional analysis of individual cells and circumventing the shortcomings of traditional sequencing for detecting the average transcript level of cell populations. It has been applied to life science and medicine research fields such as tracking dynamic cell differentiation, revealing sensitive effector cells, and key molecular events of diseases. This review focuses on the recent technological innovations in scRNA-Seq, highlighting the latest research results with scRNA-Seq as the core technology in frontier research areas such as embryology, histology, oncology, and immunology. In addition, this review outlines the prospects for its innovative application in traditional Chinese medicine (TCM) research and discusses the key issues currently being addressed by scRNA-Seq and its great potential for exploring disease diagnostic targets and uncovering drug therapeutic targets in combination with multiomics technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Yang
- Correspondence: (B.Y.); (Y.-B.L.)
| | - Yu-Bo Li
- Correspondence: (B.Y.); (Y.-B.L.)
| |
Collapse
|
19
|
Huțanu A, Manu D, Gabor MR, Văsieșiu AM, Andrejkovits AV, Dobreanu M. Dynamic Evaluation of Natural Killer Cells Subpopulations in COVID-19 Patients. Int J Mol Sci 2022; 23:ijms231911875. [PMID: 36233174 PMCID: PMC9569797 DOI: 10.3390/ijms231911875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to evaluate the dynamic changes of the total Natural Killer (NK) cells and different NK subpopulations according to their differentiated expression of CD16/CD56 in COVID-19 patients. Blood samples with EDTA were analyzed on day 1 (admission moment), day 5, and day 10 for the NK subtypes. At least 30,000 singlets were collected for each sample and white blood cells were gated in CD45/SSC and CD16/CD56 dot plots of fresh human blood. From the lymphocyte singlets, the NK cells subpopulations were analyzed based on the differentiated expression of surface markers and classified as follows: CD16-CD56+/++/CD16+CD56++/CD16+CD56+/CD16++CD56−. By examining the CD56 versus CD16 flow cytometry dot plots, we found four distinct NK sub-populations. These NK subtypes correspond to different NK phenotypes from secretory to cytolytic ones. There was no difference between total NK percentage of different disease forms. However, the total numbers decreased significantly both in survivors and non-survivors. Additionally, for the CD16-CD56+/++ phenotype, we observed different patterns, gradually decreasing in survivors and gradually increasing in those with fatal outcomes. Despite no difference in the proportion of the CD16−CD56++ NK cells in survivors vs. non–survivors, the main cytokine producers gradually decline during the study period in the survival group, underling the importance of adequate IFN production during the early stage of SARS-CoV-2 infection. Persistency in the circulation of CD56++ NK cells may have prognostic value in patients, with a fatal outcome. Total NK cells and the CD16+CD56+ NK subtypes exhibit significant decreasing trends across the moments for both survivors and non-survivors.
Collapse
Affiliation(s)
- Adina Huțanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Laboratory Medicine, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Correspondence:
| | - Manuela Rozalia Gabor
- Department of Economic Science, Faculty of Economics and Law, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Anca Meda Văsieșiu
- Department of Infectious Diseases, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Akos Vince Andrejkovits
- Department of Infectious Diseases, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Minodora Dobreanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Laboratory Medicine, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
20
|
Liu W, Jia J, Dai Y, Chen W, Pei G, Yan Q, Zhao Z. Delineating COVID-19 immunological features using single-cell RNA sequencing. Innovation (N Y) 2022; 3:100289. [PMID: 35879967 PMCID: PMC9299978 DOI: 10.1016/j.xinn.2022.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding the molecular mechanisms of coronavirus disease 2019 (COVID-19) pathogenesis and immune response is vital for developing therapies. Single-cell RNA sequencing has been applied to delineate the cellular heterogeneity of the host response toward COVID-19 in multiple tissues and organs. Here, we review the applications and findings from over 80 original COVID-19 single-cell RNA sequencing studies as well as many secondary analysis studies. We describe that single-cell RNA sequencing reveals multiple features of COVID-19 patients with different severity, including cell populations with proportional alteration, COVID-19-induced genes and pathways, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in single cells, and adaptation of immune repertoire. We also collect published single-cell RNA sequencing datasets from original studies. Finally, we discuss the limitations in current studies and perspectives for future advance.
Collapse
Affiliation(s)
- Wendao Liu
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Johnathan Jia
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenhao Chen
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute and Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qiheng Yan
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
21
|
He J, Shen J, Luo W, Han Z, Xie F, Pang T, Liao L, Guo Z, Li J, Li Y, Chen H. Research progress on application of single-cell TCR/BCR sequencing technology to the tumor immune microenvironment, autoimmune diseases, and infectious diseases. Front Immunol 2022; 13:969808. [PMID: 36059506 PMCID: PMC9434330 DOI: 10.3389/fimmu.2022.969808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell omics is the profiling of individual cells through sequencing and other technologies including high-throughput analysis for single-cell resolution, cell classification, and identification as well as time series analyses. Unlike multicellular studies, single-cell omics overcomes the problem of cellular heterogeneity. It provides new methods and perspectives for in-depth analyses of the behavior and mechanism of individual cells in the cell population and their relationship with the body, and plays an important role in basic research and precision medicine. Single-cell sequencing technologies mainly include single-cell transcriptome sequencing, single-cell assay for transposase accessible chromatin with high-throughput sequencing, single-cell immune profiling (single-cell T-cell receptor [TCR]/B-cell receptor [BCR] sequencing), and single-cell transcriptomics. Single-cell TCR/BCR sequencing can be used to obtain a large amount of single-cell gene expression and immunomics data at one time, and combined with transcriptome sequencing and TCR/BCR diversity data, can resolve immune cell heterogeneity. This paper summarizes the progress in applying single-cell TCR/BCR sequencing technology to the tumor immune microenvironment, autoimmune diseases, infectious diseases, immunotherapy, and chronic inflammatory diseases, and discusses its shortcomings and prospects for future application.
Collapse
Affiliation(s)
- Jinhua He
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Jian Shen
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Zeping Han
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Ting Pang
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Liyin Liao
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Zhonghui Guo
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Jianhao Li
- Institute of Cardiovascular Medicine, Central Hospital of Panyu District, Guangzhou, China
- *Correspondence: Hanwei Chen, ; Yuguang Li, ; Jianhao Li,
| | - Yuguang Li
- Administrative Office, He Xian Memorial Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Hanwei Chen, ; Yuguang Li, ; Jianhao Li,
| | - Hanwei Chen
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
- Medical Imaging Institute of Panyu, Central Hospital of Panyu District, Guangzhou, China
- *Correspondence: Hanwei Chen, ; Yuguang Li, ; Jianhao Li,
| |
Collapse
|
22
|
Lesseur C, Jessel RH, Ohrn S, Ma Y, Li Q, Dekio F, Brody RI, Wetmur JG, Gigase FA, Lieber M, Lieb W, Lynch J, Afzal O, Ibroci E, Rommel AS, Janevic T, Stone J, Howell EA, Galang RR, Dolan SM, Bergink V, De Witte LD, Chen J. Gestational SARS-CoV-2 infection is associated with placental expression of immune and trophoblast genes. Placenta 2022; 126:125-132. [PMID: 35797939 PMCID: PMC9242701 DOI: 10.1016/j.placenta.2022.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Maternal SARS-CoV-2 infection during pregnancy is associated with adverse pregnancy outcomes and can have effects on the placenta, even in the absence of severe disease or vertical transmission to the fetus. This study aimed to evaluate histopathologic and molecular effects in the placenta after SARS-CoV-2 infection during pregnancy. METHODS We performed a study of 45 pregnant participants from the Generation C prospective cohort study at the Mount Sinai Health System in New York City. We compared histologic features and the expression of 48 immune and trophoblast genes in placentas delivered from 15 SARS-CoV-2 IgG antibody positive and 30 IgG SARS-CoV-2 antibody negative mothers. Statistical analyses were performed using Fisher's exact tests, Spearman correlations and linear regression models. RESULTS The median gestational age at the time of SARS-CoV-2 IgG serology test was 35 weeks. Two of the IgG positive participants also had a positive RT-PCR nasal swab at delivery. 82.2% of the infants were delivered at term (≥37 weeks), and gestational age at delivery did not differ between the SARS-CoV-2 antibody positive and negative groups. No significant differences were detected between the groups in placental histopathology features. Differential expression analyses revealed decreased expression of two trophoblast genes (PSG3 and CGB3) and increased expression of three immune genes (CXCL10, TLR3 and DDX58) in placentas delivered from SARS-CoV-2 IgG positive participants. DISCUSSION SARS-CoV-2 infection during pregnancy is associated with gene expression changes of immune and trophoblast genes in the placenta at birth which could potentially contribute to long-term health effects in the offspring.
Collapse
Affiliation(s)
- Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rebecca H. Jessel
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sophie Ohrn
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Yula Ma
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Qian Li
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Fumiko Dekio
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rachel I. Brody
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - James G. Wetmur
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, Box 1054, 1 Gustave Levy Place, New York, NY, USA
| | - Frederieke A.J. Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Molly Lieber
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Whitney Lieb
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Blavatnik Family Women's Health Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jezelle Lynch
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Omara Afzal
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Erona Ibroci
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Teresa Janevic
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Blavatnik Family Women's Health Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Joanne Stone
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Elizabeth A. Howell
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Romeo R. Galang
- CDC COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Siobhan M. Dolan
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Veerle Bergink
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Blavatnik Family Women's Health Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lotje D. De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Corresponding author. Department of Environmental Medicine and Public Heath, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| |
Collapse
|
23
|
Gao H, Yu L, Yan F, Zheng Y, Huang H, Zhuang X, Zeng Y. Landscape of B Cell Receptor Repertoires in COVID-19 Patients Revealed Through CDR3 Sequencing of Immunoglobulin Heavy and Light Chains. Immunol Invest 2022; 51:1994-2008. [PMID: 35797435 DOI: 10.1080/08820139.2022.2092407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The outbreak and persistence of coronavirus disease 2019 (COVID-19) threaten human health. B cells play a vital role in fighting the infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite many studies on the immune responses in COVID-19 patients, it is still unclear how B cell receptor (BCR) constituents, including immunoglobulin heavy (IGHs) and light chains (IGLs), respond to SARS-CoV-2 in patients with varying symptoms. In this study, we conducted complementarity-determining region 3 (CDR3) sequencing of BCR IGHs and IGLs from the peripheral blood of COVID-19 patients and healthy donors. The results showed significantly reduced clonal diversity, more expanded clones, and longer CDR3 lengths of IGH and IGL in COVID-19 patients than those in healthy individuals. The IGLs had a much higher percentage of VJ skew usage (47.83% IGLV and 42.86% IGLJ were significantly regulated) than the IGHs (12.09% IGHV and 0% IGHJ) between the healthy individuals and patients, which indicated the importance of BCR light chains. Furthermore, we found a largely expanded IGLV3-25 gene cluster mostly pairing with IGLJ1 and ILGJ2 in COVID-19 patients and a newly identified upregulated IGLJ1 gene and IGLJ2+IGLV13-21 recombination, both of which are potential sources of SARS-CoV-2-targeting antibodies. Our findings on specific immune B-cell signatures associated with COVID-19 have clinical implications for vaccine and biomarker development for disease diagnosis.
Collapse
Affiliation(s)
- Hongzhi Gao
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.,Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Furong Yan
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Youxian Zheng
- Department of Microbiology, Quanzhou Municipal Center for Disease Control and Prevention, Fujian Province, Quanzhou, China
| | - Hongbo Huang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xibin Zhuang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yiming Zeng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
24
|
Wang X, Bai H, Ma J, Qin H, Zeng Q, Hu F, Jiang T, Mao W, Zhao Y, Chen X, Qi X, Li M, Xu J, Hao J, Wang Y, Ding X, Liu Y, Huang T, Fang C, Ge C, Li D, Hu K, Ren X, Zhang B, Zhang B, Shi B, Zhang C. Identification of Distinct Immune Cell Subsets Associated With Asymptomatic Infection, Disease Severity, and Viral Persistence in COVID-19 Patients. Front Immunol 2022; 13:812514. [PMID: 35281000 PMCID: PMC8905648 DOI: 10.3389/fimmu.2022.812514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
The cell-mediated protective and pathogenic immune responses to SARS-CoV-2 infection remain largely elusive. Here we identified 76 distinct cell subsets in the PBMC samples that were associated with various clinical presentations of COVID-19 using scRNA-seq technology coupled with a deep and comprehensive analysis of unique cell surface markers and differentially expressed genes. We revealed that (TRAV1-2+CD8+)MAIT cells and (NCAM1hiCD160+)NK cells significantly enriched in the asymptomatic subjects whereas (LAG3+CD160+CD8+)NKT cells increased in the symptomatic patients. We also observed that (CD68-CSF1R-IL1BhiCD14+)classical monocytes were positively correlated with the disease severity. Moreover, (CD33-HLA-DMA-CD14+)classical monocytes and (CLEC10A-S100A9lo)pDC were associated with the viral persistence. The GO and KEGG analyses identified enriched pathways related to immune responses, inflammation, and apoptosis. These findings may enhance our understanding of the immunopathogenesis of COVID-19 and help develop novel strategies against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiaorui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Han Bai
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junpeng Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyu Qin
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiqi Zeng
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fang Hu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Weikang Mao
- LC-Bio Technologies, Co., Ltd., Hangzhou, China
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaobei Chen
- Department of Infectious Diseases, The Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengyang Li
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingcan Hao
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yankui Wang
- Dialysis Center, The Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Ding
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanrui Liu
- LC-Bio Technologies, Co., Ltd., Hangzhou, China
| | | | - Chao Fang
- LC-Bio Technologies, Co., Ltd., Hangzhou, China
| | - Changli Ge
- LC-Bio Technologies, Co., Ltd., Hangzhou, China
| | - Dong Li
- Department of Clinical Laboratory, The Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | | | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|