1
|
Nafisi N, Razavi AH, Shariyate MJ, Velasquez MV, Khak M, Manoukian D, Klujian A, Mirzamohammadi H, Cummiskey T, Rostami MR, Mirzamohammadi F, Nazarian A. Decoding fracture healing: A scoping review of mechanistic pathways derived from transcriptional analysis in murine studies. Bone 2025; 194:117444. [PMID: 40032014 DOI: 10.1016/j.bone.2025.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Fracture healing is a complex biological process involving orchestrated interactions among cells, growth factors, and transcriptional pathways. Despite significant advancements in understanding bone repair, non-union and delayed healing remain prevalent, especially in patients with comorbidities such as aging, diabetes, or substance use. Murine models serve as a cornerstone in fracture healing research, offering genetic manipulability, cost-effectiveness, and biological relevance to humans. This scoping review consolidates findings from studies conducted between 2010 and 2024, focusing on mechanistic pathways derived from transcriptional analysis in secondary bone healing as identified through bulk RNA sequencing of murine models. Key mechanistic pathways were categorized and analyzed across the distinct phases of fracture healing-reactive, reparative, and remodeling-highlighting their unique roles in inflammation, ECM remodeling, cell proliferation, and tissue mineralization. The most recurrent mechanistic pathways included ECM-receptor interaction, focal adhesion, and signaling mechanisms such as MAPK and TGF-beta. Variability in methodologies and limited overlap among studies underscore the need for standardized protocols in RNA sequencing analysis. Additionally, comparisons across long bone fractures, hole defects, and craniofacial bone healing revealed shared molecular mechanisms alongside unique challenges, particularly in craniofacial models. This scoping review underscores the promise of integrating systems biology approaches with transcriptomic data to elucidate the intricate regulatory networks governing fracture repair. Addressing the identified gaps in early-phase healing and harmonizing research methodologies will advance therapeutic strategies to reduce non-union rates and improve clinical outcomes.
Collapse
Affiliation(s)
- Nazanin Nafisi
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Ahmad Hedayatzadeh Razavi
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Mohammad Javad Shariyate
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria V Velasquez
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mohammad Khak
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Manoukian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Arthur Klujian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hamid Mirzamohammadi
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medica Sciences, Tehran, Iran
| | - Tom Cummiskey
- Knowledge Services, Beth Israel Lahey Health, Cambridge, MA, USA
| | | | | | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Mechanical Engineering, Boston University, Boston, MA, USA; Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia.
| |
Collapse
|
2
|
Li R, Wang J, Lin Q, Yin Z, Zhou F, Chen X, Tan H, Su J. Mechano-Responsive Biomaterials for Bone Organoid Construction. Adv Healthc Mater 2025; 14:e2404345. [PMID: 39740101 DOI: 10.1002/adhm.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/08/2024] [Indexed: 01/02/2025]
Abstract
Mechanical force is essential for bone development, bone homeostasis, and bone fracture healing. In the past few decades, various biomaterials have been developed to provide mechanical signals that mimic the natural bone microenvironment, thereby promoting bone regeneration. Bone organoids, emerging as a novel research approach, are 3D micro-bone tissues that possess the ability to self-renew and self-organize, exhibiting biomimetic spatial characteristics. Incorporating mechano-responsive biomaterials in the construction of bone organoids presents a promising avenue for simulating the mechanical bone microenvironment. Therefore, this review commences by elucidating the impact of mechanical force on bone health, encompassing both cellular interactions and alterations in bone structure. Furthermore, the most recent applications of mechano-responsive biomaterials within the realm of bone tissue engineering are highlighted. Three different types of mechano-responsive biomaterials are introduced with a focus on their responsive mechanisms, construction strategies, and efficacy in facilitating bone regeneration. Based on a comprehensive overview, the prospective utilization and future challenges of mechano-responsive biomaterials in the construction of bone organoids are discussed. As bone organoid technology advances, these biomaterials are poised to become powerful tools in bone regeneration.
Collapse
Affiliation(s)
- Ruiyang Li
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Wang
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Qiushui Lin
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, P. R. China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, P. R. China
| | - Xiao Chen
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Hongbo Tan
- Department of Orthopedics, The 920th Hospital of Joint Logistics Support Force, Yunnan, 650020, P. R. China
| | - Jiacan Su
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
3
|
Zhang Y, Shi H, Dai X, Shen J, Yin J, Xu T, Yue G, Guo H, Liang R, Chen Q, Gao S, Wang L, Zhang D. Semaphorin 3A on Osteoporosis: An Overreview of the Literature. Calcif Tissue Int 2025; 116:43. [PMID: 39985619 DOI: 10.1007/s00223-025-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Semaphorin 3A (Sema3A) is a signaling protein that has attracted increasing attention in recent years for its important role in regulating bone metabolism. In this review, we searched different databases with various combinations of keywords to analyze the effects of Sema3A on osteoporosis. Sema3A promotes bone formation and inhibits bone resorption by directly affecting the osteoblast and osteoclast or indirectly targeting the nervous system. The sympathetic nervous system may be the main link between the central nervous system and bone metabolism for Sema3A. In the peripheral nervous system, Sema3A may improve bone quality via sensory nervous innervation. In addition, estrogen is found to regulate Sema3A levels to improve bone homeostasis. Lots of Sema3A agonists have been documented to exhibit anti-osteoporotic potential in preclinical investigations. Therefore, Sema3A can be considered a novel therapeutic target for preserving bone mass, highlighting an alternative strategy for the development of anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Yueyi Zhang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hanfen Shi
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuan Dai
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin Shen
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiyuan Yin
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianshu Xu
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gaiyue Yue
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haochen Guo
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiqiong Liang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qishuang Chen
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Sihua Gao
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Zheng Y, Cong L, Zhao L, Wang P, Xing L, Liu J, Xu H, Li N, Zhao Y, Yuan L, Shi Q, Sun X, Liang Q, Wang Y. Lymphatic platelet thrombosis limits bone repair by precluding lymphatic transporting DAMPs. Nat Commun 2025; 16:829. [PMID: 39827193 PMCID: PMC11742876 DOI: 10.1038/s41467-025-56147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/05/2025] [Indexed: 01/22/2025] Open
Abstract
In the musculoskeletal system, lymphatic vessels (LVs), which are interdigitated with blood vessels, travel and form an extensive transport network. Blood vessels in bone regulate osteogenesis and hematopoiesis, however, whether LVs in bone affect fracture healing is unclear. Here, we investigate the lymphatic draining function at the tibial fracture sites using near-infrared indocyanine green lymphatic imaging (NIR-ICG) and discover that lymphatic drainage insufficiency (LDI) starts on day one and persists for up to two weeks following the fracture in male mice. Sufficient lymphatic drainage facilitates fracture healing in male mice. Furthermore, we identify that lymphatic platelet thrombosis (LPT) blocks the draining lymphoid sinus and LVs, causes LDI, and inhibits fracture healing in male mice, which can be rescued by a blood thinner. Moreover, unblocked lymphatic drainage decreases neutrophils and increases M2-type macrophages of the hematoma niche to support osteoblast (OB) survival and bone marrow-derived mesenchymal stem cell (BMSC) proliferation via transporting damage-associated molecular patterns (DAMPs) in male rats. Lymphatic platelet thrombolysis also benefits senile fracture healing in female mice. These findings demonstrate that LPT limits bone regeneration by impeding lymphatic transporting DAMPs. Together, these findings represent a way forward in the treatment of bone repair.
Collapse
Affiliation(s)
- Yangkang Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Lin Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Pengyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Luying Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China.
| | - YongJun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China.
| |
Collapse
|
6
|
Jin Z, Chen Z, Liang T, Liu W, Shan Z, Tan D, Chen J, Hu J, Qin L, Xu J. Accelerated fracture healing accompanied with traumatic brain injury: A review of clinical studies, animal models and potential mechanisms. J Orthop Translat 2025; 50:71-84. [PMID: 39868349 PMCID: PMC11763218 DOI: 10.1016/j.jot.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 01/28/2025] Open
Abstract
The orthopaedic community frequently encounters polytrauma individuals with concomitant traumatic brain injury (TBI) and their fractures demonstrate accelerated fracture union, but the mechanisms remain far from clear. Animal and clinical studies demonstrate robust callus formation at the early healing process and expedited radiographical union. In humans, robust callus formation in TBI occurs independently of fracture fixation methods across multiple fracture sites. Animal studies of TBI replicate clinically relevant enlarged fracture callus as characterized by increased tissue volume and bone volume at the early stages. However, refinement and standardization of the TBI models requires further research. The quest for its underlying mechanisms began with the finding of increased osteogenesis in vitro using the serum and cerebral spinal fluid (CSF) from TBI individuals. This has led to the investigation of myriads of brain-derived factors including humoral factors, cytokines, exosomes, and mi-RNAs. Further, the emerging information of interplay between the skeletal system and central nervous system, the roles of peripheral nerves and their neuropeptides in regulating bone regeneration, offers valuable insights for future research. This review consolidates the findings from both experimental and clinical studies, elucidating the potential mechanisms underlying enhanced fracture healing in concurrent TBI scenarios that may lay down a foundation to develop innovative therapies for fracture healing enhancement and conquer fracture non-union. The translational potential of this article. This review comprehensively summarizes the observations of accelerated fracture healing in the presence of traumatic brain injury from both preclinical and clinical studies. In addition, it also delineates potential cellular and molecular mechanisms. Further detailed investigation into its underlying mechanisms may reveal innovative orthopaedic intervention strategies to improve fracture healing and thus offering promising avenues for future translational applications.
Collapse
Affiliation(s)
- Zheyu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tongzhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiyang Liu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhengming Shan
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dianhui Tan
- Department of Neurosurgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiechen Chen
- Department of Orthopaedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Orthopaedic Medical Research Centre, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Hu
- Department of Orthopaedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Orthopaedic Medical Research Centre, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Gao YJ, Wang YC, Zhao DL, Wen Q, Shi HX, Wang SR. A review of electroacupuncture in bone repair: Mechanisms and clinical implications. Medicine (Baltimore) 2024; 103:e40725. [PMID: 39809159 PMCID: PMC11596701 DOI: 10.1097/md.0000000000040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025] Open
Abstract
The journey of bone repair is a lengthy process. Traditionally, oral or topical medications have been employed to facilitate healing, approaches that are not only costly but may also lead to adverse effects such as gastrointestinal damage. With advancements in electrophysiology, the significance of bioelectric activity in tissue repair has become increasingly prominent, thereby enhancing the focus on research into electroacupuncture (EA) for bone repair. EA, a synthesis of traditional acupuncture and electrical stimulation, can regulate pain by inhibiting the transmission of electrical signals, reducing the expression of ion channel proteins, and promoting the release of neurotransmitters at targeted sites. Moreover, EA has the capability to influence macrophage polarization and modulate inflammatory cytokines, aiding in bone repair. Additionally, EA has the potential to regulate cytokines such as Ephrin type-B receptor 4 (EphB4), Vascular Endothelial Growth Factor (VEGF), Erythropoietin (EPO), and Bone Morphogenetic Protein 2 (BMP-2), thus promoting angiogenesis and fracture healing.This paper explores the mechanisms by which EA facilitates bone healing and assesses its advantages and limitations in clinical applications. It offers a theoretical foundation for the safe, effective, and rational use of EA, presenting a novel approach for enhancing bone regeneration.
Collapse
Affiliation(s)
- Yu-Jun Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Haerbin, China
| | - Yin-cang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Haerbin, China
| | - De-lai Zhao
- The Fifth Hospital of Harbin City, Haerbin, China
| | - Qing Wen
- Graduate School, Heilongjiang University of Chinese Medicine, Haerbin, China
| | - Hao-Xin Shi
- Graduate School, Heilongjiang University of Chinese Medicine, Haerbin, China
| | - Shu-Ren Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Haerbin, China
| |
Collapse
|
8
|
Shao W, Wang B, Wang P, Zhang S, Gong S, Guo X, Duan D, Shao Z, Liu W, He L, Gao F, Lv X, Feng Y. Inhibition of sympathetic tone via hypothalamic descending pathway propagates glucocorticoid-induced endothelial impairment and osteonecrosis of the femoral head. Bone Res 2024; 12:64. [PMID: 39516484 PMCID: PMC11549335 DOI: 10.1038/s41413-024-00371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/07/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a common complication of glucocorticoid (GC) therapy. Recent advances demonstrate that sympathetic nerves regulate bone homeostasis, and GCs lower the sympathetic tone. Here, we show that the dramatically decreased sympathetic tone is closely associated with the pathogenesis of GC-induced ONFH. GCs activate the glucocorticoid receptor (GR) but hinder the activation of the mineralocorticoid receptor (MR) on neurons in the hypothalamic paraventricular nucleus (PVN). This disrupts the balance of corticosteroid receptors (GR/MR) and subsequently reduces the sympathetic outflow in the PVN. Vascular endothelial cells rapidly react to inhibition of sympathetic tone by provoking endothelial apoptosis in adult male mice treated with methylprednisolone (MPS) daily for 3 days, and we find substantially reduced H-type vessels in the femoral heads of MPS-treated ONFH mice. Importantly, treatment with a GR inhibitor (RU486) in the PVN promotes the activation of MR and rebalances the ratio of GR and MR, thus effectively boosting sympathetic outflow, as shown by an increase in tyrosine hydroxylase expression in both the PVN and the sympathetic postganglionic neurons and an increase in norepinephrine levels in both the serum and bone marrow of the femoral head of MPS-treated mice. Rebalancing the corticosteroid receptors mitigates GC-induced endothelial impairment and ONFH and promotes angiogenesis coupled with osteogenesis in the femoral head, while these effects are abolished by chemical sympathectomy with 6-OHDA or adrenergic receptor-β2 (Adrb2) knockout. Furthermore, activating Adrb2 signaling in vivo is sufficient to rescue the GC-induced ONFH phenotype. Mechanistically, norepinephrine increases the expression of the key glycolytic gene 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) via Adrb2-cyclic AMP response element-binding protein (CREB) signaling. Endothelial-specific overexpression of PFKFB3 attenuates endothelial impairment and prevents severe osteonecrosis in MPS-treated Adrb2 knockout mice. Thus, GC inhibits sympathetic tone via the hypothalamic descending pathway, which, in turn, acts as a mediator of GC-induced ONFH.
Collapse
Affiliation(s)
- Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Song Gong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Deyu Duan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijian Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei He
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Nayak TK, Parasania D, Tilley DG. Adrenergic orchestration of immune cell dynamics in response to cardiac stress. J Mol Cell Cardiol 2024; 196:115-124. [PMID: 39303854 DOI: 10.1016/j.yjmcc.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Immune cells contribute approximately 5-10 % of the heart's total cell population, including several myeloid cell and lymphocyte cell subsets, which, despite their relatively small percentages, play important roles in cardiac homeostasis and remodeling responses to various forms of injury and long-term stress. Pathological cardiac stress activates the sympathetic nervous system (SNS), resulting in the release of the catecholamines epinephrine and norepinephrine either systemically or from sympathetic nerve terminals within various lymphoid organs. Acting at α- or β-adrenergic receptors (αAR, βAR), catecholamines regulate immune cell hematopoiesis, egress and migration in response to stress. Classically, αAR stimulation tends to promote inflammatory responses while βAR stimulation has typically been shown to be immunosuppressive, though the effects can be nuanced depending on the immune cells subtype, the site of regulation and pathophysiological context. Herein, we will discuss several facets of SNS-mediated regulation of immune cells and their response to cardiac stress, including: catecholamine response to cardiovascular stress and action at their receptors, adrenergic regulation of hematopoiesis, immune cell retention and release from the bone marrow, adrenergic regulation of splenic immune cells and their retention, as well as adrenergic regulation of immune cell recruitment to the injured heart, including neutrophils, monocytes and macrophages. A particular focus will be given to βAR-mediated effects on myeloid cells in response to acute or chronic cardiac stress.
Collapse
Affiliation(s)
- Tapas K Nayak
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dev Parasania
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
10
|
Jiang R, Lu Z, Wang C, Xiao J, Liu Q, Xu X, Shi J, Shen J, Zhu X, Gong P, Zhuang QX, Shi K, Shi W. Beta2 adrenergic receptor-mediated abnormal myelopoiesis drives neuroinflammation in aged patients with traumatic brain injury. SCIENCE ADVANCES 2024; 10:eadp5239. [PMID: 39028822 PMCID: PMC11259178 DOI: 10.1126/sciadv.adp5239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Aged patients often suffer poorer neurological recovery than younger patients after traumatic brain injury (TBI), but the mechanisms underlying this difference remain unclear. Here, we demonstrate abnormal myelopoiesis characterized by increased neutrophil and classical monocyte output but impaired nonclassical patrolling monocyte population in aged patients with TBI as well as in an aged murine TBI model. Retrograde and anterograde nerve tracing indicated that increased adrenergic input through the central amygdaloid nucleus-bone marrow axis drives abnormal myelopoiesis after TBI in a β2-adrenergic receptor-dependent manner, which is notably enhanced in aged mice after injury. Selective blockade of β2-adrenergic receptors rebalances abnormal myelopoiesis and improves the outcomes of aged mice after TBI. We therefore demonstrate that increased β2-adrenergic input-driven abnormal myelopoiesis exacerbates post-TBI neuroinflammation in the aged, representing a mechanism underlying the poorer recovery of aged patients and that blockade of β2-adrenergic receptor is a potential approach to promote neurological recovery after TBI.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhichao Lu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chenxing Wang
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jun Xiao
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qianqian Liu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xide Xu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jinlong Shi
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianhong Shen
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xingjia Zhu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Peipei Gong
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Kaibin Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Chinese Institutes for Medical Research, Beijing 100069, China
| | - Wei Shi
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
11
|
Mei G, Wang J, Wang J, Ye L, Yi M, Chen G, Zhang Y, Tang Q, Chen L. The specificities, influencing factors, and medical implications of bone circadian rhythms. FASEB J 2024; 38:e23758. [PMID: 38923594 DOI: 10.1096/fj.202302582rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Physiological processes within the human body are regulated in approximately 24-h cycles known as circadian rhythms, serving to adapt to environmental changes. Bone rhythms play pivotal roles in bone development, metabolism, mineralization, and remodeling processes. Bone rhythms exhibit cell specificity, and different cells in bone display various expressions of clock genes. Multiple environmental factors, including light, feeding, exercise, and temperature, affect bone diurnal rhythms through the sympathetic nervous system and various hormones. Disruptions in bone diurnal rhythms contribute to the onset of skeletal disorders such as osteoporosis, osteoarthritis and skeletal hypoplasia. Conversely, these bone diseases can be effectively treated when aimed at the circadian clock in bone cells, including the rhythmic expressions of clock genes and drug targets. In this review, we describe the unique circadian rhythms in physiological activities of various bone cells. Then we summarize the factors synchronizing the diurnal rhythms of bone with the underlying mechanisms. Based on the review, we aim to build an overall understanding of the diurnal rhythms in bone and summarize the new preventive and therapeutic strategies for bone disorders.
Collapse
Affiliation(s)
- Gang Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lanxiang Ye
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
12
|
Zhang Z, Zhang D, Lin Q, Cui X. Therapeutically Fine-Tuning Autonomic Nervous System to Treat Sepsis: A New Perspective on the Immunomodulatory Effects of Acupuncture. J Inflamm Res 2024; 17:4373-4387. [PMID: 38988505 PMCID: PMC11233988 DOI: 10.2147/jir.s477181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Recent studies have highlighted the immunomodulatory effects of acupuncture on sepsis and proposed novel non-pharmacological or bioelectronic approaches to managing inflammatory illnesses. Establishing rules for selectively activating sympathetic or vagal nerve-mediated anti-inflammatory pathways using acupuncture has valuable clinical applications. Over the years, studies have revealed the segmental modulatory role of acupuncture in regulating visceral function by targeting the autonomic nervous system (ANS). In this review, we aim to summarize recent findings on acupuncture in treating sepsis, focusing on the underlying ANS mechanism, as well as the rules of acupoint specificity, intensity, frequency, and other parameters utilized in these studies. Mechanistically, the immunomodulatory properties of the sympathetic nervous system have been highlighted. Furthermore, we explore the immunotherapeutic benefits of acupuncture in treating sepsis. A better understanding of the immunoregulatory mechanism of sympathetic nervous system may offer novel approaches for the development of therapeutics to treat or prevent a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Dingdan Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| |
Collapse
|
13
|
Ritter K, Baalmann M, Dolderer C, Ritz U, Schäfer MKE. Brain-Bone Crosstalk in a Murine Polytrauma Model Promotes Bone Remodeling but Impairs Neuromotor Recovery and Anxiety-Related Behavior. Biomedicines 2024; 12:1399. [PMID: 39061973 PMCID: PMC11274630 DOI: 10.3390/biomedicines12071399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Traumatic brain injury (TBI) and long bone fractures are a common injury pattern in polytrauma patients and modulate each other's healing process. As only a limited number of studies have investigated both traumatic sites, we tested the hypothesis that brain-bone polytrauma mutually impacts neuro- and osteopathological outcomes. Adult female C57BL/6N mice were subjected to controlled cortical impact (CCI), and/or osteosynthetic stabilized femoral fracture (FF), or sham surgery. Neuromotor and behavioral impairments were assessed by neurological severity score, open field test, rotarod test, and elevated plus maze test. Brain and bone tissues were processed 42 days after trauma. CCI+FF polytrauma mice had increased bone formation as compared to FF mice and increased mRNA expression of bone sialoprotein (BSP). Bone fractures did not aggravate neuropathology or neuroinflammation assessed by cerebral lesion size, hippocampal integrity, astrocyte and microglia activation, and gene expression. Behavioral assessments demonstrated an overall impaired recovery of neuromotor function and persistent abnormalities in anxiety-related behavior in polytrauma mice. This study shows enhanced bone healing, impaired neuromotor recovery and anxiety-like behavior in a brain-bone polytrauma model. However, bone fractures did not aggravate TBI-evoked neuropathology, suggesting the existence of outcome-relevant mechanisms independent of the extent of brain structural damage and neuroinflammation.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| | - Markus Baalmann
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| | - Christopher Dolderer
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (C.D.); (U.R.)
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (C.D.); (U.R.)
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| |
Collapse
|
14
|
Sinder SB, Sharma SV, Shirvaikar IS, Pradhyumnan H, Patel SH, Cabeda Diaz I, Perez GG, Bramlett HM, Raval AP. Impact of menopause-associated frailty on traumatic brain injury. Neurochem Int 2024; 176:105741. [PMID: 38621511 DOI: 10.1016/j.neuint.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17β (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.
Collapse
Affiliation(s)
- Sophie B Sinder
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sabrina V Sharma
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Isha S Shirvaikar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indy Cabeda Diaz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
15
|
Chen X, Liu C, Wang J, Du C. Hematopoietic Stem Cells as an Integrative Hub Linking Lifestyle to Cardiovascular Health. Cells 2024; 13:712. [PMID: 38667327 PMCID: PMC11049205 DOI: 10.3390/cells13080712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite breakthroughs in modern medical care, the incidence of cardiovascular disease (CVD) is even more prevalent globally. Increasing epidemiologic evidence indicates that emerging cardiovascular risk factors arising from the modern lifestyle, including psychosocial stress, sleep problems, unhealthy diet patterns, physical inactivity/sedentary behavior, alcohol consumption, and tobacco smoking, contribute significantly to this worldwide epidemic, while its underpinning mechanisms are enigmatic. Hematological and immune systems were recently demonstrated to play integrative roles in linking lifestyle to cardiovascular health. In particular, alterations in hematopoietic stem cell (HSC) homeostasis, which is usually characterized by proliferation, expansion, mobilization, megakaryocyte/myeloid-biased differentiation, and/or the pro-inflammatory priming of HSCs, have been shown to be involved in the persistent overproduction of pro-inflammatory myeloid leukocytes and platelets, the cellular protagonists of cardiovascular inflammation and thrombosis, respectively. Furthermore, certain lifestyle factors, such as a healthy diet pattern and physical exercise, have been documented to exert cardiovascular protective effects through promoting quiescence, bone marrow retention, balanced differentiation, and/or the anti-inflammatory priming of HSCs. Here, we review the current understanding of and progression in research on the mechanistic interrelationships among lifestyle, HSC homeostasis, and cardiovascular health. Given that adhering to a healthy lifestyle has become a mainstream primary preventative approach to lowering the cardiovascular burden, unmasking the causal links between lifestyle and cardiovascular health from the perspective of hematopoiesis would open new opportunities to prevent and treat CVD in the present age.
Collapse
Affiliation(s)
| | | | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| |
Collapse
|
16
|
Jahn D, Knapstein PR, Otto E, Köhli P, Sevecke J, Graef F, Graffmann C, Fuchs M, Jiang S, Rickert M, Erdmann C, Appelt J, Revend L, Küttner Q, Witte J, Rahmani A, Duda G, Xie W, Donat A, Schinke T, Ivanov A, Tchouto MN, Beule D, Frosch KH, Baranowsky A, Tsitsilonis S, Keller J. Increased β 2-adrenergic signaling promotes fracture healing through callus neovascularization in mice. Sci Transl Med 2024; 16:eadk9129. [PMID: 38630849 DOI: 10.1126/scitranslmed.adk9129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Traumatic brain injury (TBI) leads to skeletal changes, including bone loss in the unfractured skeleton, and paradoxically accelerates healing of bone fractures; however, the mechanisms remain unclear. TBI is associated with a hyperadrenergic state characterized by increased norepinephrine release. Here, we identified the β2-adrenergic receptor (ADRB2) as a mediator of skeletal changes in response to increased norepinephrine. In a murine model of femoral osteotomy combined with cortical impact brain injury, TBI was associated with ADRB2-dependent enhanced fracture healing compared with osteotomy alone. In the unfractured 12-week-old mouse skeleton, ADRB2 was required for TBI-induced decrease in bone formation and increased bone resorption. Adult 30-week-old mice had higher bone concentrations of norepinephrine, and ADRB2 expression was associated with decreased bone volume in the unfractured skeleton and better fracture healing in the injured skeleton. Norepinephrine stimulated expression of vascular endothelial growth factor A and calcitonin gene-related peptide-α (αCGRP) in periosteal cells through ADRB2, promoting formation of osteogenic type-H vessels in the fracture callus. Both ADRB2 and αCGRP were required for the beneficial effect of TBI on bone repair. Adult mice deficient in ADRB2 without TBI developed fracture nonunion despite high bone formation in uninjured bone. Blocking ADRB2 with propranolol impaired fracture healing in mice, whereas the ADRB2 agonist formoterol promoted fracture healing by regulating callus neovascularization. A retrospective cohort analysis of 72 patients with long bone fractures indicated improved callus formation in 36 patients treated with intravenous norepinephrine. These findings suggest that ADRB2 is a potential therapeutic target for promoting bone healing.
Collapse
Affiliation(s)
- Denise Jahn
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Paul Richard Knapstein
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Ellen Otto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Paul Köhli
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 13353 Berlin, Germany
| | - Jan Sevecke
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Frank Graef
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 13353 Berlin, Germany
| | - Christine Graffmann
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Melanie Fuchs
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Shan Jiang
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Mayla Rickert
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Cordula Erdmann
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Jessika Appelt
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Lawik Revend
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
| | - Quin Küttner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
| | - Jason Witte
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Adibeh Rahmani
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Georg Duda
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Weixin Xie
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Antonia Donat
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Thorsten Schinke
- University Medical Center Hamburg-Eppendorf, Department of Osteology and Biomechanics, 20251 Hamburg, Germany
| | - Andranik Ivanov
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Mireille Ngokingha Tchouto
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Karl-Heinz Frosch
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Anke Baranowsky
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Serafeim Tsitsilonis
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Johannes Keller
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| |
Collapse
|
17
|
Juan C, Bancroft AC, Choi JH, Nunez JH, Pagani CA, Lin YS, Hsiao EC, Levi B. Intersections of Fibrodysplasia Ossificans Progressiva and Traumatic Heterotopic Ossification. Biomolecules 2024; 14:349. [PMID: 38540768 PMCID: PMC10968060 DOI: 10.3390/biom14030349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Heterotopic ossification (HO) is a debilitating pathology where ectopic bone develops in areas of soft tissue. HO can develop as a consequence of traumatic insult or as a result of dysregulated osteogenic signaling, as in the case of the orphan disease fibrodysplasia ossificans progressiva (FOP). Traumatic HO (tHO) formation is mediated by the complex interplay of signaling between progenitor, inflammatory, and nerve cells, among others, making it a challenging process to understand. Research into the pathogenesis of genetically mediated HO (gHO) in FOP has established a pathway involving uninhibited activin-like kinase 2 receptor (ALK2) signaling that leads to downstream osteogenesis. Current methods of diagnosis and treatment lag behind pre-mature HO detection and progressive HO accumulation, resulting in irreversible decreases in range of motion and chronic pain for patients. As such, it is necessary to draw on advancements made in the study of tHO and gHO to better diagnose, comprehend, prevent, and treat both.
Collapse
Affiliation(s)
- Conan Juan
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Alec C. Bancroft
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Ji Hae Choi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Johanna H. Nunez
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Chase A. Pagani
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Yen-Sheng Lin
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics, and the Program in Craniofacial Biology, University of California San Francisco Medical Center, San Francisco, CA 94143, USA;
| | - Benjamin Levi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| |
Collapse
|
18
|
李 怀, 韩 凤, 孟 静, 常 文, 冯 立. [Research progress on mechanism of traumatic brain injury promoting fracture healing]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:125-132. [PMID: 38225852 PMCID: PMC10796220 DOI: 10.7507/1002-1892.202310045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/17/2023] [Indexed: 01/17/2024]
Abstract
Objective To summarize the research progress on the mechanism related to traumatic brain injury (TBI) to promote fracture healing, and to provide theoretical basis for clinical treatment of fracture non-union. Methods The research literature on TBI to promote fracture healing at home and abroad was reviewed, the role of TBI in fracture healing was summarized from three aspects of nerves, body fluids, and immunity, to explore new ideas for the treatment of fracture non-union. Results Numerous studies have shown that fracture healing is faster in patients with fracture combined with TBI than in patients with simple fracture. It is found that the expression of various cytokines and hormones in the body fluids of patients with fracture and TBI is significantly higher than that of patients with simple fracture, and the neurofactors released by the nervous system reaches the fracture site through the damaged blood-brain barrier, and the chemotaxis and aggregation of inflammatory cells and inflammatory factors at the fracture end of patients with combined TBI also differs significantly from those of patients with simple fracture. A complex network of humoral, neural, and immunomodulatory networks together promote regeneration of blood vessels at the fracture site, osteoblasts differentiation, and inhibition of osteoclasts activity. Conclusion TBI promotes fracture healing through a complex network of neural, humoral, and immunomodulatory, and can treat fracture non-union by intervening in the perifracture microenvironment.
Collapse
Affiliation(s)
- 怀任 李
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 凤平 韩
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 静 孟
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 文利 常
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 立 冯
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| |
Collapse
|