1
|
Venkatachalam S, Jabir T, Vipindas PV, Krishnan KP. Ecological significance of Candidatus ARS69 and Gemmatimonadota in the Arctic glacier foreland ecosystems. Appl Microbiol Biotechnol 2024; 108:128. [PMID: 38229335 DOI: 10.1007/s00253-023-12991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
The Gemmatimonadota phylum has been widely detected in diverse natural environments, yet their specific ecological roles in many habitats remain poorly investigated. Similarly, the Candidatus ARS69 phylum has been identified only in a few habitats, and literature on their metabolic functions is relatively scarce. In the present study, we investigated the ecological significance of phyla Ca. ARS69 and Gemmatimonadota in the Arctic glacier foreland (GF) ecosystems through genome-resolved metagenomics. We have reconstructed the first high-quality metagenome-assembled genome (MAG) belonging to Ca. ARS69 and 12 other MAGs belonging to phylum Gemmatimonadota from the three different Arctic GF samples. We further elucidated these two groups phylogenetic lineage and their metabolic function through phylogenomic and pangenomic analysis. The analysis showed that all the reconstructed MAGs potentially belonged to novel species. The MAGs belonged to Ca. ARS69 consist about 8296 gene clusters, of which only about 8% of single-copy core genes (n = 980) were shared among them. The study also revealed the potential ecological role of Ca. ARS69 is associated with carbon fixation, denitrification, sulfite oxidation, and reduction biochemical processes in the GF ecosystems. Similarly, the study demonstrates the widespread distribution of different classes of Gemmatimonadota across wide ranges of ecosystems and their metabolic functions, including in the polar region. KEY POINTS: • Glacier foreland ecosystems act as a natural laboratory to study microbial community structure. • We have reconstructed 13 metagenome-assembled genomes from the soil samples. • All the reconstructed MAGs belonged to novel species with different metabolic processes. • Ca. ARS69 and Gemmatimonadota MAGs were found to participate in carbon fixation and denitrification processes.
Collapse
Affiliation(s)
- Siddarthan Venkatachalam
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India.
| | - Thajudeen Jabir
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| | - Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| |
Collapse
|
2
|
Xun W, Liu Y, Ma A, Yan H, Miao Y, Shao J, Zhang N, Xu Z, Shen Q, Zhang R. Dissection of rhizosphere microbiome and exploiting strategies for sustainable agriculture. THE NEW PHYTOLOGIST 2024; 242:2401-2410. [PMID: 38494698 DOI: 10.1111/nph.19697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The rhizosphere microbiome plays critical roles in plant growth and provides promising solutions for sustainable agriculture. While the rhizosphere microbiome frequently fluctuates with the soil environment, recent studies have demonstrated that a small proportion of the microbiome is consistently assembled in the rhizosphere of a specific plant genotype regardless of the soil condition, which is determined by host genetics. Based on these breakthroughs, which involved exploiting the plant-beneficial function of the rhizosphere microbiome, we propose to divide the rhizosphere microbiome into environment-dominated and plant genetic-dominated components based on their different assembly mechanisms. Subsequently, two strategies to explore the different rhizosphere microbiome components for agricultural production are suggested, that is, the precise management of the environment-dominated rhizosphere microbiome by agronomic practices, and the elucidation of the plant genetic basis of the plant genetic-dominated rhizosphere microbiome for breeding microbiome-assisted crop varieties. We finally present the major challenges that need to be overcome to implement strategies for modulating these two components of the rhizosphere microbiome.
Collapse
Affiliation(s)
- Weibing Xun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aiyuan Ma
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Yan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Venkatachalam S, Vipindas PV, Jabir T, Jain A, Krishnan KP. Metagenomic insights into novel microbial lineages with distinct ecological functions in the Arctic glacier foreland ecosystems. ENVIRONMENTAL RESEARCH 2024; 241:117726. [PMID: 37984782 DOI: 10.1016/j.envres.2023.117726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Land-terminating glaciers are retreating globally, resulting in the expansion of the ice-free glacier forelands (GFs). These GFs act as a natural laboratory to study microbial community succession, soil formation, and ecosystem development. Here, we have employed gene-centric and genome-resolved metagenomic approaches to disseminate microbial diversity, community structure, and their associated biogeochemical processes involved in the carbon, nitrogen, and sulfur cycling across three GF ecosystems. Here, we present a compendium of draft Metagenome Assembled Genomes (MAGs) belonging to bacterial (n = 899) and archaeal (n = 4) domains. These MAGs were reconstructed using a total of 27 shotgun metagenomic datasets obtained from three different GFs, including Midtre Lovénbreen glacier (Svalbard), Russell glacier (Greenland), and Storglaciaren (Sweden). The taxonomic classification revealed that 98% of MAGs remained unclassified at species levels, suggesting the presence of novel microbial lineages. The abundance of metabolic genes associated with carbon, nitrogen, and sulfur cycling pathways varied between and within the samples collected across the three GF ecosystems. Our findings indicate that MAGs from different GFs share close phylogenetic relationships but exhibit significant differences in abundance, distribution patterns, and metabolic functions. This compendium of novel MAGs, encompassing autotrophic, phototrophic, and chemolithoautotrophic microbial groups reconstructed from GF ecosystems, represents a valuable resource for further studies.
Collapse
Affiliation(s)
- Siddarthan Venkatachalam
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India.
| | - Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| | - Thajudeen Jabir
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| | - Anand Jain
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| |
Collapse
|
4
|
Doherty SJ, Busby RR, Baker CCM, Barbato RA. Rhizosphere microbial community structure differs between constant subzero and freeze-thaw temperature regimes in a subarctic soil. FEMS Microbiol Ecol 2023; 99:fiad147. [PMID: 37962959 DOI: 10.1093/femsec/fiad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023] Open
Abstract
In the Arctic and subarctic, climate change is causing reduced snowpack extent and earlier snowmelt. Shallower snowpack decreases the thermal insulation of underlying soil and results in more freeze-thaw conditions reflective of dynamic air temperatures. The aim of this study was to determine the effect of alternative temperature regimes on overall microbial community structure and rhizosphere recruitment across representatives of three subarctic plant functional groups. We hypothesized that temperature regime would influence rhizosphere community structure more than plant type. Planted microcosms were established using a tree, forb, grass, or no plant control and subjected to either freeze-thaw cycling or static subzero temperatures. Our results showed rhizosphere communities exhibited reduced diversity compared to bulk soils, and were influenced by temperature conditions and to a lesser extent plant type. We found that plants have a core microbiome that is persistent under different winter temperature scenarios but also have temperature regime-specific rhizosphere microbes. Freeze-thaw cycling resulted in greater community shifts from the pre-incubation soils when compared to constant subzero temperature. This finding suggests that wintertime snowpack conditions may be a significant factor for plant-microbe interactions upon spring thaw.
Collapse
Affiliation(s)
- Stacey J Doherty
- United States Army, Engineer Research Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH 03755, United States
| | - Ryan R Busby
- United States Army, Engineer Research Development Center, Construction Engineering Research Laboratory, Champaign, IL 61826, United States
| | - Christopher C M Baker
- United States Army, Engineer Research Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH 03755, United States
| | - Robyn A Barbato
- United States Army, Engineer Research Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH 03755, United States
| |
Collapse
|
5
|
Hou M, Zhao X, Wang Y, Lv X, Chen Y, Jiao X, Sui Y. Pedogenesis of typical zonal soil drives belowground bacterial communities of arable land in the Northeast China Plain. Sci Rep 2023; 13:14555. [PMID: 37666914 PMCID: PMC10477331 DOI: 10.1038/s41598-023-41401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
Belowground bacterial communities play essential roles in maintaining ecosystem multifunction, while our understanding of how and why their distribution patterns and community compositions may change with the distinct pedogenetic conditions of different soil types is still limited. Here, we evaluated the roles of soil physiochemical properties and biotic interactions in driving belowground bacterial community composition across three typical zonal soil types, including black calcium soil (QS), typical black soil (HL) and dark brown soil (BQL), with distinct pedogenesis on the Northeast China Plain. Changes in soil bacterial diversity and community composition in these three zonal soil types were strongly correlated with soil pedogenetic features. SOC concentrations in HL were higher than in QS and BQL, but bacterial diversity was low, and the network structure revealed greater stability and connectivity. The composition of the bacterial community correlated significantly with soil pH in QS but with soil texture in BQL. The bacterial co-occurrence network of HL had higher density and clustering coefficients but lower edges, and different keystone species of networks were also detected. This work provides a basic understanding of the driving mechanisms responsible for belowground bacterial biodiversity and distribution patterns over different pedogenetic conditions in agroecosystems.
Collapse
Affiliation(s)
- Meng Hou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China
| | - Xiaorui Zhao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
| | - Yao Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China
| | - Xuemei Lv
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, 150080, Harbin, People's Republic of China
| | - Yimin Chen
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
| | - Xiaoguang Jiao
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, 150080, Harbin, People's Republic of China.
| | - Yueyu Sui
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China.
- University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Fusi M, Ngugi DK, Marasco R, Booth JM, Cardinale M, Sacchi L, Clementi E, Yang X, Garuglieri E, Fodelianakis S, Michoud G, Daffonchio D. Gill-associated bacteria are homogeneously selected in amphibious mangrove crabs to sustain host intertidal adaptation. MICROBIOME 2023; 11:189. [PMID: 37612775 PMCID: PMC10463870 DOI: 10.1186/s40168-023-01629-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND The transition from water to air is a key event in the evolution of many marine organisms to access new food sources, escape water hypoxia, and exploit the higher and temperature-independent oxygen concentration of air. Despite the importance of microorganisms in host adaptation, their contribution to overcoming the challenges posed by the lifestyle changes from water to land is not well understood. To address this, we examined how microbial association with a key multifunctional organ, the gill, is involved in the intertidal adaptation of fiddler crabs, a dual-breathing organism. RESULTS Electron microscopy revealed a rod-shaped bacterial layer tightly connected to the gill lamellae of the five crab species sampled across a latitudinal gradient from the central Red Sea to the southern Indian Ocean. The gill bacterial community diversity assessed with 16S rRNA gene amplicon sequencing was consistently low across crab species, and the same actinobacterial group, namely Ilumatobacter, was dominant regardless of the geographic location of the host. Using metagenomics and metatranscriptomics, we detected that these members of actinobacteria are potentially able to convert ammonia to amino acids and may help eliminate toxic sulphur compounds and carbon monoxide to which crabs are constantly exposed. CONCLUSIONS These results indicate that bacteria selected on gills can play a role in the adaptation of animals in dynamic intertidal ecosystems. Hence, this relationship is likely to be important in the ecological and evolutionary processes of the transition from water to air and deserves further attention, including the ontogenetic onset of this association. Video Abstract.
Collapse
Affiliation(s)
- Marco Fusi
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Centre for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK.
| | - David K Ngugi
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Ramona Marasco
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jenny Marie Booth
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Massimiliano Cardinale
- Institute of Applied Microbiology Research Center for BioSystems, Land Use, and Nutrition (IFZ) Justus-Liebig-University Giessen, D-35392, Giessen, Germany
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, I-73100, Lecce, Italy
| | - Luciano Sacchi
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, I-27100, Pavia, Italy
| | - Emanuela Clementi
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, I-27100, Pavia, Italy
| | - Xinyuan Yang
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Elisa Garuglieri
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Stilianos Fodelianakis
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Grégoire Michoud
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Daniele Daffonchio
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
7
|
Liu J, Sun X, Zuo Y, Hu Q, He X. Plant species shape the bacterial communities on the phyllosphere in a hyper-arid desert. Microbiol Res 2023; 269:127314. [PMID: 36724560 DOI: 10.1016/j.micres.2023.127314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Microorganisms are an important component of global biodiversity. However, they are vulnerable to hyper-arid climates in desert regions. Xerophytes are desert vegetation with unique biodiversity. However, little is known about the identities and communities of phyllosphere epiphytic microorganisms inhabiting the xerophyte leaf surface in the hot and dry environment. The diversity and community composition of phyllosphere epiphytes on different desert plants in Gansu, China, was investigated using the next-generation sequencing technique, revealing the diversity and community composition of the phyllosphere epiphytic bacteria associated with desert xerophytes. In addition, the ecological functions of the bacterial communities were investigated by combining the sequence classification information and prokaryotic taxonomic function annotation (FAPROTAX). This study determined the phyllosphere bacterial community composition, microbial interactions, and their functions. Despite harsh environments in the arid desert, we found that there are still diverse epiphytic bacteria on the leaves of desert plants. The bacterial communities mainly included Actinobacteria (52.79%), Firmicutes (31.62%), and Proteobacteria (12.20%). Further comparisons revealed different microbial communities, including Firmicutes at the phylum and Paenibacillaceae at the family level, in the phyllosphere among different plants, suggesting that the host plants had strong filter effects on bacteria. Co-occurrence network analysis revealed positive relationships were dominant among different bacterial taxa. The abundance of Actinobacteria and Proteobacteria was positively correlated, demonstrating their mutual relationship. On the other hand, the abundance of Firmicutes was negatively correlated, which suggested that they inhibit the growth of other bacterial taxa. FAPROTAX prediction revealed that chemoheterotrophy (accounting for 39.02% of the community) and aerobic chemoheterotrophy (37.01%) were the main functions of the leaf epiphytic bacteria on desert plants. This study improves our understanding of the community composition and ecological functions of plant-associated microbial communities inhabiting scattered niches in the desert ecosystem. In addition, the study provides insight into the biodiversity assessment in the desert region.
Collapse
Affiliation(s)
- Jiaqiang Liu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiang Sun
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Yiling Zuo
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Qiannan Hu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xueli He
- School of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
8
|
Klarenberg IJ, Keuschnig C, Salazar A, Benning LG, Vilhelmsson O. Moss and underlying soil bacterial community structures are linked to moss functional traits. Ecosphere 2023. [DOI: 10.1002/ecs2.4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Affiliation(s)
- Ingeborg J. Klarenberg
- Natural Resource Sciences University of Akureyri Akureyri Iceland
- Faculty of Life and Environmental Sciences University of Iceland Reykjavík Iceland
- Department of Ecological Science Vrije Universiteit Amsterdam Amsterdam Netherlands
| | - Christoph Keuschnig
- Environmental Microbial Genomics Laboratoire Ampère, CNRS, École Centrale de Lyon Écully France
- German Research Centre for Geosciences (GFZ) Interface Geochemistry Potsdam Germany
| | - Alejandro Salazar
- Faculty of Environmental and Forest Sciences Agricultural University of Iceland Reykjavík Iceland
| | - Liane G. Benning
- German Research Centre for Geosciences (GFZ) Interface Geochemistry Potsdam Germany
- Department of Earth Sciences Free University of Berlin Berlin Germany
| | - Oddur Vilhelmsson
- Natural Resource Sciences University of Akureyri Akureyri Iceland
- BioMedical Center University of Iceland Reykjavík Iceland
| |
Collapse
|
9
|
Tran HT, Nguyen HM, Nguyen TMH, Chang C, Huang WL, Huang CL, Chiang TY. Microbial Communities Along 2,3,7,8-tetrachlorodibenzodioxin Concentration Gradient in Soils Polluted with Agent Orange Based on Metagenomic Analyses. MICROBIAL ECOLOGY 2023; 85:197-208. [PMID: 35034142 DOI: 10.1007/s00248-021-01953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The 2,3,7,8-tetrachlorodibenzodioxin (TCDD), a contaminant in Agent Orange released during the US-Vietnam War, led to a severe environmental crisis. Approximately, 50 years have passed since the end of this war, and vegetation has gradually recovered from the pollution. Soil bacterial communities were investigated by 16S metagenomics in habitats with different vegetation physiognomies in Central Vietnam, namely, forests (S0), barren land (S1), grassland (S2), and developing woods (S3). Vegetation complexity was negatively associated with TCDD concentrations, revealing the reasoning behind the utilization of vegetation physiognomy as an indicator for ecological succession along the gradient of pollutants. Stark changes in bacterial composition were detected between S0 and S1, with an increase in Firmicutes and a decrease in Acidobacteria and Bacteroidetes. Notably, dioxin digesters Arthrobacter, Rhodococcus, Comamonadaceae, and Bacialles were detected in highly contaminated soil (S1). Along the TCDD gradients, following the dioxin decay from S1 to S2, the abundance of Firmicutes and Actinobacteria decreased, while that of Acidobacteria increased; slight changes occurred at the phylum level from S2 to S3. Although metagenomics analyses disclosed a trend toward bacterial communities before contamination with vegetation recovery, non-metric multidimensional scaling analysis unveiled a new trajectory deviating from the native state. Recovery of the bacterial community may have been hindered, as indicated by lower bacterial diversity in S3 compared to S0 due to a significant loss of bacterial taxa and recruitment of fewer colonizers. The results indicate that dioxins significantly altered the soil microbiomes into a state of disorder with a deviating trajectory in restoration.
Collapse
Affiliation(s)
- Huyen-Trang Tran
- Department of Biology, Vinh University, Vinh, Nghe An, 461010, Vietnam
| | - Hung-Minh Nguyen
- Center for responding to climate change, Department of Climate Change, Ministry of Natural Resources and Environment, Hanoi, 125000, Vietnam
| | - Thi-Minh-Hue Nguyen
- Analytical laboratory for Environment, Dioxin and Toxins, Northern Center for Environmental Monitoring, Vietnam Environment Administration, Hanoi, 115000, Vietnam
| | - Chieh Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wei-Ling Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chao-Li Huang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
10
|
la Rosa GMD, García-Oliva F, Ovando-Vázquez C, Celis-García LB, López-Reyes L, López-Lozano NE. Amino Acids in the Root Exudates of Agave lechuguilla Torr. Favor the Recruitment and Enzymatic Activity of Nutrient-Improvement Rhizobacteria. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02162-x. [PMID: 36571608 DOI: 10.1007/s00248-022-02162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Agave lechuguilla is a widely distributed plant in arid ecosystems. It has been suggested that its microbiome is partially responsible for its great adaptability to the oligotrophic environments of the Chihuahuan Desert. To lead the recruitment of beneficial rhizobacteria, the root exudates are essential; however, the amino acids contained within these compounds had been largely overlooked. Thus, we investigated how the variations of amino acids in the rhizosphere at different growth stages of A. lechuguilla affect the rhizobacterial community composition, its functions, and activity of the beneficial bacteria. In this regard, it was found that arginine and tyrosine were related to the composition of the rhizobacterial community associated to A. lechuguilla, where the most abundant genera were from the phylum Proteobacteria and Bacteroidetes. Moreover, Firmicutes was largely represented by Bacillus in the phosphorus-mineralizing bacteria community, which may indicate its great distribution and versatility in the harsh environments of the Chihuahuan Desert. In contrast, we found a high proportion of Unknown taxa of nitrogen-fixing bacteria, reflecting the enormous diversity in the rhizosphere of these types of plants that remains to be explored. This work also reports the influence of micronutrients and the amino acids methionine and arginine over the increased activity of the nitrogen-fixing and phosphorus-mineralizing bacteria in the rhizosphere of lechuguillas. In addition, the results highlight the multiple beneficial functions present in the microbiome that could help the host to tolerate arid conditions and improve nutrient availability.
Collapse
Affiliation(s)
- Guadalupe Medina-de la Rosa
- CONACyT-División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica, A.C., Camino a La Presa de San José 2055, Lomas 4Ta Secc, 78216, San Luis Potosí, S.L.P., Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas Y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, Mich, Mexico
| | - Cesaré Ovando-Vázquez
- CONACyT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica Y Tecnológica, A.C., 78216, San Luis Potosí, S.L.P., Mexico
| | - Lourdes B Celis-García
- CONACyT-División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica, A.C., Camino a La Presa de San José 2055, Lomas 4Ta Secc, 78216, San Luis Potosí, S.L.P., Mexico
| | - Lucía López-Reyes
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, 72000, Puebla, Pue., Mexico
| | - Nguyen Esmeralda López-Lozano
- CONACyT-División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica, A.C., Camino a La Presa de San José 2055, Lomas 4Ta Secc, 78216, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
11
|
Chen S, Xiang X, Ma H, Penttinen P, Zheng T, Huang X, Fan G. Response of soil bacterial communities in wheat rhizosphere to straw mulching and N fertilization. Front Microbiol 2022; 13:982109. [PMID: 36569087 PMCID: PMC9780536 DOI: 10.3389/fmicb.2022.982109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Straw mulching and N fertilization are effective in augmenting crop yields. Since their combined effects on wheat rhizosphere bacterial communities remain largely unknown, our aim was to assess how the bacterial communities respond to these agricultural measures. We studied wheat rhizosphere microbiomes in a split-plot design experiment with maize straw mulching (0 and 8,000 kg straw ha-1) as the main-plot treatment and N fertilization (0, 120 and 180 kg N ha-1) as the sub-plot treatment. Bacterial communities in the rhizosphere were analyzed using 16S rRNA gene amplicon sequencing and quantitative PCR. Most of the differences in soil physicochemical properties and rhizosphere bacterial communities were detected between the straw mulching (SM) and no straw mulching (NSM) treatments. The contents of soil organic C (SOC), total N (TN), NH4 +-N, available N (AN), available P (AP) and available K (AK) were higher with than without mulching. Straw mulching led to greater abundance, diversity and richness of the rhizosphere bacterial communities. The differences in bacterial community composition were related to differences in soil temperature and SOC, AP and AK contents. Straw mulching altered the soil physiochemical properties, leading to greater bacterial diversity and richness of the rhizosphere bacterial communities, likely mostly due to the increase in SOC content that provided an effective C source for the bacteria. The relative abundance of Proteobacteria was high in all treatments and most of the differentially abundant OTUs were proteobacterial. Multiple OTUs assigned to Acidobacteria, Chloroflexi and Actinobacteria were enriched in the SM treatment. Putative plant growth promoters were enriched both in the SM and NSM treatments. These findings indicate potential strategies for the agricultural management of soil microbiomes.
Collapse
Affiliation(s)
- Songhe Chen
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoling Xiang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hongliang Ma
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Petri Penttinen
- Department of Microbiology College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ting Zheng
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiulan Huang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gaoqiong Fan
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Rolli E, Marasco R, Fusi M, Scaglia B, Schubotz F, Mapelli F, Ciccazzo S, Brusetti L, Trombino L, Tambone F, Adani F, Borin S, Daffonchio D. Environmental micro-niche filtering shapes bacterial pioneer communities during primary colonization of a Himalayas' glacier forefield. Environ Microbiol 2022; 24:5998-6016. [PMID: 36325730 PMCID: PMC10099744 DOI: 10.1111/1462-2920.16268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The pedogenesis from the mineral substrate released upon glacier melting has been explained with the succession of consortia of pioneer microorganisms, whose structure and functionality are determined by the environmental conditions developing in the moraine. However, the microbiome variability that can be expected in the environmentally heterogeneous niches occurring in a moraine at a given successional stage is poorly investigated. In a 50 m2 area in the forefield of the Lobuche glacier (Himalayas, 5050 m above sea level), we studied six sites of primary colonization presenting different topographical features (orientation, elevation and slope) and harbouring greyish/dark biological soil crusts (BSCs). The spatial vicinity of the sites opposed to their topographical differences, allowed us to examine the effect of environmental conditions independently from the time of deglaciation. The bacterial microbiome diversity and their co-occurrence network, the bacterial metabolisms predicted from 16S rRNA gene high-throughput sequencing, and the microbiome intact polar lipids were investigated in the BSCs and the underlying sediment deep layers (DLs). Different bacterial microbiomes inhabited the BSCs and the DLs, and their composition varied among sites, indicating a niche-specific role of the micro-environmental conditions in the bacterial communities' assembly. In the heterogeneous sediments of glacier moraines, physico-chemical and micro-climatic variations at the site-spatial scale are crucial in shaping the microbiome microvariability and structuring the pioneer bacterial communities during pedogenesis.
Collapse
Affiliation(s)
- Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Centre for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK
| | - Barbara Scaglia
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Florence Schubotz
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sonia Ciccazzo
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Luca Trombino
- Department of Earth Sciences 'Ardito Desio', University of Milan, Milan, Italy
| | - Fulvia Tambone
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Fabrizio Adani
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
13
|
Son D, Lee EJ. Soil Microbial Communities Associated with Three Arctic Plants in Different Local Environments in Ny-Ålesund, Svalbard. J Microbiol Biotechnol 2022; 32:1275-1283. [PMID: 36198667 PMCID: PMC9668094 DOI: 10.4014/jmb.2208.08009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
Understanding soil microbial community structure in the Arctic is essential for predicting the impact of climate change on interactions between organisms living in polar environments. The hypothesis of the present study was that soil microbial communities and soil chemical characteristics would vary depending on their associated plant species and local environments in Arctic mature soils. We analyzed soil bacterial communities and soil chemical characteristics from soil without vegetation (bare soil) and rhizosphere soil of three Arctic plants (Cassiope tetragona [L.] D. Don, Dryas octopetala L. and Silene acaulis [L.] Jacq.) in different local environments (coal-mined site and seashore-adjacent site). We did not observe any clear differences in microbial community structure in samples belonging to different plant rhizospheres; however, samples from different environmental sites had distinct microbial community structure. The samples from coal-mined site had a relatively higher abundance of Bacteroidetes and Firmicutes. On the other hand, Acidobacteria was more prevalent in seashore-adjacent samples. The relative abundance of Proteobacteria and Acidobacteria decreased toward higher soil pH, whereas that of Bacteroidetes and Firmicutes was positively correlated with soil pH. Our results suggest that soil bacterial community dissimilarity can be driven by spatial heterogeneity in deglaciated mature soil. Furthermore, these results indicate that soil microbial composition and relative abundance are more affected by soil pH, an abiotic factor, than plant species, a biotic factor.
Collapse
Affiliation(s)
- Deokjoo Son
- College of Education Department of Science Education, Dankook University, Gyeonggi-do 16890, Republic of Korea,Corresponding author Phone: +82-31-8005-3844 E-mail:
| | - Eun Ju Lee
- Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Mapelli F, Vergani L, Terzaghi E, Zecchin S, Raspa G, Marasco R, Rolli E, Zanardini E, Morosini C, Anelli S, Nastasio P, Sale VM, Armiraglio S, Di Guardo A, Borin S. Pollution and edaphic factors shape bacterial community structure and functionality in historically contaminated soils. Microbiol Res 2022; 263:127144. [PMID: 35908425 DOI: 10.1016/j.micres.2022.127144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Studies about biodegradation potential in soils often refer to artificially contaminated and simplified systems, overlooking the complexity associated with contaminated sites in a real context. This work aims to provide a holistic view on microbiome assembly and functional diversity in the model site SIN Brescia-Caffaro (Italy), characterized by historical and uneven contamination by organic and inorganic compounds. Here, physical and chemical analyses and microbiota characterization were applied on one-hundred-twenty-seven soil samples to unravel the environmental factors driving bacterial community assembly and biodegradation potential in three former agricultural fields. Chemical analyses showed a patchy distribution of metals, metalloids and polychlorinated biphenyls (PCB) and allowed soil categorization according to depth and area of collections. Likewise, the bacterial community structure, described by molecular fingerprinting and 16S rRNA gene analyses, was significantly different according to collection site and depth. Pollutant concentrations (i.e., hexachloro-biphenyls, arsenic and mercury), nitrogen content and parameters related to soil texture were identified as main drivers of microbiota assembly, being significantly correlated to bacterial community composition. Moreover, bacteria putatively involved in the aerobic degradation of PCBs were enriched over the total bacterial community in topsoils, where the highest activity was recorded using fluorescein hydrolysis as proxy. Metataxonomic analyses revealed the presence of bacteria having metabolic pathways related to PCB degradation and tolerance to heavy metals and metalloids in the topsoil samples collected in all areas. Overall, the provided dissection of soil microbiota structure and its degradation potential in the SIN Brescia-Caffaro can contribute to target specific areas for rhizoremediation implementation. Metagenomics studies could be implemented in the future to understand if specific degradative pathways are present in historically polluted sites characterized by the co-occurrence of multiple classes of contaminants.
Collapse
Affiliation(s)
- Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, Italy
| | - Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, Italy
| | - Elisa Terzaghi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - Sarah Zecchin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, Italy
| | - Giuseppe Raspa
- Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, Italy
| | - Elisabetta Zanardini
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - Cristiana Morosini
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - Simone Anelli
- Ente Regionale per i Servizi all'Agricoltura e alle Foreste, Via Pola 12, Milan, Italy
| | - Paolo Nastasio
- Ente Regionale per i Servizi all'Agricoltura e alle Foreste, Via Pola 12, Milan, Italy
| | - Vanna Maria Sale
- Ente Regionale per i Servizi all'Agricoltura e alle Foreste, Via Pola 12, Milan, Italy
| | - Stefano Armiraglio
- Municipality of Brescia - Museum of Natural Sciences, Via Ozanam 4, Brescia, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, Italy.
| |
Collapse
|
15
|
Marasco R, Alturkey H, Fusi M, Brandi M, Ghiglieno I, Valenti L, Daffonchio D. Rootstock-scion combination contributes to shape diversity and composition of microbial communities associated with grapevine root system. Environ Microbiol 2022; 24:3791-3808. [PMID: 35581159 PMCID: PMC9544687 DOI: 10.1111/1462-2920.16042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
Abstract
To alleviate biotic and abiotic stresses and enhance fruit yield, many crops are cultivated in the form of grafted plants, in which the shoot (scion) and root (rootstock) systems of different species are joined together. Because (i) the plant species determines the microbial recruitment from the soil to the root and (ii) both scion and rootstock impact the physiology, morphology and biochemistry of the grafted plant, it can be expected that their different combinations should affect the recruitment and assembly of plant microbiome. To test our hypothesis, we investigated at a field scale the bacterial and fungal communities associated with the root system of seven grapevine rootstock–scion combinations cultivated across 10 different vineyards. Following the soil type, which resulted in the main determinant of the grapevine root microbial community diversity, the rootstock–scion combination resulted more important than the two components taken alone. Notably, the microbiome differences among the rootstock–scion combinations were mainly dictated by the changes in the relative abundance of microbiome members rather than by their presence/absence. These results reveal that the microbiome of grafted grapevine root systems is largely influenced by the combination of rootstock and scion, which affects the microbial diversity uptaken from soil.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Hend Alturkey
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Michele Brandi
- Marchesi Frescobaldi Società Agricola s.p.a. Fattoria Poggio a Remole, Sieci, Italy
| | - Isabella Ghiglieno
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy.,Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Agrofood Research Hub, Brescia, Italy
| | - Leonardo Valenti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Precision Probiotics in Agroecosystems: Multiple Strategies of Native Soil Microbiotas for Conquering the Competitor Ralstonia solanacearum. mSystems 2022; 7:e0115921. [PMID: 35469423 PMCID: PMC9239239 DOI: 10.1128/msystems.01159-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia solanacearum (Rs), a soilborne phytopathogen, causes bacterial wilt disease in a broad range of hosts. Common approaches, for example, the direct reduction of the pathogen using classic single broad-spectrum probiotics, suffer from poor colonization efficiency, interference by resident microbiota, and nonnative-microorganism invasion. The soil microbiota plays an important role in plant health. Revealing the intrinsic linkage between the microbiome and the occurrence of disease and then applying it to agroecosystems for the precise control of soilborne diseases should be an effective strategy. Here, we surveyed the differences in the microbiome between healthy and diseased soils used for tomato planting across six climatic regions in China by using 16S rRNA amplicon and metagenomic sequencing. The roles of species associated with disease symptoms were further validated. Healthy soil possessed more diverse bacterial communities and more potential plant probiotics than diseased soil. Healthy soil simultaneously presented multiple strategies, including specifically antagonizing Rs, decreasing the gene expression of the type III secretion system of Rs, and competing for nutrition with Rs. Bacteria enriched in diseased samples promoted the progression of tomato bacterial wilt by strengthening the chemotaxis of pathogens. Therefore, Rs and its collaborators should be jointly combatted for disease suppression. Our research provides integrated insights into a multifaceted strategy for the biocontrol of tomato bacterial wilt based on the individual network of local microbiota. IMPORTANCE In the current work, the relationship between the soil microbiota and tomato bacterial wilt on a large scale offered us a comprehensive understanding of the disease. The delicate strategy of the microbiota in soil used for growing tomatoes to conquer the strong competitor, Rs, was revealed by microbiome research. The collaborators of Rs that coexist in a common niche with Rs strengthened our understanding of the pathogenesis of bacterial wilt. Bacteria enriched in healthy soil that antagonized pathogens with high specificity provide a novel view for ecofriendly probiotics mining. Our study offers new perspectives on soilborne-pathogen biocontrol in agroecosystems by decoding the rule of the natural ecosystem.
Collapse
|
17
|
Dong K, Yu Z, Kerfahi D, Lee SS, Li N, Yang T, Adams JM. Soil microbial co-occurrence networks become less connected with soil development in a high Arctic glacier foreland succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152565. [PMID: 34953844 DOI: 10.1016/j.scitotenv.2021.152565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Classically, ecologists have considered that biota becomes more integrated and interdependent with ecosystem development in primary successional environments. However, recent work on soil microbial communities suggests that there may in fact be no change in network integration over successional time series. Here, we performed a test of this principle by identifying network-level topological features of the soil microbial co-occurrence networks in the primary successional foreland environment of the retreating high-Arctic glacier of Midtre Lovénbreen, Svalbard. Soil was sampled at sites along the foreland of inferred ages 10-90 years since deglaciation. DNA was extracted and amplicon sequenced for 16 s rRNA genes for bacteria and ITS1 region for fungi. Despite the chronologically-related soil pH decline and organic C/N accumulation, analysis on network-level topological features showed network integration did not change with inferred chronological ages, whereas network integration declined with decreasing pH and increasing total organic carbon (TOC) - both factors that can be viewed as an indicator of soil development. We also found that bacteria played a greater role in the network structure than fungi, with all keystone species in the microbial co-occurrence network being bacteria species. Both number and relative abundance of the keystone species were significantly higher when soil pH increased or TOC decreased. It appears that in the more extreme and less productive conditions of early primary succession, integration between members of soil biota into consortia may play a greater role in niche adaptation and survival. Our finding also emphasizes that ecosystem development is not simply a product of time but is influenced by locally heterogeneous factors.
Collapse
Affiliation(s)
- Ke Dong
- Life Science Major, Kyonggi University, Suwon, South Korea
| | - Zhi Yu
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Dorsaf Kerfahi
- School of Natural Sciences, Department of Biological Sciences, Keimyung University, Daegu, South Korea
| | - Sang-Seob Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Nan Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jonathan M Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Marasco R, Fusi M, Callegari M, Jucker C, Mapelli F, Borin S, Savoldelli S, Daffonchio D, Crotti E. Destabilization of the Bacterial Interactome Identifies Nutrient Restriction-Induced Dysbiosis in Insect Guts. Microbiol Spectr 2022; 10:e0158021. [PMID: 34985334 PMCID: PMC8729773 DOI: 10.1128/spectrum.01580-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Stress-associated dysbiosis of microbiome can have several configurations that, under an energy landscape conceptual framework, can change from one configuration to another due to different alternating selective forces. It has been proposed-according to the Anna Karenina Principle-that in stressed individuals the microbiome are more dispersed (i.e., with a higher within-beta diversity), evidencing the grade of dispersion as indicator of microbiome dysbiosis. We hypothesize that although dysbiosis leads to different microbial communities in terms of beta diversity, these are not necessarily differently dispersed (within-beta diversity), but they form disrupted networks that make them less resilient to stress. To test our hypothesis, we select nutrient restriction (NR) stress that impairs host fitness but does not introduce overt microbiome selectors, such as toxic compounds and pathogens. We fed the polyphagous black soldier fly, Hermetia illucens, with two NR diets and a control full-nutrient (FN) diet. NR diets were dysbiotic because they strongly affected insect growth and development, inducing significant microscale changes in physiochemical conditions of the gut compartments. NR diets established new configurations of the gut microbiome compared to FN-fed guts but with similar dispersion. However, these new configurations driven by the deterministic changes induced by NR diets were reflected in rarefied, less structured, and less connected bacterial interactomes. These results suggested that while the dispersion cannot be considered a consistent indicator of the unhealthy state of dysbiotic microbiomes, the capacity of the community members to maintain network connections and stability can be an indicator of the microbial dysbiotic conditions and their incapacity to sustain the holobiont resilience and host homeostasis. IMPORTANCE Changes in diet play a role in reshaping the gut microbiome in animals, inducing dysbiotic configurations of the associated microbiome. Although studies have reported on the effects of specific nutrient contents on the diet, studies regarding the conditions altering the microbiome configurations and networking in response to diet changes are limited. Our results showed that nutrient poor diets determine dysbiotic states of the host with reduction of insect weight and size, and increase of the times for developmental stage. Moreover, the poor nutrient diets lead to changes in the compositional diversity and network interaction properties of the gut microbial communities. Our study adds a new component to the understanding of the ecological processes associated with dysbiosis, by disentangling consequences of diets on microbiome dysbiosis that is manifested with the disruption of microbiome networking properties rather than changes in microbiome dispersion and beta diversity.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matteo Callegari
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Costanza Jucker
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Savoldelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
19
|
Pan J, Liu Y, Yang Y, Cheng Z, Lan X, Hu W, Shi G, Zhang Q, Feng H. Slope aspect determines the abundance and composition of nitrogen-cycling microbial communities in an alpine ecosystem. Environ Microbiol 2022; 24:3598-3611. [PMID: 35048487 DOI: 10.1111/1462-2920.15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
Slope aspect is an important topographic feature that can influence local environmental conditions. While strong effects of slope aspect on aboveground and belowground communities have been frequently elucidated, how slope aspect affects soil nitrogen (N) cycling microbes remains unclear. Here, we characterized the communities of soil N-cycling microbes on south- and north-facing slopes in an alpine ecosystem, by quantifying (qPCR) and high-throughput sequencing six genes involved in N-fixation (nifH), nitrification (archaeal and bacterial amoA) and denitrification (nirK, nirS and nosZ). We found that the abundance, diversity and community composition of major N-cycling microbes differed dramatically between the two slope aspects, and these variances could be well explained by the aspect-driven differences in environmental conditions, especially soil temperature and moisture. The response patterns of different N-cycling groups to slope aspect were much inconsistent, especially for those with similar functions (i.e. ammonia-oxidizing archaea vs. bacteria, nirK- vs. nirS-reducers), indicating strong niche differentiation between these counterparts. We also observed strong preferences and distinct co-occurrence patterns of N-cycling microbial taxa for the two slope aspects. These findings highlight the importance of slope aspect in determining the abundance, species distribution and community structure of N-cycling microbes, and consequently influencing N-cycling processes and ecosystem functioning. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianbin Pan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongjun Liu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.,State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Yue Yang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongxia Cheng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaomei Lan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weigang Hu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guoxi Shi
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741000, China
| | - Qi Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huyuan Feng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
20
|
Marian M, Licciardello G, Vicelli B, Pertot I, Perazzolli M. Ecology and potential functions of plant-associated microbial communities in cold environments. FEMS Microbiol Ecol 2022; 98:fiab161. [PMID: 34910139 PMCID: PMC8769928 DOI: 10.1093/femsec/fiab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Complex microbial communities are associated with plants and can improve their resilience under harsh environmental conditions. In particular, plants and their associated communities have developed complex adaptation strategies against cold stress. Although changes in plant-associated microbial community structure have been analysed in different cold regions, scarce information is available on possible common taxonomic and functional features of microbial communities across cold environments. In this review, we discuss recent advances in taxonomic and functional characterization of plant-associated microbial communities in three main cold regions, such as alpine, Arctic and Antarctica environments. Culture-independent and culture-dependent approaches are analysed, in order to highlight the main factors affecting the taxonomic structure of plant-associated communities in cold environments. Moreover, biotechnological applications of plant-associated microorganisms from cold environments are proposed for agriculture, industry and medicine, according to biological functions and cold adaptation strategies of bacteria and fungi. Although further functional studies may improve our knowledge, the existing literature suggest that plants growing in cold environments harbor complex, host-specific and cold-adapted microbial communities, which may play key functional roles in plant growth and survival under cold conditions.
Collapse
Affiliation(s)
- Malek Marian
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Giorgio Licciardello
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Bianca Vicelli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Ilaria Pertot
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
21
|
Wang J, Liao L, Wang G, Liu H, Wu Y, Liu G, Zhang C. N-induced root exudates mediate the rhizosphere fungal assembly and affect species coexistence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150148. [PMID: 34520919 DOI: 10.1016/j.scitotenv.2021.150148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Root exudates play essential roles in shaping root-associated microbial communities in plant-soil systems. However, knowledge regarding the influence of root exudates on soil communities, particularly concerning their assembly processes and species coexistence patterns, remains limited. In this study, we performed a 20-month pot experiment using a nitrogen (N) addition gradient (0, 2.5, 5, 7.5, 10, and 15 g N m-2 yr-1), amplicon sequencing, and metabolomics to investigate the effect of short-term N addition on the assembly process and species coexistence of fungal communities, as well as their association with root exudates in the rhizosphere and bulk soils around Bothriochloa ischaemum. The results demonstrated that short-term N addition led to distinct differences in the diversity, composition, assembly process, and co-occurrence networks of fungal communities in the rhizosphere and bulk soils. The diversity of fungal communities in the rhizosphere soil increased with the rate of N input and peaked at N10 treatment; this could be correlated with the increased abundance in long-chain organic acids (LCOAs). However, above the threshold N rate of 10 g N m-2 yr-1, diversity decreased probably because of the high N-induced inhibitory effect on root exudates (i.e., LCOAs). N addition increased the relative abundance of Sordariomycetes in the rhizosphere and decreased the relative abundance of Mortierellomycetes in the bulk soil, while enhancing the abundance of pathotrophs in both bulk and rhizosphere soils. The rhizosphere fungal community was dominated by a stochastic process at a low N input (N0 and N2.5) and by deterministic processes at a high N input (N10 and N15), which is opposite to the trends in the bulk soil. These fungal assembly processes determine the coexistence of fungal species; deterministic processes lead to less interconnected networks in rhizosphere soils that harbor a more complex network than the bulk soil. Associations between the assembly process and species coexistence in the rhizosphere of B. ischaemum were closely related to the changes in root exudates, such as amino acids, short-chain organic acids, and phenols, which were stimulated by N addition. Collectively, our study emphasizes the key roles of root exudates in the establishment of fungal communities in the plant-soil system and furthers our understanding of plant-microbe interactions.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, PR China
| | - Lirong Liao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, PR China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, PR China
| | - Hongfei Liu
- College of Forestry, Northwest A&F University, Yangling 712100, PR China; Department of Agroecology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Yang Wu
- College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Guobin Liu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, PR China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
22
|
Composition and Potential Functions of Rhizobacterial Communities in a Pioneer Plant from Andean Altiplano. DIVERSITY 2021. [DOI: 10.3390/d14010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plant microbiota that associate with pioneer plants are essential to their growth and adaptation to harsh conditions found in the Central Volcanic Zone of the Andes. In this sense, the rhizosphere of pioneer species represents a unique opportunity to examine how bacterial communities are recruited and support the growth of plants under abiotic stress conditions, such low nutrient availability, high solar irradiation, water scarcity, soil salinity, etc. In this study, we explored the community composition and potential functions of rhizobacteria obtained from specimens of Parastrephia quadrangularis (Meyen) Cabrera, commonly called Tola, grown on the slopes of the Guallatiri, Isluga, and Lascar volcanoes in the Atacama Desert of Chile by using 16S rRNA amplicon sequencing. Sequence analysis showed that the Actinobacteria, Proteobacteria, Acidobacteria, and Bacteroidetes were the most abundant phyla of the rhizobacterial communities examined. A similar diversity, richness, and abundance of OTUs were also observed in rhizosphere samples obtained from different plants. However, most of OTUs were not shared, suggesting that each plant recruits a specific rhizobacterial communities independently of volcanoes slope. Analyses of predicted functional activity indicated that the functions were mostly attributed to chemoheterotrophy and aerobic chemoheterotrophy, followed by nitrogen cycling (nitrate reduction and denitrification), and animal parasites or symbionts. In addition, co-occurrence analysis revealed that complex rhizobacterial interactions occur in P. quadrangularis rhizosphere and that members of the Patulibacteraceae comprise a keystone taxon. This study extends our understanding on the composition and functions of the rhizobiome, which is pivotal for the adaptability and colonization of pioneer plant to harsh conditions of the Atacama Desert, widely recognized as the driest place on planet Earth.
Collapse
|
23
|
Liu J, Kong W, Xia P, Zhu C, Li X. Prokaryotic Community Succession in Bulk and Rhizosphere Soils Along a High-Elevation Glacier Retreat Chronosequence on the Tibetan Plateau. Front Microbiol 2021; 12:736407. [PMID: 34690976 PMCID: PMC8531754 DOI: 10.3389/fmicb.2021.736407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023] Open
Abstract
Early colonization and succession of soil microbial communities are essential for soil development and nutrient accumulation. Herein we focused on the changes in pioneer prokaryotic communities in rhizosphere and bulk soils along the high-elevation glacier retreat chronosequence, the northern Himalayas, Tibetan Plateau. Rhizosphere soils showed substantially higher levels of total organic carbon, total nitrogen, ammonium, and nitrate than bulk soils. The dominant prokaryotes were Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Crenarchaeota, Bacteroidetes, and Planctomycetes, which totally accounted for more than 75% in relative abundance. The dominant genus Candidatus Nitrososphaera occurred at each stage of the microbial succession. The richness and evenness of soil prokaryotes displayed mild succession along chronosequene. Linear discriminant analysis effect size (LEfSe) analysis demonstrated that Proteobacteria (especially Alphaproteobacteria) and Actinobacteria were significantly enriched in rhizosphere soils compared with bulk soils. Actinobacteria, SHA_109, and Thermoleophilia; Betaproteobacteria and OP1.MSBL6; and Planctomycetia and Verrucomicrobia were separately enriched at each of the three sample sites. The compositions of prokaryotic communities were substantially changed with bulk and rhizosphere soils and sampling sites, indicating that the communities were dominantly driven by plants and habitat-specific effects in the deglaciated soils. Additionally, the distance to the glacier terminus also played a significant role in driving the change of prokaryotic communities in both bulk and rhizosphere soils. Soil C/N ratio exhibited a greater effect on prokaryotic communities in bulk soils than rhizosphere soils. These results indicate that plants, habitat, and glacier retreat chronosequence collectively control prokaryotic community composition and succession.
Collapse
Affiliation(s)
- Jinbo Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Pinhua Xia
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guizhou Normal University, Guiyang, China
| | - Chunmao Zhu
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
24
|
Marasco R, Fusi M, Rolli E, Ettoumi B, Tambone F, Borin S, Ouzari H, Boudabous A, Sorlini C, Cherif A, Adani F, Daffonchio D. Aridity modulates belowground bacterial community dynamics in olive tree. Environ Microbiol 2021; 23:6275-6291. [PMID: 34490977 PMCID: PMC9290347 DOI: 10.1111/1462-2920.15764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Aridity negatively affects the diversity and abundance of edaphic microbial communities and their multiple ecosystem services, ultimately impacting vegetation productivity and biotic interactions. Investigation about how plant-associated microbial communities respond to increasing aridity is of particular importance, especially in light of the global climate change predictions. To assess the effect of aridity on plant associated bacterial communities, we investigated the diversity and co-occurrence of bacteria associated with the bulk soil and the root system of olive trees cultivated in orchards located in higher, middle and lower arid regions of Tunisia. The results indicated that the selective process mediated by the plant root system is amplified with the increment of aridity, defining distinct bacterial communities, dominated by aridity-winner and aridity-loser bacteria negatively and positively correlated with increasing annual rainfall, respectively. Aridity regulated also the co-occurrence interactions among bacteria by determining specific modules enriched with one of the two categories (aridity-winners or aridity-losers), which included bacteria with multiple PGP functions against aridity. Our findings provide new insights into the process of bacterial assembly and interactions with the host plant in response to aridity, contributing to understand how the increasing aridity predicted by climate changes may affect the resilience of the plant holobiont.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Marco Fusi
- School of Applied SciencesEdinburgh Napier UniversityEdinburghUK
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences (DeFENS)University of MilanoMilanItaly
| | - Besma Ettoumi
- Department of Food, Environmental and Nutritional Sciences (DeFENS)University of MilanoMilanItaly
| | - Fulvia Tambone
- Department of Agricultural and Environmental Sciences (DiSAA), Gruppo Ricicla LabUniversity of MilanoMilanItaly
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS)University of MilanoMilanItaly
| | - Hadda‐Imene Ouzari
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03), Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Abdellatif Boudabous
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03), Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Claudia Sorlini
- Department of Food, Environmental and Nutritional Sciences (DeFENS)University of MilanoMilanItaly
| | - Ameur Cherif
- Institut Supérieur de Biotechnologie Sidi Thabet (ISBST)BVBGR‐LR11ES31, Biotechpole Sidi Thabet, University ManoubaArianaTunisia
| | - Fabrizio Adani
- Department of Agricultural and Environmental Sciences (DiSAA), Gruppo Ricicla LabUniversity of MilanoMilanItaly
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
25
|
The microbial population structure and function of peanut peanut and their effects on aflatoxin contamination. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Zuo Y, Li X, Yang J, Liu J, Zhao L, He X. Fungal Endophytic Community and Diversity Associated with Desert Shrubs Driven by Plant Identity and Organ Differentiation in Extremely Arid Desert Ecosystem. J Fungi (Basel) 2021; 7:jof7070578. [PMID: 34356957 PMCID: PMC8306007 DOI: 10.3390/jof7070578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Despite desert ecosystem being crucial to our understanding of natural geography, species evolution and global climate change, there is limited information on the dynamics of their composition and the diversity of endophytic fungi communities driven by plant identity and organ differentiation. Here, an extensive investigation of endophytic fungal microbiome in root, stem, and leaf organs associated with five xerophyte shrubs in an extremely arid desert, Northwest China, were examined. The fungal community dominated by Dothideomycetes and Pleosporales. Shrub species strongly drive the niche-based processes of endophytic fungi across the root, stem and leaf compartments. The diversity and composition of endophytic fungi in stem showed higher variability among plant species than leaf and root. The fungal communities in root libraries were more diverse and exhibited a remarkable differentiation of community composition. We further demonstrated the significant host preferences and tissue specificity of desert endophytic fungi, and unique specific taxa were also observed. The co-occurrence network revealed the coexistence of fungal endophytes in arid desert, and the root fungal network harbored the highest interspecies connectivity. Members of Pleosporales were the most common keystone species in the root fungal network. This is the first report of mycobiota in both plant species and organ differentiation in an extremely arid desert ecosystem.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueli He
- Correspondence: ; Tel.: +86-31-2507-9364
| |
Collapse
|
27
|
Gyeong H, Hyun CU, Kim SC, Tripathi BM, Yun J, Kim J, Kang H, Kim JH, Kim S, Kim M. Contrasting early successional dynamics of bacterial and fungal communities in recently deglaciated soils of the maritime Antarctic. Mol Ecol 2021; 30:4231-4244. [PMID: 34214230 DOI: 10.1111/mec.16054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023]
Abstract
Although microorganisms are the very first colonizers of recently deglaciated soils even prior to plant colonization, the drivers and patterns of microbial community succession at early-successional stages remain poorly understood. The successional dynamics and assembly processes of bacterial and fungal communities were compared on a glacier foreland in the maritime Antarctic across the ~10-year soil-age gradient from bare soil to sparsely vegetated area. Bacterial communities shifted more rapidly than fungal communities in response to glacial retreat; species turnover (primarily the transition from glacier- to soil-favouring taxa) contributed greatly to bacterial beta diversity, but this pattern was less clear in fungi. Bacterial communities underwent more predictable (more deterministic) changes along the soil-age gradient, with compositional changes paralleling the direction of changes in soil physicochemical properties following deglaciation. In contrast, the compositional shift in fungal communities was less associated with changes in deglaciation-induced changes in soil geochemistry and most fungal taxa displayed mosaic abundance distribution across the landscape, suggesting that the successional dynamics of fungal communities are largely governed by stochastic processes. A co-occurrence network analysis revealed that biotic interactions between bacteria and fungi are very weak in early succession. Taken together, these results collectively suggest that bacterial and fungal communities in recently deglaciated soils are largely decoupled from each other during succession and exert very divergent trajectories of succession and assembly under different selective forces.
Collapse
Affiliation(s)
| | - Chang-Uk Hyun
- Department of Energy and Mineral Resources Engineering, Dong-A University, Busan, Korea
| | | | | | - Jeongeun Yun
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Jinhyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Ji Hee Kim
- Korea Polar Research Institute (KOPRI), Incheon, Korea
| | - Sanghee Kim
- Korea Polar Research Institute (KOPRI), Incheon, Korea
| | - Mincheol Kim
- Korea Polar Research Institute (KOPRI), Incheon, Korea
| |
Collapse
|
28
|
Quides KW, Weisberg AJ, Trinh J, Salaheldine F, Cardenas P, Lee HH, Jariwala R, Chang JH, Sachs JL. Experimental evolution can enhance benefits of rhizobia to novel legume hosts. Proc Biol Sci 2021; 288:20210812. [PMID: 34034525 PMCID: PMC8150021 DOI: 10.1098/rspb.2021.0812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Legumes preferentially associate with and reward beneficial rhizobia in root nodules, but the processes by which rhizobia evolve to provide benefits to novel hosts remain poorly understood. Using cycles of in planta and in vitro evolution, we experimentally simulated lifestyles where rhizobia repeatedly interact with novel plant genotypes with which they initially provide negligible benefits. Using a full-factorial replicated design, we independently evolved two rhizobia strains in associations with each of two Lotus japonicus genotypes that vary in regulation of nodule formation. We evaluated phenotypic evolution of rhizobia by quantifying fitness, growth effects and histological features on hosts, and molecular evolution via genome resequencing. Rhizobia evolved enhanced host benefits and caused changes in nodule development in one of the four host–symbiont combinations, that appeared to be driven by reduced costs during symbiosis, rather than increased nitrogen fixation. Descendant populations included genetic changes that could alter rhizobial infection or proliferation in host tissues, but lack of evidence for fixation of these mutations weakens the results. Evolution of enhanced rhizobial benefits occurred only in a subset of experiments, suggesting a role for host–symbiont genotype interactions in mediating the evolution of enhanced benefits from symbionts.
Collapse
Affiliation(s)
- Kenjiro W Quides
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Jerry Trinh
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Fathi Salaheldine
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Paola Cardenas
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Hsu-Han Lee
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Ruchi Jariwala
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Joel L Sachs
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.,Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
29
|
Klasek SA, Brock MT, Morrison HG, Weinig C, Maignien L. Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure. Front Microbiol 2021; 12:645784. [PMID: 33897658 PMCID: PMC8058099 DOI: 10.3389/fmicb.2021.645784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
Microorganisms residing on root surfaces play a central role in plant development and performance and may promote growth in agricultural settings. Studies have started to uncover the environmental parameters and host interactions governing their assembly. However, soil microbial communities are extremely diverse and heterogeneous, showing strong variations over short spatial scales. Here, we quantify the relative effect of meter-scale variation in soil bacterial community composition among adjacent field microsites, to better understand how microbial communities vary by host plant genotype as well as soil microsite heterogeneity. We used bacterial 16S rDNA amplicon sequencing to compare rhizosphere communities from four Brassica rapa cultivars grown in three contiguous field plots (blocks) and evaluated the relative contribution of resident soil communities and host genotypes in determining rhizosphere community structure. We characterize concomitant meter-scale variation in bacterial community structure among soils and rhizospheres and show that this block-scale variability surpasses the influence of host genotype in shaping rhizosphere communities. We identified biomarker amplicon sequence variants (ASVs) associated with bulk soil and rhizosphere habitats, each block, and three of four cultivars. Numbers and percent abundances of block-specific biomarkers in rhizosphere communities far surpassed those from bulk soils. These results highlight the importance of fine-scale variation in the pool of colonizing microorganisms during rhizosphere assembly and demonstrate that microsite variation may constitute a confounding effect while testing biotic and abiotic factors governing rhizosphere community structure.
Collapse
Affiliation(s)
- Scott A Klasek
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, United States.,Department of Botany, University of Wyoming, Laramie, WY, United States
| | - Marcus T Brock
- Department of Botany, University of Wyoming, Laramie, WY, United States
| | - Hilary G Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, United States
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, United States.,Program in Ecology, University of Wyoming, Laramie, WY, United States.,Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Loïs Maignien
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, United States.,UMR 6197, Laboratory of Microbiology of Extreme Environments, Institut Européen de la Mer, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
30
|
Kabala C, Chachulski Ł, Gądek B, Korabiewski B, Mętrak M, Suska-Malawska M. Soil development and spatial differentiation in a glacial river valley under cold and extremely arid climate of East Pamir Mountains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:144308. [PMID: 33338793 DOI: 10.1016/j.scitotenv.2020.144308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Melting glaciers release new ground surfaces, which may be either a source of greenhouse gas emissions or a sink for carbon dioxide. Studies carried out in subpolar and alpine ecosystems confirm the relatively rapid soil development and increase of carbon and nitrogen pools. However, observations from high-mountain glacier forelands in cold and dry climate are very scarce. This study analyses the impact of major environmental factors related to climate, topography, and vegetation, over a time-scale, on soil development and spatial soil differentiation in the foreland of Uisu Glacier, East Pamir Mountains. Moreover, the usefulness of the World Reference Base (WRB) and Soil Taxonomy in the classification of poorly developed soils in the ultracontinental climate was assessed. Geomorphological, pedological, and botanical surveys covered a sequence of terraces, alluvial fans, and end-moraines. Typical characteristics of the soils in the glacier foreland were: very high stoniness, coarse texture, high content of calcium carbonate, alkaline reaction, and low salinity. Soil development has extremely low intensity and was manifested in (a) soil organic carbon pools being among the lowest reported in the world (up to 1.4 kg m-2 in the layer 0-50 cm), and (b) the presence of cambic/calcic horizons only on landforms older than of Mid-Holocene age (estimated). It was concluded that both the extremely cold and extremely dry climate conditions in the Uisu Glacier foreland limit the water flux and availability, suppress vegetation density and variability, and slow down the rate of soil development. Both WRB and Soil Taxonomy were able to reflect the advances in soil development and spatial soil differentiation (Calcaric Hyperskeletic Leptosols - Calcaric Cambisols - Cambic Calcisols, and Gelifluvents - Haplocambids - Haplocalcids, respectively); however, highlighting different features developed under an extremely cold and dry climate conditions of the East Pamir Mountains.
Collapse
Affiliation(s)
- Cezary Kabala
- Wrocław University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, Grunwaldzka 53, 50-357 Wrocław, Poland.
| | - Łukasz Chachulski
- Warsaw University of Life Sciences, Department of Botany, Nowoursynowska 159, 02-776 Warszawa, Poland
| | - Bogdan Gądek
- University of Silesia in Katowice, Institute of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
| | - Bartosz Korabiewski
- University of Wrocław, Institute of Geography and Regional Development, Universytecki 1, 50-137 Wrocław, Poland
| | - Monika Mętrak
- University of Warsaw, Faculty of Biology, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Małgorzata Suska-Malawska
- University of Warsaw, Faculty of Biology, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| |
Collapse
|
31
|
Zhang W, Bahadur A, Sajjad W, Zhang G, Nasir F, Zhang B, Wu X, Liu G, Chen T. Bacterial Diversity and Community Composition Distribution in Cold-Desert Habitats of Qinghai-Tibet Plateau, China. Microorganisms 2021; 9:microorganisms9020262. [PMID: 33514038 PMCID: PMC7911287 DOI: 10.3390/microorganisms9020262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
Bacterial communities in cold-desert habitats play an important ecological role. However, the variation in bacterial diversity and community composition of the cold-desert ecosystem in Qinghai–Tibet Plateau remains unknown. To fill this scientific gape, Illumina MiSeq sequencing was performed on 15 soil samples collected from different cold-desert habitats, including human-disturbed, vegetation coverage, desert land, and sand dune. The abundance-based coverage estimator, Shannon, and Chao indices showed that the bacterial diversity and abundance of the cold-desert were high. A significant variation reported in the bacterial diversity and community composition across the study area. Proteobacteria accounted for the largest proportion (12.4–55.7%) of all sequences, followed by Actinobacteria (9.2–39.7%), Bacteroidetes (1.8–21.5%), and Chloroflexi (2.7–12.6%). Furthermore, unclassified genera dominated in human-disturbed habitats. The community profiles of GeErMu, HongLiangHe, and CuoNaHu sites were different and metagenomic biomarkers were higher (22) in CuoNaHu sites. Among the soil physicochemical variables, the total nitrogen and electric conductivity significantly influenced the bacterial community structure. In conclusion, this study provides information regarding variation in diversity and composition of bacterial communities and elucidates the association between bacterial community structures and soil physicochemical variables in cold-desert habitats of Qinghai–Tibet Plateau.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (W.Z.); (G.Z.); (X.W.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
| | - Ali Bahadur
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (W.Z.); (G.Z.); (X.W.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (W.Z.); (G.Z.); (X.W.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (W.Z.); (G.Z.); (X.W.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
- Correspondence: (G.L.); (T.C.); Tel.: +86-0931-8273670 (T.C.)
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Correspondence: (G.L.); (T.C.); Tel.: +86-0931-8273670 (T.C.)
| |
Collapse
|
32
|
Praeg N, Illmer P. Microbial community composition in the rhizosphere of Larix decidua under different light regimes with additional focus on methane cycling microorganisms. Sci Rep 2020; 10:22324. [PMID: 33339837 PMCID: PMC7749151 DOI: 10.1038/s41598-020-79143-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Microbial community and diversity in the rhizosphere is strongly influenced by biotic and/or abiotic factors, like root exudates, nutrient availability, edaphon and climate. Here we report on the microbial diversity within the rhizosphere of Larix decidua, a dominant tree species in the Alps, as compared with the microbiome within the surrounding soil. We describe how increased light intensity influenced the rhizobiome and put emphasize on methane cycling microorganisms. Microbial taxa were classified into 26 bacterial, 4 archaeal and 6 fungal phyla revealing significant differences between bulk and rhizosphere soils. The dominant prokaryotic phyla were Proteobacteria, Acidobacteria, Actinobacteria (both, rhizosphere and bulk soil) and Bacteroidetes (rhizosphere soil only) and dominant fungal phyla in both fractions included Ascomycota and Basidiomycota. The rhizosphere community was indicated by Suillus sp., plant growth-promoting bacteria and Candidatus Saccharibacteria. Predicted genes in membrane transport and carbohydrate metabolism were significantly more abundant in rhizosphere soils while genes connected with energy metabolisms and cell motility increased in bulk soils. Dominant methanotrophic microorganisms were Upland Soil Cluster (USC) α methanotrophs, Methylogaea spp. and Methylosinus spp., while most methanogens belonged to Methanomassiliicoccales. The overall abundance of methanotrophs distinctly increased in the rhizosphere but to a very different species-specific extent. The increased light intensity only led to minor changes in the rhizobiome, nevertheless a couple of indicator species (e.g. Pseudomonas sp.) for intensified light conditions were established.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, 6020, Innsbruck, Austria.
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, 6020, Innsbruck, Austria
| |
Collapse
|
33
|
Mapelli F, Riva V, Vergani L, Choukrallah R, Borin S. Unveiling the Microbiota Diversity of the Xerophyte Argania spinosa L. Skeels Root System and Residuesphere. MICROBIAL ECOLOGY 2020; 80:822-836. [PMID: 32583006 PMCID: PMC7550381 DOI: 10.1007/s00248-020-01543-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The microbiota associated to xerophyte is a "black box" that might include microbes involved in plant adaptation to the extreme conditions that characterize their habitat, like water shortage. In this work, we studied the bacterial communities inhabiting the root system of Argania spinosa L. Skeels, a tree of high economic value and ecological relevance in Northern Africa. Illumina 16S rRNA gene sequencing and cultivation techniques were applied to unravel the bacterial microbiota's structure in environmental niches associated to argan plants (i.e., root endosphere, rhizosphere, root-surrounding soil), not associated to the plant (i.e., bulk soil), and indirectly influenced by the plant being partially composed by its leafy residue and the associated microbes (i.e., residuesphere). Illumina dataset indicated that the root system portions of A. spinosa hosted different bacterial communities according to their degree of association with the plant, enriching for taxa typical of the plant microbiome. Similar alpha- and beta-diversity trends were observed for the total microbiota and its cultivable fraction, which included 371 isolates. In particular, the residuesphere was the niche with the highest bacterial diversity. The Plant Growth Promotion (PGP) potential of 219 isolates was investigated in vitro, assessing several traits related to biofertilization and biocontrol, besides the production of exopolysaccharides. Most of the multivalent isolates showing the higher PGP score were identified in the residuesphere, suggesting it as a habitat that favor their proliferation. We hypothesized that these bacteria can contribute, in partnership with the argan root system, to the litter effect played by this tree in its native arid lands.
Collapse
Affiliation(s)
- Francesca Mapelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Valentina Riva
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| | - Lorenzo Vergani
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| | - Redouane Choukrallah
- Hassan II, Salinity and Plant Nutrition Laboratory, Institut Agronomique et Vétérinaire, Agadir, Morocco
| | - Sara Borin
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|
34
|
Lu B, Qian J, Wang P, Wang C, Hu J, Li K, He X, Jin W. Effect of perfluorooctanesulfonate (PFOS) on the rhizosphere soil nitrogen cycling of two riparian plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140494. [PMID: 32886976 DOI: 10.1016/j.scitotenv.2020.140494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Here, we examined the effects of low and high concentrations of perfluorooctanesulfonate (PFOS) on rhizosphere soil N cycling processes in the presence of Lythrum salicaria and Phragmites communis over 4 months. Compared with the control group, the nitrate nitrogen (NO3--N) content of the bulk soil in the low PFOS (0.1 mg kg-1) treatment significantly decreased (27.7%), the ammonium nitrogen (NH4+-N) content significantly increased (8.7%), and the pH value and total organic carbon (TOC) content slightly increased (0.3% and 1.1%, respectively). Compared with the low PFOS treatment, the content of NO3-N, NH4+-N and pH value in the bulk soil of the high PFOS treatment (50 mg kg-1) significantly increased (1.0%, 53.8% and 61.8%, respectively), and the TOC content significantly decreased (8.2%). Soil protease levels were high in the low PFOS treatment, but low in the high PFOS treatment. PFOS produced inverted U-shaped responses in the potential nitrification (1.5, 3.0, and 1.1 mg N d-1 kg-1 in no, low, and high PFOS, respectively), denitrification (0.19, 0.30, and 0.22 mg N d-1 kg-1 in no, low, and high PFOS, respectively), and N2O emission rates (0.01, 0.03, and 0.02 mg N d-1 kg-1 in no, low, and high PFOS, respectively) of bulk soil. The abundance of the archaea amoA gene decreased with increasing PFOS concentration, whereas that of bacterial amoA increased; inverted U-shaped responses were observed for narG, nirK, nirS, and nosZ. In the PFOS-contaminated rhizosphere soil, the observed changes differed from those in the bulk soil and differed between treatments. P. communis tended to upregulate each step of the nitrogen cycle under low PFOS conditions, whereas L. salicaria tended to inhibit them. Under high PFOS conditions, both test plants tended to act as inhibitors of the soil N-cycle; thus, the effects of PFOS on soil N transformation were plant-specific.
Collapse
Affiliation(s)
- Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jing Hu
- Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, USA
| | - Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
35
|
Mise K, Iwasaki W. Environmental Atlas of Prokaryotes Enables Powerful and Intuitive Habitat-Based Analysis of Community Structures. iScience 2020; 23:101624. [PMID: 33117966 PMCID: PMC7581931 DOI: 10.1016/j.isci.2020.101624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
The recent prevalence of high-throughput sequencing has been producing numerous prokaryotic community structure datasets. Although the trait-based approach is useful to interpret those datasets from ecological perspectives, available trait information is biased toward culturable prokaryotes, especially those of clinical and public health relevance, and thus may not represent the breadth of microbiota found across many of Earth's environments. To facilitate habitat-based analysis free of such bias, here we report a ready-to-use prokaryotic habitat database, ProkAtlas. ProkAtlas comprehensively links 16S rRNA gene sequences to prokaryotic habitats, using public shotgun metagenome datasets. We also developed a computational pipeline for habitat-based analysis of given prokaryotic community structures. After confirmation of the method effectiveness using 16S rRNA gene sequence datasets from individual genomes and the Earth Microbiome Project, we showed its validness and effectiveness in drawing ecological insights by applying it to six empirical prokaryotic community datasets from soil, aquatic, and human gut samples. We developed a database, ProkAtlas, denoting the habitat preferences of prokaryotes ProkAtlas represents a prokaryotic community using habitat preferences of its members The powerfulness of ProkAtlas is showcased by six datasets from various environments We provide web interface of ProkAtlas at https://msk33.github.io/prokatlas.html
Collapse
Affiliation(s)
- Kazumori Mise
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Corresponding author
| |
Collapse
|
36
|
Plant and Soil Development Cooperatively Shaped the Composition of the phoD-Harboring Bacterial Community along the Primary Succession in the Hailuogou Glacier Chronosequence. mSystems 2020; 5:5/4/e00475-20. [PMID: 32723794 PMCID: PMC7394357 DOI: 10.1128/msystems.00475-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phosphorus was the key limiting nutrient for soil development during primary succession that occurred in alpine and high-latitude ecosystems with cold and humid climates. The interactions of functional microbiota involved in phosphorus cycling in the rhizosphere under different soil developmental stages along primary succession are still rarely examined. We selected the pioneer species Populus purdomii as a model plant to study the phoD-harboring bacterial communities in rhizosphere and bulk soils along a mountain glacier chronosequence. Our results showed that the bulk soils and rhizosphere host distinct phoD communities and diversity that differentially varied along the chronosequence, describing in detail the development and compositional turnover of the phoD community in the course of primary succession and determining the main environmental factors driving the development. Microbes that produce phosphatases play an important role in the cycling of phosphorus (P), a key nutrient in soil development. We studied the development, compositional turnover, and environmental drivers of microbial communities carrying the phosphatase-encoding phoD gene (here called phoD communities) in the course of primary succession in the Hailuogou glacier chronosequence. We selected the pioneer species Populus purdomii Rehder as a model plant to study the communities in rhizosphere and bulk soils along the chronosequence. The bulk and rhizosphere soils hosted distinct phoD communities. Changes in the taxa Pseudomonas and Pleomorphomonas in the rhizosphere and Bradyrhizobium, Cupriavidus, and Pleomorphomonas in the bulk soil were associated with soil development. The plant development and soil property changes along the chronosequence were accompanied with changes in the phoD communities. Soil pH, soil organic carbon, and total nitrogen contents that are directly related to the plant development and litter input differences along the chronosequence were the main factors related to changes in community compositions. The community similarity decreased along the chronosequence, and the distance decay rate was higher in the bulk soil than in the rhizosphere. In summary, both in the rhizosphere and in bulk soils the phoD community succession was shaped by plant and soil development-related factors along the primary succession in the Hailuogou glacier chronosequence. IMPORTANCE Phosphorus was the key limiting nutrient for soil development during primary succession that occurred in alpine and high-latitude ecosystems with cold and humid climates. The interactions of functional microbiota involved in phosphorus cycling in the rhizosphere under different soil developmental stages along primary succession are still rarely examined. We selected the pioneer species Populus purdomii as a model plant to study the phoD-harboring bacterial communities in rhizosphere and bulk soils along a mountain glacier chronosequence. Our results showed that the bulk soils and rhizosphere host distinct phoD communities and diversity that differentially varied along the chronosequence, describing in detail the development and compositional turnover of the phoD community in the course of primary succession and determining the main environmental factors driving the development.
Collapse
|
37
|
Advanced biofilm analysis in streams receiving organic deicer runoff. PLoS One 2020; 15:e0227567. [PMID: 31968006 PMCID: PMC6975536 DOI: 10.1371/journal.pone.0227567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023] Open
Abstract
Prolific heterotrophic biofilm growth is a common occurrence in airport receiving streams containing deicers and anti-icers, which are composed of low-molecular weight organic compounds. This study investigated biofilm spatiotemporal patterns and responses to concurrent and antecedent (i.e., preceding biofilm sampling) environmental conditions at stream sites upstream and downstream from Milwaukee Mitchell International Airport in Milwaukee, Wisconsin, during two deicing seasons (2009-2010; 2010-2011). Biofilm abundance and community composition were investigated along spatial and temporal gradients using field surveys and microarray analyses, respectively. Given the recognized role of Sphaerotilus in organically enriched environments, additional analyses were pursued to specifically characterize its abundance: a consensus sthA sequence was determined via comparison of whole metagenome sequences with a previously identified sthA sequence, the primers developed for this gene were used to characterize relative Sphaerotilus abundance using quantitative real-time PCR, and a Sphaerotilus strain was isolated to validate the determined sthA sequence. Results indicated that biofilm abundance was stimulated by elevated antecedent chemical oxygen demand concentrations, a surrogate for deicer concentrations, with minimal biofilm volumes observed when antecedent chemical oxygen demand concentrations remained below 48 mg/L. Biofilms were composed of diverse communities (including sheathed bacterium Thiothrix) whose composition appeared to shift in relation to antecedent temperature and chemical oxygen demand. The relative abundance of sthA correlated most strongly with heterotrophic biofilm volume (positive) and dissolved oxygen (negative), indicating that Sphaerotilus was likely a consistent biofilm member and thrived under low oxygen conditions. Additional investigations identified the isolate as a new strain of Sphaerotilus montanus (strain KMKE) able to use deicer components as carbon sources and found that stream dissolved oxygen concentrations related inversely to biofilm volume as well as to antecedent temperature and chemical oxygen demand. The airport setting provides insight into potential consequences of widescale adoption of organic deicers for roadway deicing.
Collapse
|
38
|
Variations in the Compositions of Soil Bacterial and Fungal Communities Due to Microhabitat Effects Induced by Simulated Nitrogen Deposition of a Bamboo Forest in Wetland. FORESTS 2019. [DOI: 10.3390/f10121098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although numerous studies have been published on nitrogen (N) deposition, little is known about its impact on microbial communities in wetland forests. Here, we used simulated nitrogen deposition (SND) to analyze the importance of differences in soil microhabitats in promoting the diversity of soil bacteria and fungi. We compared various levels of SND (control (CK), low N (N30), medium N (N60), and high N (N90)) and found that these were associated with changes in soil microhabitats. Additionally, SND affected soil pH, clay and sand content of the soil, and specific surface area (SSA). Bacteria and fungi responded differently to increased SND levels. The alpha diversity of bacteria decreased with an increased SND level, while fungal abundance, diversity, and community evenness reached their maximum values at the N60 threshold. Principal coordinates analysis (PCoA), nonparametric multivariate analysis of variance (PERMANOVA), and linear discriminant analysis (LDA) coupled with effect size measurements (LefSe) also confirmed that the bacterial composition was different at N90 compared to other levels of SND while that of fungi was different at N60. A higher discriminant level (LDA score ≥4) may be a valuable index of selecting indicator microbial clades sensitive to SND for wetland management. Further, an increased pH was associated with a greater abundance of bacteria and fungi. In addition, the volume contents of clay and SSA were negatively correlated with bacteria but fungi are associated with soil specific gravity (SSG). Overall, in a neutral soil pH environment, pH fluctuation is the main influencing factor in terms of bacterial and fungal abundance and diversity. The diversity of fungi is more dependent on the type and relative content of solid phase components in soil than that of bacteria, implying the presence of species-specific niches for bacteria and fungi. These results demonstrate that changes in SND can induce short-term microbial and microhabitat changes.
Collapse
|
39
|
Terzaghi E, Vergani L, Mapelli F, Borin S, Raspa G, Zanardini E, Morosini C, Anelli S, Nastasio P, Sale VM, Armiraglio S, Di Guardo A. Rhizoremediation of weathered PCBs in a heavily contaminated agricultural soil: Results of a biostimulation trial in semi field conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:484-496. [PMID: 31185397 DOI: 10.1016/j.scitotenv.2019.05.458] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
This paper describes the results of a rhizoremediation greenhouse experiment planned to select the best plant species and soil management for the bioremediation of weathered polychlorinated biphenyls (PCBs). We evaluated the ability of different plant species to stimulate activity and diversity of the soil microbial community leading to the reduction of PCB concentrations in a heavily contaminated soil (at mg kg-1 dw level), of the national priority site for remediation (SIN) "Brescia-Caffaro" in Italy. Biostimulation was determined in large size (6kg) pots, to reflect semi-field conditions with a soil/root volume ratio larger than in most rhizoremediation experiments present in the literature. In total, 10 treatments were tested in triplicates comparing 7 plant species (grass and trees) and 5 soil/cultivation conditions (i.e., only one plant species, plant consociation, redox cycle, compost or ammonium thiosulfate addition) with the appropriate unplanted controls. After 18months of biostimulation the overall reduction of total PCBs varied between 14 and 20%. Microbial analysis revealed a shift in the microbial community structure over time and showed that all the planted treatments significantly enhanced microbial hydrolytic activity and the abundance of bacterial populations, including potential PCB degraders, in the soil surrounding plant roots. The plant species most effective in reducing the contaminant concentrations were Festuca arundinacea cultivated adding compost or in consociation with Cucurbita pepo ssp. pepo and Medicago sativa cultivated with Rhizobium spp. and mycorrhizal fungi; they reduced total PCB concentrations of about 20% and showed the significant depletion of a high number of PCB congeners (29, 37 and 23, respectively, out of the 79 measured). Our results suggest that these plant species are particularly efficient in increasing soil PCB bioavailability and in stimulating microbial degradation. They could be used in field rhizoremediation strategies to enhance the natural attenuation process and reduce PCB levels in historically contaminated sites.
Collapse
Affiliation(s)
- Elisa Terzaghi
- DiSAT, University of Insubria, Via Valleggio 11, Como, Italy
| | | | | | - Sara Borin
- DeFENS, University of Milan, Via Celoria 2, Milan, Italy
| | - Giuseppe Raspa
- DCEME, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | | | | | | | | | | | - Stefano Armiraglio
- Municipality of Brescia - Museum of Natural Sciences, Via Ozanam 4, Brescia, Italy
| | | |
Collapse
|
40
|
Imchen M, Kumavath R, Vaz ABM, Góes-Neto A, Barh D, Ghosh P, Kozyrovska N, Podolich O, Azevedo V. 16S rRNA Gene Amplicon Based Metagenomic Signatures of Rhizobiome Community in Rice Field During Various Growth Stages. Front Microbiol 2019; 10:2103. [PMID: 31616390 PMCID: PMC6764247 DOI: 10.3389/fmicb.2019.02103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/26/2019] [Indexed: 11/21/2022] Open
Abstract
Rice is a major staple food across the globe. Its growth and productivity is highly dependent on the rhizobiome where crosstalk takes place between plant and the microbial community. Such interactions lead to selective enrichment of plant beneficial microbes which ultimately defines the crop health and productivity. In this study, rhizobiome modulation is documented throughout the development of rice plant. Based on 16S rRNA gene affiliation at genus level, abundance, and diversity of plant growth promoting bacteria increased during the growth stages. The observed α diversity and rhizobiome complexity increased significantly (p < 0.05) during plantation. PCoA indicates that different geographical locations shared similar rhizobiome diversity but exerted differential enrichment (p < 0.001). Diversity of enriched genera represented a sigmoid curve and subsequently declined after harvest. A major proportion of dominant enriched genera (p < 0.05, abundance > 0.1%), based on 16S rRNA gene, were plant growth promoting bacteria that produces siderophore, indole-3-acetic acid, aminocyclopropane-1-carboxylic acid, and antimicrobials. Hydrogenotrophic methanogens dominated throughout cultivation. Type I methanotrophs (n = 12) had higher diversity than type II methanotrophs (n = 6). However, the later had significantly higher abundance (p = 0.003). Strong enrichment pattern was also observed in type I methanotrophs being enriched during water logged stages. Ammonia oxidizing Archaea were several folds more abundant than ammonia oxidizing bacteria. K-strategists Nitrosospira and Nitrospira dominated ammonia and nitrite oxidizing bacteria, respectively. The study clarifies the modulation of rhizobiome according to the rice developmental stages, thereby opening up the possibilities of bio-fertilizer treatment based on each cultivation stages.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Ranjith Kumavath
- Department of Genomic Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Aline B M Vaz
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, India
| | - Preetam Ghosh
- Department of Computer Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics, National Academy of Sciences, Kyiv, Ukraine
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
41
|
Bai Y, Huang X, Zhou X, Xiang Q, Zhao K, Yu X, Chen Q, Jiang H, Nyima T, Gao X, Gu Y. Variation in denitrifying bacterial communities along a primary succession in the Hailuogou Glacier retreat area, China. PeerJ 2019; 7:e7356. [PMID: 31428538 PMCID: PMC6698129 DOI: 10.7717/peerj.7356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
Background The Hailuogou Glacier is located at the Gongga Mountain on the southeastern edge of the Tibetan Plateau, and has retreated continuously as a result of global warming. The retreat of the Hailuogou Glacier has left behind a primary succession along soil chronosequences. Hailuogou Glacier’s retreated area provides an excellent living environment for the colonization of microbes and plants, making it an ideal model to explore plant successions, microbial communities, and the interaction of plants and microbes during the colonization process. However, to date, the density of the nitrogen cycling microbial communities remain unknown, especially for denitrifiers in the primary succession of the Hailuogou Glacier. Therefore, we investigated the structural succession and its driving factors for denitrifying bacterial communities during the four successional stages (0, 20, 40, and 60 years). Methods The diversity, community composition, and abundance of nosZ-denitrifiers were determined using molecular tools, including terminal restriction fragment length polymorphism and quantitative polymerase chain reactions (qPCR). Results nosZ-denitrifiers were more abundant and diverse in soils from successional years 20–60 compared to 0–5 years, and was highest in Site3 (40 years). The denitrifying bacterial community composition was more complex in older soils (40–60 years) than in younger soils (≤20 years). The terminal restriction fragments (T-RFs) of Azospirillum (90 bp) and Rubrivivax (95 bp) were dominant in soisl during early successional stages (0–20 years) and in the mature phase (40–60 years), respectively. Specific T-RFs of Bradyrhizobium (100 bp) and Pseudomonas (275 bp) were detected only in Site3 and Site4, respectively. Moreover, the unidentified 175 bp T-RFs was detected only in Site3. Of the abiotic factors that were measured in this study, soil available phosphorus, available potassium and denitrifying enzyme activity (DEA) correlated significantly with the community composition of nosZ-denitrifiers (P < 0.05 by Monte Carlo permutation test within RDA analysis).
Collapse
Affiliation(s)
- Yan Bai
- Department of Microbiology/ College of Resources/Sichuan Agricultural University, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiying Huang
- Department of Microbiology/ College of Resources/Sichuan Agricultural University, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiangrui Zhou
- Department of Microbiology/ College of Resources/Sichuan Agricultural University, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Quanju Xiang
- Department of Microbiology/ College of Resources/Sichuan Agricultural University, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ke Zhao
- Department of Microbiology/ College of Resources/Sichuan Agricultural University, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiumei Yu
- Department of Microbiology/ College of Resources/Sichuan Agricultural University, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiang Chen
- Department of Microbiology/ College of Resources/Sichuan Agricultural University, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Jiang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Tashi Nyima
- Institute of Agricultural Resources and Environmental Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Xue Gao
- Institute of Agricultural Resources and Environmental Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Yunfu Gu
- Department of Microbiology/ College of Resources/Sichuan Agricultural University, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Mosqueira MJ, Marasco R, Fusi M, Michoud G, Merlino G, Cherif A, Daffonchio D. Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Sci Rep 2019; 9:4033. [PMID: 30858421 PMCID: PMC6412053 DOI: 10.1038/s41598-019-40551-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Highly productive conventional agroecosystems are spatially embedded in resource-homogeneous systems and count on generally nutrient-rich soils. On the contrary, desert oases are isolated, the soil is relatively poor, but yet productivity is similar to conventional agroecosystems. Soil dominates over plant as the main factor shaping root-associated microbiomes in conventional agroecosystems. We hypothesize that in desert oasis, the environmental discontinuity, the resource paucity and limited microbial diversity of the soil make the plant a prevailing factor. We have examined the bacterial communities in the root system of date palm (Phoenix dactylifera), the iconic keystone species of the oases, grown in heterogeneous soils across a broad geographic range (22,200 km2 surface area) of the Sahara Desert in Tunisia. We showed that, regardless of the edaphic conditions and geographic location, the plant invariably selects similar Gammaproteobacteria- and Alphaproteobacteria-dominated bacterial communities. The phylogeny, networking properties and predicted functionalities of the bacterial communities indicate that these two phyla are performing the ecological services of biopromotion and biofertilization. We conclude that in a desert agroecosystem, regardless of the soil microbial diversity baseline, the plant, rather than soil type, is responsible of the bacterial community assembly in its root systems, reversing the pattern observed in conventional agroecosystem.
Collapse
Affiliation(s)
- Maria J Mosqueira
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Ramona Marasco
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - Marco Fusi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Grégoire Michoud
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Giuseppe Merlino
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Ameur Cherif
- University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, 2020, Tunisia
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
43
|
Rago L, Zecchin S, Villa F, Goglio A, Corsini A, Cavalca L, Schievano A. Bioelectrochemical Nitrogen fixation (e-BNF): Electro-stimulation of enriched biofilm communities drives autotrophic nitrogen and carbon fixation. Bioelectrochemistry 2019; 125:105-115. [DOI: 10.1016/j.bioelechem.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
44
|
Marasco R, Mosqueira MJ, Fusi M, Ramond JB, Merlino G, Booth JM, Maggs-Kölling G, Cowan DA, Daffonchio D. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. MICROBIOME 2018; 6:215. [PMID: 30514367 PMCID: PMC6280439 DOI: 10.1186/s40168-018-0597-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/16/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND The rhizosheath-root system is an adaptive trait of sandy-desert speargrasses in response to unfavourable moisture and nutritional conditions. Under the deserts' polyextreme conditions, plants interact with edaphic microorganisms that positively affect their fitness and resistance. However, the trophic simplicity and environmental harshness of desert ecosystems have previously been shown to strongly influence soil microbial community assembly. We hypothesize that sand-driven ecological filtering constrains the microbial recruitment processes in the speargrass rhizosheath-root niche, prevailing over the plant-induced selection. METHODS Bacterial and fungal communities from the rhizosheath-root compartments (endosphere root tissues, rhizosheath and rhizosphere) of three Namib Desert speargrass species (Stipagrostis sabulicola, S. seelyae and Cladoraphis spinosa) along with bulk sand have been studied to test our hypothesis. To minimize the variability determined by edaphic and climatic factors, plants living in a single dune were studied. We assessed the role of plant species vs the sandy substrate on the recruitment and selection, phylogenetic diversity and co-occurrence microbial networks of the rhizosheath-root system microbial communities. RESULTS Microorganisms associated with the speargrass rhizosheath-root system were recruited from the surrounding bulk sand population and were significantly enriched in the rhizosheath compartments (105 and 104 of bacterial 16S rRNA and fungal ITS copies per gram of sand to up to 108 and 107 copies per gram, respectively). Furthermore, each rhizosheath-root system compartment hosted a specific microbial community demonstrating strong niche-partitioning. The rhizosheath-root systems of the three speargrass species studied were dominated by desert-adapted Actinobacteria and Alphaproteobacteria (e.g. Lechevalieria, Streptomyces and Microvirga) as well as saprophytic Ascomycota fungi (e.g. Curvularia, Aspergillus and Thielavia). Our results clearly showed a random phylogenetic turnover of rhizosheath-root system associated microbial communities, independent of the plant species, where stochastic factors drive neutral assembly. Co-occurrence network analyses also indicated that the bacterial and fungal community members of the rhizosheath-root systems established a higher number of interactions than those in the barren bulk sand, suggesting that the former are more stable and functional than the latter. CONCLUSION Our study demonstrates that the rhizosheath-root system microbial communities of desert dune speargrasses are stochastically assembled and host-independent. This finding supports the concept that the selection determined by the desert sand prevails over that imposed by the genotype of the different plant species.
Collapse
Affiliation(s)
- Ramona Marasco
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - María J Mosqueira
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Marco Fusi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Jean-Baptiste Ramond
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Giuseppe Merlino
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Jenny M Booth
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | | | - Don A Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
45
|
Sandoval-Denis M, Swart WJ, Crous PW. New Fusarium species from the Kruger National Park, South Africa. MycoKeys 2018; 34:63-92. [PMID: 29892206 PMCID: PMC5993860 DOI: 10.3897/mycokeys.34.25974] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022] Open
Abstract
Three new Fusarium species, F. convolutans, F. fredkrugeri, and F. transvaalense (Ascomycota, Hypocreales, Nectriaceae) are described from soils collected in a catena landscape on a research supersite in the Kruger National Park, South Africa. The new taxa, isolated from the rhizosphere of three African herbaceous plants, Kyphocarpa angustifolia, Melhania acuminata, and Sida cordifolia, are described and illustrated by means of morphological and multilocus molecular analyses based on sequences from five DNA loci (CAL, EF-1 α, RPB1, RPB2 and TUB). According to phylogenetic inference based on Maximum-likelihood and Bayesian approaches, the newly discovered species are distributed in the Fusarium buharicum, F. fujikuroi, and F. sambucinum species complexes.
Collapse
Affiliation(s)
- Marcelo Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Wijnand J Swart
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|