1
|
Kim D, Kim M, Woo S, Nam S, Myeong NR, Kim E, Lee YM. Potential risks of bacterial plant pathogens from thawing permafrost in the Alaskan tundra. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117531. [PMID: 39672037 DOI: 10.1016/j.ecoenv.2024.117531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Global warming-induced permafrost thawing raises concerns about the release of dormant microbes, including potentially harmful plant pathogens. However, the potential pathogenic risks associated with the thawing of permafrost remain poorly understood. Here, we conducted a 90-day soil incubation experiment at 4 °C to mimic extended permafrost thawing in Alaskan tundra soils stratified into active (A), transitional (T), and permanently frozen (P) layers. Following incubation, we examined the changes in bacterial abundance and community composition and tested the reactivation and pathogenicity of dormant plant pathogenic bacteria. Bacterial abundance, measured by colony-forming units and 16S rRNA gene copies, distinctly increased in the T and P layers after thawing. These layers also exhibited substantial shifts in bacterial community structure, with Fe-cycling taxa becoming more abundant and permafrost-dominant taxa decreasing in abundance. Notably, we isolated 52 strains with proteolytic activity, and our pathogenicity tests confirmed that Pseudomonas spp. isolates caused potato soft rot symptoms. Some Pseudomonas pathogens were undetectable in the amplicon sequencing data before thawing and emerged only in the thawed T and P layers. Our findings illustrate that permafrost acts as a reservoir of potential plant pathogens, and their resurgence upon thawing poses a potential risk to Arctic ecosystems.
Collapse
Affiliation(s)
- Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Sungho Woo
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Sungjin Nam
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Nu Ri Myeong
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Eungbin Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| |
Collapse
|
2
|
Nair GR, Kooverjee BB, de Scally S, Cowan DA, Makhalanyane TP. Changes in nutrient availability substantially alter bacteria and extracellular enzymatic activities in Antarctic soils. FEMS Microbiol Ecol 2024; 100:fiae071. [PMID: 38697936 PMCID: PMC11107947 DOI: 10.1093/femsec/fiae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/07/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024] Open
Abstract
In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting in meltwater run-off and the mobilization of surface nutrients. Yet, the short-term effects of altered nutrient regimes on the diversity and function of soil microbiota in polyextreme environments such as Antarctica, remains poorly understood. We studied these effects by constructing soil microcosms simulating augmented carbon, nitrogen, and moisture. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatments. Other treatments led to a shift in the relative abundances of these microbial assemblages although the distributional patterns were random. Only nitrogen treatment appeared to lead to distinct community structural patterns, with increases in abundance of Proteobacteria (Gammaproteobateria) and a decrease in Verrucomicrobiota (Chlamydiae and Verrucomicrobiae).The effects of extracellular enzyme activities and soil parameters on changes in microbial taxa were also significant following nitrogen addition. Structural equation modeling revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms, supporting evidence of microbial resilience to nutrient increases. In contrast with studies suggesting that these communities may be resistant to change, Antarctic soil microbiota responded rapidly to augmented nutrient regimes.
Collapse
Affiliation(s)
- Girish R Nair
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Bhaveni B Kooverjee
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Storme de Scally
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Jiang MG, Yang J, Xu Q, Qi L, Gao Y, Zhao C, Lu H, Miao Y, Han S. The responses of CO 2 emission to nitrogen application and earthworm addition in the soybean cropland. PeerJ 2024; 12:e17176. [PMID: 38560479 PMCID: PMC10979750 DOI: 10.7717/peerj.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The effects of nitrogen application or earthworms on soil respiration in the Huang-Huai-Hai Plain of China have received increasing attention. However, the response of soil carbon dioxide (CO2) emission to nitrogen application and earthworm addition is still unclear. A field experiment with nitrogen application frequency and earthworm addition was conducted in the Huang-Huai-Hai Plain. Results showed nitrogen application frequency had a significant effect on soil respiration, but neither earthworms nor their interaction with nitrogen application frequency were significant. Low-frequency nitrogen application (NL) significantly increased soil respiration by 25%, while high-frequency nitrogen application (NH), earthworm addition (E), earthworm and high-frequency nitrogen application (E*NH), and earthworm and low-frequency nitrogen application (E*NL) also increased soil respiration by 21%, 21%, 12%, and 11%, respectively. The main reason for the rise in soil respiration was alterations in the bacterial richness and keystone taxa (Myxococcales). The NH resulted in higher soil nitrogen levels compared to NL, but NL had the highest bacterial richness. The abundance of Corynebacteriales and Gammaproteobacteria were positively connected with the CO2 emissions, while Myxococcales, Thermoleophilia, and Verrucomicrobia were negatively correlated. Our findings indicate the ecological importance of bacterial communities in regulating the carbon cycle in the Huang-Huai-Hai Plain.
Collapse
Affiliation(s)
| | - Jingyuan Yang
- School of Life Sciences, Henan University, Henan, China
| | - Qi Xu
- School of Life Sciences, Henan University, Henan, China
| | - Linyu Qi
- School of Life Sciences, Henan University, Henan, China
| | - Yue Gao
- School of Life Sciences, Henan University, Henan, China
| | - Cancan Zhao
- School of Life Sciences, Henan University, Henan, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Xinyang Academy of Ecological Research, Xinyang, China
| | - Huijie Lu
- School of Life Sciences, Henan University, Henan, China
| | - Yuan Miao
- School of Life Sciences, Henan University, Henan, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Xinyang Academy of Ecological Research, Xinyang, China
| | - Shijie Han
- School of Life Sciences, Henan University, Henan, China
| |
Collapse
|
4
|
Romanowicz KJ, Crump BC, Kling GW. Genomic evidence that microbial carbon degradation is dominated by iron redox metabolism in thawing permafrost. ISME COMMUNICATIONS 2023; 3:124. [PMID: 37996661 PMCID: PMC10667234 DOI: 10.1038/s43705-023-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Microorganisms drive many aspects of organic carbon cycling in thawing permafrost soils, but the compositional trajectory of the post-thaw microbiome and its metabolic activity remain uncertain, which limits our ability to predict permafrost-climate feedbacks in a warming world. Using quantitative metabarcoding and metagenomic sequencing, we determined relative and absolute changes in microbiome composition and functional gene abundance during thaw incubations of wet sedge tundra collected from northern Alaska, USA. Organic soils from the tundra active-layer (0-50 cm), transition-zone (50-70 cm), and permafrost (70+ cm) depths were incubated under reducing conditions at 4 °C for 30 days to mimic an extended thaw duration. Following extended thaw, we found that iron (Fe)-cycling Gammaproteobacteria, specifically the heterotrophic Fe(III)-reducing Rhodoferax sp. and chemoautotrophic Fe(II)-oxidizing Gallionella sp., increased by 3-5 orders of magnitude in absolute abundance within the transition-zone and permafrost microbiomes, accounting for 65% of community abundance. We also found that the abundance of genes for Fe(III) reduction (e.g., MtrE) and Fe(II) oxidation (e.g., Cyc1) increased concurrently with genes for benzoate degradation and pyruvate metabolism, in which pyruvate is used to generate acetate that can be oxidized, along with benzoate, to CO2 when coupled with Fe(III) reduction. Gene abundance for CH4 metabolism decreased following extended thaw, suggesting dissimilatory Fe(III) reduction suppresses acetoclastic methanogenesis under reducing conditions. Our genomic evidence indicates that microbial carbon degradation is dominated by iron redox metabolism via an increase in gene abundance associated with Fe(III) reduction and Fe(II) oxidation during initial permafrost thaw, likely increasing microbial respiration while suppressing methanogenesis in wet sedge tundra.
Collapse
Affiliation(s)
- Karl J Romanowicz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - George W Kling
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Scheel M, Zervas A, Rijkers R, Tveit AT, Ekelund F, Campuzano Jiménez F, Christensen TR, Jacobsen CS. Abrupt permafrost thaw triggers activity of copiotrophs and microbiome predators. FEMS Microbiol Ecol 2023; 99:fiad123. [PMID: 37796894 PMCID: PMC10599396 DOI: 10.1093/femsec/fiad123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Permafrost soils store a substantial part of the global soil carbon and nitrogen. However, global warming causes abrupt erosion and gradual thaw, which make these stocks vulnerable to microbial decomposition into greenhouse gases. Here, we investigated the microbial response to abrupt in situ permafrost thaw. We sequenced the total RNA of a 1 m deep soil core consisting of up to 26 500-year-old permafrost material from an active abrupt erosion site. We analysed the microbial community in the active layer soil, the recently thawed, and the intact permafrost, and found maximum RNA:DNA ratios in recently thawed permafrost indicating a high microbial activity. In thawed permafrost, potentially copiotrophic Burkholderiales and Sphingobacteriales, but also microbiome predators dominated the community. Overall, both thaw-dependent and long-term soil properties significantly correlated with changes in community composition, as did microbiome predator abundance. Bacterial predators were dominated in shallower depths by Myxococcota, while protozoa, especially Cercozoa and Ciliophora, almost tripled in relative abundance in thawed layers. Our findings highlight the ecological importance of a diverse interkingdom and active microbial community highly abundant in abruptly thawing permafrost, as well as predation as potential biological control mechanism.
Collapse
Affiliation(s)
- Maria Scheel
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
- Department of Ecoscience, Aarhus University, Roskilde 4000, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
| | - Ruud Rijkers
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø 9019, Norway
| | - Flemming Ekelund
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | | | - Torben R Christensen
- Department of Ecoscience, Aarhus University, Roskilde 4000, Denmark
- Water, Energy and Environmental Engineering Research Unit, University of Oulu, FI-90014 Oulu, Finland
| | - Carsten S Jacobsen
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
| |
Collapse
|
6
|
Tang X, Zhang M, Fang Z, Yang Q, Zhang W, Zhou J, Zhao B, Fan T, Wang C, Zhang C, Xia Y, Zheng Y. Changing microbiome community structure and functional potential during permafrost thawing on the Tibetan Plateau. FEMS Microbiol Ecol 2023; 99:fiad117. [PMID: 37766397 DOI: 10.1093/femsec/fiad117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023] Open
Abstract
Large amounts of carbon sequestered in permafrost on the Tibetan Plateau (TP) are becoming vulnerable to microbial decomposition in a warming world. However, knowledge about how the responsible microbial community responds to warming-induced permafrost thaw on the TP is still limited. This study aimed to conduct a comprehensive comparison of the microbial communities and their functional potential in the active layer of thawing permafrost on the TP. We found that the microbial communities were diverse and varied across soil profiles. The microbial diversity declined and the relative abundance of Chloroflexi, Bacteroidetes, Euryarchaeota, and Bathyarchaeota significantly increased with permafrost thawing. Moreover, warming reduced the similarity and stability of active layer microbial communities. The high-throughput qPCR results showed that the abundance of functional genes involved in liable carbon degradation and methanogenesis increased with permafrost thawing. Notably, the significantly increased mcrA gene abundance and the higher methanogens to methanotrophs ratio implied enhanced methanogenic activities during permafrost thawing. Overall, the composition and functional potentials of the active layer microbial community in the Tibetan permafrost region are susceptible to warming. These changes in the responsible microbial community may accelerate carbon degradation, particularly in the methane releases from alpine permafrost ecosystems on the TP.
Collapse
Affiliation(s)
- Xiaotong Tang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhengkun Fang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qing Yang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wan Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiaxing Zhou
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tongyu Fan
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Congzhen Wang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yanhong Zheng
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
7
|
Shao M, Zhang S, Niu B, Pei Y, Song S, Lei T, Yun H. Soil texture influences soil bacterial biomass in the permafrost-affected alpine desert of the Tibetan plateau. Front Microbiol 2022; 13:1007194. [PMID: 36578569 PMCID: PMC9791195 DOI: 10.3389/fmicb.2022.1007194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022] Open
Abstract
Under warm climate conditions, permafrost thawing results in the substantial release of carbon (C) into the atmosphere and potentially triggers strong positive feedback to global warming. Soil microorganisms play an important role in decomposing organic C in permafrost, thus potentially regulating the ecosystem C balance in permafrost-affected regions. Soil microbial community and biomass are mainly affected by soil organic carbon (SOC) content and soil texture. Most studies have focused on acidic permafrost soil (pH < 7), whereas few examined alkaline permafrost-affected soil (pH > 7). In this study, we analyzed soil microbial communities and biomass in the alpine desert and steppe on the Tibetan plateau, where the soil pH values were approximately 8.7 ± 0.2 and 8.5 ± 0.1, respectively. Our results revealed that microbial biomass was significantly associated with mean grain size (MGS) and SOC content in alkaline permafrost-affected soils (p < 0.05). In particular, bacterial and fungal biomasses were affected by SOC content in the alpine steppe, whereas bacterial and fungal biomasses were mainly affected by MGS and SOC content, respectively, in the alpine desert. Combined with the results of the structural equation model, those findings suggest that SOC content affects soil texture under high pH-value (pH 8-9) and that soil microbial biomass is indirectly affected. Soils in the alpine steppe and desert are dominated by plagioclase, which provides colonization sites for bacterial communities. This study aimed to highlight the importance of soil texture in managing soil microbial biomass and demonstrate the differential impacts of soil texture on fungal and bacterial communities in alkaline permafrost-affected regions.
Collapse
Affiliation(s)
- Ming Shao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Shengyin Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Bin Niu
- University of Chinese Academy of Sciences, Beijing, China,Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yu Pei
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Sen Song
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Tianzhu Lei
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China,*Correspondence: Tianzhu Lei, ; Hanbo Yun,
| | - Hanbo Yun
- State Key Laboratory of Frozen Soil Engineering, BeiLu'He Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China,Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark,Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, United States,*Correspondence: Tianzhu Lei, ; Hanbo Yun,
| |
Collapse
|
8
|
Romanowicz KJ, Kling GW. Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra. Environ Microbiol 2022; 24:6220-6237. [PMID: 36135820 PMCID: PMC10092252 DOI: 10.1111/1462-2920.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023]
Abstract
Climate warming has increased permafrost thaw in arctic tundra and extended the duration of annual thaw (number of thaw days in summer) along soil profiles. Predicting the microbial response to permafrost thaw depends largely on knowing how increased thaw duration affects the composition of the soil microbiome. Here, we determined soil microbiome composition from the annually thawed surface active layer down through permafrost from two tundra types at each of three sites on the North Slope of Alaska, USA. Variations in soil microbial taxa were found between sites up to ~90 km apart, between tundra types, and between soil depths. Microbiome differences at a site were greatest across transitions from thawed to permafrost depths. Results from correlation analysis based on multi-decadal thaw surveys show that differences in thaw duration by depth were significantly, positively correlated with the abundance of dominant taxa in the active layer and negatively correlated with dominant taxa in the permafrost. Microbiome composition within the transition zone was statistically similar to that in the permafrost, indicating that recent decades of intermittent thaw have not yet induced a shift from permafrost to active-layer microbes. We suggest that thaw duration rather than thaw frequency has a greater impact on the composition of microbial taxa within arctic soils.
Collapse
Affiliation(s)
- Karl J Romanowicz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - George W Kling
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Dieleman CM, Day NJ, Holloway JE, Baltzer J, Douglas TA, Turetsky MR. Carbon and nitrogen cycling dynamics following permafrost thaw in the Northwest Territories, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157288. [PMID: 35839897 DOI: 10.1016/j.scitotenv.2022.157288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Rapid climate warming across northern high latitudes is leading to permafrost thaw and ecosystem carbon release while simultaneously impacting other biogeochemical cycles including nitrogen. We used a two-year laboratory incubation study to quantify concomitant changes in carbon and nitrogen pool quantity and quality as drivers of potential CO2 production in thawed permafrost soils from eight soil cores collected across the southern Northwest Territories (NWT), Canada. These data were contextualized via in situ annual thaw depth measurements from 2015 to 2019 at 40 study sites that varied in burn history. We found with increasing time since experimental thaw the dissolved carbon and nitrogen pool quality significantly declined, indicating sustained microbial processing and selective immobilization across both pools. Piecewise structural equation modeling revealed CO2 trends were predominantly predicted by initial soil carbon content with minimal influence of dissolved phase carbon. Using these results, we provide a first-order estimate of potential near-surface permafrost soil losses of up to 80 g C m-2 over one year in southern NWT, exceeding regional historic mean primary productivity rates in some areas. Taken together, this research provides mechanistic knowledge needed to further constrain the permafrost‑carbon feedback and parameterize Earth system models, while building on empirical evidence that permafrost soils are at high risk of becoming weaker carbon sinks or even significant carbon sources under a changing climate.
Collapse
Affiliation(s)
- Catherine M Dieleman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada; School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Nicola J Day
- Biology Department, Wilfrid Laurier University, Waterloo, Ontario, Canada; School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jean E Holloway
- Department of Geography, Environment and Geomatics, University of Ottawa, Ontario, Canada
| | - Jennifer Baltzer
- Biology Department, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA
| | - Merritt R Turetsky
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada; Institute of Arctic and Alpine Research, Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
10
|
Ernakovich JG, Barbato RA, Rich VI, Schädel C, Hewitt RE, Doherty SJ, Whalen E, Abbott BW, Barta J, Biasi C, Chabot CL, Hultman J, Knoblauch C, Vetter M, Leewis M, Liebner S, Mackelprang R, Onstott TC, Richter A, Schütte U, Siljanen HMP, Taş N, Timling I, Vishnivetskaya TA, Waldrop MP, Winkel M. Microbiome assembly in thawing permafrost and its feedbacks to climate. GLOBAL CHANGE BIOLOGY 2022; 28:5007-5026. [PMID: 35722720 PMCID: PMC9541943 DOI: 10.1111/gcb.16231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/24/2022] [Indexed: 05/15/2023]
Abstract
The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.
Collapse
Affiliation(s)
- Jessica G. Ernakovich
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
| | - Robyn A. Barbato
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Virginia I. Rich
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
- Microbiology DepartmentOhio State UniversityColumbusOhioUSA
- Byrd Polar and Climate Research CenterOhio State UniversityColombusOhioUSA
- Center of Microbiome ScienceOhio State UniversityColombusOhioUSA
| | - Christina Schädel
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca E. Hewitt
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Environmental StudiesAmherst CollegeAmherstMassachusettsUSA
| | - Stacey J. Doherty
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Emily D. Whalen
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| | - Benjamin W. Abbott
- Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUtahUSA
| | - Jiri Barta
- Centre for Polar EcologyUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Christina Biasi
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Chris L. Chabot
- California State University NorthridgeNorthridgeCaliforniaUSA
| | | | - Christian Knoblauch
- Institute of Soil ScienceUniversität HamburgHamburgGermany
- Center for Earth System Research and SustainabilityUniversität HamburgHamburgGermany
| | - Maggie C. Y. Lau Vetter
- Department of GeosciencesPrinceton UniversityPrincetonNew JerseyUSA
- Laboratory of Extraterrestrial Ocean Systems (LEOS)Institute of Deep‐sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Mary‐Cathrine Leewis
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
- Agriculture and Agri‐Food CanadaQuebec Research and Development CentreQuebecQuebecCanada
| | - Susanne Liebner
- GFZ German Research Centre for GeosciencesSection GeomicrobiologyPotsdamGermany
| | | | | | - Andreas Richter
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Austrian Polar Research InstituteViennaAustria
| | | | - Henri M. P. Siljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Neslihan Taş
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Tatiana A. Vishnivetskaya
- University of TennesseeKnoxvilleTennesseeUSA
- Institute of Physicochemical and Biological Problems of Soil SciencePushchinoRussia
| | - Mark P. Waldrop
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
| | - Matthias Winkel
- GFZ German Research Centre for GeosciencesInterface GeochemistryPotsdamGermany
- BfR Federal Institute for Risk AssessmentBerlinGermany
| |
Collapse
|
11
|
Xu X, Zhang Q, Song M, Zhang X, Bi R, Zhan L, Dong Y, Xiong Z. Soil organic carbon decomposition responding to warming under nitrogen addition across Chinese vegetable soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113932. [PMID: 35914399 DOI: 10.1016/j.ecoenv.2022.113932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Chemical fertilization in excess and warming disrupt the soil microbes and alter resource stoichiometry, particularly in intensive vegetable soils, while the effects of these variables on the temperature sensitivity of soil organic carbon (SOC) decomposition (Q10) and SOC stability remain elusive. Thus, we collected six long-term vegetable soils along a climatic gradient to examine the microbial mechanisms and resource stoichiometry effects on fluctuations in Q10 and SOC stability induced by warming and fertilization from vegetable soils. Our results showed that the SOC decomposition was dominated by microbes and regulated by stoichiometry. Compared to cold sites, higher Q10 of SOC decomposition was observed in warm sites, accompanied by lower enzyme activities, microbial CUE, and C:N ratio. In this context, warming reduced SOC stability as evidenced by up to 31.8% greater Q10 (1.45) at warm sites than at cold sites (1.10) owing to less richness of microbial communities and lower microbial CUE. The relatively lower pH and labile organic C value restricted the development of microbial richness, and decreased C- and N-related enzyme activities and a lower C:N ratio resulted in microbial CUE reduction. Additionally, N fertilization altered the C:N imbalance and enhanced SOC stability in vegetable soils, exhibiting an increase of Q10 values, particularly of great importance in warm sites. Collectively, our findings emphasize the importance of the microbial mechanism and resource stoichiometry in predicting variations in Q10 and fluctuations in SOC stability, and provide theoretical advice on improving management policies in the context of warming and fertilization from vegetable soils.
Collapse
Affiliation(s)
- Xintong Xu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianqian Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Mengxin Song
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiyu Bi
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liping Zhan
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yubing Dong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huaian 223001, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Li X, Cui Y, Ma D, Song D, Liu L. Vertical distribution of bacterial community diversity in the Greater Khingan Mountain permafrost region. Ecol Evol 2022; 12:e9106. [PMID: 35845356 PMCID: PMC9272067 DOI: 10.1002/ece3.9106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
Soil microorganisms are crucial contributors to the function of permafrost ecosystems, as well as the regulation of biogeochemical cycles. However, little is known about the distribution patterns and drivers of high-latitude permafrost microbial communities subject to climate change and human activities. In this study, the vertical distribution patterns of soil bacterial communities in the Greater Khingan Mountain permafrost region were systematically analyzed via Illumina Miseq high-throughput sequencing. Bacterial diversity in the active layer was significantly higher than in the permafrost layer. Principal coordinate analysis (PCoA) indicated that the bacterial community structure in the active layer and the permafrost layer was completely separated. Permutational multivariate analysis of variance (PERMANOVA) detected statistically significant differentiation across the different depths. The relative abundance of the dominant phyla Chloroflexi (17.92%-52.79%) and Actinobacteria (6.34%-34.52%) was significantly higher in the permafrost layer than in the active layer, whereas that of Acidobacteria (4.98%-38.82%) exhibited the opposite trend, and the abundance of Proteobacteria (2.49%-22.51%) generally decreased with depth. More importantly, the abundance of bacteria linked to human infectious diseases was significantly higher in the permafrost layer according to Tax4Fun prediction analysis. Redundancy analysis (RDA) showed that ammonium nitrogen (NH4 +-N), total organic carbon (TOC), and total phosphorus (TP) were major factors affecting the bacterial community composition. Collectively, our findings provide insights into the soil bacterial vertical distribution patterns and major environmental drivers in high-latitude permafrost regions, which is key to grasping the response of cold region ecosystem processes to global climate changes.
Collapse
Affiliation(s)
- Xin Li
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| | - Yuanquan Cui
- Personnel departmentHarbin Normal UniversityHarbinChina
| | - Dalong Ma
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| | - Dandan Song
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| | - Lin Liu
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| |
Collapse
|
13
|
Seitz TJ, Schütte UME, Drown DM. Unearthing Shifts in Microbial Communities Across a Soil Disturbance Gradient. Front Microbiol 2022; 13:781051. [PMID: 35685929 PMCID: PMC9171198 DOI: 10.3389/fmicb.2022.781051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Permafrost, an important source of soil disturbance, is particularly vulnerable to climate change in Alaska where 85% of the land is underlained with discontinuous permafrost. Boreal forests, home to plants integral to subsistence diets of many Alaska Native communities, are not immune to the effects of climate change. Soil disturbance events, such as permafrost thaw, wildfires, and land use change can influence abiotic conditions, which can then affect active layer soil microbial communities. In a previous study, we found negative effects on boreal plants inoculated with microbes impacted by soil disturbance compared to plants inoculated with microbes from undisturbed soils. Here, we identify key shifts in microbial communities altered by soil disturbance using 16S rRNA gene sequencing and make connections between microbial community changes and previously observed plant growth. Additionally, we identify further community shifts in potential functional mechanisms using long read metagenomics. Across a soil disturbance gradient, microbial communities differ significantly based on the level of soil disturbance. Consistent with the earlier study, the family Acidobacteriaceae, which consists of known plant growth promoters, was abundant in undisturbed soil, but practically absent in most disturbed soil. In contrast, Comamonadaceae, a family with known agricultural pathogens, was overrepresented in most disturbed soil communities compared to undisturbed. Within our metagenomic data, we found that soil disturbance level is associated with differences in microbial community function, including mechanisms potentially involved in plant pathogenicity. These results indicate that a decrease in plant growth can be linked to changes in the microbial community and functional composition driven by soil disturbance and climate change. Together, these results build a genomic understanding of how shifting soil microbiomes may affect plant productivity and ecosystem health as the Arctic warms.
Collapse
Affiliation(s)
- Taylor J. Seitz
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Ursel M. E. Schütte
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Devin M. Drown
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
- *Correspondence: Devin M. Drown,
| |
Collapse
|
14
|
Wang M, Wu Y, Zhao J, Liu Y, Chen Z, Tang Z, Tian W, Xi Y, Zhang J. Long-term fertilization lowers the alkaline phosphatase activity by impacting the phoD-harboring bacterial community in rice-winter wheat rotation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153406. [PMID: 35092777 DOI: 10.1016/j.scitotenv.2022.153406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
PhoD-harboring bacteria and the secreted alkaline phosphatases (ALP) are crucial in the regulation of soil phosphorus (P) cycling. However, the influential factors of these crucial indicators and their internal interactions remain controversial. Here, a long-term field experiment containing different fertilization regimes was conducted (chemical, organic, and no fertilizer applied). The results indicated that the richness and diversity of phoD-harboring bacterial community were significantly decreased after long-term fertilization. The applied fertilizer promoted the growth of competitive species, while phoD-harboring bacteria lost the advantage to outcompete other microorganisms after long-term fertilization. The decreased ALP activity was caused by the declined phoD gene abundance, which is attributed to the comprehensive effects of soil organic C (SOC), total nitrogen (TN), and various forms of P. The random forest models identified SOC, TN, and available P (AP) to be the dominant environmental factors in shaping the phoD-harboring bacterial community. In addition, some other forms of P such as organic P (Po), inorganic P (Pi) or total P (TP) also exerted significant effects. Different fertilization regimes changed the keystone genera that contributed significantly to soil ALP activities, while Pseudolabrys and Pseudomonas were predicted to be the most important genera regardless of different fertilization regimes. This study extends the understanding of the main process and mechanisms of P mobilization in response to different fertilization regimes.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhe Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhaoyang Tang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Yunguan Xi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
15
|
Zeng XM, Feng J, Chen J, Delgado-Baquerizo M, Zhang Q, Zhou XQ, Yuan Y, Feng S, Zhang K, Liu YR, Huang Q. Microbial assemblies associated with temperature sensitivity of soil respiration along an altitudinal gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153257. [PMID: 35065115 DOI: 10.1016/j.scitotenv.2022.153257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Identifying the drivers of the response of soil microbial respiration to warming is integral to accurately forecasting the carbon-climate feedbacks in terrestrial ecosystems. Microorganisms are the fundamental drivers of soil microbial respiration and its response to warming; however, the specific microbial communities and properties involved in the process remain largely undetermined. Here, we identified the associations between microbial community and temperature sensitivity (Q10) of soil microbial respiration in alpine forests along an altitudinal gradient (from 2974 to 3558 m) from the climate-sensitive Tibetan Plateau. Our results showed that changes in microbial community composition accounted for more variations of Q10 values than a wide range of other factors, including soil pH, moisture, substrate quantity and quality, microbial biomass, diversity and enzyme activities. Specifically, co-occurring microbial assemblies (i.e., ecological clusters or modules) targeting labile carbon consumption were negatively correlated with Q10 of soil microbial respiration, whereas microbial assemblies associated with recalcitrant carbon decomposition were positively correlated with Q10 of soil microbial respiration. Furthermore, there were progressive shifts of microbial assemblies from labile to recalcitrant carbon consumption along the altitudinal gradient, supporting relatively high Q10 values in high-altitude regions. Our results provide new insights into the link between changes in major microbial assemblies with different trophic strategies and Q10 of soil microbial respiration along an altitudinal gradient, highlighting that warming could have stronger effects on microbially-mediated soil organic matter decomposition in high-altitude regions than previously thought.
Collapse
Affiliation(s)
- Xiao-Min Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele 8830, Denmark
| | | | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yusen Yuan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Songhui Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Kexin Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Scheel M, Zervas A, Jacobsen CS, Christensen TR. Microbial Community Changes in 26,500-Year-Old Thawing Permafrost. Front Microbiol 2022; 13:787146. [PMID: 35401488 PMCID: PMC8988141 DOI: 10.3389/fmicb.2022.787146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Northern permafrost soils store more than half of the global soil carbon. Frozen for at least two consecutive years, but often for millennia, permafrost temperatures have increased drastically in the last decades. The resulting thermal erosion leads not only to gradual thaw, resulting in an increase of seasonally thawing soil thickness, but also to abrupt thaw events, such as sudden collapses of the soil surface. These could affect 20% of the permafrost zone and half of its organic carbon, increasing accessibility for deeper rooting vegetation and microbial decomposition into greenhouse gases. Knowledge gaps include the impact of permafrost thaw on the soil microfauna as well as key taxa to change the microbial mineralization of ancient permafrost carbon stocks during erosion. Here, we present the first sequencing study of an abrupt permafrost erosion microbiome in Northeast Greenland, where a thermal erosion gully collapsed in the summer of 2018, leading to the thawing of 26,500-year-old permafrost material. We investigated which soil parameters (pH, soil carbon content, age and moisture, organic and mineral horizons, and permafrost layers) most significantly drove changes of taxonomic diversity and the abundance of soil microorganisms in two consecutive years of intense erosion. Sequencing of the prokaryotic 16S rRNA and fungal ITS2 gene regions at finely scaled depth increments revealed decreasing alpha diversity with depth, soil age, and pH. The most significant drivers of variation were found in the soil age, horizons, and permafrost layer for prokaryotic and fungal beta diversity. Permafrost was mainly dominated by Proteobacteria and Firmicutes, with Polaromonas identified as the most abundant taxon. Thawed permafrost samples indicated increased abundance of several copiotrophic phyla, such as Bacteroidia, suggesting alterations of carbon utilization pathways within eroding permafrost.
Collapse
Affiliation(s)
- Maria Scheel
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - Torben R. Christensen
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
- Oulanka Research Station, Oulu University, Oulu, Finland
| |
Collapse
|
17
|
Abstract
The glaciers in China have an important role as one of the most climate-sensitive constituents of the Tibetan Plateau which is known as the Asian Water Tower. Although the cryosphere is one of the most extreme environments for organisms, the soils of the glacier foreland harbor surprisingly rich microbiomes. A large amount of accelerated glacier retreat accompanied by global warming will not only raise the sea level, but it will also lead to the massive release of a considerable amount of carbon stored in these glaciers. The responses of glacier microbiomes could alter the biogeochemical cycle of carbon and have a complex impact on climate change. Thus, understanding present-day and future glacier microbiome changes is crucial to assess the feedback on climate change and the impacts on ecosystems. To this end, we discuss here the diversity and biogeochemical functions of the microbiomes in Chinese mountain glacier ecosystems.
Collapse
|
18
|
Zhao S, Wang J, Feng S, Xiao Z, Chen C. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150140. [PMID: 34509841 DOI: 10.1016/j.scitotenv.2021.150140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of society, the soil and water environments in many countries are suffering from severe pollution. Pollutants in different phases will eventually gather into the soil and water environments, and a series of migrations and transformations will take place at ecohydrological interfaces with water flow. However, it is still not clear how ecohydrological interfaces affect the migration and the transformation of pollutants. Therefore, this paper summarizes the physical, ecological, and biogeochemical characteristics of ecohydrological interfaces on the basis of introducing the development history of ecohydrology and the concept of ecohydrological interfaces. The effects of ecohydrological interfaces on the migration and transformation of heavy metals, organic pollutants, and carbon‑nitrogen‑phosphorus (C-N-P) pollutants are emphasized. Lastly, the prospects of applying ecohydrological interfaces for the removal of pollutants from the soil and water environment are put forward, including strengthening the ability to monitor and simulate ecohydrological systems at micro and macro scales, enhancing interdisciplinary research, and identifying main influencing factors that can provide theoretical basis and technical support.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shijin Feng
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Zailun Xiao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chunyan Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
19
|
Wu L, Yang F, Feng J, Tao X, Qi Q, Wang C, Schuur EAG, Bracho R, Huang Y, Cole JR, Tiedje JM, Zhou J. Permafrost thaw with warming reduces microbial metabolic capacities in subsurface soils. Mol Ecol 2021; 31:1403-1415. [PMID: 34878672 DOI: 10.1111/mec.16319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 01/27/2023]
Abstract
Microorganisms are major constituents of the total biomass in permafrost regions, whose underlain soils are frozen for at least two consecutive years. To understand potential microbial responses to climate change, here we examined microbial community compositions and functional capacities across four soil depths in an Alaska tundra site. We showed that a 5-year warming treatment increased soil thaw depth by 25.7% (p = .011) within the deep organic layer (15-25 cm). Concurrently, warming reduced 37% of bacterial abundance and 64% of fungal abundances in the deep organic layer, while it did not affect microbial abundance in other soil layers (i.e., 0-5, 5-15, and 45-55 cm). Warming treatment altered fungal community composition and microbial functional structure (p < .050), but not bacterial community composition. Using a functional gene array, we found that the relative abundances of a variety of carbon (C)-decomposing, iron-reducing, and sulphate-reducing genes in the deep organic layer were decreased, which was not observed by the shotgun sequencing-based metagenomics analysis of those samples. To explain the reduced metabolic capacities, we found that warming treatment elicited higher deterministic environmental filtering, which could be linked to water-saturated time, soil moisture, and soil thaw duration. In contrast, plant factors showed little influence on microbial communities in subsurface soils below 15 cm, despite a 25.2% higher (p < .05) aboveground plant biomass by warming treatment. Collectively, we demonstrate that microbial metabolic capacities in subsurface soils are reduced, probably arising from enhanced thaw by warming.
Collapse
Affiliation(s)
- Linwei Wu
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Felix Yang
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Jiajie Feng
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Xuanyu Tao
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Qi Qi
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Cong Wang
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Edward A G Schuur
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Rosvel Bracho
- Department of Biology, School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, USA
| | - Yi Huang
- College of Environmental Science and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing, China
| | - James R Cole
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
20
|
Pold G, Baillargeon N, Lepe A, Rastetter EB, Sistla SA. Warming effects on arctic tundra biogeochemistry are limited but habitat‐dependent: a meta‐analysis. Ecosphere 2021. [DOI: 10.1002/ecs2.3777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Grace Pold
- Natural Resources Management & Environmental Sciences College of Agriculture, Food & Environmental Sciences California Polytechnic State University San Luis Obispo California USA
| | - Natalie Baillargeon
- Smith College Northampton Massachusetts USA
- Woodwell Climate Research Center Woods Hole Massachusetts USA
| | - Adan Lepe
- Amherst College Amherst Massachusetts USA
| | - Edward B. Rastetter
- Marine Biological Laboratories The Ecosystems Center Woods Hole Massachusetts USA
| | - Seeta A. Sistla
- Natural Resources Management & Environmental Sciences College of Agriculture, Food & Environmental Sciences California Polytechnic State University San Luis Obispo California USA
| |
Collapse
|
21
|
Heffernan L, Jassey VEJ, Frederickson M, MacKenzie MD, Olefeldt D. Constraints on potential enzyme activities in thermokarst bogs: Implications for the carbon balance of peatlands following thaw. GLOBAL CHANGE BIOLOGY 2021; 27:4711-4726. [PMID: 34164885 DOI: 10.1111/gcb.15758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Northern peatlands store a globally significant amount of soil organic carbon, much of it found in rapidly thawing permafrost. Permafrost thaw in peatlands often leads to the development and expansion of thermokarst bogs, where microbial activity will determine the stability of the carbon storage and the release of greenhouse gases. In this study, we compared potential enzyme activities between young (thawed ~30 years ago) and mature (~200 years) thermokarst bogs, for both shallow and deep peat layers. We found very low potential enzyme activities in deep peat layers, with no differences between the young and mature bogs. Peat quality at depth was found to be highly humified (FTIR analysis) in both the young and mature bogs. This suggests that deep, old peat was largely stable following permafrost thaw, without a rapid pulse of decomposition during the young bog stage. For near-surface peat, we found significantly higher potential enzyme activities in the young bog than in the mature-associated with differences in peat quality derived from different Sphagnum species. A laboratory incubation of near-surface peat showed that differences in potential enzyme activity were primarily influenced by peat type rather than oxygen availability. This suggested that the young bog can have higher rates of near-surface decomposition despite being substantially wetter than the mature bog. Overall, our study shows that peat properties are the dominant constraint on potential enzyme activity and that peatland site development (successional pathways and permafrost history) through its influence on peat type and chemistry is likely to determine peat decomposition following permafrost thaw.
Collapse
Affiliation(s)
- Liam Heffernan
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Vincent E J Jassey
- Laboratorie d'Ecologie Fonctionelle et Envrionnement, Université de Toulouse, CNRS, Toulouse, France
| | - Maya Frederickson
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - M Derek MacKenzie
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - David Olefeldt
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Impact of river channel lateral migration on microbial communities across a discontinuous permafrost floodplain. Appl Environ Microbiol 2021; 87:e0133921. [PMID: 34347514 DOI: 10.1128/aem.01339-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Permafrost soils store approximately twice the amount of carbon currently present in Earth's atmosphere and are acutely impacted by climate change due to the polar amplification of increasing global temperature. Many organic-rich permafrost sediments are located on large river floodplains, where river channel migration periodically erodes and re-deposits the upper tens of meters of sediment. Channel migration exerts a first-order control on the geographic distribution of permafrost and floodplain stratigraphy and thus may affect microbial habitats. To examine how river channel migration in discontinuous permafrost environments affects microbial community composition, we used amplicon sequencing of the 16S rRNA gene on sediment samples from floodplain cores and exposed riverbanks along the Koyukuk River, a large tributary of the Yukon River in west-central Alaska. Microbial communities are sensitive to permafrost thaw: communities found in deep samples thawed by the river closely resembled near-surface active layer communities in non-metric multidimensional scaling analyses but did not resemble floodplain permafrost communities at the same depth. Microbial communities also displayed lower diversity and evenness in permafrost than in both the active layer and permafrost-free point bars recently deposited by river channel migration. Taxonomic assignments based on 16S and quantitative PCR for the methyl-coenzyme M reductase functional gene demonstrated that methanogens and methanotrophs are abundant in older permafrost-bearing deposits, but not in younger, non-permafrost point bar deposits. The results suggested that river migration, which regulates the distribution of permafrost, also modulates the distribution of microbes potentially capable of producing and consuming methane on the Koyukuk River floodplain. Importance Arctic lowlands contain large quantities of soil organic carbon that is currently sequestered in permafrost. With rising temperatures, permafrost thaw may allow this carbon to be consumed by microbial communities and released to the atmosphere as carbon dioxide or methane. We used gene sequencing to determine the microbial communities present in the floodplain of a river running through discontinuous permafrost. We found the river's lateral movement across its floodplain influences the occurrence of certain microbial communities-in particular, methane-cycling microbes were present on the older, permafrost-bearing eroding riverbank but absent on the newly deposited river bars. Riverbank sediment had microbial communities more similar to the floodplain active layer than permafrost samples from the same depth. Therefore, spatial patterns of river migration influence the distribution of microbial taxa relevant to the warming Arctic climate.
Collapse
|
23
|
Qin S, Kou D, Mao C, Chen Y, Chen L, Yang Y. Temperature sensitivity of permafrost carbon release mediated by mineral and microbial properties. SCIENCE ADVANCES 2021; 7:eabe3596. [PMID: 34362729 PMCID: PMC8346221 DOI: 10.1126/sciadv.abe3596] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 06/22/2021] [Indexed: 05/04/2023]
Abstract
Temperature sensitivity (Q 10) of permafrost carbon (C) release upon thaw is a vital parameter for projecting permafrost C dynamics under climate warming. However, it remains unclear how mineral protection interacts with microbial properties and intrinsic recalcitrance to affect permafrost C fate. Here, we sampled permafrost soils across a 1000-km transect on the Tibetan Plateau and conducted two laboratory incubations over 400- and 28-day durations to explore patterns and drivers of permafrost C release and its temperature response after thaw. We find that mineral protection and microbial properties are two types of crucial predictors of permafrost C dynamics upon thaw. Both high C release and Q 10 are associated with weak organo-mineral associations but high microbial abundances and activities, whereas high microbial diversity corresponds to low Q 10 The attenuating effects of mineral protection and the dual roles of microbial properties would make the permafrost C-climate feedback more complex than previously thought.
Collapse
Affiliation(s)
- Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Biogeochemistry Research Group, Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio 70210, Finland
| | - Chao Mao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongliang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Bacterial Number and Genetic Diversity in a Permafrost Peatland (Western Siberia): Testing a Link with Organic Matter Quality and Elementary Composition of a Peat Soil Profile. DIVERSITY 2021. [DOI: 10.3390/d13070328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Permafrost peatlands, containing a sizable amount of soil organic carbon (OC), play a pivotal role in soil (peat) OC transformation into soluble and volatile forms and greatly contribute to overall natural CO2 and CH4 emissions to the atmosphere under ongoing permafrost thaw and soil OC degradation. Peat microorganisms are largely responsible for the processing of this OC, yet coupled studies of chemical and bacterial parameters in permafrost peatlands are rather limited and geographically biased. Towards testing the possible impact of peat and peat pore water chemical composition on microbial population and diversity, here we present results of a preliminary study of the western Siberia permafrost peatland discontinuous permafrost zone. The quantitative evaluation of microorganisms and determination of microbial diversity along a 100 cm thick peat soil column, which included thawed and frozen peat and bottom mineral horizon, was performed by RT-PCR and 16S rRNA gene-based metagenomic analysis, respectively. Bacteria (mainly Proteobacteria, Acidobacteria, Actinobacteria) strongly dominated the microbial diversity (99% sequences), with a negligible proportion of archaea (0.3–0.5%). There was a systematic evolution of main taxa according to depth, with a maximum of 65% (Acidobacteria) encountered in the active layer, or permafrost boundary (50–60 cm). We also measured C, N, nutrients and ~50 major and trace elements in peat (19 samples) as well as its pore water and dispersed ice (10 samples), sampled over the same core, and we analyzed organic matter quality in six organic and one mineral horizon of this core. Using multiparametric statistics (PCA), we tested the links between the total microbial number and 16S rRNA diversity and chemical composition of both the solid and fluid phase harboring the microorganisms. Under climate warming and permafrost thaw, one can expect a downward movement of the layer of maximal genetic diversity following the active layer thickening. Given a one to two orders of magnitude higher microbial number in the upper (thawed) layers compared to bottom (frozen) layers, an additional 50 cm of peat thawing in western Siberia may sizably increase the total microbial population and biodiversity of active cells.
Collapse
|
25
|
Chen Y, Liu F, Kang L, Zhang D, Kou D, Mao C, Qin S, Zhang Q, Yang Y. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. GLOBAL CHANGE BIOLOGY 2021; 27:3218-3229. [PMID: 33336478 DOI: 10.1111/gcb.15487] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Permafrost thaw could trigger the release of greenhouse gases through microbial decomposition of the large quantities of carbon (C) stored within frozen soils. However, accurate evaluation of soil C emissions from thawing permafrost is still a big challenge, partly due to our inadequate understanding about the response of microbial communities and their linkage with soil C release upon permafrost thaw. Based on a large-scale permafrost sampling across 24 sites on the Tibetan Plateau, we employed meta-genomic technologies (GeoChip and Illumina MiSeq sequencing) to explore the impacts of permafrost thaw (permafrost samples were incubated for 11 days at 5°C) on microbial taxonomic and functional communities, and then conducted a laboratory incubation to investigate the linkage of microbial taxonomic and functional diversity with soil C release after permafrost thaw. We found that bacterial and fungal α diversity decreased, but functional gene diversity and the normalized relative abundance of C degradation genes increased after permafrost thaw, reflecting the rapid microbial response to permafrost thaw. Moreover, both the microbial taxonomic and functional community structures differed between the thawed permafrost and formerly frozen soils. Furthermore, soil C release rate over five month incubation was associated with microbial functional diversity and C degradation gene abundances. By contrast, neither microbial taxonomic diversity nor community structure exhibited any significant effects on soil C release over the incubation period. These findings demonstrate that permafrost thaw could accelerate C emissions by altering the function potentials of microbial communities rather than taxonomic diversity, highlighting the crucial role of microbial functional genes in mediating the responses of permafrost C cycle to climate warming.
Collapse
Affiliation(s)
- Yongliang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Futing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chao Mao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiwen Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Sierocinski P, Soria Pascual J, Padfield D, Salter M, Buckling A. The impact of propagule pressure on whole community invasions in biomethane-producing communities. iScience 2021; 24:102659. [PMID: 34151242 PMCID: PMC8192723 DOI: 10.1016/j.isci.2021.102659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
Microbes can invade as whole communities, but the ecology of whole community invasions is poorly understood. Here, we investigate how invader propagule pressure (the number of invading organisms) affects the composition and function of invaded laboratory methanogenic communities. An invading community was equally successful at establishing itself in a resident community regardless of propagule pressure, which varied between 0.01 and 10% of the size resident community. Invasion resulted in enhanced biogas production (to the level of the pure invading community) but only when propagule pressure was 1% or greater. This inconsistency between invasion success and changes in function can be explained by a lower richness of invading taxa at lower propagule pressures, and an important functional role of the taxa that were absent. Our results highlight that whole community invasion ecology cannot simply be extrapolated from our understanding of single species invasions. Moreover, we show that methane production can be enhanced by invading poorly performing reactors with a better performing community at levels that may be practical in industrial settings. Complex communities can successfully invade other communities Invasions change the community composition independently of propagule pressure Number of taxa invading increases with increased propagule pressure Larger propagule pressure impacts both the community structure and function
Collapse
Affiliation(s)
- Pawel Sierocinski
- Environment and Sustainability Institute, Penryn Campus, University of Exeter, Penryn, UK
| | - Jesica Soria Pascual
- Environment and Sustainability Institute, Penryn Campus, University of Exeter, Penryn, UK
| | - Daniel Padfield
- Environment and Sustainability Institute, Penryn Campus, University of Exeter, Penryn, UK
| | | | - Angus Buckling
- Environment and Sustainability Institute, Penryn Campus, University of Exeter, Penryn, UK
| |
Collapse
|
27
|
Xu M, Li X, Kuyper TW, Xu M, Li X, Zhang J. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. GLOBAL CHANGE BIOLOGY 2021; 27:2061-2075. [PMID: 33560552 DOI: 10.1111/gcb.15553] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Soil microbes are directly involved in soil organic carbon (SOC) decomposition, yet the importance of microbial biodiversity in regulating the temperature sensitivity of SOC decomposition remains elusive, particularly in alpine regions where climate change is predicted to strongly affect SOC dynamics and ecosystem stability. Here we collected topsoil and subsoil samples along an elevational gradient on the southeastern Tibetan Plateau to explore the temperature sensitivity (Q10 ) of SOC decomposition in relation to changes in microbial communities. Specifically, we tested whether the decomposition of SOC would be more sensitive to warming when microbial diversity is low. The estimated Q10 value ranged from 1.28 to 1.68, and 1.80 to 2.10 in the topsoil and subsoil, respectively. The highest Q10 value was observed at the lowest altitude of forests in the topsoil, and at the highest altitude of alpine meadow in the subsoil. Variations in Q10 were closely related to changes in microbial properties. In the topsoil the ratio of gram-positive to gram-negative bacteria (G+:G-) was the predominant factor associated with the altitudinal variations in Q10 . In the subsoil, SOC decomposition showed more resilience to warming when the diversity of soil bacteria (both whole community and major groups) and fungi was higher. Our results partly support the positive biodiversity-ecosystem stability hypothesis. Structural equation modeling further indicates that variations in Q10 in the subsoil were directly related to changes in microbial diversity and community composition, which were affected by soil pH. Collectively our results provide compelling evidence that microbial biodiversity plays an important role in stabilizing SOC decomposition in the subsoil of alpine montane ecosystems. Conservation of belowground biodiversity is therefore of great importance in maintaining the stability of ecosystem processes under climate change in high-elevation regions of the Tibetan Plateau.
Collapse
Affiliation(s)
- Meng Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoliang Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, Hainan, China
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University, Wageningen, The Netherlands
| | - Ming Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Li
- Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, China
| | - Junling Zhang
- Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, China
| |
Collapse
|
28
|
Liu F, Kou D, Chen Y, Xue K, Ernakovich JG, Chen L, Yang G, Yang Y. Altered microbial structure and function after thermokarst formation. GLOBAL CHANGE BIOLOGY 2021; 27:823-835. [PMID: 33155741 DOI: 10.1111/gcb.15438] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 05/27/2023]
Abstract
Permafrost thaw could induce substantial carbon (C) emissions to the atmosphere, and thus trigger a positive feedback to climate warming. As the engine of biogeochemical cycling, soil microorganisms exert a critical role in mediating the direction and strength of permafrost C-climate feedback. However, our understanding about the impacts of thermokarst (abrupt permafrost thaw) on microbial structure and function remains limited. Here we employed metagenomic sequencing to analyze changes in topsoil (0-15 cm) microbial communities and functional genes along a permafrost thaw sequence (1, 10, and 16 years since permafrost collapse) on the Tibetan Plateau. By combining laboratory incubation and a two-pool model, we then explored changes in soil labile and stable C decomposition along the thaw sequence. Our results showed that topsoil microbial α-diversity decreased, while the community structure and functional gene abundance did not exhibit any significant change at the early stage of collapse (1 year since collapse) relative to non-collapsed control. However, as the time since the collapse increased, both the topsoil microbial community structure and functional genes differed from the control. Abundances of functional genes involved in labile C degradation decreased while those for stable C degradation increased at the late stage of collapse (16 years since collapse), largely driven by changes in substrate properties along the thaw sequence. Accordingly, faster stable C decomposition occurred at the late stage of collapse compared to the control, which was associated with the increase in relative abundance of functional genes for stable C degradation. These results suggest that upland thermokarst alters microbial structure and function, particularly enhances soil stable C decomposition by modulating microbial functional genes, which could reinforce a warmer climate over the decadal timescale.
Collapse
Affiliation(s)
- Futing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yongliang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jessica G Ernakovich
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Bouskill NJ, Riley WJ, Zhu Q, Mekonnen ZA, Grant RF. Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments. Nat Commun 2020; 11:5798. [PMID: 33199687 PMCID: PMC7670472 DOI: 10.1038/s41467-020-19574-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/22/2020] [Indexed: 11/08/2022] Open
Abstract
Climate warming is occurring fastest at high latitudes. Based on short-term field experiments, this warming is projected to stimulate soil organic matter decomposition, and promote a positive feedback to climate change. We show here that the tightly coupled, nonlinear nature of high-latitude ecosystems implies that short-term (<10 year) warming experiments produce emergent ecosystem carbon stock temperature sensitivities inconsistent with emergent multi-decadal responses. We first demonstrate that a well-tested mechanistic ecosystem model accurately represents observed carbon cycle and active layer depth responses to short-term summer warming in four diverse Alaskan sites. We then show that short-term warming manipulations do not capture the non-linear, long-term dynamics of vegetation, and thereby soil organic matter, that occur in response to thermal, hydrological, and nutrient transformations belowground. Our results demonstrate significant spatial heterogeneity in multi-decadal Arctic carbon cycle trajectories and argue for more mechanistic models to improve predictive capabilities.
Collapse
Affiliation(s)
- Nicholas J Bouskill
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - William J Riley
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Qing Zhu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zelalem A Mekonnen
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert F Grant
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| |
Collapse
|
30
|
Doherty SJ, Barbato RA, Grandy AS, Thomas WK, Monteux S, Dorrepaal E, Johansson M, Ernakovich JG. The Transition From Stochastic to Deterministic Bacterial Community Assembly During Permafrost Thaw Succession. Front Microbiol 2020; 11:596589. [PMID: 33281795 PMCID: PMC7691490 DOI: 10.3389/fmicb.2020.596589] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/27/2020] [Indexed: 01/04/2023] Open
Abstract
The Northern high latitudes are warming twice as fast as the global average, and permafrost has become vulnerable to thaw. Changes to the environment during thaw leads to shifts in microbial communities and their associated functions, such as greenhouse gas emissions. Understanding the ecological processes that structure the identity and abundance (i.e., assembly) of pre- and post-thaw communities may improve predictions of the functional outcomes of permafrost thaw. We characterized microbial community assembly during permafrost thaw using in situ observations and a laboratory incubation of soils from the Storflaket Mire in Abisko, Sweden, where permafrost thaw has occurred over the past decade. In situ observations indicated that bacterial community assembly was driven by randomness (i.e., stochastic processes) immediately after thaw with drift and dispersal limitation being the dominant processes. As post-thaw succession progressed, environmentally driven (i.e., deterministic) processes became increasingly important in structuring microbial communities where homogenizing selection was the only process structuring upper active layer soils. Furthermore, laboratory-induced thaw reflected assembly dynamics immediately after thaw indicated by an increase in drift, but did not capture the long-term effects of permafrost thaw on microbial community dynamics. Our results did not reflect a link between assembly dynamics and carbon emissions, likely because respiration is the product of many processes in microbial communities. Identification of dominant microbial community assembly processes has the potential to improve our understanding of the ecological impact of permafrost thaw and the permafrost-climate feedback.
Collapse
Affiliation(s)
- Stacey Jarvis Doherty
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
- Cold Regions Research and Engineering Laboratory, Engineer Research Development Center, United States Army Corps of Engineers, Hanover, NH, United States
| | - Robyn A. Barbato
- Cold Regions Research and Engineering Laboratory, Engineer Research Development Center, United States Army Corps of Engineers, Hanover, NH, United States
| | - A. Stuart Grandy
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States
| | - W. Kelley Thomas
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Sylvain Monteux
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ellen Dorrepaal
- Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Abisko, Sweden
| | - Margareta Johansson
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Jessica G. Ernakovich
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
31
|
Olid C, Klaminder J, Monteux S, Johansson M, Dorrepaal E. Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance. GLOBAL CHANGE BIOLOGY 2020; 26:5886-5898. [PMID: 32681580 DOI: 10.1111/gcb.15283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow-free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long-term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter-warming. By combining 210 Pb and 14 Cdating of peat cores with peat growth models, we investigated thawing effects on year-round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter-warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long-term responses of whole-year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage.
Collapse
Affiliation(s)
- Carolina Olid
- Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Jonatan Klaminder
- Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Sylvain Monteux
- Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Margareta Johansson
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- Royal Swedish Academy of Science, Stockholm, Sweden
| | - Ellen Dorrepaal
- Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
Hough M, McClure A, Bolduc B, Dorrepaal E, Saleska S, Klepac-Ceraj V, Rich V. Biotic and Environmental Drivers of Plant Microbiomes Across a Permafrost Thaw Gradient. Front Microbiol 2020; 11:796. [PMID: 32499761 PMCID: PMC7243355 DOI: 10.3389/fmicb.2020.00796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/03/2020] [Indexed: 02/01/2023] Open
Abstract
Plant-associated microbiomes are structured by environmental conditions and plant associates, both of which are being altered by climate change. The future structure of plant microbiomes will depend on the, largely unknown, relative importance of each. This uncertainty is particularly relevant for arctic peatlands, which are undergoing large shifts in plant communities and soil microbiomes as permafrost thaws, and are potentially appreciable sources of climate change feedbacks due to their soil carbon (C) storage. We characterized phyllosphere and rhizosphere microbiomes of six plant species, and bulk peat, across a permafrost thaw progression (from intact permafrost, to partially- and fully-thawed stages) via 16S rRNA gene amplicon sequencing. We tested the hypothesis that the relative influence of biotic versus environmental filtering (the role of plant species versus thaw-defined habitat) in structuring microbial communities would differ among phyllosphere, rhizosphere, and bulk peat. Using both abundance- and phylogenetic-based approaches, we found that phyllosphere microbial composition was more strongly explained by plant associate, with little influence of habitat, whereas in the rhizosphere, plant and habitat had similar influence. Network-based community analyses showed that keystone taxa exhibited similar patterns with stronger responses to drivers. However, plant associates appeared to have a larger influence on organisms belonging to families associated with methane-cycling than the bulk community. Putative methanogens were more strongly influenced by plant than habitat in the rhizosphere, and in the phyllosphere putative methanotrophs were more strongly influenced by plant than was the community at large. We conclude that biotic effects can be stronger than environmental filtering, but their relative importance varies among microbial groups. For most microbes in this system, biotic filtering was stronger aboveground than belowground. However, for putative methane-cyclers, plant associations have a stronger influence on community composition than environment despite major hydrological changes with thaw. This suggests that plant successional dynamics may be as important as hydrological changes in determining microbial relevance to C-cycling climate feedbacks. By partitioning the degree that plant versus environmental filtering drives microbiome composition and function we can improve our ability to predict the consequences of warming for C-cycling in other arctic areas undergoing similar permafrost thaw transitions.
Collapse
Affiliation(s)
- Moira Hough
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
| | - Amelia McClure
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Benjamin Bolduc
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH, United States
| | - Ellen Dorrepaal
- Climate Impacts Research Centre, Umeå University, Umeå, Sweden
| | - Scott Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Virginia Rich
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
33
|
Liu YR, Delgado-Baquerizo M, Yang Z, Feng J, Zhu J, Huang Q. Microbial taxonomic and functional attributes consistently predict soil CO 2 emissions across contrasting croplands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134885. [PMID: 31731121 DOI: 10.1016/j.scitotenv.2019.134885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Despite distinct roles of soil microbes in regulating carbon (C) respiration in diverse environments, it remains unclear whether microbial taxonomic and functional attributes can consistently predict soil C emissions across contrasting ecosystems. Here, we conducted a large-scale sampling event across two contrasting croplands (rice and wheat-corn crop rotation) to identify specific soil microbial phylotypes and functional genes associated with soil respiration rates. The results of structural equation modeling indicated that bacterial community composition had a strong link with C respiration rates in the two contrasting cropland types; however, this link was weaker for fungal communities. More importantly, we found that the relative abundances of bacterial Solirubrobacterales_480-2, Myxococcales_mle1-27 and fungal Westerdykella had consistently negative correlation with respiration rates across paddy and upland soils. We also identified taxa that are significantly correlated to C respiration in the paddy (e.g. Methylocaldum) and upland soils (e.g. Kribbella), respectively. Further, we found multiple associations between functional genes involved in microbial C metabolism and soil respiration rates. Our findings provide novel insights into understanding microbial predictors of soil CO2 emissions in diverse croplands, which have important implications for improving C emission predictions in terrestrial ecosystems.
Collapse
Affiliation(s)
- Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Manuel Delgado-Baquerizo
- Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/ Tulipán s/n, 28933 Móstoles, Spain
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
34
|
Wang Y, Ma A, Liu G, Ma J, Wei J, Zhou H, Brandt KK, Zhuang G. Potential feedback mediated by soil microbiome response to warming in a glacier forefield. GLOBAL CHANGE BIOLOGY 2020; 26:697-708. [PMID: 31782204 DOI: 10.1111/gcb.14936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Mountain glaciers are retreating at an unprecedented rate due to global warming. Glacier retreat is widely believed to be driven by the physiochemical characteristics of glacier surfaces; however, the current knowledge of such biological drivers remains limited. An estimated 130 Tg of organic carbon (OC) is stored in mountain glaciers globally. As a result of global warming, the accelerated microbial decomposition of OC may further accelerate the melting process of mountain glaciers by heat production with the release of greenhouse gases, such as carbon dioxide (CO2 ) and methane. Here, using short-term aerobic incubation data from the forefield of Urumqi Glacier No. 1, we assessed the potential climate feedback mediated by soil microbiomes at temperatures of 5°C (control), 6.2°C (RCP 2.6), 11°C (RCP 8.5), and 15°C (extreme temperature). We observed enhanced CO2 -C release and heat production under warming conditions, which led to an increase in near-surface (2 m) atmospheric temperatures, ranging from 0.9°C to 3.4°C. Warming significantly changed the structures of the RNA-derived (active) and DNA-derived (total) soil microbiomes, and active microbes were more sensitive to increased temperatures than total microbes. Considering the positive effects of temperature and deglaciation age on the CO2 -C release rate, the alterations in the active microbial community structure had a negative impact on the increased CO2 -C release rate. Our results revealed that glacial melting could potentially be significantly accelerated by heat production from increased microbial decomposition of OC. This risk might be true for other high-altitude glaciers under emerging warming, thus improving the predictions of the effects of potential feedback on global warming.
Collapse
Affiliation(s)
- Yuwan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianpeng Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanchang Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Sino-Danish Center for Education and Research, Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Liu F, Zhang Y, Liang H, Gao D. Long-term harvesting of reeds affects greenhouse gas emissions and microbial functional genes in alkaline wetlands. WATER RESEARCH 2019; 164:114936. [PMID: 31382148 DOI: 10.1016/j.watres.2019.114936] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Reed (Phragmites australis) is dominant vegetation in alkaline wetlands that is harvested annually due to its economic value. To reveal the effects of harvesting reeds on the emission of greenhouse gases (GHG), the annual soil physicochemical characteristics and flux of GHGs in a reed wetland without harvesting (NHRW) and with harvesting (HRW) were measured. The results showed that after the harvesting of reeds, the total organic carbon (TOC) and total nitrogen (TN) significantly decreased, and soil temperature significantly increased. The annual cumulative N2O emissions decreased from 0.73 ± 0.20 kg ha-1 to -0.57 ± 0.49 kg ha-1 with the harvesting of reeds. The annual cumulative CH4 emissions also decreased from 561.88 ± 18.61 kg ha-1 to 183.13 ± 18.77 kg ha-1 with the harvesting of reeds. However, harvesting of reeds had only a limited influence on the annual cumulative CO2 emissions. A Pearson correlation analysis revealed that the CO2 and N2O emissions were more sensitive to temperature than the CH4 emissions. Both structural equation modeling (SEM) analysis and slurry incubation confirmed that higher temperatures offset the reduction of CO2 emissions after reed harvesting. Metagenomics showed that the abundance of functional genes involved in both GHG sink and source decreased with reed harvesting. This study presents a comprehensive view of reed harvesting on GHG emissions in alkaline wetlands, yielding new insight into the microbial response and offering a novel perspective on the potential impacts of wetland management.
Collapse
Affiliation(s)
- Fengqin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yupeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hong Liang
- School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China; School of Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
36
|
Changes in the Substrate Source Reveal Novel Interactions in the Sediment-Derived Methanogenic Microbial Community. Int J Mol Sci 2019; 20:ijms20184415. [PMID: 31500341 PMCID: PMC6770359 DOI: 10.3390/ijms20184415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
Methanogenesis occurs in many natural environments and is used in biotechnology for biogas production. The efficiency of methane production depends on the microbiome structure that determines interspecies electron transfer. In this research, the microbial community retrieved from mining subsidence reservoir sediment was used to establish enrichment cultures on media containing different carbon sources (tryptone, yeast extract, acetate, CO2/H2). The microbiome composition and methane production rate of the cultures were screened as a function of the substrate and transition stage. The relationships between the microorganisms involved in methane formation were the major focus of this study. Methanogenic consortia were identified by next generation sequencing (NGS) and functional genes connected with organic matter transformation were predicted using the PICRUSt approach and annotated in the KEGG. The methane production rate (exceeding 12.8 mg CH4 L−1 d−1) was highest in the culture grown with tryptone, yeast extract, and CO2/H2. The analysis of communities that developed on various carbon sources casts new light on the ecophysiology of the recently described bacterial phylum Caldiserica and methanogenic Archaea representing the genera Methanomassiliicoccus and Methanothrix. Furthermore, it is hypothesized that representatives of Caldiserica may support hydrogenotrophic methanogenesis.
Collapse
|
37
|
Blume-Werry G, Milbau A, Teuber LM, Johansson M, Dorrepaal E. Dwelling in the deep - strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. THE NEW PHYTOLOGIST 2019; 223:1328-1339. [PMID: 31074867 DOI: 10.1111/nph.15903] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/12/2019] [Indexed: 05/27/2023]
Abstract
Climate-warming-induced permafrost thaw exposes large amounts of carbon and nitrogen in soil at considerable depths, below the seasonally thawing active layer. The extent to which plant roots can reach and interact with these hitherto detached, deep carbon and nitrogen stores remains unknown. We aimed to quantify how permafrost thaw affects root dynamics across soil depths and plant functional types compared with above-ground abundance, and potential consequences for plant-soil interactions. A decade of experimental permafrost thaw strongly increased total root length and growth in the active layer, and deep roots invaded the newly thawed permafrost underneath. Root litter input to soil across all depths was 10 times greater with permafrost thaw. Root growth timing was unaffected by experimental permafrost thaw but peaked later in deeper soil, reflecting the seasonally receding thaw front. Deep-rooting species could sequester 15 N added at the base of the ambient active layer in October, which was after root growth had ceased. Deep soil organic matter that has long been locked up in permafrost is thus no longer detached from plant processes upon thaw. Whether via nutrient uptake, carbon storage, or rhizosphere priming, plant root interactions with thawing permafrost soils may feed back on our climate both positively and negatively.
Collapse
Affiliation(s)
- Gesche Blume-Werry
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, 981 07, Abisko, Sweden
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, Greifswald University, 17487, Greifswald, Germany
| | - Ann Milbau
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, 981 07, Abisko, Sweden
- Research Institute for Nature and Forest INBO, Havenlaan 88, Bus 73, 1000, Brussels, Belgium
| | - Laurenz M Teuber
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, 981 07, Abisko, Sweden
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, Greifswald University, 17487, Greifswald, Germany
| | - Margareta Johansson
- Department of Physical Geography and Ecosystem Science, Lund University, Solvegatan 12, 223 62, Lund, Sweden
| | - Ellen Dorrepaal
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, 981 07, Abisko, Sweden
| |
Collapse
|
38
|
Tripathi BM, Kim HM, Jung JY, Nam S, Ju HT, Kim M, Lee YK. Distinct Taxonomic and Functional Profiles of the Microbiome Associated With Different Soil Horizons of a Moist Tussock Tundra in Alaska. Front Microbiol 2019; 10:1442. [PMID: 31316487 PMCID: PMC6610311 DOI: 10.3389/fmicb.2019.01442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Permafrost-underlain tundra soils in Northern Hemisphere are one of the largest reservoirs of terrestrial carbon, which are highly sensitive to microbial decomposition due to climate warming. However, knowledge about the taxonomy and functions of microbiome residing in different horizons of permafrost-underlain tundra soils is still limited. Here we compared the taxonomic and functional composition of microbiome between different horizons of soil cores from a moist tussock tundra ecosystem in Council, Alaska, using 16S rRNA gene and shotgun metagenomic sequencing. The composition, diversity, and functions of microbiome varied significantly between soil horizons, with top soil horizon harboring more diverse communities than sub-soil horizons. The vertical gradient in soil physico-chemical parameters were strongly associated with composition of microbial communities across permafrost soil horizons; however, a large fraction of the variation in microbial communities remained unexplained. The genes associated with carbon mineralization were more abundant in top soil horizon, while genes involved in acetogenesis, fermentation, methane metabolism (methanogenesis and methanotrophy), and N cycling were dominant in sub-soil horizons. The results of phylogenetic null modeling analysis showed that stochastic processes strongly influenced the composition of the microbiome in different soil horizons, except the bacterial community composition in top soil horizon, which was largely governed by homogeneous selection. Our study expands the knowledge on the structure and functional potential of microbiome associated with different horizons of permafrost soil, which could be useful in understanding the effects of environmental change on microbial responses in tundra ecosystems.
Collapse
Affiliation(s)
| | - Hye Min Kim
- Environmental Safety Research Institute, NeoEnBiz, Bucheon, South Korea
| | - Ji Young Jung
- Korea Polar Research Institute, Incheon, South Korea
| | - Sungjin Nam
- Korea Polar Research Institute, Incheon, South Korea
| | - Hyeon Tae Ju
- Korea Polar Research Institute, Incheon, South Korea
| | - Mincheol Kim
- Korea Polar Research Institute, Incheon, South Korea
| | - Yoo Kyung Lee
- Korea Polar Research Institute, Incheon, South Korea
| |
Collapse
|
39
|
Dynamics of microbial communities and CO 2 and CH 4 fluxes in the tundra ecosystems of the changing Arctic. J Microbiol 2019; 57:325-336. [PMID: 30656588 DOI: 10.1007/s12275-019-8661-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
Arctic tundra ecosystems are rapidly changing due to the amplified effects of global warming within the northern high latitudes. Warming has the potential to increase the thawing of the permafrost and to change the landscape and its geochemical characteristics, as well as terrestrial biota. It is important to investigate microbial processes and community structures, since soil microorganisms play a significant role in decomposing soil organic carbon in the Arctic tundra. In addition, the feedback from tundra ecosystems to climate change, including the emission of greenhouse gases into the atmosphere, is substantially dependent on the compositional and functional changes in the soil microbiome. This article reviews the current state of knowledge of the soil microbiome and the two most abundant greenhouse gas (CO2 and CH4) emissions, and summarizes permafrost thaw-induced changes in the Arctic tundra. Furthermore, we discuss future directions in microbial ecological research coupled with its link to CO2 and CH4 emissions.
Collapse
|
40
|
Martinez MA, Woodcroft BJ, Ignacio Espinoza JC, Zayed AA, Singleton CM, Boyd JA, Li YF, Purvine S, Maughan H, Hodgkins SB, Anderson D, Sederholm M, Temperton B, Bolduc B, Saleska SR, Tyson GW, Rich VI, Saleska SR, Tyson GW, Rich VI. Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov. Syst Appl Microbiol 2019; 42:54-66. [DOI: 10.1016/j.syapm.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
|