1
|
Grenz K, Chia KS, Turley EK, Tyszka AS, Atkinson RE, Reeves J, Vickers M, Rejzek M, Walker JF, Carella P. A necrotizing toxin enables Pseudomonas syringae infection across evolutionarily divergent plants. Cell Host Microbe 2024:S1931-3128(24)00445-1. [PMID: 39706183 DOI: 10.1016/j.chom.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
The Pseudomonas syringae species complex harbors a diverse range of pathogenic bacteria that can infect hosts across the plant kingdom. However, much of our current understanding of P. syringae is centered on its infection of flowering plants. We took a comparative approach to understand how P. syringae infects evolutionarily divergent plants. We identified P. syringae isolates causing disease in the liverwort Marchantia polymorpha, the fern Ceratopteris richardii, and the flowering plant Nicotiana benthamiana, which last shared a common ancestor >500 million years ago. Phytotoxin-enriched phylogroup (PG) 2 isolates of P. syringae are virulent in non-flowering plants, relying on type-3 effectors and the lipopeptide phytotoxin syringomycin. Ectopic syringomycin promotes tissue necrosis, activates conserved stress-related genes, and enhances in planta bacterial growth of toxin-deficient PGs in Marchantia. Collectively, our research reveals a key role for syringomycin in promoting Pseudomonas colonization, which works alongside effectors to antagonize an exceptionally wide spectrum of land plants.
Collapse
Affiliation(s)
- Kristina Grenz
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Khong-Sam Chia
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Emma K Turley
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Alexa S Tyszka
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Jacob Reeves
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Vickers
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Rejzek
- Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Joseph F Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
2
|
Kabir AH, Thapa A, Hasan MR, Parvej MR. Local signal from Trichoderma afroharzianum T22 induces host transcriptome and endophytic microbiome leading to growth promotion in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7107-7126. [PMID: 39110656 DOI: 10.1093/jxb/erae340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/05/2024] [Indexed: 12/11/2024]
Abstract
Trichoderma, a highly abundant soil fungus, may benefit plants, yet it remains understudied in sorghum (Sorghum bicolor). In this study, sorghum plants were grown for 5 weeks in pots of soil with or without inoculation of T. afroharzianum T22. Inoculation with T. afroharzianum T22 significantly increased growth parameters and nutrient levels, demonstrating its beneficial role in sorghum. A split-root assay demonstrated that T. afroharzianum T22 is essential in both compartments of the pot for promoting plant growth, suggesting that local signals from this fungus drive symbiotic benefits in sorghum. RNA-seq analysis revealed that inoculation with T. afroharzianum T22 induced genes responsible for mineral transport (such as nitrate and aquaporin transporters), auxin response, sugar assimilation (hexokinase), and disease resistance (thaumatin) in sorghum roots. Microbial community analysis further unveiled the positive role of T. afroharzianum T22 in enriching Penicillium and Streptomyces while reducing disease-causing Fusarium in the roots. The microbial consortium, consisting of enriched microbiomes from bacterial and fungal communities, showed disrupted morphological features in plants inoculated with T. afroharzianum T22 in the absence of Streptomyces griseus. However, this disruption was not observed in the absence of Penicillium chrysogenum. These results indicate that S. griseus acts as a helper microbe in close association with T. afroharzianum T22 in the sorghum endosphere. This study provides the first comprehensive explanation of how T. afroharzianum T22 modulates host molecular determinants and endophytic helper microbes, thereby collectively promoting sorghum growth. These findings may facilitate the formulation of synthetic microbial inoculants dominated by T. afroharzianum T22 to enhance growth and stress resilience in sorghum and similar crops.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Asha Thapa
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Md Rokibul Hasan
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Md Rasel Parvej
- Scott Research, Extension, and Education Center, School of Plant, Environmental, and Soil Sciences, Louisiana State University, Winnsboro, LA 71295, USA
| |
Collapse
|
3
|
Ali S, Tyagi A, Park S, Varshney RK, Bae H. A molecular perspective on the role of FERONIA in root growth, nutrient uptake, stress sensing and microbiome assembly. J Adv Res 2024:S2090-1232(24)00494-6. [PMID: 39505145 DOI: 10.1016/j.jare.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Roots perform multifaceted functions in plants such as movement of nutrients and water, sensing stressors, shaping microbiome, and providing structural support. How roots perceive and respond above traits at the molecular level remains largely unknown. Despite the enormous advancements in crop improvement, the majority of recent efforts have concentrated on above-ground traits leaving significant knowledge gaps in root biology. Also, studying root system architecture (RSA) is more difficult due to its intricacy and the difficulties of observing them during plant life cycle which has made it difficult to identify desired root traits for the crop improvement. However, with the aid of high-throughput phenotyping and genotyping tools many developmental and stress-mediated regulation of RSA has emerged in both model and crop plants leading to new insights in root biology. Our current understanding of upstream signaling events (cell wall, apoplast) in roots and how they are interconnected with downstream signaling cascades has largely been constrained by the fact that most research in plant systems concentrate on cytosolic signal transduction pathways while ignoring the early perception by cells' exterior parts. In this regard, we discussed the role of FERONIA (FER) a cell wall receptor-like kinase (RLK) which acts as a sensor and a bridge between apoplast and cytosolic signaling pathways in root biology. AIM OF THE REVIEW The goal of this review is to provide valuable insights into present understanding and future research perspectives on how FER regulates distinct root responses related to growth and stress adaptation. KEY SCIENTIFIC CONCEPTS OF REVIEW In plants, FER is a unique RLK because it can act as a multitasking sensor and regulates diverse growth, and adaptive traits. In this review, we mainly highlighted its role in root biology like how it modulates distinct root responses such as root development, sensing abiotic stressors, mechanical stimuli, nutrient transport, and shaping microbiome. Further, we provided an update on how FER controls root traits by involving Rapid Alkalinization Factor (RALF) peptides, calcium, reactive oxygen species (ROS) and hormonal signaling pathways.. We also highlight number of outstanding questions in FER mediated root responses that warrants future investigation. To sum up, this review provides a comprehsive information on the role of FER in root biology which can be utilized for the development of future climate resilient and high yielding crops based on the modified root system.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea; Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Rajeev K Varshney
- Center of Excellence in Genomics &, Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; Murdoch's Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
4
|
Liang J, Liu B, Christensen MJ, Li C, Zhang X, Nan Z. The effects of Pseudomonas strains isolated from Achnatherum inebrians on plant growth: A genomic perspective. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70011. [PMID: 39387603 PMCID: PMC11465459 DOI: 10.1111/1758-2229.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Achnatherum inebrians is a perennial grass widely distributed in northwest China. Nearly all wild A. inebrians plants are infected by Epichloë endophytes. In this study, bacteria from the phyllosphere were isolated from leaves of both endophyte-free and endophyte-infected A. inebrians and sequenced for identification. Pseudomonas, comprising 48.12% of the culturable bacterial communities, was the most dominant bacterial genus. Thirty-four strains from 12 Pseudomonas species were used to inoculate A. inebrians seeds and plants. Results indicated that Epichloë significantly increased the diversity and richness index of the phyllosphere. Pseudomonas Sp1, Sp3, Sp5 and Sp7 had a significantly positive effect on plant growth and photosynthesis, whereas Sp10, Sp11 and Sp12 had a significantly negative effect. Whole-genome and pan-genome analysis suggested that the variability in the effects of Pseudomonas on A. inebrians was related to differences in genome composition and genomic islands.
Collapse
Affiliation(s)
- Jinjin Liang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Bowen Liu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | | | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Xingxu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| |
Collapse
|
5
|
Laurich JR, Lash E, O'Brien AM, Pogoutse O, Frederickson ME. Community interactions among microbes give rise to host-microbiome mutualisms in an aquatic plant. mBio 2024; 15:e0097224. [PMID: 38904411 PMCID: PMC11324027 DOI: 10.1128/mbio.00972-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Microbiomes often benefit plants, conferring resistance to pathogens, improving stress tolerance, or promoting plant growth. As potential plant mutualists, however, microbiomes are not a single organism but a community of species with complex interactions among microbial taxa and between microbes and their shared host. The nature of ecological interactions among microbes in the microbiome can have important consequences for the net effects of microbiomes on hosts. Here, we compared the effects of individual microbial strains and 10-strain synthetic communities on microbial productivity and host growth using the common duckweed Lemna minor and a synthetic, simplified version of its native microbiome. Except for Pseudomonas protegens, which was a mutualist when tested alone, all of the single strains we tested were commensals on hosts, benefiting from plant presence but not increasing host growth relative to uninoculated controls. However, 10-strain synthetic microbial communities increased both microbial productivity and duckweed growth more than the average single-strain inoculation and uninoculated controls, meaning that host-microbiome mutualisms can emerge from community interactions among microbes on hosts. The effects of community inoculation were sub-additive, suggesting at least some competition among microbes in the duckweed microbiome. We also investigated the relationship between L. minor fitness and that of its microbes, providing some of the first empirical estimates of broad fitness alignment between plants and members of their microbiomes; hosts grew faster with more productive microbes or microbiomes. IMPORTANCE There is currently substantial interest in engineering synthetic microbiomes for health or agricultural applications. One key question is how multi-strain microbial communities differ from single microbial strains in their productivity and effects on hosts. We tested 20 single bacterial strains and 2 distinct 10-strain synthetic communities on plant hosts and found that 10-strain communities led to faster host growth and greater microbial productivity than the average, but not the best, single strain. Furthermore, the microbial strains or communities that achieved the greatest cell densities were also the most beneficial to their hosts, showing that both specific single strains and multi-strain synthetic communities can engage in high-quality mutualisms with their hosts. Our results suggest that ~5% of single strains, as well as multi-strain synthetic communities comprised largely of commensal microbes, can benefit hosts and result in effective host-microbe mutualisms.
Collapse
Affiliation(s)
- Jason R. Laurich
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Emma Lash
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Anna M. O'Brien
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
- Department of
Molecular, Cellular, and Biomedical Sciences, University of New
Hampshire, Durham,
New Hampshire, USA
| | - Oxana Pogoutse
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Megan E. Frederickson
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
6
|
Getzke F, Wang L, Chesneau G, Böhringer N, Mesny F, Denissen N, Wesseler H, Adisa PT, Marner M, Schulze-Lefert P, Schäberle TF, Hacquard S. Physiochemical interaction between osmotic stress and a bacterial exometabolite promotes plant disease. Nat Commun 2024; 15:4438. [PMID: 38806462 PMCID: PMC11133316 DOI: 10.1038/s41467-024-48517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.
Collapse
Affiliation(s)
- Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Lei Wang
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
| | - Fantin Mesny
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Nienke Denissen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hidde Wesseler
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Priscilla Tijesuni Adisa
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany.
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
7
|
Gonzalez-Tobon J, Helmann T, Stodghill P, Filiatrault M. Surviving the Potato Stems: Differences in Genes Required for Fitness by Dickeya dadantii and Dickeya dianthicola. PHYTOPATHOLOGY 2024; 114:1106-1117. [PMID: 38170668 DOI: 10.1094/phyto-09-23-0351-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacteria belonging to the genus Dickeya cause blackleg and soft rot symptoms on many plant hosts, including potato. Although there is considerable knowledge about the genetic determinants that allow Dickeya to colonize host plants, as well as the genes that contribute to virulence, much is still unknown. To identify the genes important for fitness in potato stems, we constructed and evaluated randomly barcoded transposon mutant (RB-TnSeq) libraries of Dickeya dadantii and Dickeya dianthicola. We identified 169 and 157 genes important for growth in D. dadantii and D. dianthicola in stems, respectively. This included genes related to metabolic pathways, chemotaxis and motility, transcriptional regulation, transport across membranes, membrane biogenesis, detoxification mechanisms, and virulence-related genes, including a potential virulence cluster srfABC, c-di-GMP modulating genes, and pectin degradation genes. When we compared the results of the stem assay with other datasets, we identified genes important for growth in stems versus tubers and in vitro conditions. Additionally, our data showed differences in fitness determinants for D. dadantii and D. dianthicola. These data provide important insights into the mechanisms used by Dickeya when interacting with and colonizing plants and thus might provide targets for management.
Collapse
Affiliation(s)
- Juliana Gonzalez-Tobon
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Tyler Helmann
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| | - Paul Stodghill
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| | - Melanie Filiatrault
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| |
Collapse
|
8
|
Zhou L, Höfte M, Hennessy RC. Does regulation hold the key to optimizing lipopeptide production in Pseudomonas for biotechnology? Front Bioeng Biotechnol 2024; 12:1363183. [PMID: 38476965 PMCID: PMC10928948 DOI: 10.3389/fbioe.2024.1363183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Lipopeptides (LPs) produced by Pseudomonas spp. are specialized metabolites with diverse structures and functions, including powerful biosurfactant and antimicrobial properties. Despite their enormous potential in environmental and industrial biotechnology, low yield and high production cost limit their practical use. While genome mining and functional genomics have identified a multitude of LP biosynthetic gene clusters, the regulatory mechanisms underlying their biosynthesis remain poorly understood. We propose that regulation holds the key to unlocking LP production in Pseudomonas for biotechnology. In this review, we summarize the structure and function of Pseudomonas-derived LPs and describe the molecular basis for their biosynthesis and regulation. We examine the global and specific regulator-driven mechanisms controlling LP synthesis including the influence of environmental signals. Understanding LP regulation is key to modulating production of these valuable compounds, both quantitatively and qualitatively, for industrial and environmental biotechnology.
Collapse
Affiliation(s)
- Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rosanna C. Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Pomerleau M, Charron-Lamoureux V, Léonard L, Grenier F, Rodrigue S, Beauregard PB. Adaptive laboratory evolution reveals regulators involved in repressing biofilm development as key players in Bacillus subtilis root colonization. mSystems 2024; 9:e0084323. [PMID: 38206029 PMCID: PMC10878085 DOI: 10.1128/msystems.00843-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Root-associated microorganisms play an important role in plant health, such as plant growth-promoting rhizobacteria (PGPR) from the Bacillus and Pseudomonas genera. Although bacterial consortia including these two genera would represent a promising avenue to efficient biofertilizer formulation, we observed that Bacillus subtilis root colonization is decreased by the presence of Pseudomonas fluorescens and Pseudomonas protegens. To determine if B. subtilis can adapt to the inhibitory effect of Pseudomonas on roots, we conducted adaptative laboratory evolution experiments with B. subtilis in mono-association or co-cultured with P. fluorescens on tomato plant roots. Evolved isolates with various colony morphology and stronger colonization capacity of both tomato plant and Arabidopsis thaliana roots emerged rapidly from the two evolution experiments. Certain evolved isolates also had better fitness on the root in the presence of other Pseudomonas species. In all independent lineages, whole-genome resequencing revealed non-synonymous mutations in genes ywcC or sinR encoding regulators involved in repressing biofilm development, suggesting their involvement in enhanced root colonization. These findings provide insights into the molecular mechanisms underlying B. subtilis adaptation to root colonization and highlight the potential of directed evolution to enhance the beneficial traits of PGPR.IMPORTANCEIn this study, we aimed to enhance the abilities of the plant-beneficial bacterium Bacillus subtilis to colonize plant roots in the presence of competing Pseudomonas bacteria. To achieve this, we conducted adaptive laboratory experiments, allowing Bacillus to evolve in a defined environment. We successfully obtained strains of Bacillus that were more effective at colonizing plant roots than the ancestor strain. To identify the genetic changes driving this improvement, we sequenced the genomes of these evolved strains. Interestingly, mutations that facilitated the formation of robust biofilms on roots were predominant. Many of these evolved Bacillus isolates also displayed the remarkable ability to outcompete Pseudomonas species. Our research sheds light on the mutational paths selected in Bacillus subtilis to thrive in root environments and offers exciting prospects for improving beneficial traits in plant growth-promoting microorganisms. Ultimately, this could pave the way for the development of more effective biofertilizers and sustainable agricultural practices.
Collapse
Affiliation(s)
- Maude Pomerleau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Lucille Léonard
- Département de Génie Biologique, Université de Technologie de Compiègne, Compiègne, France
| | - Frédéric Grenier
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Rodrigue
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pascale B. Beauregard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
10
|
González-Tobón J, Helmann TC, Daughtrey M, Stodghill PV, Filiatrault MJ. Complete Genome Sequence Resource for Xanthomonas hortorum Isolated from Greek Oregano. PLANT DISEASE 2023; 107:3259-3263. [PMID: 37833832 DOI: 10.1094/pdis-10-22-2399-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
In spring 2019, necrotic leaf spots were detected on Greek oregano (Origanum vulgare var. hirtum) plants in a commercial greenhouse operation. An isolate was recovered from the diseased plants. Partial 16S ribosomal RNA sequencing and multilocus sequence analysis revealed that the isolate was a Xanthomonas sp. but proved insufficient to identify the species with certainty. Therefore, whole-genome sequencing using both Nanopore and Illumina technologies was performed. Here, we report the complete and annotated genome sequence of Xanthomonas hortorum strain 108, which was originally isolated from Greek oregano in Long Island, NY, U.S.A.
Collapse
Affiliation(s)
- Juliana González-Tobón
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Tyler C Helmann
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| | - Margery Daughtrey
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Paul V Stodghill
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| | - Melanie J Filiatrault
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| |
Collapse
|
11
|
Mesny F, Hacquard S, Thomma BPHJ. Co-evolution within the plant holobiont drives host performance. EMBO Rep 2023; 24:e57455. [PMID: 37471099 PMCID: PMC10481671 DOI: 10.15252/embr.202357455] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Plants interact with a diversity of microorganisms that influence their growth and resilience, and they can therefore be considered as ecological entities, namely "plant holobionts," rather than as singular organisms. In a plant holobiont, the assembly of above- and belowground microbiota is ruled by host, microbial, and environmental factors. Upon microorganism perception, plants activate immune signaling resulting in the secretion of factors that modulate microbiota composition. Additionally, metabolic interdependencies and antagonism between microbes are driving forces for community assemblies. We argue that complex plant-microbe and intermicrobial interactions have been selected for during evolution and may promote the survival and fitness of plants and their associated microorganisms as holobionts. As part of this process, plants evolved metabolite-mediated strategies to selectively recruit beneficial microorganisms in their microbiota. Some of these microbiota members show host-adaptation, from which mutualism may rapidly arise. In the holobiont, microbiota members also co-evolved antagonistic activities that restrict proliferation of microbes with high pathogenic potential and can therefore prevent disease development. Co-evolution within holobionts thus ultimately drives plant performance.
Collapse
Affiliation(s)
- Fantin Mesny
- Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Stéphane Hacquard
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Bart PHJ Thomma
- Institute for Plant SciencesUniversity of CologneCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
12
|
Hiruma K, Aoki S, Takino J, Higa T, Utami YD, Shiina A, Okamoto M, Nakamura M, Kawamura N, Ohmori Y, Sugita R, Tanoi K, Sato T, Oikawa H, Minami A, Iwasaki W, Saijo Y. A fungal sesquiterpene biosynthesis gene cluster critical for mutualist-pathogen transition in Colletotrichum tofieldiae. Nat Commun 2023; 14:5288. [PMID: 37673872 PMCID: PMC10482981 DOI: 10.1038/s41467-023-40867-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Plant-associated fungi show diverse lifestyles from pathogenic to mutualistic to the host; however, the principles and mechanisms through which they shift the lifestyles require elucidation. The root fungus Colletotrichum tofieldiae (Ct) promotes Arabidopsis thaliana growth under phosphate limiting conditions. Here we describe a Ct strain, designated Ct3, that severely inhibits plant growth. Ct3 pathogenesis occurs through activation of host abscisic acid pathways via a fungal secondary metabolism gene cluster related to the biosynthesis of sesquiterpene metabolites, including botrydial. Cluster activation during root infection suppresses host nutrient uptake-related genes and changes mineral contents, suggesting a role in manipulating host nutrition state. Conversely, disruption or environmental suppression of the cluster renders Ct3 beneficial for plant growth, in a manner dependent on host phosphate starvation response regulators. Our findings indicate that a fungal metabolism cluster provides a means by which infectious fungi modulate lifestyles along the parasitic-mutualistic continuum in fluctuating environments.
Collapse
Affiliation(s)
- Kei Hiruma
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- Department of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Seishiro Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-0882, Japan
| | - Junya Takino
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Takeshi Higa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yuniar Devi Utami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Akito Shiina
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masanori Okamoto
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-cho, Utsunomiya, Tochigi, 321-8505, Japan
| | - Masami Nakamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Nanami Kawamura
- Department of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Yoshihiro Ohmori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryohei Sugita
- Radioisotope Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Toyozo Sato
- Genetic Resources Center, National Agriculture and Food Research Organization, Ibaraki, 305-8602, Japan
| | - Hideaki Oikawa
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-0882, Japan
| | - Yusuke Saijo
- Department of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| |
Collapse
|
13
|
Kumari K, Rawat V, Shadan A, Sharma PK, Deb S, Singh RP. In-depth genome and pan-genome analysis of a metal-resistant bacterium Pseudomonas parafulva OS-1. Front Microbiol 2023; 14:1140249. [PMID: 37408640 PMCID: PMC10318148 DOI: 10.3389/fmicb.2023.1140249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
A metal-resistant bacterium Pseudomonas parafulva OS-1 was isolated from waste-contaminated soil in Ranchi City, India. The isolated strain OS-1 showed its growth at 25-45°C, pH 5.0-9.0, and in the presence of ZnSO4 (upto 5 mM). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OS-1 belonged to the genus Pseudomonas and was most closely related to parafulva species. To unravel the genomic features, we sequenced the complete genome of P. parafulva OS-1 using Illumina HiSeq 4,000 sequencing platform. The results of average nucleotide identity (ANI) analysis indicated the closest similarity of OS-1 to P. parafulva PRS09-11288 and P. parafulva DTSP2. The metabolic potential of P. parafulva OS-1 based on Clusters of Othologous Genes (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux, etc., which is relatively rare in P. parafulva strains. Compared with other parafulva strains, P. parafulva OS-1 was found to have the unique β-lactam resistance and type VI secretion system (T6SS) gene. Additionally, its genomes encode various CAZymes such as glycoside hydrolases and other genes associated with lignocellulose breakdown, suggesting that strain OS-1 have strong biomass degradation potential. The presence of genomic complexity in the OS-1 genome indicates that horizontal gene transfer (HGT) might happen during evolution. Therefore, genomic and comparative genome analysis of parafulva strains is valuable for further understanding the mechanism of resistance to metal stress and opens a perspective to exploit a newly isolated bacterium for biotechnological applications.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Vaishnavi Rawat
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukerjee University, Ranchi, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
14
|
Tokuda R, Iwabuchi N, Kitazawa Y, Nijo T, Suzuki M, Maejima K, Oshima K, Namba S, Yamaji Y. Potential mobile units drive the horizontal transfer of phytoplasma effector phyllogen genes. Front Genet 2023; 14:1132432. [PMID: 37252660 PMCID: PMC10210161 DOI: 10.3389/fgene.2023.1132432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Phytoplasmas are obligate intracellular plant pathogenic bacteria that can induce phyllody, which is a type of abnormal floral organ development. Phytoplasmas possess phyllogens, which are effector proteins that cause phyllody in plants. Phylogenetic comparisons of phyllogen and 16S rRNA genes have suggested that phyllogen genes undergo horizontal transfer between phytoplasma species and strains. However, the mechanisms and evolutionary implications of this horizontal gene transfer are unclear. Here, we analyzed synteny in phyllogen flanking genomic regions from 17 phytoplasma strains that were related to six 'Candidatus' species, including three strains newly sequenced in this study. Many of the phyllogens were flanked by multicopy genes within potential mobile units (PMUs), which are putative transposable elements found in phytoplasmas. The multicopy genes exhibited two distinct patterns of synteny that correlated with the linked phyllogens. The low level of sequence identities and partial truncations found among these phyllogen flanking genes indicate that the PMU sequences are deteriorating, whereas the highly conserved sequences and functions (e.g., inducing phyllody) of the phyllogens suggest that the latter are important for phytoplasma fitness. Furthermore, although their phyllogens were similar, PMUs in strains related to 'Ca. P. asteris' were often located in different regions of the genome. These findings strongly indicate that PMUs drive the horizontal transfer of phyllogens among phytoplasma species and strains. These insights improve our understanding of how symptom-determinant genes have been shared among phytoplasmas.
Collapse
Affiliation(s)
- Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takamichi Nijo
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Stubbendieck RM, Dissanayake E, Burnham PM, Zelasko SE, Temkin MI, Wisdorf SS, Vrtis RF, Gern JE, Currie CR. Rothia from the Human Nose Inhibit Moraxella catarrhalis Colonization with a Secreted Peptidoglycan Endopeptidase. mBio 2023; 14:e0046423. [PMID: 37010413 PMCID: PMC10128031 DOI: 10.1128/mbio.00464-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 04/04/2023] Open
Abstract
Moraxella catarrhalis is found almost exclusively within the human respiratory tract. This pathobiont is associated with ear infections and the development of respiratory illnesses, including allergies and asthma. Given the limited ecological distribution of M. catarrhalis, we hypothesized that we could leverage the nasal microbiomes of healthy children without M. catarrhalis to identify bacteria that may represent potential sources of therapeutics. Rothia was more abundant in the noses of healthy children compared to children with cold symptoms and M. catarrhalis. We cultured Rothia from nasal samples and determined that most isolates of Rothia dentocariosa and "Rothia similmucilaginosa" were able to fully inhibit the growth of M. catarrhalis in vitro, whereas isolates of Rothia aeria varied in their ability to inhibit M. catarrhalis. Using comparative genomics and proteomics, we identified a putative peptidoglycan hydrolase called secreted antigen A (SagA). This protein was present at higher relative abundance in the secreted proteomes of R. dentocariosa and R. similmucilaginosa than in those from non-inhibitory R. aeria, suggesting that it may be involved in M. catarrhalis inhibition. We produced SagA from R. similmucilaginosa in Escherichia coli and confirmed its ability to degrade M. catarrhalis peptidoglycan and inhibit its growth. We then demonstrated that R. aeria and R. similmucilaginosa reduced M. catarrhalis levels in an air-liquid interface culture model of the respiratory epithelium. Together, our results suggest that Rothia restricts M. catarrhalis colonization of the human respiratory tract in vivo. IMPORTANCE Moraxella catarrhalis is a pathobiont of the respiratory tract, responsible for ear infections in children and wheezing illnesses in children and adults with chronic respiratory diseases. Detection of M. catarrhalis during wheezing episodes in early life is associated with the development of persistent asthma. There are currently no effective vaccines for M. catarrhalis, and most clinical isolates are resistant to the commonly prescribed antibiotics amoxicillin and penicillin. Given the limited niche of M. catarrhalis, we hypothesized that other nasal bacteria have evolved mechanisms to compete against M. catarrhalis. We found that Rothia are associated with the nasal microbiomes of healthy children without Moraxella. Next, we demonstrated that Rothia inhibit M. catarrhalis in vitro and on airway cells. We identified an enzyme produced by Rothia called SagA that degrades M. catarrhalis peptidoglycan and inhibits its growth. We suggest that Rothia or SagA could be developed as highly specific therapeutics against M. catarrhalis.
Collapse
Affiliation(s)
- Reed M. Stubbendieck
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Eishika Dissanayake
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter M. Burnham
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan E. Zelasko
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mia I. Temkin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sydney S. Wisdorf
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Rose F. Vrtis
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Edwards JA, Saran UB, Bonnette J, MacQueen A, Yin J, Nguyen TU, Schmutz J, Grimwood J, Pennacchio LA, Daum C, Glavina Del Rio T, Fritschi FB, Lowry DB, Juenger TE. Genetic determinants of switchgrass-root-associated microbiota in field sites spanning its natural range. Curr Biol 2023; 33:1926-1938.e6. [PMID: 37080198 DOI: 10.1016/j.cub.2023.03.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
A fundamental goal in plant microbiome research is to determine the relative impacts of host and environmental effects on root microbiota composition, particularly how host genotype impacts bacterial community composition. Most studies characterizing the effect of plant genotype on root microbiota undersample host genetic diversity and grow plants outside of their native ranges, making the associations between host and microbes difficult to interpret. Here, we characterized the root microbiota of a large diversity panel of switchgrass, a North American native C4 bioenergy crop, in three field locations spanning its native range. Our data, composed of 1,961 samples, suggest that field location is the primary determinant of microbiome composition; however, substantial heritable variation is widespread across bacterial taxa, especially those in the Sphingomonadaceae family. Despite diverse compositions, relatively few highly prevalent taxa make up the majority of the switchgrass root microbiota, a large fraction of which is shared across sites. Local genotypes preferentially recruit/filter for local microbes, supporting the idea of affinity between local plants and their microbiota. Using genome-wide association, we identified loci impacting the abundance of >400 microbial strains and found an enrichment of genes involved in immune responses, signaling pathways, and secondary metabolism. We found loci associated with over half of the core microbiota (i.e., microbes in >80% of samples), regardless of field location. Finally, we show a genetic relationship between a basal plant immunity pathway and relative abundances of root microbiota. This study brings us closer to harnessing and manipulating beneficial microbial associations via host genetics.
Collapse
Affiliation(s)
- Joseph A Edwards
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA.
| | - Usha Bishnoi Saran
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jason Bonnette
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Alice MacQueen
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jun Yin
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Tu Uyen Nguyen
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA; Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Len A Pennacchio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Chris Daum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Tijana Glavina Del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Felix B Fritschi
- Department of Plant Science and Technology, University of Missouri, Agriculture Bldg, 52, Columbia, MO 65201, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Rm 166, East Lansing, MI 48824, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Wiesmann CL, Zhang Y, Alford M, Hamilton CD, Dosanjh M, Thoms D, Dostert M, Wilson A, Pletzer D, Hancock REW, Haney CH. The ColR/S two-component system is a conserved determinant of host association across Pseudomonas species. THE ISME JOURNAL 2023; 17:286-296. [PMID: 36424517 PMCID: PMC9859794 DOI: 10.1038/s41396-022-01343-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Members of the bacterial genus Pseudomonas form mutualistic, commensal, and pathogenic associations with diverse hosts. The prevalence of host association across the genus suggests that symbiosis may be a conserved ancestral trait and that distinct symbiotic lifestyles may be more recently evolved. Here we show that the ColR/S two-component system, part of the Pseudomonas core genome, is functionally conserved between Pseudomonas aeruginosa and Pseudomonas fluorescens. Using plant rhizosphere colonization and virulence in a murine abscess model, we show that colR is required for commensalism with plants and virulence in animals. Comparative transcriptomics revealed that the ColR regulon has diverged between P. aeruginosa and P. fluorescens and deleting components of the ColR regulon revealed strain-specific, but not host-specific, requirements for ColR-dependent genes. Collectively, our results suggest that ColR/S allows Pseudomonas to sense and respond to a host, but that the ColR-regulon has diverged between Pseudomonas strains with distinct lifestyles. This suggests that conservation of two-component systems, coupled with life-style dependent diversification of the regulon, may play a role in host association and lifestyle transitions.
Collapse
Affiliation(s)
- Christina L Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Yue Zhang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Morgan Alford
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Corri D Hamilton
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David Thoms
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Melanie Dostert
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew Wilson
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Daniel Pletzer
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St., 9054, Dunedin, New Zealand
| | - Robert E W Hancock
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
18
|
Morales Moreira ZP, Chen MY, Yanez Ortuno DL, Haney CH. Engineering plant microbiomes by integrating eco-evolutionary principles into current strategies. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102316. [PMID: 36442442 DOI: 10.1016/j.pbi.2022.102316] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Engineering plant microbiomes has the potential to improve plant health in a rapid and sustainable way. Rapidly changing climates and relatively long timelines for plant breeding make microbiome engineering an appealing approach to improving food security. However, approaches that have shown promise in the lab have not resulted in wide-scale implementation in the field. Here, we suggest the use of an integrated approach, combining mechanistic molecular and genetic knowledge, with ecological and evolutionary theory, to target knowledge gaps in plant microbiome engineering that may facilitate translatability of approaches into the field. We highlight examples where understanding microbial community ecology is essential for a holistic understanding of the efficacy and consequences of microbiome engineering. We also review examples where understanding plant-microbe evolution could facilitate the design of plants able to recruit specific microbial communities. Finally, we discuss possible trade-offs in plant-microbiome interactions that should be considered during microbiome engineering efforts so as not to introduce off-target negative effects. We include classic and emergent approaches, ranging from microbial inoculants to plant breeding to host-driven microbiome engineering, and address areas that would benefit from multidisciplinary approaches.
Collapse
Affiliation(s)
- Zayda P Morales Moreira
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Melissa Y Chen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Daniela L Yanez Ortuno
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Sarkar S, Kamke A, Ward K, Hartung E, Ran Q, Feehan B, Galliart M, Jumpponen A, Johnson L, Lee STM. Pseudomonas cultivated from Andropogon gerardii rhizosphere show functional potential for promoting plant host growth and drought resilience. BMC Genomics 2022; 23:784. [PMID: 36451103 PMCID: PMC9710129 DOI: 10.1186/s12864-022-09019-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes (rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, involved in enhancing plant resilience, enabling the successful development of synthetic communities. RESULTS In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial communities recovered from the rhizosphere of a tallgrass prairie foundation grass, Andropogon gerardii. We cultivated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) that might play a significant role in the rhizobiome of Andropogon gerardii under drought conditions. Phylogenetic analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest - MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-Pseudomonas, which might be associated with enhanced drought tolerance and growth for Andropogon gerardii. CONCLUSIONS Our data indicated that the metagenome-assembled MAG-Pseudomonas has the functional potential to contribute to the plant host's growth during stressful conditions. Our study also suggested the nitrogen transformation potential of MAG-Pseudomonas that could impact Andropogon gerardii growth in a positive way. The cultivation of MAG-Pseudomonas sets the foundation to construct a successful synthetic community for Andropogon gerardii. To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through assimilatory nitrate reductase in MAG-Pseudomonas could place this microorganism as an important candidate of the rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into the MAG-Pseudomonas and its potential to optimize plant productivity under ever-changing climatic patterns, especially in frequent drought conditions.
Collapse
Affiliation(s)
- Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Abigail Kamke
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Kaitlyn Ward
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Eli Hartung
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Qinghong Ran
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Brandi Feehan
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Matthew Galliart
- Department of Biological Sciences, Fort Hays State University, Hays, KS, USA
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Loretta Johnson
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sonny T M Lee
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
20
|
Cardenas-Alvarez MX, Restrepo-Montoya D, Bergholz TM. Genome-Wide Association Study of Listeria monocytogenes Isolates Causing Three Different Clinical Outcomes. Microorganisms 2022; 10:1934. [PMID: 36296210 PMCID: PMC9610272 DOI: 10.3390/microorganisms10101934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/05/2022] Open
Abstract
Heterogeneity in virulence potential of L. monocytogenes subgroups have been associated with genetic elements that could provide advantages in certain environments to invade, multiply, and survive within a host. The presence of gene mutations has been found to be related to attenuated phenotypes, while the presence of groups of genes, such as pathogenicity islands (PI), has been associated with hypervirulent or stress-resistant clones. We evaluated 232 whole genome sequences from invasive listeriosis cases in human and ruminants from the US and Europe to identify genomic elements associated with strains causing three clinical outcomes: central nervous system (CNS) infections, maternal-neonatal (MN) infections, and systemic infections (SI). Phylogenetic relationships and virulence-associated genes were evaluated, and a gene-based and single nucleotide polymorphism (SNP)-based genome-wide association study (GWAS) were conducted in order to identify loci associated with the different clinical outcomes. The orthologous results indicated that genes of phage phiX174, transfer RNAs, and type I restriction-modification (RM) system genes along with SNPs in loci involved in environmental adaptation such as rpoB and a phosphotransferase system (PTS) were associated with one or more clinical outcomes. Detection of phenotype-specific candidate loci represents an approach that could narrow the group of genetic elements to be evaluated in future studies.
Collapse
Affiliation(s)
| | | | - Teresa M. Bergholz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Classification of the plant-associated lifestyle of Pseudomonas strains using genome properties and machine learning. Sci Rep 2022; 12:10857. [PMID: 35760985 PMCID: PMC9237127 DOI: 10.1038/s41598-022-14913-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/15/2022] [Indexed: 12/30/2022] Open
Abstract
The rhizosphere, the region of soil surrounding roots of plants, is colonized by a unique population of Plant Growth Promoting Rhizobacteria (PGPR). Many important PGPR as well as plant pathogens belong to the genus Pseudomonas. There is, however, uncertainty on the divide between beneficial and pathogenic strains as previously thought to be signifying genomic features have limited power to separate these strains. Here we used the Genome properties (GP) common biological pathways annotation system and Machine Learning (ML) to establish the relationship between the genome wide GP composition and the plant-associated lifestyle of 91 Pseudomonas strains isolated from the rhizosphere and the phyllosphere representing both plant-associated phenotypes. GP enrichment analysis, Random Forest model fitting and feature selection revealed 28 discriminating features. A test set of 75 new strains confirmed the importance of the selected features for classification. The results suggest that GP annotations provide a promising computational tool to better classify the plant-associated lifestyle.
Collapse
|
22
|
Gluck-Thaler E, Ralston T, Konkel Z, Ocampos CG, Ganeshan VD, Dorrance AE, Niblack TL, Wood CW, Slot JC, Lopez-Nicora HD, Vogan AA. Giant Starship Elements Mobilize Accessory Genes in Fungal Genomes. Mol Biol Evol 2022; 39:msac109. [PMID: 35588244 PMCID: PMC9156397 DOI: 10.1093/molbev/msac109] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accessory genes are variably present among members of a species and are a reservoir of adaptive functions. In bacteria, differences in gene distributions among individuals largely result from mobile elements that acquire and disperse accessory genes as cargo. In contrast, the impact of cargo-carrying elements on eukaryotic evolution remains largely unknown. Here, we show that variation in genome content within multiple fungal species is facilitated by Starships, a newly discovered group of massive mobile elements that are 110 kb long on average, share conserved components, and carry diverse arrays of accessory genes. We identified hundreds of Starship-like regions across every major class of filamentous Ascomycetes, including 28 distinct Starships that range from 27 to 393 kb and last shared a common ancestor ca. 400 Ma. Using new long-read assemblies of the plant pathogen Macrophomina phaseolina, we characterize four additional Starships whose activities contribute to standing variation in genome structure and content. One of these elements, Voyager, inserts into 5S rDNA and contains a candidate virulence factor whose increasing copy number has contrasting associations with pathogenic and saprophytic growth, suggesting Voyager's activity underlies an ecological trade-off. We propose that Starships are eukaryotic analogs of bacterial integrative and conjugative elements based on parallels between their conserved components and may therefore represent the first dedicated agents of active gene transfer in eukaryotes. Our results suggest that Starships have shaped the content and structure of fungal genomes for millions of years and reveal a new concerted route for evolution throughout an entire eukaryotic phylum.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Timothy Ralston
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | | | - Veena Devi Ganeshan
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, USA
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, USA
| | - Terry L. Niblack
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Corlett W. Wood
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason C. Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Horacio D. Lopez-Nicora
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
- Departamento de Producción Agrícola, Universidad San Carlos, Asunción, Paraguay
| | - Aaron A. Vogan
- Systematic Biology, Department of Organismal Biology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
23
|
Shalev O, Ashkenazy H, Neumann M, Weigel D. Commensal Pseudomonas protect Arabidopsis thaliana from a coexisting pathogen via multiple lineage-dependent mechanisms. THE ISME JOURNAL 2022; 16:1235-1244. [PMID: 34897280 PMCID: PMC9038753 DOI: 10.1038/s41396-021-01168-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
AbstractPlants are protected from pathogens not only by their own immunity but often also by colonizing commensal microbes. In Arabidopsis thaliana, a group of cryptically pathogenic Pseudomonas strains often dominates local populations. This group coexists in nature with commensal Pseudomonas strains that can blunt the deleterious effects of the pathogens in the laboratory. We have investigated the interaction between one of the Pseudomonas pathogens and 99 naturally co-occurring commensals, finding plant protection to be common among non-pathogenic Pseudomonas. While protective ability is enriched in one specific lineage, there is also a substantial variation for this trait among isolates of this lineage. These functional differences do not align with core-genome phylogenies, suggesting repeated gene inactivation or loss as causal. Using genome-wide association, we discovered that different bacterial genes are linked to plant protection in each lineage. We validated a protective role of several lineage-specific genes by gene inactivation, highlighting iron acquisition and biofilm formation as prominent mechanisms of plant protection in this Pseudomonas lineage. Collectively, our work illustrates the importance of functional redundancy in plant protective traits across an important group of commensal bacteria.
Collapse
|
24
|
Tang J, Wu D, Li X, Wang L, Xu L, Zhang Y, Xu F, Liu H, Xie Q, Dai S, Coleman-Derr D, Zhu S, Yu F. Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation. EMBO J 2022; 41:e109102. [PMID: 35146778 PMCID: PMC8922250 DOI: 10.15252/embj.2021109102] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
The microbiome plays an important role in shaping plant growth and immunity, but few plant genes and pathways impacting plant microbiome composition have been reported. In Arabidopsis thaliana, the phosphate starvation response (PSR) was recently found to modulate the root microbiome upon phosphate (Pi) starvation through the transcriptional regulator PHR1. Here, we report that A. thaliana PHR1 directly binds to the promoters of rapid alkalinization factor (RALF) genes, and activates their expression under phosphate-starvation conditions. RALFs in turn suppress complex formation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) receptor through FERONIA, a previously-identified PTI modulator that increases resistance to certain detrimental microorganisms. Suppression of immunity via the PHR1-RALF-FERONIA axis allows colonization by specialized root microbiota that help to alleviate phosphate starvation by upregulating the expression of PSR genes. These findings provide a new paradigm for coordination of host-microbe homeostasis through modulating plant innate immunity after environmental perturbations.
Collapse
Affiliation(s)
- Jing Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ling Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Hongbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Qijun Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
25
|
Ali MA, Luo J, Ahmed T, Zhang J, Xie T, Dai D, Jiang J, Zhu J, Hassan S, Alorabi JA, Li B, An Q. Pseudomonas bijieensis Strain XL17 within the P. corrugata Subgroup Producing 2,4-Diacetylphloroglucinol and Lipopeptides Controls Bacterial Canker and Gray Mold Pathogens of Kiwifruit. Microorganisms 2022; 10:425. [PMID: 35208879 PMCID: PMC8878242 DOI: 10.3390/microorganisms10020425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
Kiwifruit worldwide suffers from the devastating diseases of bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) and gray mold caused by Botrytis cinerea. Here, an endophytic bacterium XL17 isolated from a rape crown gall was screened out for its potent antagonistic activities against Psa and B. cinerea. Strain XL17 and its cell-free culture filtrate (CF) inhibited the growth of Psa and B. cinerea, Psa-associated leaf necrosis, and B. cinerea-associated kiwifruit necrosis. Electron microscopy showed that XL17 CF could damage the cell structures of Psa and B. cinerea. Genome-based taxonomy revealed that strain XL17 belongs to Pseudomonas bijieensis within the P. corrugata subgroup of the P. fluorescens species complex. Among the P. corrugata subgroup containing 31 genomospecies, the presence of the phl operon responsible for the biosynthesis of the phenolic polyketide 2,4-diacetylphloroglucinol (DAPG) and the absence of the lipopeptide/quorum sensing island can serve as the genetic marker for the determination of a plant-protection life style. HPLC detected DAPG in extracts from XL17 CF. MALDI-TOF-MS analysis revealed that strain XL17 produced cyclic lipopeptides of the viscosin family and orfamide family. Together, phenotypic, genomic, and metabolic analyses identified that P. bijieensis XL17 producing DAPG and cyclic lipopeptides can be used to control bacterial canker and gray mold pathogens of kiwifruit.
Collapse
Affiliation(s)
- Md. Arshad Ali
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| | - Jiannan Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| | - Ting Xie
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| | - Dejiang Dai
- Station for the Plant Protection & Quarantine and Control of Agrochemicals Zhejiang Province, Hangzhou 310004, China
| | - Jingyong Jiang
- Taizhou Academy of Agricultural Sciences, Linhai 317000, China;
| | - Jie Zhu
- Wenzhou Station of Plant Protection, Soils and Fertilizers, Wenzhou 325000, China;
| | - Sabry Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.H.); (J.A.A.)
| | - Jamal A. Alorabi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.H.); (J.A.A.)
| | - Bin Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| | - Qianli An
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| |
Collapse
|
26
|
Wang Y, Wu J, Yan J, Guo M, Xu L, Hou L, Zou Q. Comparative genome analysis of plant ascomycete fungal pathogens with different lifestyles reveals distinctive virulence strategies. BMC Genomics 2022; 23:34. [PMID: 34996360 PMCID: PMC8740420 DOI: 10.1186/s12864-021-08165-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pathogens have evolved diverse lifestyles and adopted pivotal new roles in both natural ecosystems and human environments. However, the molecular mechanisms underlying their adaptation to new lifestyles are obscure. Comparative genomics was adopted to determine distinct strategies of plant ascomycete fungal pathogens with different lifestyles and to elucidate their distinctive virulence strategies. RESULTS We found that plant ascomycete biotrophs exhibited lower gene gain and loss events and loss of CAZyme-encoding genes involved in plant cell wall degradation and biosynthesis gene clusters for the production of secondary metabolites in the genome. Comparison with the candidate effectome detected distinctive variations between plant biotrophic pathogens and other groups (including human, necrotrophic and hemibiotrophic pathogens). The results revealed the biotroph-specific and lifestyle-conserved candidate effector families. These data have been configured in web-based genome browser applications for public display ( http://lab.malab.cn/soft/PFPG ). This resource allows researchers to profile the genome, proteome, secretome and effectome of plant fungal pathogens. CONCLUSIONS Our findings demonstrated different genome evolution strategies of plant fungal pathogens with different lifestyles and explored their lifestyle-conserved and specific candidate effectors. It will provide a new basis for discovering the novel effectors and their pathogenic mechanisms.
Collapse
Affiliation(s)
- Yansu Wang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, 518000, Shenzhen, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, P. R. China
| | - Jie Wu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, P. R. China
| | - Jiacheng Yan
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, P. R. China
| | - Ming Guo
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, USA
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, 518000, Shenzhen, P. R. China
| | - Liping Hou
- Beidahuang Industry Group General Hospital, Harbin, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, P. R. China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| |
Collapse
|
27
|
Vogel CM, Potthoff DB, Schäfer M, Barandun N, Vorholt JA. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat Microbiol 2021; 6:1537-1548. [PMID: 34819644 PMCID: PMC7612696 DOI: 10.1038/s41564-021-00997-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022]
Abstract
The aerial parts of plants are host to taxonomically structured bacterial communities. Members of the core phyllosphere microbiota can protect Arabidopsis thaliana against foliar pathogens. However, whether plant protection is widespread and to what extent the modes of protection differ among phyllosphere microorganisms are not clear. Here, we present a systematic analysis of plant protection capabilities of the At-LSPHERE, which is a collection of >200 bacterial isolates from A. thaliana, against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. In total, 224 bacterial leaf isolates were individually assessed for plant protection in a gnotobiotic system. Protection against the pathogen varied, with ~10% of leaf microbiota strains providing full protection, ~10% showing intermediate levels of protection and the remaining ~80% not markedly reducing disease phenotypes upon infection. The most protective strains were distributed across different taxonomic groups. Synthetic community experiments revealed additive effects of strains but also that a single strain can confer full protection in a community context. We also identify different mechanisms that contribute to plant protection. Although pattern-triggered immunity coreceptor signalling is involved in protection by a subset of strains, other strains protected in the absence of functional plant immunity receptors BAK1 and BKK1. Using a comparative genomics approach combined with mutagenesis, we reveal that direct bacteria-pathogen interactions contribute to plant protection by Rhizobium Leaf202. This shows that a computational approach based on the data provided can be used to identify genes of the microbiota that are important for plant protection.
Collapse
Affiliation(s)
| | | | - Martin Schäfer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
28
|
Pacheco-Moreno A, Stefanato FL, Ford JJ, Trippel C, Uszkoreit S, Ferrafiat L, Grenga L, Dickens R, Kelly N, Kingdon AD, Ambrosetti L, Nepogodiev SA, Findlay KC, Cheema J, Trick M, Chandra G, Tomalin G, Malone JG, Truman AW. Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. eLife 2021; 10:71900. [PMID: 34792466 PMCID: PMC8719888 DOI: 10.7554/elife.71900] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs. Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques – for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Christine Trippel
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Simon Uszkoreit
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Laura Ferrafiat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lucia Grenga
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Ruth Dickens
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Nathan Kelly
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alexander Dh Kingdon
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Liana Ambrosetti
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jitender Cheema
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
29
|
Brinkman FSL, Winsor GL, Done RE, Filloux A, Francis VI, Goldberg JB, Greenberg EP, Han K, Hancock REW, Haney CH, Häußler S, Klockgether J, Lamont IL, Levesque RC, Lory S, Nikel PI, Porter SL, Scurlock MW, Schweizer HP, Tümmler B, Wang M, Welch M. The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Adv Microb Physiol 2021; 79:25-88. [PMID: 34836612 DOI: 10.1016/bs.ampbs.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toward the end of August 2000, the 6.3 Mbp whole genome sequence of Pseudomonas aeruginosa strain PAO1 was published. With 5570 open reading frames (ORFs), PAO1 had the largest microbial genome sequenced up to that point in time-including a large proportion of metabolic, transport and antimicrobial resistance genes supporting its ability to colonize diverse environments. A remarkable 9% of its ORFs were predicted to encode proteins with regulatory functions, providing new insight into bacterial network complexity as a function of network size. In this celebratory article, we fast forward 20 years, and examine how access to this resource has transformed our understanding of P. aeruginosa. What follows is more than a simple review or commentary; we have specifically asked some of the leaders in the field to provide personal reflections on how the PAO1 genome sequence, along with the Pseudomonas Community Annotation Project (PseudoCAP) and Pseudomonas Genome Database (pseudomonas.com), have contributed to the many exciting discoveries in this field. In addition to bringing us all up to date with the latest developments, we also ask our contributors to speculate on how the next 20 years of Pseudomonas research might pan out.
Collapse
Affiliation(s)
- Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Rachel E Done
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Vanessa I Francis
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | | | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Susanne Häußler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Klockgether
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Pavillon Charles-Eugène Marchand, Faculté of Médicine, Université Laval, Québec City, QC, Canada
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Steven L Porter
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | | | - Herbert P Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Burkhard Tümmler
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Meng Wang
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
30
|
Fucosylated human milk oligosaccharide foraging within the species Bifidobacterium pseudocatenulatum is driven by glycosyl hydrolase content and specificity. Appl Environ Microbiol 2021; 88:e0170721. [PMID: 34757822 DOI: 10.1128/aem.01707-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human milk enriches members of the genus Bifidobacterium in the infant gut. One species, Bifidobacterium pseudocatenulatum, is found in the gastrointestinal tracts of adults and breastfed infants. In this study, B. pseudocatenulatum strains were isolated and characterized to identify genetic adaptations to the breastfed infant gut. During growth on pooled human milk oligosaccharides (HMOs) we observed two distinct groups of B. pseudocatenulatum, isolates that readily consumed HMOs and those that did not, a difference driven by variable catabolism of fucosylated HMOs. A conserved gene cluster for fucosylated HMO utilization was identified in several sequenced B. pseudocatenulatum strains. One isolate, B. pseudocatenulatum MP80, which uniquely possessed GH95 and GH29 α-fucosidases consumed the majority of fucosylated HMOs tested. Furthermore, B. pseudocatenulatum SC585, which possesses only a single GH95 α-fucosidase, lacked the ability to consume the complete repertoire of linkages within the fucosylated HMO pool. Analysis of the purified GH29 and GH95 fucosidase activities directly on HMOs revealed complementing enzyme specificities with the GH95 enzyme preferring 1-2 fucosyl linkages and the GH29 enzyme favoring 1-3 and 1-4 linkages. The HMO binding specificity of the Family 1 solute binding protein component linked to the fucosylated HMO gene cluster in both SC585 and MP80 are similar, suggesting differential transport of fucosylated HMO is not a driving factor in each strain's distinct HMO consumption pattern. Taken together, this data indicates the presence or absence of specific α-fucosidases directs the strain-specific fucosylated HMO utilization pattern among bifidobacteria and likely influences competitive behavior for HMO foraging in situ. IMPORTANCE Often isolated from the human gut, microbes from the bacterial family Bifidobacteriaceae commonly possess genes enabling carbohydrate utilization. Isolates from breast fed infants often grow on and possess genes for the catabolism of human milk oligosaccharides (HMOs), glycans found in human breast milk. However, catabolism of structurally diverse HMOs differs between bifidobacterial strains. This study identifies gene differences between Bifidobacterium pseudocatenulatum isolates that may impact whether a microbe successfully colonizes an infant gut. In this case, the presence of complementary α-fucosidases may provide an advantage to microbes seeking residence in the infant gut. Such knowledge furthers our understanding of how diet drives bacterial colonization of the infant gut.
Collapse
|
31
|
Putrescine and its metabolic precursor arginine promote biofilm and c-di-GMP synthesis in Pseudomonas aeruginosa. J Bacteriol 2021; 204:e0029721. [PMID: 34723645 DOI: 10.1128/jb.00297-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa, an opportunistic bacterial pathogen can synthesize and catabolize a number of small cationic molecules known as polyamines. In several clades of bacteria polyamines regulate biofilm formation, a lifestyle-switching process that confers resistance to environmental stress. The polyamine putrescine and its biosynthetic precursors, L-arginine and agmatine, promote biofilm formation in Pseudomonas spp. However, it remains unclear whether the effect is a direct effect of polyamines or through a metabolic derivative. Here we used a genetic approach to demonstrate that putrescine accumulation, either through disruption of the spermidine biosynthesis pathway or the catabolic putrescine aminotransferase pathway, promoted biofilm formation in P. aeruginosa. Consistent with this observation, exogenous putrescine robustly induced biofilm formation in P. aeruginosa that was dependent on putrescine uptake and biosynthesis pathways. Additionally, we show that L-arginine, the biosynthetic precursor of putrescine, also promoted biofilm formation, but via a mechanism independent of putrescine or agmatine conversion. We found that both putrescine and L-arginine induced a significant increase in the intracellular level of bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) (c-di-GMP), a bacterial second messenger widely found in Proteobacteria that upregulates biofilm formation. Collectively these data show that putrescine and its metabolic precursor arginine promote biofilm and c-di-GMP synthesis in P. aeruginosa. Importance: Biofilm formation allows bacteria to physically attach to a surface, confers tolerance to antimicrobial agents, and promotes resistance to host immune responses. As a result, regulation of biofilm is often crucial for bacterial pathogens to establish chronic infections. A primary mechanism of biofilm promotion in bacteria is the molecule c-di-GMP, which promotes biofilm formation. The level of c-di-GMP is tightly regulated by bacterial enzymes. In this study, we found that putrescine, a small molecule ubiquitously found in eukaryotic cells, robustly enhances P. aeruginosa biofilm and c-di-GMP. We propose that P. aeruginosa may sense putrescine as a host-associated signal that triggers a lifestyle switching that favors chronic infection.
Collapse
|
32
|
Evolutionary origin and ecological implication of a unique nif island in free-living Bradyrhizobium lineages. THE ISME JOURNAL 2021; 15:3195-3206. [PMID: 33990706 PMCID: PMC8528876 DOI: 10.1038/s41396-021-01002-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023]
Abstract
The alphaproteobacterial genus Bradyrhizobium has been best known as N2-fixing members that nodulate legumes, supported by the nif and nod gene clusters. Recent environmental surveys show that Bradyrhizobium represents one of the most abundant free-living bacterial lineages in the world's soils. However, our understanding of Bradyrhizobium comes largely from symbiotic members, biasing the current knowledge of their ecology and evolution. Here, we report the genomes of 88 Bradyrhizobium strains derived from diverse soil samples, including both nif-carrying and non-nif-carrying free-living (nod free) members. Phylogenomic analyses of these and 252 publicly available Bradyrhizobium genomes indicate that nif-carrying free-living members independently evolved from symbiotic ancestors (carrying both nif and nod) multiple times. Intriguingly, the nif phylogeny shows that the vast majority of nif-carrying free-living members comprise an independent cluster, indicating that horizontal gene transfer promotes nif expansion among the free-living Bradyrhizobium. Comparative genomics analysis identifies that the nif genes found in free-living Bradyrhizobium are located on a unique genomic island of ~50 kb equipped with genes potentially involved in coping with oxygen tension. We further analyze amplicon sequencing data to show that Bradyrhizobium members presumably carrying this nif island are widespread in a variety of environments. Given the dominance of Bradyrhizobium in world's soils, our findings have implications for global nitrogen cycles and agricultural research.
Collapse
|
33
|
Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol 2021; 19:623-638. [PMID: 33875863 PMCID: PMC8054256 DOI: 10.1038/s41579-021-00550-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Virtually all plants and animals, including humans, are home to symbiotic microorganisms. Symbiotic interactions can be neutral, harmful or have beneficial effects on the host organism. However, growing evidence suggests that microbial symbionts can evolve rapidly, resulting in drastic transitions along the parasite-mutualist continuum. In this Review, we integrate theoretical and empirical findings to discuss the mechanisms underpinning these evolutionary shifts, as well as the ecological drivers and why some host-microorganism interactions may be stuck at the end of the continuum. In addition to having biomedical consequences, understanding the dynamic life of microorganisms reveals how symbioses can shape an organism's biology and the entire community, particularly in a changing world.
Collapse
Affiliation(s)
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
34
|
Horizontal gene transfer-mediated bacterial strain variation affects host fitness in Drosophila. BMC Biol 2021; 19:187. [PMID: 34565363 PMCID: PMC8474910 DOI: 10.1186/s12915-021-01124-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background How microbes affect host fitness and environmental adaptation has become a fundamental research question in evolutionary biology. To better understand the role of microbial genomic variation for host fitness, we tested for associations of bacterial genomic variation and Drosophila melanogaster offspring number in a microbial Genome Wide Association Study (GWAS). Results We performed a microbial GWAS, leveraging strain variation in the genus Gluconobacter, a genus of bacteria that are commonly associated with Drosophila under natural conditions. We pinpoint the thiamine biosynthesis pathway (TBP) as contributing to differences in fitness conferred to the fly host. While an effect of thiamine on fly development has been described, we show that strain variation in TBP between bacterial isolates from wild-caught D. melanogaster contributes to variation in offspring production by the host. By tracing the evolutionary history of TBP genes in Gluconobacter, we find that TBP genes were most likely lost and reacquired by horizontal gene transfer (HGT). Conclusion Our study emphasizes the importance of strain variation and highlights that HGT can add to microbiome flexibility and potentially to host adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01124-y.
Collapse
|
35
|
Song S, Liu Y, Wang NR, Haney CH. Mechanisms in plant-microbiome interactions: lessons from model systems. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102003. [PMID: 33545444 DOI: 10.1016/j.pbi.2021.102003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 05/25/2023]
Abstract
The use of genetically tractable plant-microbe pairs has driven research in plant immunity and mutualistic symbiosis. Clear functional readouts for the outcomes of symbiosis or immunity have facilitated forward genetic screening and identification of signals, molecules and mechanisms that determine the outcome of these interactions. Plants also associate with beneficial microbial communities that form the microbiome. However, the complexity of the microbiome, combined with relatively subtle effects on plant growth and immunity, has impeded forward genetic screening to identify plant and bacterial genes that shape the microbiome. As a result, microbiome research has relied largely on reverse genetics approaches, based on what is known about plant nutrient uptake and immunity, to identify mechanisms in plant-microbiome research. Here we revisit the features of reductionist model systems that have made them so powerful for studying plant-microbe interactions, and how modeling microbiome research after these systems can propel discovery of novel mechanisms.
Collapse
Affiliation(s)
- Siyu Song
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nicole R Wang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
36
|
Metabolic Differentiation of Co-occurring Accumulibacter Clades Revealed through Genome-Resolved Metatranscriptomics. mSystems 2021; 6:e0047421. [PMID: 34227830 PMCID: PMC8407102 DOI: 10.1128/msystems.00474-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Natural microbial communities consist of closely related taxa that may exhibit phenotypic differences and inhabit distinct niches. However, connecting genetic diversity to ecological properties remains a challenge in microbial ecology due to the lack of pure cultures across the microbial tree of life. "Candidatus Accumulibacter phosphatis" (Accumulibacter) is a polyphosphate-accumulating organism that contributes to the enhanced biological phosphorus removal (EBPR) biotechnological process for removing excess phosphorus from wastewater and preventing eutrophication from downstream receiving waters. Distinct Accumulibacter clades often coexist in full-scale wastewater treatment plants and laboratory-scale enrichment bioreactors and have been hypothesized to inhabit distinct ecological niches. However, since individual strains of the Accumulibacter lineage have not been isolated in pure culture to date, these predictions have been made solely on genome-based comparisons and enrichments with varying strain compositions. Here, we used genome-resolved metagenomics and metatranscriptomics to explore the activity of coexisting Accumulibacter strains in an engineered bioreactor environment. We obtained four high-quality genomes of Accumulibacter strains that were present in the bioreactor ecosystem, one of which is a completely contiguous draft genome scaffolded with long Nanopore reads. We identified core and accessory genes to investigate how gene expression patterns differed among the dominating strains. Using this approach, we were able to identify putative pathways and functions that may confer distinct functions to Accumulibacter strains and provide key functional insights into this biotechnologically significant microbial lineage. IMPORTANCE "Candidatus Accumulibacter phosphatis" is a model polyphosphate-accumulating organism that has been studied using genome-resolved metagenomics, metatranscriptomics, and metaproteomics to understand the EBPR process. Within the Accumulibacter lineage, several similar but diverging clades are defined by the shared sequence identity of the polyphosphate kinase (ppk1) locus. These clades are predicted to have key functional differences in acetate uptake rates, phage defense mechanisms, and nitrogen-cycling capabilities. However, such hypotheses have largely been made based on gene content comparisons of sequenced Accumulibacter genomes, some of which were obtained from different systems. Here, we performed time series genome-resolved metatranscriptomics to explore gene expression patterns of coexisting Accumulibacter clades in the same bioreactor ecosystem. Our work provides an approach for elucidating ecologically relevant functions based on gene expression patterns between closely related microbial populations.
Collapse
|
37
|
Dillon MM, Ruiz-Bedoya T, Bundalovic-Torma C, Guttman KM, Kwak H, Middleton MA, Wang PW, Horuz S, Aysan Y, Guttman DS. Comparative genomic insights into the epidemiology and virulence of plant pathogenic pseudomonads from Turkey. Microb Genom 2021; 7:000585. [PMID: 34227931 PMCID: PMC8477409 DOI: 10.1099/mgen.0.000585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae, although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.
Collapse
Affiliation(s)
- Marcus M. Dillon
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Present address: Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Tatiana Ruiz-Bedoya
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin M. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Haejin Kwak
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Maggie A. Middleton
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Pauline W. Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Sumer Horuz
- Department of Plant Protection, Erciyes University, Kayseri, Turkey
| | - Yesim Aysan
- Department of Plant Protection, University of Çukurova, Adana, Turkey
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Harting R, Nagel A, Nesemann K, Höfer AM, Bastakis E, Kusch H, Stanley CE, Stöckli M, Kaever A, Hoff KJ, Stanke M, deMello AJ, Künzler M, Haney CH, Braus-Stromeyer SA, Braus GH. Pseudomonas Strains Induce Transcriptional and Morphological Changes and Reduce Root Colonization of Verticillium spp. Front Microbiol 2021; 12:652468. [PMID: 34108946 PMCID: PMC8180853 DOI: 10.3389/fmicb.2021.652468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Phytopathogenic Verticillia cause Verticillium wilt on numerous economically important crops. Plant infection begins at the roots, where the fungus is confronted with rhizosphere inhabiting bacteria. The effects of different fluorescent pseudomonads, including some known biocontrol agents of other plant pathogens, on fungal growth of the haploid Verticillium dahliae and/or the amphidiploid Verticillium longisporum were compared on pectin-rich medium, in microfluidic interaction channels, allowing visualization of single hyphae, or on Arabidopsis thaliana roots. We found that the potential for formation of bacterial lipopeptide syringomycin resulted in stronger growth reduction effects on saprophytic Aspergillus nidulans compared to Verticillium spp. A more detailed analyses on bacterial-fungal co-cultivation in narrow interaction channels of microfluidic devices revealed that the strongest inhibitory potential was found for Pseudomonas protegens CHA0, with its inhibitory potential depending on the presence of the GacS/GacA system controlling several bacterial metabolites. Hyphal tip polarity was altered when V. longisporum was confronted with pseudomonads in narrow interaction channels, resulting in a curly morphology instead of straight hyphal tip growth. These results support the hypothesis that the fungus attempts to evade the bacterial confrontation. Alterations due to co-cultivation with bacteria could not only be observed in fungal morphology but also in fungal transcriptome. P. protegens CHA0 alters transcriptional profiles of V. longisporum during 2 h liquid media co-cultivation in pectin-rich medium. Genes required for degradation of and growth on the carbon source pectin were down-regulated, whereas transcripts involved in redox processes were up-regulated. Thus, the secondary metabolite mediated effect of Pseudomonas isolates on Verticillium species results in a complex transcriptional response, leading to decreased growth with precautions for self-protection combined with the initiation of a change in fungal growth direction. This interplay of bacterial effects on the pathogen can be beneficial to protect plants from infection, as shown with A. thaliana root experiments. Treatment of the roots with bacteria prior to infection with V. dahliae resulted in a significant reduction of fungal root colonization. Taken together we demonstrate how pseudomonads interfere with the growth of Verticillium spp. and show that these bacteria could serve in plant protection.
Collapse
Affiliation(s)
- Rebekka Harting
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexandra Nagel
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Kai Nesemann
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Annalena M Höfer
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Emmanouil Bastakis
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Harald Kusch
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany.,Department of Medical Informatics, University Medical Center, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Claire E Stanley
- Institute of Chemical and Bioengineering, ETH Zürich, Zurich, Switzerland
| | | | - Alexander Kaever
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, Universität Greifswald, Greifswald, Germany
| | - Mario Stanke
- Institute of Mathematics and Computer Science, Universität Greifswald, Greifswald, Germany
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, ETH Zürich, Zurich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Susanna A Braus-Stromeyer
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gerhard H Braus
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
39
|
Garrido-Sanz D, Redondo-Nieto M, Martin M, Rivilla R. Comparative genomics of the Pseudomonas corrugata subgroup reveals high species diversity and allows the description of Pseudomonas ogarae sp. nov. Microb Genom 2021; 7:000593. [PMID: 34184980 PMCID: PMC8461476 DOI: 10.1099/mgen.0.000593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas corrugata constitute one of the phylogenomic subgroups within the Pseudomonas fluorescens species complex and include both plant growth-promoting rhizobacteria (PGPR) and plant pathogenic bacteria. Previous studies suggest that the species diversity of this group remains largely unexplored together with frequent misclassification of strains. Using more than 1800 sequenced Pseudomonas genomes we identified 121 genomes belonging to the P. corrugata subgroup. Intergenomic distances obtained using the genome-to-genome blast distance (GBDP) algorithm and the determination of digital DNA-DNA hybridization values were further used for phylogenomic and clustering analyses, which revealed 29 putative species clusters, of which only five correspond to currently named species within the subgroup. Comparative and functional genome-scale analyses also support the species status of these clusters. The search for PGPR and plant pathogenic determinants showed that approximately half of the genomes analysed could have a pathogenic behaviour based on the presence of a pathogenicity genetic island, while all analysed genomes possess PGPR traits. Finally, this information together with the characterization of phenotypic traits, allows the reclassification proposal of Pseudomonas fluorescens F113 as Pseudomonas ogarae sp. nov., nom rev., type strain F113T (=DSM 112162T=CECT 30235T), which is substantiated by genomic, functional genomics and phenotypic differences with their closest type strains.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
40
|
Liu Z, Liang Z, Zhou Z, Li L, Meng D, Li X, Tao J, Jiang Z, Gu Y, Huang Y, Liu X, Yang Z, Drewniak L, Liu T, Liu Y, Liu S, Wang J, Jiang C, Yin H. Mobile genetic elements mediate the mixotrophic evolution of novel Alicyclobacillus species for acid mine drainage adaptation. Environ Microbiol 2021; 23:3896-3912. [PMID: 33913568 DOI: 10.1111/1462-2920.15543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 12/25/2022]
Abstract
Alicyclobacillus species inhabit diverse environments and have adapted to broad ranges of pH and temperature. However, their adaptive evolutions remain elusive, especially regarding the role of mobile genetic elements (MGEs). Here, we characterized the distributions and functions of MGEs in Alicyclobacillus species across five environments, including acid mine drainage (AMD), beverages, hot springs, sediments, and soils. Nine Alicyclobacillus strains were isolated from AMD and possessed larger genome sizes and more genes than those from other environments. Four AMD strains evolved to be mixotrophic and fell into distinctive clusters in phylogenetic tree. Four types of MGEs including genomic island (GI), insertion sequence (IS), prophage, and integrative and conjugative element (ICE) were widely distributed in Alicyclobacillus species. Further, AMD strains did not possess CRISPR-Cas systems, but had more GI, IS, and ICE, as well as more MGE-associated genes involved in the oxidation of iron and sulfide and the resistance of heavy metal and low temperature. These findings highlight the differences in phenotypes and genotypes between strains isolated from AMD and other environments and the important role of MGEs in rapid environment niche expansions.
Collapse
Affiliation(s)
- Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zonglin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhicheng Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, 410010, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiemeng Tao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| | - Zhendong Yang
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Tianbo Liu
- Hunan Tobacco Science Institute, Changsha, 410010, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, 410010, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410006, China
| |
Collapse
|
41
|
Song Y, Wilson AJ, Zhang XC, Thoms D, Sohrabi R, Song S, Geissmann Q, Liu Y, Walgren L, He SY, Haney CH. FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. NATURE PLANTS 2021; 7:644-654. [PMID: 33972713 DOI: 10.1038/s41477-021-00914-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/01/2021] [Indexed: 05/27/2023]
Abstract
Maintaining microbiome structure is critical for the health of both plants and animals. By re-screening a collection of Arabidopsis mutants affecting root immunity and hormone crosstalk, we identified a FERONIA (FER) receptor kinase mutant (fer-8) with a rhizosphere microbiome enriched in Pseudomonas fluorescens without phylum-level dysbiosis. Using microbiome transplant experiments, we found that the fer-8 microbiome was beneficial. The effect of FER on rhizosphere pseudomonads was largely independent of its immune scaffold function, role in development and jasmonic acid autoimmunity. We found that the fer-8 mutant has reduced basal levels of reactive oxygen species (ROS) in roots and that mutants deficient in NADPH oxidase showed elevated rhizosphere pseudomonads. The addition of RALF23 peptides, a FER ligand, was sufficient to enrich P. fluorescens. This work shows that FER-mediated ROS production regulates levels of beneficial pseudomonads in the rhizosphere microbiome.
Collapse
Affiliation(s)
- Yi Song
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew J Wilson
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xue-Cheng Zhang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- DermBiont, Boston, MA, USA
| | - David Thoms
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza Sohrabi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Siyu Song
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Quentin Geissmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren Walgren
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
42
|
Biessy A, Filion M. Phloroglucinol Derivatives in Plant-Beneficial Pseudomonas spp.: Biosynthesis, Regulation, and Functions. Metabolites 2021; 11:metabo11030182. [PMID: 33804595 PMCID: PMC8003664 DOI: 10.3390/metabo11030182] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Plant-beneficial Pseudomonas spp. aggressively colonize the rhizosphere and produce numerous secondary metabolites, such as 2,4-diacetylphloroglucinol (DAPG). DAPG is a phloroglucinol derivative that contributes to disease suppression, thanks to its broad-spectrum antimicrobial activity. A famous example of this biocontrol activity has been previously described in the context of wheat monoculture where a decline in take-all disease (caused by the ascomycete Gaeumannomyces tritici) has been shown to be associated with rhizosphere colonization by DAPG-producing Pseudomonas spp. In this review, we discuss the biosynthesis and regulation of phloroglucinol derivatives in the genus Pseudomonas, as well as investigate the role played by DAPG-producing Pseudomonas spp. in natural soil suppressiveness. We also tackle the mode of action of phloroglucinol derivatives, which can act as antibiotics, signalling molecules and, in some cases, even as pathogenicity factors. Finally, we discuss the genetic and genomic diversity of DAPG-producing Pseudomonas spp. as well as its importance for improving the biocontrol of plant pathogens.
Collapse
|
43
|
Chiniquy D, Barnes EM, Zhou J, Hartman K, Li X, Sheflin A, Pella A, Marsh E, Prenni J, Deutschbauer AM, Schachtman DP, Tringe SG. Microbial Community Field Surveys Reveal Abundant Pseudomonas Population in Sorghum Rhizosphere Composed of Many Closely Related Phylotypes. Front Microbiol 2021; 12:598180. [PMID: 33767674 PMCID: PMC7985074 DOI: 10.3389/fmicb.2021.598180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
While the root-associated microbiome is typically less diverse than the surrounding soil due to both plant selection and microbial competition for plant derived resources, it typically retains considerable complexity, harboring many hundreds of distinct bacterial species. Here, we report a time-dependent deviation from this trend in the rhizospheres of field grown sorghum. In this study, 16S rRNA amplicon sequencing was used to determine the impact of nitrogen fertilization on the development of the root-associated microbiomes of 10 sorghum genotypes grown in eastern Nebraska. We observed that early rhizosphere samples exhibit a significant reduction in overall diversity due to a high abundance of the bacterial genus Pseudomonas that occurred independent of host genotype in both high and low nitrogen fields and was not observed in the surrounding soil or associated root endosphere samples. When clustered at 97% identity, nearly all the Pseudomonas reads in this dataset were assigned to a single operational taxonomic unit (OTU); however, exact sequence variant (ESV)-level resolution demonstrated that this population comprised a large number of distinct Pseudomonas lineages. Furthermore, single-molecule long-read sequencing enabled high-resolution taxonomic profiling revealing further heterogeneity in the Pseudomonas lineages that was further confirmed using shotgun metagenomic sequencing. Finally, field soil enriched with specific carbon compounds recapitulated the increase in Pseudomonas, suggesting a possible connection between the enrichment of these Pseudomonas species and a plant-driven exudate profile.
Collapse
Affiliation(s)
- Dawn Chiniquy
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Department of Energy, Berkeley, CA, United States
| | - Elle M Barnes
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Jinglie Zhou
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Kyle Hartman
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Xiaohui Li
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Department of Energy, Berkeley, CA, United States.,Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States.,Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amy Sheflin
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Allyn Pella
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ellen Marsh
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jessica Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Adam M Deutschbauer
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Susannah G Tringe
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Department of Energy, Berkeley, CA, United States
| |
Collapse
|
44
|
Pathak A, Stothard P, Chauhan A. Comparative Genomic Analysis of Three Pseudomonas Species Isolated from the Eastern Oyster ( Crassostrea virginica) Tissues, Mantle Fluid, and the Overlying Estuarine Water Column. Microorganisms 2021; 9:490. [PMID: 33673397 PMCID: PMC7996774 DOI: 10.3390/microorganisms9030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
The eastern oysters serve as important keystone species in the United States, especially in the Gulf of Mexico estuarine waters, and at the same time, provide unparalleled economic, ecological, environmental, and cultural services. One ecosystem service that has garnered recent attention is the ability of oysters to sequester impurities and nutrients, such as nitrogen (N), from the estuarine water that feeds them, via their exceptional filtration mechanism coupled with microbially-mediated denitrification processes. It is the oyster-associated microbiomes that essentially provide these myriads of ecological functions, yet not much is known on these microbiota at the genomic scale, especially from warm temperate and tropical water habitats. Among the suite of bacterial genera that appear to interplay with the oyster host species, pseudomonads deserve further assessment because of their immense metabolic and ecological potential. To obtain a comprehensive understanding on this aspect, we previously reported on the isolation and preliminary genomic characterization of three Pseudomonas species isolated from minced oyster tissue (P. alcaligenes strain OT69); oyster mantle fluid (P. stutzeri strain MF28) and the water collected from top of the oyster reef (P. aeruginosa strain WC55), respectively. In this comparative genomic analysis study conducted on these three targeted pseudomonads, native to the eastern oyster and its surrounding environment, provided further insights into their unique functional traits, conserved gene pools between the selected pseudomonads, as well as genes that render unique characteristics in context to metabolic traits recruited during their evolutionary history via horizontal gene transfer events as well as phage-mediated incorporation of genes. Moreover, the strains also supported extensively developed resistomes, which suggests that environmental microorganisms native to relatively pristine environments, such as Apalachicola Bay, Florida, have also recruited an arsenal of antibiotic resistant gene determinants, thus posing an emerging public health concern.
Collapse
Affiliation(s)
- Ashish Pathak
- Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada;
| | - Ashvini Chauhan
- Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
45
|
Wang NR, Wiesmann CL, Melnyk RA, Hossain SS, Chi MH, Martens K, Craven K, Haney CH. Commensal Pseudomonas fluorescens Strains Protect Arabidopsis from Closely Related Pseudomonas Pathogens in a Colonization-Dependent Manner. mBio 2021; 13:e0289221. [PMID: 35100865 PMCID: PMC8805031 DOI: 10.1128/mbio.02892-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
Plants form commensal associations with soil microorganisms, creating a root microbiome that provides benefits, including protection against pathogens. While bacteria can inhibit pathogens through the production of antimicrobial compounds in vitro, it is largely unknown how microbiota contribute to pathogen protection in planta. We developed a gnotobiotic model consisting of Arabidopsis thaliana and the opportunistic pathogen Pseudomonas sp. N2C3, to identify mechanisms that determine the outcome of plant-pathogen-microbiome interactions in the rhizosphere. We screened 25 phylogenetically diverse Pseudomonas strains for their ability to protect against N2C3 and found that commensal strains closely related to N2C3, including Pseudomonas sp. WCS365, were more likely to protect against pathogenesis. We used comparative genomics to identify genes unique to the protective strains and found no genes that correlate with protection, suggesting that variable regulation of components of the core Pseudomonas genome may contribute to pathogen protection. We found that commensal colonization level was highly predictive of protection, so we tested deletions in genes required for Arabidopsis rhizosphere colonization. We identified a response regulator colR, and two ColR-dependent genes with predicted roles in membrane modifications (warB and pap2_2), that are required for Pseudomonas-mediated protection from N2C3. We found that WCS365 also protects against the agricultural pathogen Pseudomonas fuscovaginae SE-1, the causal agent of bacterial sheath brown rot of rice, in a ColR-dependent manner. This work establishes a gnotobiotic model to uncover mechanisms by which members of the microbiome can protect hosts from pathogens and informs our understanding of the use of beneficial strains for microbiome engineering in dysbiotic soil systems. IMPORTANCE Microbiota can protect diverse hosts from pathogens, and microbiome dysbiosis can result in increased vulnerability to opportunistic pathogens. Here, we developed a rhizosphere commensal-pathogen model to identify bacterial strains and mechanisms that can protect plants from an opportunistic Pseudomonas pathogen. Our finding that protective strains are closely related to the pathogen suggests that the presence of specific microbial taxa may help protect plants from disease. We found that commensal colonization level was highly correlated with protection, suggesting that competition with pathogens may play a role in protection. As we found that commensal Pseudomonas were also able to protect against an agricultural pathogen, this system may be broadly relevant for identifying strains and mechanisms to control agriculturally important pathogens. This work also suggests that beneficial plant-associated microbes may be useful for engineering soils where microbial complexity is low, such as hydroponic, or disturbed agricultural soils.
Collapse
Affiliation(s)
- Nicole R. Wang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christina L. Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan A. Melnyk
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarzana S. Hossain
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kitoosepe Martens
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly Craven
- Noble Research Institute, Ardmore, Oklahoma, USA
| | - Cara H. Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
Constantin ME, Fokkens L, de Sain M, Takken FLW, Rep M. Number of Candidate Effector Genes in Accessory Genomes Differentiates Pathogenic From Endophytic Fusarium oxysporum Strains. FRONTIERS IN PLANT SCIENCE 2021; 12:761740. [PMID: 34912358 PMCID: PMC8666634 DOI: 10.3389/fpls.2021.761740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/08/2021] [Indexed: 05/21/2023]
Abstract
The fungus Fusarium oxysporum (Fo) is widely known for causing wilt disease in over 100 different plant species. Endophytic interactions of Fo with plants are much more common, and strains pathogenic on one plant species can even be beneficial endophytes on another species. However, endophytic and beneficial interactions have been much less investigated at the molecular level, and the genetic basis that underlies endophytic versus pathogenic behavior is unknown. To investigate this, 44 Fo strains from non-cultivated Australian soils, grass roots from Spain, and tomato stems from United States were characterized genotypically by whole genome sequencing, and phenotypically by examining their ability to symptomlessly colonize tomato plants and to confer resistance against Fusarium Wilt. Comparison of the genomes of the validated endophytic Fo strains with those of 102 pathogenic strains revealed that both groups have similar genomes sizes, with similar amount of accessory DNA. However, although endophytic strains can harbor homologs of known effector genes, they have typically fewer effector gene candidates and associated non-autonomous transposons (mimps) than pathogenic strains. A pathogenic 'lifestyle' is associated with extended effector gene catalogs and a set of "host specific" effectors. No candidate effector genes unique to endophytic strains isolated from the same plant species were found, implying little or no host-specific adaptation. As plant-beneficial interactions were observed to be common for the tested Fo isolates, the propensity for endophytism and the ability to confer biocontrol appears to be a predominant feature of this organism. These findings allow prediction of the lifestyle of a Fo strain based on its genome sequence as a potential pathogen or as a harmless or even beneficial endophyte by determining its effectorome and mimp number.
Collapse
|
47
|
Gluck-Thaler E, Cerutti A, Perez-Quintero AL, Butchacas J, Roman-Reyna V, Madhavan VN, Shantharaj D, Merfa MV, Pesce C, Jauneau A, Vancheva T, Lang JM, Allen C, Verdier V, Gagnevin L, Szurek B, Beckham GT, De La Fuente L, Patel HK, Sonti RV, Bragard C, Leach JE, Noël LD, Slot JC, Koebnik R, Jacobs JM. Repeated gain and loss of a single gene modulates the evolution of vascular plant pathogen lifestyles. SCIENCE ADVANCES 2020; 6:6/46/eabc4516. [PMID: 33188025 PMCID: PMC7673761 DOI: 10.1126/sciadv.abc4516] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/30/2020] [Indexed: 05/21/2023]
Abstract
Vascular plant pathogens travel long distances through host veins, leading to life-threatening, systemic infections. In contrast, nonvascular pathogens remain restricted to infection sites, triggering localized symptom development. The contrasting features of vascular and nonvascular diseases suggest distinct etiologies, but the basis for each remains unclear. Here, we show that the hydrolase CbsA acts as a phenotypic switch between vascular and nonvascular plant pathogenesis. cbsA was enriched in genomes of vascular phytopathogenic bacteria in the family Xanthomonadaceae and absent in most nonvascular species. CbsA expression allowed nonvascular Xanthomonas to cause vascular blight, while cbsA mutagenesis resulted in reduction of vascular or enhanced nonvascular symptom development. Phylogenetic hypothesis testing further revealed that cbsA was lost in multiple nonvascular lineages and more recently gained by some vascular subgroups, suggesting that vascular pathogenesis is ancestral. Our results overall demonstrate how the gain and loss of single loci can facilitate the evolution of complex ecological traits.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aude Cerutti
- LIPM, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | | | - Jules Butchacas
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Verónica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | - Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Céline Pesce
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
- Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- HM Clause (Limagrain group), Davis, CA, 95618, USA
| | - Alain Jauneau
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Taca Vancheva
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
- Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jillian M Lang
- Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Valerie Verdier
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
| | - Lionel Gagnevin
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
| | - Boris Szurek
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | | | - Ramesh V Sonti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Claude Bragard
- Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jan E Leach
- Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Laurent D Noël
- LIPM, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Koebnik
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France.
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA.
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
48
|
Burghardt LT. Evolving together, evolving apart: measuring the fitness of rhizobial bacteria in and out of symbiosis with leguminous plants. THE NEW PHYTOLOGIST 2020; 228:28-34. [PMID: 31276218 DOI: 10.1111/nph.16045] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 05/11/2023]
Abstract
Most plant-microbe interactions are facultative, with microbes experiencing temporally and spatially variable selection. How this variation affects microbial evolution is poorly understood. Given its tractability and ecological and agricultural importance, the legume-rhizobia nitrogen-fixing symbiosis is a powerful model for identifying traits and genes underlying bacterial fitness. New technologies allow high-throughput measurement of the relative fitness of bacterial mutants, strains and species in mixed inocula in the host, rhizosphere and soil environments. I consider how host genetic variation (G × G), other environmental factors (G × E), and host life-cycle variation may contribute to the maintenance of genetic variation and adaptive trajectories of rhizobia - and, potentially, other facultative symbionts. Lastly, I place these findings in the context of developing beneficial inoculants in a changing climate.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
49
|
Girard L, Höfte M, De Mot R. Lipopeptide families at the interface between pathogenic and beneficial Pseudomonas-plant interactions. Crit Rev Microbiol 2020; 46:397-419. [PMID: 32885723 DOI: 10.1080/1040841x.2020.1794790] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipopeptides (LPs) are a prominent class of molecules among the steadily growing spectrum of specialized metabolites retrieved from Pseudomonas, in particular soil-dwelling and plant-associated isolates. Among the multiple LP families, pioneering research focussed on phytotoxic and antimicrobial cyclic lipopeptides (CLPs) of the ubiquitous plant pathogen Pseudomonas syringae (syringomycin and syringopeptin). Their non-ribosomal peptide synthetases (NRPSs) are embedded in biosynthetic gene clusters (BGCs) that are tightly co-clustered on a pathogenicity island. Other members of the P. syringae group (Pseudomonas cichorii) and some species of the Pseudomonas asplenii group and Pseudomonas fluorescens complex have adopted these biosynthetic strategies to co-produce their own mycin and peptin variants, in some strains supplemented with an analogue of the P. syringae linear LP (LLP), syringafactin. This capacity is not confined to phytopathogens but also occurs in some biocontrol strains, which indicates that these LP families not solely function as general virulence factors. We address this issue by scrutinizing the structural diversity and bioactivities of LPs from the mycin, peptin, and factin families in a phylogenetic and evolutionary perspective. BGC functional organization (including associated regulatory and transport genes) and NRPS modular architectures in known and candidate LP producers were assessed by genome mining.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Heverlee-Leuven, Belgium
| | - Monica Höfte
- Department of Plants and Crops, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Heverlee-Leuven, Belgium
| |
Collapse
|
50
|
Beskrovnaya P, Melnyk RA, Liu Z, Liu Y, Higgins MA, Song Y, Ryan KS, Haney CH. Comparative Genomics Identified a Genetic Locus in Plant-Associated Pseudomonas spp. That Is Necessary for Induced Systemic Susceptibility. mBio 2020; 11:e00575-20. [PMID: 32546617 PMCID: PMC7298707 DOI: 10.1128/mbio.00575-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/18/2020] [Indexed: 01/05/2023] Open
Abstract
Plant root-associated microbes promote plant growth and elicit induced systemic resistance (ISR) to foliar pathogens. In an attempt to find novel growth-promoting and ISR-inducing strains, we previously identified strains of root-associated Pseudomonas spp. that promote plant growth but unexpectedly elicited induced systemic susceptibility (ISS) rather than ISR to foliar pathogens. Here, we demonstrate that the ISS-inducing phenotype is common among root-associated Pseudomonas spp. Using comparative genomics, we identified a single Pseudomonas fluorescens locus that is unique to ISS strains. We generated a clean deletion of the 11-gene ISS locus and found that it is necessary for the ISS phenotype. Although the functions of the predicted genes in the locus are not apparent based on similarity to genes of known function, the ISS locus is present in diverse bacteria, and a subset of the genes were previously implicated in pathogenesis in animals. Collectively, these data show that a single bacterial locus contributes to modulation of systemic plant immunity.IMPORTANCE Microbiome-associated bacteria can have diverse effects on health of their hosts, yet the genetic and molecular bases of these effects have largely remained elusive. This work demonstrates that a novel bacterial locus can modulate systemic plant immunity. Additionally, this work demonstrates that growth-promoting strains may have unanticipated consequences for plant immunity, and this is critical to consider when the plant microbiome is being engineered for agronomic improvement.
Collapse
Affiliation(s)
- Polina Beskrovnaya
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Ryan A Melnyk
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Zhexian Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Melanie A Higgins
- Department of Chemistry, The University of British Columbia, Vancouver, Canada
| | - Yi Song
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| |
Collapse
|