1
|
Shoguchi E, Kawachi M, Shinzato C, Beedessee G. Functional analyses of bacterial genomes found in Symbiodiniaceae genome assemblies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13238. [PMID: 38444256 PMCID: PMC10915500 DOI: 10.1111/1758-2229.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Bacterial-algal interactions strongly influence marine ecosystems. Bacterial communities in cultured dinoflagellates of the family Symbiodiniaceae have been characterized by metagenomics. However, little is known about whole-genome analysis of marine bacteria associated with these dinoflagellates. We performed in silico analysis of four bacterial genomes from cultures of four dinoflagellates of the genera Symbiodinium, Breviolum, Cladocopium and Durusdinium. Comparative analysis showed that the former three contain the alphaproteobacterial family Parvibaculaceae and that the Durusdinium culture includes the family Sphingomonadaceae. There were no large genomic reductions in the alphaproteobacteria with genome sizes of 2.9-3.9 Mb, implying they are not obligate intracellular bacteria. Genomic annotations of three Parvibaculaceae detected the gene for diacetylchitobiose deacetylase (Dac), which may be involved in the degradation of dinoflagellate cell surfaces. They also had metabolic genes for dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen (N) cycle and cobalamin (vitamin B12 ) biosynthetic genes in the salvage pathway. Those three characters were not found in the Sphingomonadaceae genome. Predicted biosynthetic gene clusters for secondary metabolites indicated that the Parvibaculaceae likely produce the same secondary metabolites. Our study suggests that the Parvibaculaceae is a major resident of Symbiodiniaceae cultures with antibiotics.
Collapse
Affiliation(s)
- Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem StudiesNational Institute for Environmental StudiesTsukubaJapan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of TokyoKashiwaJapan
| | - Girish Beedessee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate UniversityOnnaJapan
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Present address:
Faculty of Health & Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| |
Collapse
|
2
|
Shah S, Dougan KE, Chen Y, Lo R, Laird G, Fortuin MDA, Rai SK, Murigneux V, Bellantuono AJ, Rodriguez-Lanetty M, Bhattacharya D, Chan CX. Massive genome reduction predates the divergence of Symbiodiniaceae dinoflagellates. THE ISME JOURNAL 2024; 18:wrae059. [PMID: 38655774 PMCID: PMC11114475 DOI: 10.1093/ismejo/wrae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Dinoflagellates in the family Symbiodiniaceae are taxonomically diverse, predominantly symbiotic lineages that are well-known for their association with corals. The ancestor of these taxa is believed to have been free-living. The establishment of symbiosis (i.e. symbiogenesis) is hypothesized to have occurred multiple times during Symbiodiniaceae evolution, but its impact on genome evolution of these taxa is largely unknown. Among Symbiodiniaceae, the genus Effrenium is a free-living lineage that is phylogenetically positioned between two robustly supported groups of genera within which symbiotic taxa have emerged. The apparent lack of symbiogenesis in Effrenium suggests that the ancestral features of Symbiodiniaceae may have been retained in this lineage. Here, we present de novo assembled genomes (1.2-1.9 Gbp in size) and transcriptome data from three isolates of Effrenium voratum and conduct a comparative analysis that includes 16 Symbiodiniaceae taxa and the other dinoflagellates. Surprisingly, we find that genome reduction, which is often associated with a symbiotic lifestyle, predates the origin of Symbiodiniaceae. The free-living lifestyle distinguishes Effrenium from symbiotic Symbiodiniaceae vis-à-vis their longer introns, more-extensive mRNA editing, fewer (~30%) lineage-specific gene sets, and lower (~10%) level of pseudogenization. These results demonstrate how genome reduction and the adaptation to distinct lifestyles intersect to drive diversification and genome evolution of Symbiodiniaceae.
Collapse
Affiliation(s)
- Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katherine E Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosalyn Lo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gemma Laird
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael D A Fortuin
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Subash K Rai
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Valentine Murigneux
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anthony J Bellantuono
- Biomolecular Science Institute, Department of Biological Sciences, Florida International University, Miami, FL 33099, United States
| | - Mauricio Rodriguez-Lanetty
- Biomolecular Science Institute, Department of Biological Sciences, Florida International University, Miami, FL 33099, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Reich HG, Camp EF, Roger LM, Putnam HM. The trace metal economy of the coral holobiont: supplies, demands and exchanges. Biol Rev Camb Philos Soc 2023; 98:623-642. [PMID: 36897260 DOI: 10.1111/brv.12922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef-building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross-kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross-scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.
Collapse
Affiliation(s)
- Hannah G Reich
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Liza M Roger
- Chemical & Life Science Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| |
Collapse
|
4
|
Nelson CE, Wegley Kelly L, Haas AF. Microbial Interactions with Dissolved Organic Matter Are Central to Coral Reef Ecosystem Function and Resilience. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:431-460. [PMID: 36100218 DOI: 10.1146/annurev-marine-042121-080917] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To thrive in nutrient-poor waters, coral reefs must retain and recycle materials efficiently. This review centers microbial processes in facilitating the persistence and stability of coral reefs, specifically the role of these processes in transforming and recycling the dissolved organic matter (DOM) that acts as an invisible currency in reef production, nutrient exchange, and organismal interactions. The defining characteristics of coral reefs, including high productivity, balanced metabolism, high biodiversity, nutrient retention, and structural complexity, are inextricably linked to microbial processing of DOM. The composition of microbes and DOM in reefs is summarized, and the spatial and temporal dynamics of biogeochemical processes carried out by microorganisms in diverse reef habitats are explored in a variety of key reef processes, including decomposition, accretion, trophictransfer, and macronutrient recycling. Finally, we examine how widespread habitat degradation of reefs is altering these important microbe-DOM interactions, creating feedbacks that reduce reef resilience to global change.
Collapse
Affiliation(s)
- Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, and Sea Grant College Program, School of Ocean and Earth Sciences and Technology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA;
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA;
| | - Andreas F Haas
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands;
| |
Collapse
|
5
|
Nitschke MR, Rosset SL, Oakley CA, Gardner SG, Camp EF, Suggett DJ, Davy SK. The diversity and ecology of Symbiodiniaceae: A traits-based review. ADVANCES IN MARINE BIOLOGY 2022; 92:55-127. [PMID: 36208879 DOI: 10.1016/bs.amb.2022.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Among the most successful microeukaryotes to form mutualisms with animals are dinoflagellates in the family Symbiodiniaceae. These photosynthetic symbioses drive significant primary production and are responsible for the formation of coral reef ecosystems but are particularly sensitive when environmental conditions become extreme. Annual episodes of widespread coral bleaching (disassociation of the mutualistic partnership) and mortality are forecasted from the year 2060 under current trends of ocean warming. However, host cnidarians and dinoflagellate symbionts display exceptional genetic and functional diversity, and meaningful predictions of the future that embrace this biological complexity are difficult to make. A recent move to trait-based biology (and an understanding of how traits are shaped by the environment) has been adopted to move past this problem. The aim of this review is to: (1) provide an overview of the major cnidarian lineages that are symbiotic with Symbiodiniaceae; (2) summarise the symbiodiniacean genera associated with cnidarians with reference to recent changes in taxonomy and systematics; (3) examine the knowledge gaps in Symbiodiniaceae life history from a trait-based perspective; (4) review Symbiodiniaceae trait variation along three abiotic gradients (light, nutrients, and temperature); and (5) provide recommendations for future research of Symbiodiniaceae traits. We anticipate that a detailed understanding of traits will further reveal basic knowledge of the evolution and functional diversity of these mutualisms, as well as enhance future efforts to model stability and change in ecosystems dependent on cnidarian-dinoflagellate organisms.
Collapse
Affiliation(s)
- Matthew R Nitschke
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia.
| | - Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Stephanie G Gardner
- Center for Marine Science and Innovation, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
6
|
Lee LK, Leaw CP, Lee LC, Lim ZF, Hii KS, Chan AA, Gu H, Lim PT. Molecular diversity and assemblages of coral symbionts (Symbiodiniaceae) in diverse scleractinian coral species. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105706. [PMID: 35872442 DOI: 10.1016/j.marenvres.2022.105706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The scleractinian coral-associated symbiotic algae Symbiodiniaceae plays an important role in bleaching tolerance and coral resilience. In this study, coral-associated Symbiodiniaceae communities of 14 reef sites of Perhentian and Redang Islands Marine Parks (Malaysia, South China Sea) were characterized using the high-throughput next-generation amplicon sequencing on the ITS2 rDNA marker to inventory the Symbiodiniaceae diversity from a healthy tropical reef system and to generate a baseline for future studies. A total of 64 coral-Symbiodiniaceae associations were characterized in 18 genera (10 families) of scleractinian corals using the SymPortal analytical framework. The results revealed the predominance of Symbiodiniaceae genera Cladocopium (average 82%) and Durusdinium (18%), while Symbiodinium, Breviolum, Fugacium, and Gerakladium were found as minor groups (<0.01%). Of the 39 Cladocopium and Durusdinium major ITS2 sequences, 14 were considered dominant/sub-dominant, with C3u as the predominant type (63.3%), followed by D1 (15%), C27 (10.1%), and C15 (6.9%). A total of 19 and 13 Cladocopium and Durusdinium ITS2-type profiles were detected across the coral species, respectively. Symbiodiniaceae diversity and richness recorded in this study were higher when compared to other reefs in the proximity. With the increasing coral-Symbiodiniaceae associations archived, the database would provide a baseline to assess the changes of Symbiodiniaceae communities in the coral hosts and to explore the potential adaptive roles of this coral-algal association.
Collapse
Affiliation(s)
- Li Keat Lee
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| | - Li Chuen Lee
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Zhen Fei Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Albert Apollo Chan
- Marine Park and Resource Management Division, Department of Fisheries, Ministry of Agriculture, 62628, Putrajaya, Malaysia
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| |
Collapse
|
7
|
Maire J, Buerger P, Chan WY, Deore P, Dungan AM, Nitschke MR, van Oppen MJH. Effects of Ocean Warming on the Underexplored Members of the Coral Microbiome. Integr Comp Biol 2022; 62:1700-1709. [PMID: 35259253 PMCID: PMC9801979 DOI: 10.1093/icb/icac005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/05/2023] Open
Abstract
The climate crisis is one of the most significant threats to marine ecosystems. It is leading to severe increases in sea surface temperatures and in the frequency and magnitude of marine heatwaves. These changing conditions are directly impacting coral reef ecosystems, which are among the most biodiverse ecosystems on Earth. Coral-associated symbionts are particularly affected because summer heatwaves cause coral bleaching-the loss of endosymbiotic microalgae (Symbiodiniaceae) from coral tissues, leading to coral starvation and death. Coral-associated Symbiodiniaceae and bacteria have been extensively studied in the context of climate change, especially in terms of community diversity and dynamics. However, data on other microorganisms and their response to climate change are scarce. Here, we review current knowledge on how increasing temperatures affect understudied coral-associated microorganisms such as archaea, fungi, viruses, and protists other than Symbiodiniaceae, as well as microbe-microbe interactions. We show that the coral-microbe symbiosis equilibrium is at risk under current and predicted future climate change and argue that coral reef conservation initiatives should include microbe-focused approaches.
Collapse
Affiliation(s)
| | - Patrick Buerger
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pranali Deore
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashley M Dungan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
8
|
Cho KH, Wolny J, Kase JA, Unno T, Pachepsky Y. Interactions of E. coli with algae and aquatic vegetation in natural waters. WATER RESEARCH 2022; 209:117952. [PMID: 34965489 DOI: 10.1016/j.watres.2021.117952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/27/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Both algae and bacteria are essential inhabitants of surface waters. Their presence is of ecological significance and sometimes of public health concern triggering various control actions. Interactions of microalgae, macroalgae, submerged aquatic vegetation, and bacteria appear to be important phenomena necessitating a deeper understanding by those involved in research and management of microbial water quality. Given the long-standing reliance on Escherichia coli as an indicator of the potential presence of pathogens in natural waters, understanding its biology in aquatic systems is necessary. The major effects of algae and aquatic vegetation on E. coli growth and survival, including changes in the nutrient supply, modification of water properties and constituents, impact on sunlight radiation penetration, survival as related to substrate attachment, algal mediation of secondary habitats, and survival inhibition due to the release of toxic substances and antibiotics, are discussed in this review. An examination of horizontal gene transfer and antibiotic resistance potential, strain-specific interactions, effects on the microbial, microalgae, and grazer community structure, and hydrodynamic controls is given. Outlooks due to existing and expected consequences of climate change and advances in observation technologies via high-resolution satellite imaging, unmanned aerial vehicles (drones), and mathematical modeling are additionally covered. The multiplicity of interactions among bacteria, algae, and aquatic vegetation as well as multifaceted impacts of these interactions, create a wide spectrum of research opportunities and technology developments.
Collapse
Affiliation(s)
- Kyung Hwa Cho
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jennifer Wolny
- Division of Microbiology, Office of Regulatory Science, Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Julie A Kase
- Division of Microbiology, Office of Regulatory Science, Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Tatsui Unno
- College of Applied Life Science, Jeju National University, Republic of Korea
| | - Yakov Pachepsky
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, USA.
| |
Collapse
|