1
|
Li Y, Yan Y, Wu H, Men Y, Yang Y, Fu H, Dunn D, Wang X, Gao G, Zhang P, Dong G, Hao L, Jia J, Li B, Guo S. The role of gut microbiota in a generalist, golden snub-nosed monkey, adaptation to geographical diet change. Anim Microbiome 2024; 6:63. [PMID: 39501342 PMCID: PMC11536711 DOI: 10.1186/s42523-024-00349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Changes in diet causing ecological stress pose a significant challenge to animal survival. In response, the gut microbiota, a crucial part of the host's digestive system, exhibits patterns of change reflective of alterations in the host's food component. The impact of temporal dietary shifts on gut microbiota has been elucidated through multidimensional modeling of both food component and macronutrient intake. However, the broad distribution of wild generalist and the intricate complexity of their food component hinder our capacity to ascertain the degree to which their gut microbiota assist in adapting to spatial dietary variations. We examined variation in patterns of the gut microbial community according to changes in diet and in a colobine monkey with a regional variable diet, the golden snub-nosed monkey (Rhinopithecus roxellana). Specifically, we analyse the interactions between variation in food component, macronutrient intake and the gut microbial community. We compared monkeys from four populations by quantifying food component and macronutrient intake, and by sequencing 16S rRNA and the microbial macro-genomes from the faecal samples of 44 individuals. We found significant differences in the diets and gut microbial compositions, in nutrient space and macronutrient intake among some populations. Variations in gut microbiota composition across distinct populations mirror the disparities in macronutrient intake, with a notable emphasis on carbohydrate. Geographical differences in the diet among of golden snub-nosed monkey populations will result in macronutrient intake variation, with corresponding differences in macronutrient intake driving regional differences in the compositions and abundances of gut microbiota. Importantly, the gut microbiota associated with core digestive functions does not vary, with the non-core gut microbiota fluctuating in response to variation in macronutrient intake. This characteristic may enable species heavily reliant on gut microbiota for digestion to adapt to diet changes. Our results further the understanding of the roles gut microbiota play in the formation of host dietary niches.
Collapse
Affiliation(s)
- Yuhang Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yujie Yan
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Haojie Wu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yiyi Men
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Hengguang Fu
- Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, China
| | - Derek Dunn
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiaowei Wang
- Shaanxi Key Laboratory for Animal Conservation, Institute of Zoology, Shaanxi Academy of Sciences, Xi'an, Shaanxi, China
| | - Genggeng Gao
- Research Center for the Qinling Giant Panda (Shaanxi Rare Wildlife Rescue Base), Xi'an, Shaanxi, China
| | - Peng Zhang
- Chimelong Group Co., Guangzhou, Canton, China
| | - Guixin Dong
- Chimelong Group Co., Guangzhou, Canton, China
| | - Liyuan Hao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jia Jia
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Whitney TL, Mallott EK, Diakiw LO, Christie DM, Ting N, Amato KR, Tecot SR, Baden AL. Ecological and genetic variables co-vary with social group identity to shape the gut microbiome of a pair-living primate. Am J Primatol 2024; 86:e23657. [PMID: 38967215 DOI: 10.1002/ajp.23657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024]
Abstract
Primates exhibit diverse social systems that are intricately linked to their biology, behavior, and evolution, all of which influence the acquisition and maintenance of their gut microbiomes (GMs). However, most studies of wild primate populations focus on taxa with relatively large group sizes, and few consider pair-living species. To address this gap, we investigate how a primate's social system interacts with key environmental, social, and genetic variables to shape the GM in pair-living, red-bellied lemurs (Eulemur rubriventer). Previous research on this species suggests that social interactions within groups influence interindividual microbiome similarity; however, the impacts of other nonsocial variables and their relative contributions to gut microbial variation remain unclear. We sequenced the 16S ribosomal RNA hypervariable V4-V5 region to characterize the GM from 26 genotyped individuals across 11 social groups residing in Ranomafana National Park, Madagascar. We estimated the degree to which sex, social group identity, genetic relatedness, dietary diversity, and home range proximity were associated with variation in the gut microbial communities residing in red-bellied lemurs. All variables except sex played a significant role in predicting GM composition. Our model had high levels of variance inflation, inhibiting our ability to determine which variables were most predictive of gut microbial composition. This inflation is likely due to red-bellied lemurs' pair-living, pair-bonded social system that leads to covariation among environmental, social, and genetic variables. Our findings highlight some of the factors that predict GM composition in a tightly bonded, pair-living species and identify variables that require further study. We propose that future primate microbiome studies should simultaneously consider environmental, social, and genetic factors to improve our understanding of the relationships among sociality, the microbiome, and primate ecology and evolution.
Collapse
Affiliation(s)
- Tabor L Whitney
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Laura O Diakiw
- Department of Ecology, University of Wyoming, Laramie, Wyoming, USA
| | - Diana M Christie
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, Arizona, USA
| | - Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, New York City, New York, USA
- Department of Anthropology, The Graduate Center of the City University of New York, New York City, New York, USA
- The New York Consortium in Evolutionary Primatology, New York City, New York, USA
| |
Collapse
|
3
|
Shang Z, Chen K, Han T, Bu F, Sun S, Zhu N, Man D, Yang K, Yuan S, Fu H. Natural Foraging Selection and Gut Microecology of Two Subterranean Rodents from the Eurasian Steppe in China. Animals (Basel) 2024; 14:2334. [PMID: 39199868 PMCID: PMC11350848 DOI: 10.3390/ani14162334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
As the most abundant group of mammals, rodents possess a very rich ecotype, which makes them ideal for studying the relationship between diet and host gut microecology. Zokors are specialized herbivorous rodents adapted to living underground. Unlike more generalized herbivorous rodents, they feed on the underground parts of grassland plants. There are two species of the genus Myospalax in the Eurasian steppes in China: one is Myospalax psilurus, which inhabits meadow grasslands and forest edge areas, and the other is M. aspalax, which inhabits typical grassland areas. How are the dietary choices of the two species adapted to long-term subterranean life, and what is the relationship of this diet with gut microbes? Are there unique indicator genera for their gut microbial communities? Relevant factors, such as the ability of both species to degrade cellulose, are not yet clear. In this study, we analyzed the gut bacterial communities and diet compositions of two species of zokors using 16S amplicon technology combined with macro-barcoding technology. We found that the diversity of gut microbial bacterial communities in M. psilurus was significantly higher than that in M. aspalax, and that the two species of zokors possessed different gut bacterial indicator genera. Differences in the feeding habits of the two species of zokors stem from food composition rather than diversity. Based on the results of Mantel analyses, the gut bacterial community of M. aspalax showed a significant positive correlation with the creeping-rooted type food, and there was a complementary relationship between the axis root-type-food- and the rhizome-type-food-dominated (containing bulb types and tuberous root types) food groups. Functional prediction based on KEGG found that M. psilurus possessed a stronger degradation ability in the same cellulose degradation pathway. Neutral modeling results show that the gut flora of the M. psilurus has a wider ecological niche compared to that of the M. aspalax. This provides a new perspective for understanding how rodents living underground in grassland areas respond to changes in food conditions.
Collapse
Affiliation(s)
- Zhenghaoni Shang
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Kai Chen
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Tingting Han
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Fan Bu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Shanshan Sun
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Na Zhu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Duhu Man
- College of Agriculture, Hulunbuir University, Hulunbuir 021000, China;
| | - Ke Yang
- Alxa League Meteorological Bureau, Alxa 750300, China;
| | - Shuai Yuan
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Heping Fu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| |
Collapse
|
4
|
Liu Y, Kou C, Chen J, Li Y, Li J. The Response of the Gut Physiological Function and Microbiome of a Wild Freshwater Fish ( Megalobrama terminalis) to Alterations in Reproductive Behavior. Int J Mol Sci 2024; 25:7425. [PMID: 39000530 PMCID: PMC11242598 DOI: 10.3390/ijms25137425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The fish gut microbiome is well known for its role in degrading nutrients to improve the host's digestion and absorption efficiency. In this study, we focused on the core physiological adaptability during the various reproductive stages of the black Amur bream (Megalobrama terminalis) to explore the interaction mechanisms among the fish host gut mucosal structure, gut enzyme activity, and gut microbial metabolism in the course of the host's reproductive cycle. Our findings showed that M. terminalis exhibited locomotion metabolic type (aids in sporting) in the reproductive stage, and a change to visceral metabolic type (aids in digestion) during non-reproductive and post-reproductive stage phases. The impact of metabolic type selection and energy demand during various reproductive stages on fish nutrition strategy and digestive function was substantial. Our resulted showed that mitochondria in intestinal epithelial cells of reproductive M. terminalis appeared autophagy phenomenon, and the digestive enzyme activities in the intestines of reproductive M. terminalis were lower than those in the non-reproductive and post-reproductive individuals. Moreover, these differences in nutrition strategy have a prominent impact on the gut microbiome of reproductive M. terminalis, compared to non-reproductive and post-reproductive samples. Our findings showed that reproductive females had lower levels of alpha diversity compared to non-reproductive and post-reproductive females. Our results also showed a greater functional variety and an increase in functional genes related to carbohydrate, lipid, amino acid, cofactors, and vitamin metabolic pathways in the NRS and PRS group. It is noteworthy that an enrichment of genes encoding putative enzymes implicated in the metabolism of taurine and hypotaurine was observed in the RS samples. Our findings illustrated that the stability and resilience of the gut bacterial community could be shaped in the wild fish host-microbiome interactions during reproductive life history.
Collapse
Affiliation(s)
- Yaqiu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| | - Chunni Kou
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
| | - Jiayue Chen
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
| | - Yuefei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| |
Collapse
|
5
|
Savino F, Fanos V, Noto A, Biggio D, Fattuoni C, Barberini L. Urinary metabolome of infants with colic treated with Lactobacillus reuteri DSM 17938: a pilot randomized trial. Minerva Pediatr (Torino) 2024; 76:404-413. [PMID: 33438855 DOI: 10.23736/s2724-5276.20.06128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Lactobacillus reuteri DSM 17938 is the only probiotic recommended for treatment of colicky infants, but its mechanism of action is not clear. The study aim was to examine urinary metabolomic fingerprint of colicky breastfed infants before and after 1 month of orally administered Lactobacillus reuteri DSM 17938 or placebo. METHODS This randomized, blinded, placebo-controlled clinical trial was carried out with a well-documented probiotic. Thirty-two infants were enrolled, 16 in the probiotic group and 16 in the placebo group. Urine samples were collected from each subject before starting supplementation and at the end of the study period. Metabolomic profiles were obtained using a gas chromatography/mass spectrometry instrument. Subsequently, to compare groups before and after probiotic supplementation, univariate and multivariate statistical analysis were performed. RESULTS In the L. reuteri treated group all metabolites for all class of nutrients (sugars, amino acids, carboxylic acids) resulted more abundant after the study period. The comparison with a control group (placebo treated), confirmed this effect on urines. CONCLUSIONS The metabolomic analysis of urine samples from infants treated with L. reuteri DSM 17938 allowed to detect some interesting features related to the effect of this treatment on urinary metabolome. To validate the results, a test on a larger cohort is required.
Collapse
Affiliation(s)
- Francesco Savino
- Unit of Subintensive Neonatal Care, Department of Pediatrics, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Vassilios Fanos
- Unit of Neonatal Intensive Care, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Deborah Biggio
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Claudia Fattuoni
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy -
| | - Luigi Barberini
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Liu Y, Li X, Chen W, Feng G, Chen F, Li J, Zhou Q. High-throughput sequencing and fatty acid profile analyses of the Black Amur bream ( Megalobrama terminalis) reveal variation in dietary niche associated with geographic segregation. Ecol Evol 2024; 14:e11226. [PMID: 38628924 PMCID: PMC11019299 DOI: 10.1002/ece3.11226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Fish dietary niche is a core focus, and it reflects the diversity of resources, habitats, or environments occupied by a species. However, whether geographic segregation among different populations triggers dietary diversification and concomitant fish niche shift remains unknown. In the present study, we selected the Black Amur bream (Megalobrama terminalis) is a migratory fish species that plays an important role in the material transfer and energy cycling of river ecosystems, inhabiting southern China drainage with multiple geographic populations. Here, we utilized the combined analyses of 18S rDNA high-throughput sequencing in fish gut contents and fatty acid (FA) in muscle tissues to evaluate potential spatial patterns of habitat and resource use for M. terminalis in three rivers of southern China. Our results showed that prey items of the Xijiang (XR) population (Pearl River) exhibited the highest species diversity and richness among the three geographic populations. Moreover, diet composition of M. terminalis was affected by spatial differences associated with geographic segregation. Analyses of FA biomarkers indicated that the highest levels of C16:0, C18:3n-3, and C18:2n-6c were found in Wanquan (WS) population (Wanquan River). The XR population exhibited a distinct FA profile characterized by higher amounts of arachidonic acid (ARA) and docosahexaenoic acid (DHA). The Moyang (MY) population (Moyang River) acted as the linkage between WS and XR populations and consisted of middle levels of saturated FAs (SFAs) and polyunsaturated FAs (PUFAs). The XR population displayed a greater FA niche width compared with WS population. Furthermore, we observed a close positive relationship between the niche width and α-diversity indices of dietary resources for FA proflies. Our study provides valued information to develop different conservation strategies among different populations and improve fisheries management for M. terminalis and other endemic species in local rivers.
Collapse
Affiliation(s)
- Yaqiu Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and EnvironmentGuangzhouChina
| | - Xinhui Li
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and EnvironmentGuangzhouChina
| | - Weitao Chen
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and EnvironmentGuangzhouChina
| | - Guangpeng Feng
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi ProvinceNanchangChina
| | - Fangchan Chen
- Guangzhou Qianjiang Water Ecology Technology Co. LtdGaungzhouChina
| | - Jie Li
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and EnvironmentGuangzhouChina
- Guangzhou Qianjiang Water Ecology Technology Co. LtdGaungzhouChina
| | - Qiong Zhou
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| |
Collapse
|
7
|
Wu Y, Zhou T, Yang S, Yin B, Wu R, Wei W. Distinct Gut Microbial Enterotypes and Functional Dynamics in Wild Striped Field Mice ( Apodemus agrarius) across Diverse Populations. Microorganisms 2024; 12:671. [PMID: 38674615 PMCID: PMC11052172 DOI: 10.3390/microorganisms12040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Rodents, including the striped field mouse (Apodemus agrarius), play vital roles in ecosystem functioning, with their gut microbiota contributing significantly to various ecological processes. Here, we investigated the structure and function of 94 wild A. agrarius individuals from 7 geographic populations (45°57' N, 126°48' E; 45°87' N, 126°37' E; 45°50' N, 125°31' E; 45°59' N, 124°37' E; 46°01' N, 124°88' E; 46°01' N, 124°88' E; 46°01' N, 124°88' E), revealing two distinct enterotypes (Type1 and Type2) for the first time. Each enterotype showed unique microbial diversity, functions, and assembly processes. Firmicutes and Bacteroidetes dominated, with a significant presence of Lactobacillus and Muribaculaceae. Functional analysis highlighted metabolic differences, with Type1 emphasizing nutrient processing and Type2 showing higher energy production capacity. The analysis of the neutral model and the null model revealed a mix of stochastic (drift and homogenizing dispersal) and deterministic processes (homogenous selection) that shape the assembly of the microbiota, with subtle differences in the assembly processes between the two enterotypes. Correlation analysis showed that elevation and BMI were associated with the phylogenetic turnover of microbial communities, suggesting that variations in these factors may influence the composition and diversity of the gut microbiota in A. agrarius. Our study sheds light on gut microbial dynamics in wild A. agrarius populations, highlighting the importance of considering ecological and physiological factors in understanding host-microbiota interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Wanhong Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (T.Z.); (S.Y.); (B.Y.); (R.W.)
| |
Collapse
|
8
|
Gafarova E, Kuracji D, Sogomonyan K, Gorokhov I, Polev D, Zubova E, Golikova E, Granovitch A, Maltseva A. Gut Bacteriomes and Ecological Niche Divergence: An Example of Two Cryptic Gastropod Species. BIOLOGY 2023; 12:1521. [PMID: 38132347 PMCID: PMC10740740 DOI: 10.3390/biology12121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Symbiotic microorganisms may provide their hosts with abilities critical to their occupation of microhabitats. Gut (intestinal) bacterial communities aid animals to digest substrates that are either innutritious or toxic, as well as support their development and physiology. The role of microbial communities associated with sibling species in the hosts' adaptation remains largely unexplored. In this study, we examined the composition and plasticity of the bacteriomes in two sibling intertidal gastropod species, Littorina fabalis and L. obtusata, which are sympatric but differ in microhabitats. We applied 16S rRNA gene metabarcoding and shotgun sequencing to describe associated microbial communities and their spatial and temporal variation. A significant drop in the intestinal bacteriome diversity was revealed during the cold season, which may reflect temperature-related metabolic shifts and changes in snail behavior. Importantly, there were significant interspecies differences in the gut bacteriome composition in summer but not in autumn. The genera Vibrio, Aliivibrio, Moritella and Planktotalea were found to be predominantly associated with L. fabalis, while Granulosicoccus, Octadecabacter, Colwellia, Pseudomonas, Pseudoalteromonas and Maribacter were found to be mostly associated with L. obtusata. Based on these preferential associations, we analyzed the metabolic pathways' enrichment. We hypothesized that the L. obtusata gut bacteriome contributes to decomposing algae and detoxifying polyphenols produced by fucoids. Thus, differences in the sets of associated bacteria may equip their closely phylogenetically related hosts with a unique ability to occupy specific micro-niches.
Collapse
Affiliation(s)
- Elizaveta Gafarova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Kuracji
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Karina Sogomonyan
- Center for Bioinformatics and Algorithmic Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ivan Gorokhov
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Polev
- Department of Epidemiology, St. Petersburg Pasteur Institute, Mira Street 14, 197101 St. Petersburg, Russia;
| | - Ekaterina Zubova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Elena Golikova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Andrey Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Arina Maltseva
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| |
Collapse
|
9
|
Donohue ME, Hert ZL, Karrick CE, Rowe AK, Wright PC, Randriamanandaza LJ, Zakamanana F, Nomenjanahary ES, Everson KM, Weisrock DW. Lemur Gut Microeukaryotic Community Variation Is Not Associated with Host Phylogeny, Diet, or Habitat. MICROBIAL ECOLOGY 2023; 86:2149-2160. [PMID: 37133496 DOI: 10.1007/s00248-023-02233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Identifying the major forces driving variation in gut microbiomes enhances our understanding of how and why symbioses between hosts and microbes evolved. Gut prokaryotic community variation is often closely associated with host evolutionary and ecological variables. Whether these same factors drive variation in other microbial taxa occupying the animal gut remains largely untested. Here, we present a one-to-one comparison of gut prokaryotic (16S rRNA metabarcoding) and microeukaryotic (18S rRNA metabarcoding) community patterning among 12 species of wild lemurs. Lemurs were sampled from dry forests and rainforests of southeastern Madagascar and display a range of phylogenetic and ecological niche diversity. We found that while lemur gut prokaryotic community diversity and composition vary with host taxonomy, diet, and habitat, gut microeukaryotic communities have no detectable association with any of these factors. We conclude that gut microeukaryotic community composition is largely random, while gut prokaryotic communities are conserved among host species. It is likely that a greater proportion of gut microeukaryotic communities comprise taxa with commensal, transient, and/or parasitic symbioses compared with gut prokaryotes, many of which form long-term relationships with the host and perform important biological functions. Our study highlights the importance of greater specificity in microbiome research; the gut microbiome contains many "omes" (e.g., prokaryome, eukaryome), each comprising different microbial taxa shaped by unique selective pressures.
Collapse
Affiliation(s)
- Mariah E Donohue
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA.
| | - Zoe L Hert
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Carly E Karrick
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Amanda K Rowe
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Patricia C Wright
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Centre ValBio Research Station, Ranomafana, MD, USA
| | | | | | | | - Kathryn M Everson
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
| |
Collapse
|
10
|
Malukiewicz J, D'arc M, Dias CA, Cartwright RA, Grativol AD, Moreira SB, Souza AR, Tavares MCH, Pissinatti A, Ruiz-Miranda CR, Santos AFA. Bifidobacteria define gut microbiome profiles of golden lion tamarin (Leontopithecus rosalia) and marmoset (Callithrix sp.) metagenomic shotgun pools. Sci Rep 2023; 13:15679. [PMID: 37735195 PMCID: PMC10514281 DOI: 10.1038/s41598-023-42059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Gut microbiome disruptions may lead to adverse effects on wildlife fitness and viability, thus maintaining host microbiota biodiversity needs to become an integral part of wildlife conservation. The highly-endangered callitrichid golden lion tamarin (GLT-Leontopithecus rosalia) is a rare conservation success, but allochthonous callitrichid marmosets (Callithrix) serve as principle ecological GLT threats. However, incorporation of microbiome approaches to GLT conservation is impeded by limited gut microbiome studies of Brazilian primates. Here, we carried out analysis of gut metagenomic pools from 114 individuals of wild and captive GLTs and marmosets. More specifically, we analyzed the bacterial component of ultra filtered samples originally collected as part of a virome profiling study. The major findings of this study are consistent with previous studies in showing that Bifidobacterium, a bacterial species important for the metabolism of tree gums consumed by callitrichids, is an important component of the callitrichid gut microbiome - although GTLs and marmosets were enriched for different species of Bifidobacterium. Additionally, the composition of GLT and marmoset gut microbiota is sensitive to host environmental factors. Overall, our data expand baseline gut microbiome data for callitrichids to allow for the development of new tools to improve their management and conservation.
Collapse
Affiliation(s)
- Joanna Malukiewicz
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, 37077, Germany.
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.
| | - Mirela D'arc
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cecilia A Dias
- Centro de Primatologia, Universidade de Brasília, Brasília, Brazil
| | - Reed A Cartwright
- School of Life Sciences and the Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | | | - Silvia Bahadian Moreira
- Centro de Primatologia do Rio de Janeiro, Instituto Estadual do Ambiente, Rio de Janeiro, Brazil
| | | | | | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro, Instituto Estadual do Ambiente, Rio de Janeiro, Brazil
| | - Carlos R Ruiz-Miranda
- Laboratorio das Ciencias Ambientais, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - André F A Santos
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Liu H, Li Y, Liang J, Nong D, Li Y, Huang Z. Evaluation of Gut Microbiota Stability and Flexibility as a Response to Seasonal Variation in the Wild François' Langurs (Trachypithecus francoisi) in Limestone Forest. Microbiol Spectr 2023; 11:e0509122. [PMID: 37404157 PMCID: PMC10433995 DOI: 10.1128/spectrum.05091-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
The coevolution between gut microbiota and the host markedly influences the digestive strategies of animals to cope with changes in food sources. We have explored the compositional structure and seasonal variation in the gut microbiota of François' langur in a limestone forest in Guangxi, southwest China, using 16S rRNA sequencing. Our results demonstrated that Firmicutes and Bacteroidetes were the dominant phyla in langurs, followed by Oscillospiraceae, Christensenellaceae, and Lachnospiraceae at the family level. The top five dominant phyla did not show significant seasonal variations, and only 21 bacterial taxa differed at the family level, indicating stability in gut the microbiota possibly with respect to foraging for several dominant plants and high-leaf feeding by the langurs. Moreover, rainfall and minimum humidity are important factors affecting the gut microbiota of the langurs, but they explain few changes in bacterial taxa. The activity budget and thyroid hormone levels of the langurs did not differ significantly between seasons, indicating that these langurs did not respond to seasonal changes in food by regulating behavior or reducing metabolism. The present study indicates that the gut microbiota's structure is related to digestion and energy absorption of these langurs, providing new perspectives on their adaptation to limestone forests. IMPORTANCE François' langur is a primate that particularly lives in karst regions. The adaptation of wild animals to karst habitats has been a hot topic in behavioral ecology and conservation biology. In this study, gut microbiota, behavior, and thyroid hormone data were integrated to understand the interaction of the langurs and limestone forests from the physiological response, providing basic data for assessing the adaptation of the langurs to the habitats. The responses of the langurs to environmental changes were explored from the seasonal variations in gut microbiota, which would help to further understand the adaptive strategies of species to environmental changes.
Collapse
Affiliation(s)
- Hongying Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Jipeng Liang
- Administration Center of Guangxi Chongzuo White-Headed Langur National Nature Reserve, Chongzuo, China
| | - Dengpan Nong
- Administration Center of Guangxi Chongzuo White-Headed Langur National Nature Reserve, Chongzuo, China
| | - Youbang Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Zhonghao Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
12
|
Liu Y, Kou C, Li Y, Li J, Zhu S. Fish Gut Microbiome Analysis Provides Insight into Differences in Physiology and Behavior of Invasive Nile Tilapia and Indigenous Fish in a Large Subtropical River in China. Animals (Basel) 2023; 13:2413. [PMID: 37570222 PMCID: PMC10417376 DOI: 10.3390/ani13152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The gut microbiome is thought to play vital roles in host fitness and local adaptation to new environments, thereby facilitating the invasion of the host species. The Nile tilapia (Oreochromis niloticus) (NT) is an aggressive and omnivorous species that competes with native fishes for food resources, and it has successfully invaded much of the Pearl River basin in China. Here, we investigated the gut microbiomes of invasive Nile tilapia and indigenous black Amur bream (BA) in the same river section using high-throughput 16S rRNA gene sequencing. The results indicated that the gut microbiome of NT had several special characteristics, e.g., higher alpha diversity and greater niche breadth, compared with the bream. The gut microbiota of the small size of Nile tilapia (NTS) and small size of black Amur bream (BAS) groups were dominated by Proteobacteria, while those of the NTS and large size of Nile tilapia (NTL) and BAS and large size of black Amur bream (BAL). BAL and NTL were characterized by Firmicutes and Fusobacteriota, respectively. We found that Pseudomonas, Cetobacterium, Ralstonia, and Romboutsia were biomarkers of the NTS, NTL, BAS, and BAL groups, respectively. Moreover, the results collectively suggested that the clustering coefficients of BAL and NTL networks were greater than those of BAS and NTS networks, and BAS had the smallest network among the four groups. Positive interactions between two ASVs dominated the BAS, NTS, and NTL networks, while the proportion of negative interactions between two ASVs in the BAL network was remarkably increased. Low levels of interspecies competition in the NT gut microbiome would contribute to high diversity in the dietary niches and would also benefit the survival and local adaptation of the host. Our results identified specific biomarkers of gut microbial species in invasive Nile tilapia and provided useful information concerning how to monitor and manage invasive Nile tilapia populations.
Collapse
Affiliation(s)
- Yaqiu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Chunni Kou
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yuefei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Shuli Zhu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| |
Collapse
|
13
|
Yang S, Zheng J, He S, Yuan Z, Wang R, Wu D. Exploring the elevation dynamics of rumen bacterial communities in Barn feeding cattle from 900 to 3,600 meters by full-length 16S sequencing. Front Vet Sci 2023; 10:1169573. [PMID: 37533459 PMCID: PMC10390322 DOI: 10.3389/fvets.2023.1169573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
The diversity and abundance of rumen microorganisms serve as indicators not only of the host's digestive and metabolic capacity but also of its health status. The complex microbial communities in the rumen are influenced to varying degrees by environmental adaptability. In this study, we collected 24 rumen fluid samples from 24 healthy male cattle in three regions of Yunnan, China. Using 16S rRNA amplicon sequencing data analysis, we examined the variations in rumen microorganisms among cattle fed at altitudes of 900 m, 1800 m, and 3,600 m. Altitude-related environmental factors did not surpass phylogeny as the main driving force behind the convergent evolution of yellow cattle rumen microbiome composition. However, they did have an impact on the alpha diversity of the rumen microbiome and the coevolution of the core microbiome. The change in altitude noticeably influenced the diversity and richness of the rumen microbiota, highlighting the environmental effect of altitude. As altitude increased, there was an observed increase in the abundance of Firmicutes and Bacteroidetes, while the abundance of ruminal Proteobacteria and Kiritimatiellaeota decreased. Importantly, at the genus level, the core genus exhibited distinct dynamic changes as altitude increased. Ruminants exhibit the ability to adapt their gut type in accordance with altitude, thereby optimizing energy utilization, especially in high-altitude settings. These discoveries offer valuable insights into the coevolution of host-microbe interactions during ruminant adaptation to various altitudinal environments.
Collapse
Affiliation(s)
- Shuli Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jieyi Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Shichun He
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zaimei Yuan
- Kunming Animal Disease Prevention and Control Center, Kunming, China
| | - Rongjiao Wang
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Dongwang Wu
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
14
|
Burnham CM, McKenney EA, van Heugten KA, Minter LJ, Trivedi S. Effects of age, seasonality, and reproductive status on the gut microbiome of Southern White Rhinoceros (Ceratotherium simum simum) at the North Carolina zoo. Anim Microbiome 2023; 5:27. [PMID: 37147724 PMCID: PMC10163733 DOI: 10.1186/s42523-023-00249-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/22/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Managed southern white rhinoceros (Ceratotherium simum simum) serve as assurance populations for wild conspecifics threatened by poaching and other anthropocentric effects, though many managed populations experience subfertility and reproductive failure. Gut microbiome and host health are inextricably linked, and reproductive outcomes in managed southern white rhinoceros may be mediated in part by their diet and gut microbial diversity. Thus, understanding microbial dynamics within managed populations may help improve conservation efforts. We characterized the taxonomic composition of the gut microbiome in the managed population of female southern white rhinoceros (n = 8) at the North Carolina Zoo and investigated the effects of seasonality (summer vs. winter) and age classes (juveniles (n = 2; 0-2 years), subadults (n = 2; 3-7 years), and adults (n = 4; >7 years)) on microbial richness and community structure. Collection of a fecal sample was attempted for each individual once per month from July-September 2020 and January-March 2021 resulting in a total of 41 samples analyzed. Microbial DNA was extracted and sequenced using the V3-V4 region of the 16S rRNA bacterial gene. Total operational taxonomic units (OTUs), alpha diversity (species richness, Shannon diversity), and beta diversity (Bray-Curtis dissimilarity, linear discriminant analysis effect size) indices were examined, and differentially enriched taxa were identified. RESULTS There were differences (p < 0.05) in alpha and beta diversity indices across individuals, age groups, and sampling months. Subadult females had higher levels of Shannon diversity (Wilcoxon, p < 0.05) compared to adult females and harbored a community cluster distinct from both juveniles and adults. Samples collected during winter months (January-March 2021) possessed higher species richness and statistically distinct communities compared to summer months (July-September 2020) (PERMANOVA, p < 0.05). Reproductively active (n = 2) and currently nonreproductive adult females (n = 2) harbored differentially enriched taxa, with the gut microbiome of nonreproductive females significantly enriched (p = 0.001) in unclassified members of Mobiluncus, a genus which possesses species associated with poor reproductive outcomes in other animal species when identified in the cervicovaginal microbiome. CONCLUSION Together, our results increase the understanding of age and season related microbial variation in southern white rhinoceros at the North Carolina Zoo and have identified a potential microbial biomarker for reproductive concern within managed female southern white rhinoceros.
Collapse
Affiliation(s)
- Christina M Burnham
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC, 27607, USA
| | - Erin A McKenney
- Department of Applied Ecology, North Carolina State University, 100 Brooks Ave, Raleigh, NC, 27607, USA
| | - Kimberly Ange- van Heugten
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC, 27607, USA
| | - Larry J Minter
- North Carolina Zoo, 4401 Zoo Parkway, Asheboro, NC, 27205, USA
| | - Shweta Trivedi
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC, 27607, USA.
| |
Collapse
|
15
|
Greene LK, McKenney EA, Gasper W, Wrampelmeier C, Hayer S, Ehmke EE, Clayton JB. Gut Site and Gut Morphology Predict Microbiome Structure and Function in Ecologically Diverse Lemurs. MICROBIAL ECOLOGY 2023; 85:1608-1619. [PMID: 35562600 DOI: 10.1007/s00248-022-02034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/05/2022] [Indexed: 05/10/2023]
Abstract
Most studies of wildlife gut microbiotas understandably rely on feces to approximate consortia along the gastrointestinal tract. We therefore compared microbiome structure and predicted metagenomic function in stomach, small intestinal, cecal, and colonic samples from 52 lemurs harvested during routine necropsies. The lemurs represent seven genera (Cheirogaleus, Daubentonia, Varecia, Hapalemur, Eulemur, Lemur, Propithecus) characterized by diverse feeding ecologies and gut morphologies. In particular, the hosts variably depend on fibrous foodstuffs and show correlative morphological complexity in their large intestines. Across host lineages, microbiome diversity, variability, membership, and function differed between the upper and lower gut, reflecting regional tradeoffs in available nutrients. These patterns related minimally to total gut length but were modulated by fermentation capacity (i.e., the ratio of small to large intestinal length). Irrespective of feeding strategy, host genera with limited fermentation capacity harbored more homogenized microbiome diversity along the gut, whereas those with expanded fermentation capacity harbored cecal and colonic microbiomes with greater diversity and abundant fermentative Ruminococcaceae taxa. While highlighting the value of curated sample repositories for retrospective comparisons, our results confirm that the need to survive on fibrous foods, either routinely or in hypervariable environments, can shape the morphological and microbial features of the lower gut.
Collapse
Affiliation(s)
- Lydia K Greene
- The Duke Lemur Center, Duke University, Durham, NC, 27705, USA.
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Erin A McKenney
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - William Gasper
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Claudia Wrampelmeier
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | - Shivdeep Hayer
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Erin E Ehmke
- The Duke Lemur Center, Duke University, Durham, NC, 27705, USA
| | - Jonathan B Clayton
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
16
|
Fan C, Xue H, Xu J, Wang S, Wu M, Chen L, Xu L. Host-Specific Differences in Gut Microbiota Between Cricetulus barabensis and Phodopus sungorus. Curr Microbiol 2023; 80:149. [PMID: 36971869 DOI: 10.1007/s00284-023-03274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Gut microbiota plays an important role in the health of the host and is usually associated with the physiological processes of animals. Both host-specific factors and environmental factors are involved in the shaping of the gut microbial community, and it is necessary to identify the host-dominated differences in gut microbiota among animal species to better explain how they affect the choice of life history strategies in hosts. Here, striped hamsters Cricetulus barabensis and Djungarian hamsters Phodopus sungorus were housed under the same controlled conditions, and fecal samples were collected to compare gut microbiota. A higher Shannon index was observed in striped hamsters than in Djungarian hamsters. Linear discriminant analysis of effect size showed enrichment of the family Lachnospiraceae and genera Muribaculum and Oscillibacter in striped hamsters, with the enrichment of family Erysipelotrichaceae and genus Turicibacter in Djungarian hamsters. Among the top 10 amplicon sequence variants (ASVs), eight showed significantly different relative abundance between the two hamster species. The positive correlations and average degree in the co-occurrence network of striped hamsters were less than those of Djungarian hamsters, showing different complexity of synergistic effects among the gut bacteria. The gut microbial community of striped hamsters had a higher R2 value than that of Djungarian hamsters when fitted with a neutral community model. These differences have a degree of consistency with the variation in the lifestyles of the two hamster species. The study provides insights into the understanding of gut microbiota and its connections with rodent hosts.
Collapse
Affiliation(s)
- Chao Fan
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China.
| | - Huiliang Xue
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jinhui Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Shuo Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Ming Wu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Laixiang Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
17
|
Zhang M, Wang X, Wang Z, Mao S, Zhang J, Li M, Pan H. Metatranscriptomic Analyses Reveal Important Roles of the Gut Microbiome in Primate Dietary Adaptation. Genes (Basel) 2023; 14:228. [PMID: 36672969 PMCID: PMC9858838 DOI: 10.3390/genes14010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The gut microbiome plays a vital role in host ecological adaptation, especially dietary adaptations. Primates have evolved a variety of dietary and gut physiological structures that are useful to explore the role of the gut microbiome in host dietary adaptations. Here, we characterize gut microbiome transcriptional activity in ten fecal samples from primates with three different diets and compare the results to their previously reported metagenomic profile. Bacteria related to cellulose degradation, like Bacteroidaceae and Alcaligenaceae, were enriched and actively expressed in the gut microbiome of folivorous primates, and functional analysis revealed that the glycan biosynthesis and metabolic pathways were significantly active. In omnivorous primates, Helicobacteraceae, which promote lipid metabolism, were significantly enriched in expression, and activity and xenobiotic biodegradation and metabolism as well as lipid metabolism pathways were significantly active. In frugivorous primates, the abundance and activity of Elusimicrobiaceae, Neisseriaceae, and Succinivibrionaceae, which are associated with digestion of pectin and fructose, were significantly elevated, and the functional pathways involved in the endocrine system were significantly enriched. In conclusion, the gut microbiome contributes to host dietary adaptation by helping hosts digest the inaccessible nutrients in their specific diets.
Collapse
Affiliation(s)
- Mingyi Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Xiaochen Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Ziming Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuxin Mao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
18
|
Kuang Z, Li F, Duan Q, Tian C, Nevo E, Li K. Host diet shapes functionally differentiated gut microbiomes in sympatric speciation of blind mole rats in Upper Galilee, Israel. Front Microbiol 2022; 13:1062763. [PMID: 36458196 PMCID: PMC9707624 DOI: 10.3389/fmicb.2022.1062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiome is important for host nutrient metabolism and ecological adaptation. However, how the gut microbiome is affected by host phylogeny, ecology and diet during sympatric speciation remain unclear. Here, we compare and contrast the gut microbiome of two sympatric blind mole rat species and correlate them with their corresponding host phylogeny, ecology soil metagenomes, and diet to determine how these factors may influence their gut microbiome. Our results indicate that within the host microbiome there is no significant difference in community composition, but the functions between the two sympatric species populations vary significantly. No significant correlations were found between the gut microbiome differentiation and their corresponding ecological soil metagenomes and host phylogeny. Functional enrichment analysis suggests that the host diets may account for the functional divergence of the gut microbiome. Our results will help us understand how the gut microbiome changes with corresponding ecological dietary factors in sympatric speciation of blind subterranean mole rats.
Collapse
Affiliation(s)
- Zhuoran Kuang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Fang Li
- Department of Zoology, College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Qijiao Duan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Cuicui Tian
- Northwest Surveying and Planning Institute of National Forestry and Grassland Administration, Xi’an, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Kexin Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Greene LK, Andriambeloson JB, Blanco MB, Ehmke EE. Forest access restores foraging and ranging behavior in captive sifakas. Zoo Biol 2022; 42:209-222. [PMID: 36251585 DOI: 10.1002/zoo.21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/30/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022]
Abstract
Captive wildlife benefit from ecologically informed management strategies that promote natural behaviors. The Duke Lemur Center has pioneered husbandry programs rooted in species' ecology for a diversity of lemurs, including housing social groups in multiacre forest enclosures. We systematically document the foraging and ranging patterns of Coquerel's sifakas (Propithecus coquereli) living in these forest enclosures. Coquerel's sifakas are seasonal frugo-folivores that exhibit striking feeding flexibility in the wild. They are also one of the few members of the Indriidae family to persist in captivity. During all-day follows in the spring and summer of 2 consecutive years, we tracked the behavior of 14 sifakas in six forest enclosures. The sifakas' ranging and foraging patterns reflected those of wild sifakas in western Madagascar: On average, DLC sifakas occupied 3-day home ranges of 1.2 ha, traveled 473 m/day, and spent 26% of their time foraging for wild foodstuffs. The sifakas foraged most for young and mature leaves, fruits, nuts, and flowers from 39 plant species, especially red maple (Acer rubrum), tulip poplar (Liriodendron tulipifera), black locust (Robinia pseudoacacia), grapevine (Vitis rotundifolia), hickory (Carya spp.), and white oak (Quercus alba). Foraging patterns varied across seasons, enclosure areas, and groups, potentially reflecting differences in phenology, microhabitats, and individual preferences. While demonstrating that captive-bred primates express wild-like behaviors under ecologically relevant conditions, our results underscore the feeding flexibility of the Coquerel's sifaka. Captive wildlife exhibiting the range of species-specific behaviors are key resources for ecological research and might be best suited for future reintroductions.
Collapse
Affiliation(s)
- Lydia K Greene
- The Duke Lemur Center, Durham, North Carolina, USA.,Department of Biology, Duke University, Durham, North Carolina, USA
| | | | - Marina B Blanco
- The Duke Lemur Center, Durham, North Carolina, USA.,Department of Biology, Duke University, Durham, North Carolina, USA
| | - Erin E Ehmke
- The Duke Lemur Center, Durham, North Carolina, USA
| |
Collapse
|
20
|
Kuthyar S, Watson K, Huang S, Brent LJN, Platt M, Horvath J, Gonzalez-Martinez J, Martínez M, Godoy-Vitorino F, Knight R, Dominguez-Bello MG, Amato KR. Limited microbiome differences in captive and semi-wild primate populations consuming similar diets. FEMS Microbiol Ecol 2022; 98:fiac098. [PMID: 36047944 PMCID: PMC9528791 DOI: 10.1093/femsec/fiac098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Gut microbial communities are shaped by a myriad of extrinsic factors, including diet and the environment. Although distinct human populations consistently exhibit different gut microbiome compositions, variation in diet and environmental factors are almost always coupled, making it difficult to disentangle their relative contributions to shaping the gut microbiota. Data from discrete animal populations with similar diets can help reduce confounds. Here, we assessed the gut microbiota of free-ranging and captive rhesus macaques with at least 80% diet similarity to test the hypothesis that hosts in difference environments will have different gut microbiomes despite a shared diet. Although we found that location was a significant predictor of gut microbial composition, the magnitude of observed differences was relatively small. These patterns suggest that a shared diet may limit the typical influence of environmental microbial exposure on the gut microbiota.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of Anthropology, Northwestern University 1810 Hinman Avenue Evanston, IL 60208, USA
- Division of Biological Sciences, University of California San Diego 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Karli Watson
- Institute of Cognitive Science, University of Colorado Boulder 1777 Exposition Drive Boulder, CO, 80309, USA
| | - Shi Huang
- Department of Pediatrics, School of Medicine, University of California San Diego 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego 9500 Gilman Drive La Jolla, CA, 92093, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter Stocker Rd, Exeter EX4 4PY, United Kingdom
| | - Michael Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd Philadelphia, PA, 19104, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Ave Philadelphia, PA, 19104-6018, USA
- Department of Marketing, Wharton School of Business, University of Pennsylvania, 3620 Locust Walk, Philadelphia, PA, USA 19104, PA, USA
| | - Julie Horvath
- Research and Collections, North Carolina Museum of Natural Sciences, 11 W Jones St, Raleigh, NC, 27601, USA
- Biological and Biomedical Sciences Department, North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA
- Department of Evolutionary Anthropology, Duke University, 104 Biological Sciences Campus Box 90383 Durham, NC, 27708, USA
- Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall Campus Box 7614 Raleigh, NC, USA 27695, USA
| | - Janis Gonzalez-Martinez
- Caribbean Primate Research Center, Medical Sciences Campus, University of Puerto Rico Cayo Santiago, Punta Santiago, Puerto Rico, Humacao 00741, Puerto Rico
| | - Melween Martínez
- Caribbean Primate Research Center, Medical Sciences Campus, University of Puerto Rico Cayo Santiago, Punta Santiago, Puerto Rico, Humacao 00741, Puerto Rico
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO BOX 365067 San Juan, PR 00936-5067, Puerto Rico
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego 9500 Gilman Drive La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr La Jolla, CA, USA
- Department of Computer Sciences and Engineering, University of California San Diego, 9500 Gilman Dr La Jolla, CA, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, USA 08901, USA
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA 1810, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University 1810 Hinman Avenue Evanston, IL 60208, USA
| |
Collapse
|
21
|
Zheng X, Zhu Q, Qin M, Zhou Z, Liu C, Wang L, Shi F. The Role of Feeding Characteristics in Shaping Gut Microbiota Composition and Function of Ensifera (Orthoptera). INSECTS 2022; 13:719. [PMID: 36005344 PMCID: PMC9409189 DOI: 10.3390/insects13080719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Feeding habits were the primary factor affecting the gut bacterial communities in Ensifera. However, the interaction mechanism between the gut microbiota and feeding characteristics is not precisely understood. Here, the gut microbiota of Ensifera with diverse feeding habits was analyzed by shotgun metagenomic sequencing to further clarify the composition and function of the gut microbiota and its relationship with feeding characteristics. Our results indicate that under the influence of feeding habits, the gut microbial communities of Ensifera showed specific characteristics. Firstly, the gut microbial communities of the Ensifera with different feeding habits differed significantly, among which the gut microbial diversity of the herbivorous Mecopoda niponensis was the highest. Secondly, the functional genes related to feeding habits were in high abundance. Thirdly, the specific function of the gut microbial species in the omnivorous Gryllotalpa orientalis showed that the more diverse the feeding behavior of Ensifera, the worse the functional specificity related to the feeding characteristics of its gut microbiota. However, feeding habits were not the only factors affecting the gut microbiota of Ensifera. Some microorganisms' genes, whose functions were unrelated to feeding characteristics but were relevant to energy acquisition and nutrient absorption, were detected in high abundance. Our results were the first to report on the composition and function of the gut microbiota of Ensifera based on shotgun metagenomic sequencing and to explore the potential mechanism of the gut microbiota's association with diverse feeding habits.
Collapse
Affiliation(s)
- Xiang Zheng
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
| | - Qidi Zhu
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Meng Qin
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chunmao Liu
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
| | - Liyuan Wang
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
| | - Fuming Shi
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
22
|
Liu Y, Li X, Li Y, Li J, Zhu S. Gut microbiomes of cyprinid fish exhibit host-species symbiosis along gut trait and diet. Front Microbiol 2022; 13:936601. [PMID: 36016786 PMCID: PMC9396210 DOI: 10.3389/fmicb.2022.936601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Teleost omnivorous fish that coexist partially sharing resources are likely to modify their gut traits and microbiome as a feedback mechanism between ecological processes and evolution. However, we do not understand how the core gut microbiome supports the metabolic capacity of the host and regulates digestive functions in specialized omnivorous fish gut traits. Therefore, we evaluated the gut microbiome of eight omnivorous fish from a single family (i.e., Cyprinidae) in the current study. We examined the correlation between host phylogeny, diet composition, and intestinal morphological traits related to the intestinal microbiome. The results indicated that cyprinid fish with similar relative gut lengths had considerable gut microbiome similarity. Notably, the SL (short relative gut length) group, as zoobenthos and zooplankton specialists, was abundant in Proteobacteria and was less abundant in Firmicutes than in the ML (medium relative gut length) and LL (long relative gut length) groups. These fish could extract nutrients from aquatic plants and algae. Additionally, we found the relative abundance of Clostridium and Romboutsia to be positively correlated with host relative gut length but negatively correlated with the relative abundance of Cetobacterium, Plesiomonas, Bacteroides, and Lactobacillus, and host-relative gut length. We also show a positive linear relationship between host gut microbiome carbohydrate metabolism and relative gut length, while the amino acid and lipid metabolism of the gut microbiome was negatively correlated with host-relative gut length. In addition, omnivorous species competing for resources improve their ecological adaptability through the specialization of gut length, which is closely related to variation in the synergy of the gut microbiome. Above all, specialized gut microbiota and associated gut morphologies enable fish to variably tolerate resource fluctuation and improve the utilization efficiency of nutrient extraction from challenging food resources.
Collapse
Affiliation(s)
- Yaqiu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Xinhui Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuefei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Shuli Zhu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
23
|
Wang X, Wu X, Shang Y, Gao Y, Li Y, Wei Q, Dong Y, Mei X, Zhou S, Sun G, Liu L, Lige B, Zhang Z, Zhang H. High-Altitude Drives the Convergent Evolution of Alpha Diversity and Indicator Microbiota in the Gut Microbiomes of Ungulates. Front Microbiol 2022; 13:953234. [PMID: 35875556 PMCID: PMC9301279 DOI: 10.3389/fmicb.2022.953234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Convergent evolution is an important sector of evolutionary biology. High-altitude environments are one of the extreme environments for animals, especially in the Qinghai Tibet Plateau, driving the inquiry of whether, under broader phylogeny, high-altitude factors drive the convergent evolution of Artiodactyla and Perissodactyla gut microbiomes. Therefore, we profiled the gut microbiome of Artiodactyla and Perissodactyla at high and low altitudes using 16S rRNA gene sequencing. According to cluster analyses, the gut microbiome compositions of high-altitude Artiodactyla and Perissodactyla were not grouped together and were far from those of low-altitude Artiodactyla and Perissodactyla. The Wilcoxon’s test in high-altitude ungulates showed significantly higher Sobs and Shannon indices than in low-altitude ungulates. At the phylum level, Firmicutes and Patescibacteria were significantly enriched in the gut microbiomes of high-altitude ungulates, which also displayed a higher Firmicutes/Bacteroidetes value than low-altitude ungulates. At the family level, Ruminococcaceae, Christensenellaceae, and Saccharimonadaceae were significantly enriched in the gut microbiomes of high-altitude ungulates. Our results also indicated that the OH and FH groups shared two significantly enriched genera, Christensenellaceae_R_7_group and Candidatus_Saccharimonas. These findings indicated that a high altitude cannot surpass the order level to drive the convergent evolution of ungulate gut microbiome composition but can drive the convergent evolution of alpha diversity and indicator microbiota in the gut microbiome of ungulates. Overall, this study provides a novel perspective for understanding the adaptation of ungulates to high-altitude environments.
Collapse
Affiliation(s)
- Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | | | - Ying Li
- Wild World Jinan, Jinan, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Yuehuan Dong
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xuesong Mei
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Shengyang Zhou
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Guolei Sun
- College of Life Sciences, Qufu Normal University, Qufu, China
| | | | - Bi Lige
- Forestry and Grassland Station, Golmud, China
| | - Zhihao Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
- *Correspondence: Honghai Zhang,
| |
Collapse
|
24
|
Li X, Wang X, Wang Z, Zhang M, Wang S, Xiang Z, Pan H, Li M. The Relationship Between Gut Microbiome and Bile Acids in Primates With Diverse Diets. Front Microbiol 2022; 13:899102. [PMID: 35633689 PMCID: PMC9130754 DOI: 10.3389/fmicb.2022.899102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Primates have evolved a variety of feeding habits and intestinal physiological structure. Gut microbiome act as metabolic organs in many biological processes and play a vital role in adaptation to dietary niches. Gut microbiome also convert primary bile acids (BAs) to secondary. BAs profile and gut microbiome are together influenced by diets and play a significant role in nutrient absorption. The regulation between gut microbiome and BAs metabolism is bidirectional although the relationship in primates consuming diverse diets is still unclear. Here, we investigated gut microbiome structures, fecal BAs profile, and their relationship in primates preferring three distinct diets. We found that gut microbiome communities are well differentiated among dietary groups. Folivorous primates had higher Firmicutes abundance and lower Prevotella to Bacaeroides ratios, possibly related to fiber consumption. Frugivorous primates are colonized predominantly by Prevotella and Bacteroides, pointing to an increased adaptation to high-sugar and simple carbohydrate diets. Likewise, BA profiles differ according to diet in a manner predictable from the known effects of BAs on metabolism. Folivorous primates have high conjugated bile acid levels and low unconjugated to conjugated BA ratios, consistent with their fiber-rich leaf-eating diet. Much of the differentiation in secondary and unconjugated BAs is associated with microbiome composition shifts and individual bile acid concentrations are correlated with the abundance of distinct bacterial taxonomic groups. Omnivores have higher concentrations of secondary BAs, mainly lithocholic acid (LCA). These levels are significantly positively correlated with the presence of Clostrida species, showing that the digestion requirements of omnivores are different from plant-eating primates. In conclusion, gut microbiome and BAs can respond to changes in diet and are associated with nutrient component consumption in each diet primate group. Our study is the first to demonstrate BA profile differentiation among primates preferring diverse diets. BAs thus appear to work with gut microbiome to help primates adapt to their diet.
Collapse
Affiliation(s)
- Xinyue Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Xiaochen Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziming Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyi Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | | | - Zuofu Xiang
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
25
|
Kohl KD, Dieppa-Colón E, Goyco-Blas J, Peralta-Martínez K, Scafidi L, Shah S, Zawacki E, Barts N, Ahn Y, Hedayati S, Secor SM, Rowe MP. Gut Microbial Ecology of Five Species of Sympatric Desert Rodents in Relation to Herbivorous and Insectivorous Feeding Strategies. Integr Comp Biol 2022; 62:237-251. [PMID: 35587374 DOI: 10.1093/icb/icac045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbial communities of mammals provide numerous benefits to their hosts. However, given the recent development of the microbiome field, we still lack a thorough understanding of the variety of ecological and evolutionary factors that structure these communities across species. Metabarcoding is a powerful technique that allows for multiple microbial ecology questions to be investigated simultaneously. Here, we employed DNA metabarcoding techniques, predictive metagenomics, and culture-dependent techniques to inventory the gut microbial communities of several species of rodent collected from the same environment that employ different natural feeding strategies [granivorous pocket mice (Chaetodipus penicillatus); granivorous kangaroo rats (Dipodomys merriami); herbivorous woodrats (Neotoma albigula); omnivorous cactus mice (Peromyscus eremicus), and insectivorous grasshopper mice (Onychomys torridus)]. Of particular interest were shifts in gut microbial communities in rodent species with herbivorous and insectivorous diets, given the high amounts of indigestible fibers and chitinous exoskeleton in these diets, respectively. We found that herbivorous woodrats harbored the greatest microbial diversity. Granivorous pocket mice and kangaroo rats had the highest abundances of the genus Ruminococcus and highest predicted abundances of genes related to the digestion of fiber, representing potential adaptations in these species to the fiber content of seeds and the limitations to digestion given their small body size. Insectivorous grasshopper mice exhibited the greatest inter-individual variation in the membership of their microbiomes, and also exhibited the highest predicted abundances of chitin-degrading genes. Culture-based approaches identified 178 microbial isolates (primarily Bacillus and Enterococcus) capable of degrading cellulose and chitin. We observed several instances of strain-level diversity in these metabolic capabilities across isolates, somewhat highlighting the limitations and hidden diversity underlying DNA metabarcoding techniques. However, these methods offer power in allowing the investigation of several questions concurrently, thus enhancing our understanding of gut microbial ecology.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Etan Dieppa-Colón
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260.,Department of Bacteriology, University of Wisconsin - Madison, Madison WI 53706
| | - José Goyco-Blas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | | | - Luke Scafidi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Sarth Shah
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Emma Zawacki
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Nick Barts
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Young Ahn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Stefanie Hedayati
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa AL 35487
| | - Matthew P Rowe
- Department of Biological Sciences, University of Oklahoma, Norman OK 73019
| |
Collapse
|
26
|
Wang X, Shang Y, Wei Q, Wu X, Dou H, Zhang H, Zhou S, Sha W, Sun G, Ma S, Zhang H. Comparative Analyses of the Gut Microbiome of Two Fox Species, the Red Fox (Vulpes Vulpes) and Corsac Fox (Vulpes Corsac), that Occupy Different Ecological Niches. MICROBIAL ECOLOGY 2022; 83:753-765. [PMID: 34189610 DOI: 10.1007/s00248-021-01806-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The gut microbiome is integral for the host's living and environmental adaptation and crucially important for understanding host adaptive mechanisms. The red fox (Vulpes vulpes) dominates a wider ecological niche and more complicated habitat than that of the corsac fox (V. corsac). However, the adaptive mechanisms (in particular, the gut microbiome responsible for this kind of difference) are still unclear. Therefore, we investigated the gut microbiome of these two species in the Hulunbuir grassland, China, and evaluated their microbiome composition, function, and adaptive mechanisms. We profiled the gut microbiome and metabolism function of red and corsac foxes via 16S rRNA gene and metagenome sequencing. The foxes harbored species-specific microbiomes and functions that were related to ecological niche and habitat. The red fox had abundant Bacteroides, which leads to significant enrichment of metabolic pathways (K12373 and K21572) and enzymes related to chitin and carbohydrate degradation that may help the red fox adapt to a wider niche. The corsac fox harbored large proportions of Blautia, Terrisporobacter, and ATP-binding cassette (ABC) transporters (K01990, K02003, and K06147) that can help maintain corsac fox health, allowing it to live in harsh habitats. These results indicate that the gut microbiome of the red and corsac foxes may have different abilities which may provide these species with differing capabilities to adapt to different ecological niches and habitats, thus providing important microbiome data for understanding the mechanisms of host adaptation to different niches and habitats.
Collapse
Affiliation(s)
- Xibao Wang
- College of Life Science, Qufu Normal University, Qufu, China
| | - Yongquan Shang
- College of Life Science, Qufu Normal University, Qufu, China
| | - Qinguo Wei
- College of Life Science, Qufu Normal University, Qufu, China
| | - Xiaoyang Wu
- College of Life Science, Qufu Normal University, Qufu, China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir, China
| | - Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shengyang Zhou
- College of Life Science, Qufu Normal University, Qufu, China
| | - Weilai Sha
- College of Life Science, Qufu Normal University, Qufu, China
| | - Guolei Sun
- College of Life Science, Qufu Normal University, Qufu, China
| | - Shengchao Ma
- College of Life Science, Qufu Normal University, Qufu, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, China.
| |
Collapse
|
27
|
The gut microbiome of exudivorous marmosets in the wild and captivity. Sci Rep 2022; 12:5049. [PMID: 35322053 PMCID: PMC8942988 DOI: 10.1038/s41598-022-08797-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Mammalian captive dietary specialists like folivores are prone to gastrointestinal distress and primate dietary specialists suffer the greatest gut microbiome diversity losses in captivity compared to the wild. Marmosets represent another group of dietary specialists, exudivores that eat plant exudates, but whose microbiome remains relatively less studied. The common occurrence of gastrointestinal distress in captive marmosets prompted us to study the Callithrix gut microbiome composition and predictive function through bacterial 16S ribosomal RNA V4 region sequencing. We sampled 59 wild and captive Callithrix across four species and their hybrids. Host environment had a stronger effect on the gut microbiome than host taxon. Wild Callithrix gut microbiomes were enriched for Bifidobacterium, which process host-indigestible carbohydrates. Captive marmoset guts were enriched for Enterobacteriaceae, a family containing pathogenic bacteria. While gut microbiome function was similar across marmosets, Enterobacteriaceae seem to carry out most functional activities in captive host guts. More diverse bacterial taxa seem to perform gut functions in wild marmosets, with Bifidobacterium being important for carbohydrate metabolism. Captive marmosets showed gut microbiome composition aspects seen in human gastrointestinal diseases. Thus, captivity may perturb the exudivore gut microbiome, which raises implications for captive exudivore welfare and calls for husbandry modifications.
Collapse
|
28
|
Davies CS, Worsley SF, Maher KH, Komdeur J, Burke T, Dugdale HL, Richardson DS. Immunogenetic variation shapes the gut microbiome in a natural vertebrate population. MICROBIOME 2022; 10:41. [PMID: 35256003 PMCID: PMC8903650 DOI: 10.1186/s40168-022-01233-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The gut microbiome (GM) can influence many biological processes in the host, impacting its health and survival, but the GM can also be influenced by the host's traits. In vertebrates, Major Histocompatibility Complex (MHC) genes play a pivotal role in combatting pathogens and are thought to shape the host's GM. Despite this-and the documented importance of both GM and MHC variation to individual fitness-few studies have investigated the association between the GM and MHC in the wild. RESULTS We characterised MHC class I (MHC-I), MHC class II (MHC-II) and GM variation in individuals within a natural population of the Seychelles warbler (Acrocephalus sechellensis). We determined how the diversity and composition of the GM varied with MHC characteristics, in addition to environmental factors and other host traits. Our results show that the presence of specific MHC alleles, but not MHC diversity, influences both the diversity and composition of the GM in this population. MHC-I alleles, rather than MHC-II alleles, had the greatest impact on the GM. GM diversity was negatively associated with the presence of three MHC-I alleles (Ase-ua3, Ase-ua4, Ase-ua5), and one MHC-II allele (Ase-dab4), while changes in GM composition were associated with the presence of four different MHC-I alleles (Ase-ua1, Ase-ua7, Ase-ua10, Ase-ua11). There were no associations between GM diversity and TLR3 genotype, but GM diversity was positively correlated with genome-wide heterozygosity and varied with host age and field period. CONCLUSIONS These results suggest that components of the host's immune system play a role in shaping the GM of wild animals. Host genotype-specifically MHC-I and to a lesser degree MHC-II variation-can modulate the GM, although whether this occurs directly, or indirectly through effects on host health, is unclear. Importantly, if immune genes can regulate host health through modulation of the microbiome, then it is plausible that the microbiome could also influence selection on immune genes. As such, host-microbiome coevolution may play a role in maintaining functional immunogenetic variation within natural vertebrate populations. Video abstract.
Collapse
Affiliation(s)
- Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Kathryn H Maher
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
- Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles
| |
Collapse
|
29
|
Jin MK, Zhang Q, Zhao WL, Li ZH, Qian HF, Yang XR, Zhu YG, Liu HJ. Fluoroquinolone antibiotics disturb the defense system, gut microbiome, and antibiotic resistance genes of Enchytraeus crypticus. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127509. [PMID: 34736185 DOI: 10.1016/j.jhazmat.2021.127509] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic residues from animal manure cause soil pollution and can pose a threat to soil animals. In this study, the toxicological effects of fluoroquinolone antibiotics on Enchytraeus crypticus, including defence response, gut microbiome, and antibiotic resistance genes (ARGs), were studied. The cytochrome P450 enzyme activity and reactive oxygen species levels increased, activating the defense response. The superoxide dismutase and glutathione S-transferase activity, and the expression of immune defense molecules such as coelomic cytolytic factor, lysozyme, bactericidal protein fetidins and lysenin changed. Furthermore, the diversity of the gut microbiome decreased, and the relative abundance of Bacteroidetes decreased significantly at the phylum level but increased in pathogenic and antibiotic-secreting bacteria (Rhodococcus and Streptomyces) at the genus level. However, the soil microbiome was not significantly different from that of the control group. The relative abundance of ARGs in the gut and soil microbiome significantly increased with enrofloxacin concentration, and the fluoroquinolone ARGs were significantly increased in both the soil (20.85-fold, p < 0.001) and gut (11.72-fold, p < 0.001) microbiomes. Subtypes of ARGs showed a positive correlation with Rhodococcus, which might increase the risk of disease transmission and the probability of drug-resistant pathogens. Furthermore, mobile genetic elements significantly promote the spread of ARGs.
Collapse
Affiliation(s)
- Ming-Kang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, China
| | - Wen-Lu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China
| | - Zhi-Heng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China
| | - Hai-Feng Qian
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Hui-Jun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China.
| |
Collapse
|
30
|
Pardesi B, Roberton AM, Lee KC, Angert ER, Rosendale DI, Boycheva S, White WL, Clements KD. Distinct microbiota composition and fermentation products indicate functional compartmentalization in the hindgut of a marine herbivorous fish. Mol Ecol 2022; 31:2494-2509. [PMID: 35152505 PMCID: PMC9306998 DOI: 10.1111/mec.16394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
Many marine herbivorous fishes harbour diverse microbial communities in the hindgut that can play important roles in host health and nutrition. Kyphosus sydneyanus is a temperate marine herbivorous fish that feeds predominantly on brown seaweeds. We employed 16S rRNA gene amplicon sequencing and gas chromatography to characterize microbial communities and their metabolites in different hindgut regions of six K. sydneyanus. Measurements were confined to three distal sections of the intestine, labelled III, IV and V from anterior to posterior. A total of 625 operational taxonomic units from 20 phyla and 123 genera were obtained. Bacteroidota, Firmicutes and Proteobacteria were the major phyla in mean relative abundance, which varied along the gut. Firmicutes (76%) was the most dominant group in section III, whereas Bacteroidota (69.3%) dominated section V. Total short‐chain fatty acid (SCFA) concentration was highest in sections IV and V, confirming active fermentation in these two most distal sections. The abundance of Bacteroidota correlated with propionate concentration in section V, while Firmicutes positively correlated with formate in sections III and IV. Acetate levels were highest in sections IV and V, which correlated with abundance of Bacteroidota. Despite differences in gut microbial community composition, SCFA profiles were consistent between individual fish in the different hindgut regions of K. sydneyanus, although proportions of SCFAs differed among gut sections. These findings demonstrate functional compartmentalization of the hindgut microbial community, highlighting the need for regional sampling when interpreting overall microbiome function. These results support previous work suggesting that hindgut microbiota in marine herbivorous fish are important to nutrition in some host species by converting dietary carbohydrates into metabolically useful SCFAs.
Collapse
Affiliation(s)
- Bikiran Pardesi
- School of Biological Sciences University of Auckland Auckland New Zealand
| | | | - Kevin C. Lee
- Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Esther R. Angert
- Department of Microbiology Cornell University Ithaca NY 14853 USA
| | - Douglas I. Rosendale
- Plant & Food Research Ltd Palmerston North New Zealand
- Anagenix Ltd Parnell, Auckland 1052 New Zealand
| | - Svetlana Boycheva
- School of Biological Sciences University of Auckland Auckland New Zealand
- Biotelliga, Parnell, Auckland 1052 New Zealand
| | - William Lindsey White
- School of Science Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | | |
Collapse
|
31
|
Parker J, O’Brien C, Hawrelak J, Gersh FL. Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031336. [PMID: 35162359 PMCID: PMC8835454 DOI: 10.3390/ijerph19031336] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
Polycystic ovary syndrome (PCOS) is increasingly recognized as a complex metabolic disorder that manifests in genetically susceptible women following a range of negative exposures to nutritional and environmental factors related to contemporary lifestyle. The hypothesis that PCOS phenotypes are derived from a mismatch between ancient genetic survival mechanisms and modern lifestyle practices is supported by a diversity of research findings. The proposed evolutionary model of the pathogenesis of PCOS incorporates evidence related to evolutionary theory, genetic studies, in utero developmental epigenetic programming, transgenerational inheritance, metabolic features including insulin resistance, obesity and the apparent paradox of lean phenotypes, reproductive effects and subfertility, the impact of the microbiome and dysbiosis, endocrine-disrupting chemical exposure, and the influence of lifestyle factors such as poor-quality diet and physical inactivity. Based on these premises, the diverse lines of research are synthesized into a composite evolutionary model of the pathogenesis of PCOS. It is hoped that this model will assist clinicians and patients to understand the importance of lifestyle interventions in the prevention and management of PCOS and provide a conceptual framework for future research. It is appreciated that this theory represents a synthesis of the current evidence and that it is expected to evolve and change over time.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong 2500, Australia
- Correspondence:
| | - Claire O’Brien
- Faculty of Science and Technology, University of Canberra, Bruce 2617, Australia;
| | - Jason Hawrelak
- College of Health and Medicine, University of Tasmania, Hobart 7005, Australia;
| | - Felice L. Gersh
- College of Medicine, University of Arizona, Tucson, AZ 85004, USA;
| |
Collapse
|
32
|
Greene LK, Rambeloson E, Rasoanaivo HA, Foss ED, Yoder AD, Drea CM, Blanco MB. Gut Microbial Diversity and Ecological Specialization in Four Sympatric Lemur Species Under Lean Conditions. INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00257-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Wang Y, Li Z, Ma L, Li G, Han K, Liu Z, Wang H, Xu B. The Native Dietary Habits of the Two Sympatric Bee Species and Their Effects on Shaping Midgut Microorganisms. Front Microbiol 2021; 12:738226. [PMID: 34690980 PMCID: PMC8529121 DOI: 10.3389/fmicb.2021.738226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
The intestinal microbial community composition of different bee species typically has host specificity, yet little is known about the underlying formation mechanism. There are signs that dietary habits vary in different bee species, suggesting that there may be close relationships between dietary habits and intestinal microorganisms. We explored this hypothesis by comparing the dietary habits and gut microbiota of two common bee species (Apis mellifera L. and Apis cerana cerana) in China. Bee bread and midgut samples from wild and laboratory-reared bees were collected, and the differences in intestinal microbial community composition and growth and development before and after the change in dietary habits of different bee species were compared. We found that the two sympatric species had different dietary specializations and similar metagenomic diversities. The microbiota composition differed between the two species. Moreover, we revealed that changes in native dietary habits destroyed the intestinal microbiota community composition, negatively affecting the growth and development of honeybees.
Collapse
Affiliation(s)
- Ying Wang
- Department of Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhenfang Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Jining, China
| | - Kai Han
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
34
|
Guevara EE, Greene LK, Blanco MB, Farmer C, Ranaivonasy J, Ratsirarson J, Mahefarisoa KL, Rajaonarivelo T, Rakotondrainibe HH, Junge RE, Williams CV, Rambeloson E, Rasoanaivo HA, Rahalinarivo V, Andrianandrianina LH, Clayton JB, Rothman RS, Lawler RR, Bradley BJ, Yoder AD. Molecular Adaptation to Folivory and the Conservation Implications for Madagascar’s Lemurs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.736741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The lemurs of Madagascar include numerous species characterized by folivory across several families. Many extant lemuriform folivores exist in sympatry in Madagascar’s remaining forests. These species avoid feeding competition by adopting different dietary strategies within folivory, reflected in behavioral, morphological, and microbiota diversity across species. These conditions make lemurs an ideal study system for understanding adaptation to leaf-eating. Most folivorous lemurs are also highly endangered. The significance of folivory for conservation outlook is complex. Though generalist folivores may be relatively well equipped to survive habitat disturbance, specialist folivores occupying narrow dietary niches may be less resilient. Characterizing the genetic bases of adaptation to folivory across species and lineages can provide insights into their differential physiology and potential to resist habitat change. We recently reported accelerated genetic change in RNASE1, a gene encoding an enzyme (RNase 1) involved in molecular adaptation in mammalian folivores, including various monkeys and sifakas (genus Propithecus; family Indriidae). Here, we sought to assess whether other lemurs, including phylogenetically and ecologically diverse folivores, might show parallel adaptive change in RNASE1 that could underlie a capacity for efficient folivory. We characterized RNASE1 in 21 lemur species representing all five families and members of the three extant folivorous lineages: (1) bamboo lemurs (family Lemuridae), (2) sportive lemurs (family Lepilemuridae), and (3) indriids (family Indriidae). We found pervasive sequence change in RNASE1 across all indriids, a dN/dS value > 3 in this clade, and evidence for shared change in isoelectric point, indicating altered enzymatic function. Sportive and bamboo lemurs, in contrast, showed more modest sequence change. The greater change in indriids may reflect a shared strategy emphasizing complex gut morphology and microbiota to facilitate folivory. This case study illustrates how genetic analysis may reveal differences in functional traits that could influence species’ ecology and, in turn, their resilience to habitat change. Moreover, our results support the body of work demonstrating that not all primate folivores are built the same and reiterate the need to avoid generalizations about dietary guild in considering conservation outlook, particularly in lemurs where such diversity in folivory has probably led to extensive specialization via niche partitioning.
Collapse
|
35
|
Correa F, Torti V, Spiezio C, Checcucci A, Modesto M, Borruso L, Cavani L, Mimmo T, Cesco S, Luise D, Randrianarison RM, Gamba M, Rarojoson NJ, Sanguinetti M, Di Vito M, Bugli F, Mattarelli P, Trevisi P, Giacoma C, Sandri C. Disentangling the Possible Drivers of Indri indri Microbiome: A Threatened Lemur Species of Madagascar. Front Microbiol 2021; 12:668274. [PMID: 34421838 PMCID: PMC8378179 DOI: 10.3389/fmicb.2021.668274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Research on the gut microbiome may help with increasing our understanding of primate health with species' ecology, evolution, and behavior. In particular, microbiome-related information has the potential to clarify ecology issues, providing knowledge in support of wild primates conservation and their associated habitats. Indri (Indri indri) is the largest extant living lemur of Madagascar. This species is classified as "critically endangered" by the IUCN Red List of Threatened Species, representing one of the world's 25 most endangered primates. Indris diet is mainly folivorous, but these primates frequently and voluntarily engage in geophagy. Indris have never been successfully bred under human care, suggesting that some behavioral and/or ecological factors are still not considered from the ex situ conservation protocols. Here, we explored gut microbiome composition of 18 indris belonging to 5 different family groups. The most represented phyla were Proteobacteria 40.1 ± 9.5%, Bacteroidetes 28.7 ± 2.8%, Synergistetes 16.7 ± 4.5%, and Firmicutes 11.1 ± 1.9%. Further, our results revealed that bacterial alpha and beta diversity were influenced by indri family group and sex. In addition, we investigated the chemical composition of geophagic soil to explore the possible ecological value of soil as a nutrient supply. The quite acidic pH and high levels of secondary oxide-hydroxides of the soils could play a role in the folivorous diet's gut detoxification activity. In addition, the high contents of iron and manganese found the soils could act as micronutrients in the indris' diet. Nevertheless, the concentration of a few elements (i.e., calcium, sulfur, boron, nickel, sodium, and chromium) was higher in non-geophagic than in geophagic soils. In conclusion, the data presented herein provide a baseline for outlining some possible drivers responsible for the gut microbiome diversity in indris, thus laying the foundations for developing further strategies involved in indris' conservation.
Collapse
Affiliation(s)
- Federico Correa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Valeria Torti
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Caterina Spiezio
- Department of Animal Health Care and Management, Parco Natura Viva – Garda Zoological Park, Verona, Italy
| | - Alice Checcucci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Luciano Cavani
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Rose M. Randrianarison
- Groupe d’Étude et de Recherche sur les Primates de Madagascar, Antananarivo, Madagascar
- Mention d’Anthropobiologie et de Deìveloppement Durable, Université de Antananarivo, Antananarivo, Madagascar
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | | | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Cristina Giacoma
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Camillo Sandri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
- Department of Animal Health Care and Management, Parco Natura Viva – Garda Zoological Park, Verona, Italy
| |
Collapse
|
36
|
Borruso L, Checcucci A, Torti V, Correa F, Sandri C, Luise D, Cavani L, Modesto M, Spiezio C, Mimmo T, Cesco S, Di Vito M, Bugli F, Randrianarison RM, Gamba M, Rarojoson NJ, Zaborra CA, Mattarelli P, Trevisi P, Giacoma C. I Like the Way You Eat It: Lemur (Indri indri) Gut Mycobiome and Geophagy. MICROBIAL ECOLOGY 2021; 82:215-223. [PMID: 33471174 PMCID: PMC8282574 DOI: 10.1007/s00248-020-01677-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/28/2020] [Indexed: 05/11/2023]
Abstract
Here, we investigated the possible linkages among geophagy, soil characteristics, and gut mycobiome of indri (Indri indri), an endangered lemur species able to survive only in wild conditions. The soil eaten by indri resulted in enriched secondary oxide-hydroxides and clays, together with a high concentration of specific essential micronutrients. This could partially explain the role of the soil in detoxification and as a nutrient supply. Besides, we found that soil subject to geophagy and indris' faeces shared about 8.9% of the fungal OTUs. Also, several genera (e.g. Fusarium, Aspergillus and Penicillium) commonly associated with soil and plant material were found in both geophagic soil and indri samples. On the contrary, some taxa with pathogenic potentials, such as Cryptococcus, were only found in indri samples. Further, many saprotrophs and plant-associated fungal taxa were detected in the indri faeces. These fungal species may be involved in the digestion processes of leaves and could have a beneficial role in their health. In conclusion, we found an intimate connection between gut mycobiome and soil, highlighting, once again, the potential consequent impacts on the wider habitat.
Collapse
Affiliation(s)
- Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 5, 39100, Bolzano-Bozen, Italy.
| | - Alice Checcucci
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Valeria Torti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Camillo Sandri
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
- Department of Animal Health Care and Management, Parco Natura Viva - Garda Zoological Park, Bussolengo, Verona, Italy
| | - Daine Luise
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Luciano Cavani
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Caterina Spiezio
- Department of Animal Health Care and Management, Parco Natura Viva - Garda Zoological Park, Bussolengo, Verona, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 5, 39100, Bolzano-Bozen, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 5, 39100, Bolzano-Bozen, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Rose M Randrianarison
- Groupe d'Étude et de Recherche sur les Primates de Madagascar (GERP), Cité des Professeurs, Fort Duchesne, BP 779, 101, Antananarivo, Madagascar
- Mention d'Anthropobiologie et de Développement Durable (MADD), Université de Antananarivo, Antananarivo, Madagascar
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Nianja J Rarojoson
- Laboratoire de Pédologie, FOFIFA à Tsimbazaza, BP.1690, Antananarivo, Madagascar
| | - Cesare Avesani Zaborra
- Department of Animal Health Care and Management, Parco Natura Viva - Garda Zoological Park, Bussolengo, Verona, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Cristina Giacoma
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
37
|
Gut microbiota of frugo-folivorous sifakas across environments. Anim Microbiome 2021; 3:39. [PMID: 34006323 PMCID: PMC8132362 DOI: 10.1186/s42523-021-00093-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background Captive animals, compared to their wild counterparts, generally harbor imbalanced gut microbiota owing, in part, to their altered diets. This imbalance is particularly striking for folivores that fundamentally rely on gut microbiota for digestion, yet rarely receive sufficient dietary fiber in captivity. We examine the critically endangered Coquerel’s sifaka (Propithecus coquereli), an anatomically specialized, rather than facultative, folivore that consumes a seasonal frugo-folivorous diet in the wild, but is provisioned predominantly with seasonal foliage and orchard vegetables in captivity. Using amplicon and metagenomic sequencing applied to fecal samples collected from two wild and one captive population (each comprising multiple groups), we clarify how dietary variation underlies the perturbational effect of captivity on the structure and function of this species’ gut microbiota. Results The gut microbiota of wild sifakas varied by study population, most notably in community evenness and in the abundance of diet-associated microbes from Prevotellaeceae and Lachnospiraceae. Nevertheless, the differences among wild subjects were minor compared to those evident between wild and captive sifakas: Unusually, the consortia of captive sifakas were the most diverse, but lacked representation of endemic Bacteroidetes and metagenomic capacity for essential amino-acid biosynthesis. Instead, they were enriched for complex fiber metabolizers from the Firmicutes phylum, for archaeal methanogens, and for several metabolic pathways putatively linked to plant fiber and secondary compound metabolism. Conclusions The relatively minor differences in gut microbial structure and function between wild sifaka populations likely reflect regional and/or temporal environmental variability, whereas the major differences observed in captive conspecifics, including the loss of endemic microbes, but gain in low-abundance taxa, likely reflect imbalanced or unstable consortia. Indeed, community perturbation may not necessarily entail decreased community diversity. Moreover, signatures of greater fiber degradation indicate that captive sifakas consume a more fibrous diet compared to their wild counterparts. These results do not mirror those typically reported for folivores and herbivores, suggesting that the direction and strength of captivity-induced ‘dysbiosis’ may not be universal across species with similar feeding strategies. We propose that tailored, species-specific dietary interventions in captivity, aimed at better approximating naturally foraged diets, could functionally ‘rewild’ gut microbiota and facilitate successful management of diverse species. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00093-5.
Collapse
|
38
|
Guevara EE, Webster TH, Lawler RR, Bradley BJ, Greene LK, Ranaivonasy J, Ratsirarson J, Harris RA, Liu Y, Murali S, Raveendran M, Hughes DST, Muzny DM, Yoder AD, Worley KC, Rogers J. Comparative genomic analysis of sifakas ( Propithecus) reveals selection for folivory and high heterozygosity despite endangered status. SCIENCE ADVANCES 2021; 7:7/17/eabd2274. [PMID: 33893095 PMCID: PMC8064638 DOI: 10.1126/sciadv.abd2274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 03/08/2021] [Indexed: 05/12/2023]
Abstract
Sifakas (genus Propithecus) are critically endangered, large-bodied diurnal lemurs that eat leaf-based diets and show corresponding anatomical and microbial adaptations to folivory. We report on the genome assembly of Coquerel's sifaka (P. coquereli) and the resequenced genomes of Verreaux's (P. verreauxi), the golden-crowned (P. tattersalli), and the diademed (P. diadema) sifakas. We find high heterozygosity in all sifakas compared with other primates and endangered mammals. Demographic reconstructions nevertheless suggest declines in effective population size beginning before human arrival on Madagascar. Comparative genomic analyses indicate pervasive accelerated evolution in the ancestral sifaka lineage affecting genes in several complementary pathways relevant to folivory, including nutrient absorption and xenobiotic and fatty acid metabolism. Sifakas show convergent evolution at the level of the pathway, gene family, gene, and amino acid substitution with other folivores. Although sifakas have relatively generalized diets, the physiological challenges of habitual folivory likely led to strong selection.
Collapse
Affiliation(s)
- Elaine E Guevara
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Timothy H Webster
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard R Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, VA 22807, USA
| | - Brenda J Bradley
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Lydia K Greene
- Duke Lemur Center, Duke University, Durham, NC 27705, USA
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Jeannin Ranaivonasy
- Département Agroécologie, Biodiversité et Changement Climatique, ESSA, University of Antananarivo, Antananarivo, Madagascar
| | - Joelisoa Ratsirarson
- Département Agroécologie, Biodiversité et Changement Climatique, ESSA, University of Antananarivo, Antananarivo, Madagascar
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yue Liu
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shwetha Murali
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Donna M Muzny
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Kim C Worley
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| |
Collapse
|
39
|
Xia T, Yao Y, Wang C, Dong M, Wu Y, Li D, Xie M, Ni Q, Zhang M, Xu H. Seasonal dynamics of gut microbiota in a cohort of wild Tibetan macaques (Macaca thibetana) in western China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2020.e01409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
40
|
Li Y, Chen T, Liang J, Li Y, Huang Z. Seasonal variation in the gut microbiota of rhesus macaques inhabiting limestone forests of southwest Guangxi, China. Arch Microbiol 2020; 203:787-798. [PMID: 33057745 DOI: 10.1007/s00203-020-02069-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022]
Abstract
Data on the gut microbiota of animals can provide new insights into dietary ecology of hosts, consequently assisting in understanding their adaptation strategy and evolutionary potential. We studied the gut microbiota composition and function of the wild rhesus macaques (Macaca mulatta) using 16S rRNA sequencing method. Our results revealed that the gut microbiota of the wild rhesus macaques was dominated by Firmicutes, Bacteroidetes, and Spirochaetes. Diversity and richness of gut microbiota were higher during the dry season than the rainy season. Specifically, higher proportions of Firmicutes, Tenericutes, Cyanobacteria, and unclassified bacteria at the phylum level and more Coprococcus at the genus level were detected in the dry season. Predictive functional analysis showed that pathways associated with carbohydrate metabolism and drug resistance (antimicrobial and antineoplastic) were richer in the dry season. These seasonal differences in microbiota could be due to their heavier dependence on leaf-based diet in the dry season. Additionally, macaques in limestone forests had a higher percentage of Spirochaetes, probably suggesting that the proportion of fruits in dietary composition also play an important role in the gut microbiota. We concluded that diet was strongly linked to the diversity, composition, and function of the gut microbiota in the wild groups of rhesus macaques living in the limestone forest, highlighting the importance of diet in the gut microbiota of macaques and the need to conduct further study on the adaptation strategy in response of environmental changes in the ground of gut microbiota.
Collapse
Affiliation(s)
- Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China
| | - Ting Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China
| | - Jipeng Liang
- Administration Centre of Guangxi Chongzuo White-headed Langur National Nature Reserve, Chongzuo, China
| | - Youbang Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China.
| | - Zhonghao Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China.
| |
Collapse
|