1
|
Xu Y, Teng Y, Dai S, Liao J, Wang X, Hu W, Guo Z, Pan X, Dong X, Luo Y. Atmospheric Trace Gas Oxidizers Contribute to Soil Carbon Fixation Driven by Key Soil Conditions in Terrestrial Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39443297 DOI: 10.1021/acs.est.4c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Microbial oxidizers of trace gases such as hydrogen (H2) and carbon monoxide (CO) are widely distributed in soil microbial communities and play a vital role in modulating biogeochemical cycles. However, the contribution of trace gas oxidizers to soil carbon fixation and the driving environmental factors remain unclear, especially on large scales. Here, we utilized biogeochemical and genome-resolved metagenomic profiling, assisted by machine learning analysis, to estimate the contributions of trace gas oxidizers to soil carbon fixation and to predict the key environmental factors driving this process in soils from five distinct ecosystems. The results showed that phylogenetically and physiologically diverse H2 and CO oxidizers and chemosynthetic carbon-fixing microbes are present in the soil in different terrestrial ecosystems. The large-scale variations in soil carbon fixation were highly positively correlated with both the abundance and the activity of H2 and CO oxidizers (p < 0.05-0.001). Furthermore, soil pH and moisture-induced shifts in the abundance of H2 and CO oxidizers partially explained the variation in soil carbon fixation (55%). The contributions of trace gas oxidizers to soil carbon fixation in the different terrestrial ecosystems were estimated to range from 1.1% to 35.0%. The estimated rate of trace gas carbon fixation varied from 0.04 to 1.56 mg kg-1 d-1. These findings reveal that atmospheric trace gas oxidizers may contribute to soil carbon fixation driven by key soil environmental factors, highlighting the non-negligible contribution of these microbes to terrestrial carbon cycling.
Collapse
Affiliation(s)
- Yongfeng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiang Dai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xia Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhang Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhao S, van der Heijden MGA, Banerjee S, Liu JJ, Gu HD, Zhou N, Yin CH, Peng B, Liu X, Wang BZ, Tian CY. The role of halophyte-induced saline fertile islands in soil microbial biogeochemical cycling across arid ecosystems. Commun Biol 2024; 7:1061. [PMID: 39209991 PMCID: PMC11362332 DOI: 10.1038/s42003-024-06741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Halophyte shrubs, prevalent in arid regions globally, create saline fertile islands under their canopy. This study investigates the soil microbial communities and their energy utilization strategies associated with tamarisk shrubs in arid ecosystems. Shotgun sequencing revealed that high salinity in tamarisk islands reduces functional gene alpha-diversity and relative abundance compared to bare soils. However, organic matter accumulation within islands fosters key halophilic archaea taxa such as Halalkalicoccus, Halogeometricum, and Natronorubrum, linked to processes like organic carbon oxidation, nitrous oxide reduction, and sulfur oxidation, potentially strengthening the coupling of nutrient cycles. In contrast, bare soils harbor salt-tolerant microbes with genes for autotrophic energy acquisition, including carbon fixation, H2 or CH4 consumption, and anammox. Additionally, isotope analysis shows higher microbial carbon use efficiency, N mineralization, and denitrification activity in tamarisk islands. Our findings demonstrate that halophyte shrubs serve as hotspots for halophilic microbes, enhancing microbial nutrient transformation in saline soils.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | | | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Jun-Jie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Hai-Dong Gu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Na Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Chuan-Hua Yin
- School of Tea and Food Science, Wuyi University, Wuyishan, 354300, China.
| | - Bin Peng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xu Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210000, China
| | - Bao-Zhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210000, China
| | - Chang-Yan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
3
|
Zhang E, Wong SY, Czechowski P, Terauds A, Ray AE, Benaud N, Chelliah DS, Wilkins D, Montgomery K, Ferrari BC. Effects of increasing soil moisture on Antarctic desert microbial ecosystems. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14268. [PMID: 38622950 DOI: 10.1111/cobi.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
Overgeneralization and a lack of baseline data for microorganisms in high-latitude environments have restricted the understanding of the microbial response to climate change, which is needed to establish Antarctic conservation frameworks. To bridge this gap, we examined over 17,000 sequence variants of bacteria and microeukarya across the hyperarid Vestfold Hills and Windmill Islands regions of eastern Antarctica. Using an extended gradient forest model, we quantified multispecies response to variations along 79 edaphic gradients to explore the effects of change and wind-driven dispersal on community dynamics under projected warming trends. We also analyzed a second set of soil community data from the Windmill Islands to test our predictions of major environmental tipping points. Soil moisture was the most robust predictor for shaping the regional soil microbiome; the highest rates of compositional turnover occurred at 10-12% soil moisture threshold for photoautotrophs, such as Cyanobacteria, Chlorophyta, and Ochrophyta. Dust profiles revealed a high dispersal propensity for Chlamydomonas, a microalga, and higher biomass was detected at trafficked research stations. This could signal the potential for algal blooms and increased nonendemic species dispersal as human activities increase in the region. Predicted increases in moisture availability on the Windmill Islands were accompanied by high photoautotroph abundances. Abundances of rare oligotrophic taxa, such as Eremiobacterota and Candidatus Dormibacterota, which play a crucial role in atmospheric chemosynthesis, declined over time. That photosynthetic taxa increased as soil moisture increased under a warming scenario suggests the potential for competition between primary production strategies and thus a more biotically driven ecosystem should the climate become milder. Better understanding of environmental triggers will aid conservation efforts, and it is crucial that long-term monitoring of our study sites be established for the protection of Antarctic desert ecosystems. Furthermore, the successful implementation of an improved gradient forest model presents an exciting opportunity to broaden its use on microbial systems globally.
Collapse
Affiliation(s)
- Eden Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Sin Yin Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Czechowski
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, Leipzig, Germany
| | - Aleks Terauds
- Environmental Stewardship Program, Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia
| | - Angelique E Ray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Devan S Chelliah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Wilkins
- Environmental Stewardship Program, Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia
| | - Kate Montgomery
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Ma Z, Elango J, Hao J, Wu W. Purification and Characterization of a Novel Fibrinolytic Enzyme from Marine Bacterium Bacillus sp. S-3685 Isolated from the South China Sea. Mar Drugs 2024; 22:267. [PMID: 38921578 PMCID: PMC11204972 DOI: 10.3390/md22060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
A novel fibrinolytic enzyme, BSFE1, was isolated from the marine bacterium Bacillus sp. S-3685 (GenBank No.: KJ023685) found in the South China Sea. This enzyme, with a molecular weight of approximately 42 kDa and a specific activity of 736.4 U/mg, exhibited its highest activity at 37 °C in a phosphate buffer at pH 8.0. The fibrinolytic enzyme remained stable over a pH range of 7.5 to 10.0 and retained about 76% of its activity after being incubated at 37 °C for 2 h. The Km and Vmax values of the enzyme at 37 °C were determined to be 2.1 μM and 49.0 μmol min-1 mg-1, respectively. The fibrinolytic activity of BSFE1 was enhanced by Na+, Ba2+, K+, Co2+, Mn2+, Al3+, and Cu2+, while it was inhibited by Fe3+, Ca2+, Mg2+, Zn2+, and Fe2+. These findings indicate that the fibrinolytic enzyme isolated in this study exhibits a strong affinity for fibrin. Moreover, the enzyme we have purified demonstrates thrombolytic enzymatic activity. These characteristics make BSFE1 a promising candidate for thrombolytic therapy. In conclusion, the results obtained from this study suggest that our work holds potential in the development of agents for thrombolytic treatment.
Collapse
Affiliation(s)
- Zibin Ma
- School of Agriculture and Bioengineering, Taizhou Vocational College of Science & Technology, Taizhou 318020, China;
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
5
|
Imminger S, Meier DV, Schintlmeister A, Legin A, Schnecker J, Richter A, Gillor O, Eichorst SA, Woebken D. Survival and rapid resuscitation permit limited productivity in desert microbial communities. Nat Commun 2024; 15:3056. [PMID: 38632260 PMCID: PMC11519504 DOI: 10.1038/s41467-024-46920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Microbial activity in drylands tends to be confined to rare and short periods of rain. Rapid growth should be key to the maintenance of ecosystem processes in such narrow activity windows, if desiccation and rehydration cause widespread cell death due to osmotic stress. Here, simulating rain with 2H2O followed by single-cell NanoSIMS, we show that biocrust microbial communities in the Negev Desert are characterized by limited productivity, with median replication times of 6 to 19 days and restricted number of days allowing growth. Genome-resolved metatranscriptomics reveals that nearly all microbial populations resuscitate within minutes after simulated rain, independent of taxonomy, and invest their activity into repair and energy generation. Together, our data reveal a community that makes optimal use of short activity phases by fast and universal resuscitation enabling the maintenance of key ecosystem functions. We conclude that desert biocrust communities are highly adapted to surviving rapid changes in soil moisture and solute concentrations, resulting in high persistence that balances limited productivity.
Collapse
Affiliation(s)
- Stefanie Imminger
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
| | - Dimitri V Meier
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Department of Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anton Legin
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Jörg Schnecker
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Stephanie A Eichorst
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Horstmann L, Lipus D, Bartholomäus A, Arens F, Airo A, Ganzert L, Zamorano P, Schulze-Makuch D, Wagner D. Persistent microbial communities in hyperarid subsurface habitats of the Atacama Desert: Insights from intracellular DNA analysis. PNAS NEXUS 2024; 3:pgae123. [PMID: 38655503 PMCID: PMC11037274 DOI: 10.1093/pnasnexus/pgae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Desert environments constitute one of the largest and yet most fragile ecosystems on Earth. Under the absence of regular precipitation, microorganisms are the main ecological component mediating nutrient fluxes by using soil components, like minerals and salts, and atmospheric gases as a source for energy and water. While most of the previous studies on microbial ecology of desert environments have focused on surface environments, little is known about microbial life in deeper sediment layers. Our study is extending the limited knowledge about microbial communities within the deeper subsurface of the hyperarid core of the Atacama Desert. By employing intracellular DNA extraction and subsequent 16S rRNA sequencing of samples collected from a soil pit in the Yungay region of the Atacama Desert, we unveiled a potentially viable microbial subsurface community residing at depths down to 4.20 m. In the upper 80 cm of the playa sediments, microbial communities were dominated by Firmicutes taxa showing a depth-related decrease in biomass correlating with increasing amounts of soluble salts. High salt concentrations are possibly causing microbial colonization to cease in the lower part of the playa sediments between 80 and 200 cm depth. In the underlying alluvial fan deposits, microbial communities reemerge, possibly due to gypsum providing an alternative water source. The discovery of this deeper subsurface community is reshaping our understanding of desert soils, emphasizing the need to consider subsurface environments in future explorations of arid ecosystems.
Collapse
Affiliation(s)
- Lucas Horstmann
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
- Department Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University Göttingen, 37073 Göttingen, Germany
| | - Daniel Lipus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Felix Arens
- Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Alessandro Airo
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
| | - Lars Ganzert
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, University of Antofagasta, Antofagasta 02800, Chile
| | - Dirk Schulze-Makuch
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
- Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, 10623 Berlin, Germany
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
- Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Gios E, Verbruggen E, Audet J, Burns R, Butterbach-Bahl K, Espenberg M, Fritz C, Glatzel S, Jurasinski G, Larmola T, Mander Ü, Nielsen C, Rodriguez AF, Scheer C, Zak D, Silvennoinen HM. Unraveling microbial processes involved in carbon and nitrogen cycling and greenhouse gas emissions in rewetted peatlands by molecular biology. BIOGEOCHEMISTRY 2024; 167:609-629. [PMID: 38707517 PMCID: PMC11068585 DOI: 10.1007/s10533-024-01122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/22/2024] [Indexed: 05/07/2024]
Abstract
Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes. Our understanding of this complexity and its multi-factorial controls in rewetted peatlands is limited. Here, we summarize the research regarding the role of soil microbial communities and functions in driving carbon and nutrient cycling in rewetted peatlands including the use of molecular biology techniques in understanding biogeochemical processes linked to greenhouse gas fluxes. We emphasize that rapidly advancing molecular biology approaches, such as high-throughput sequencing, are powerful tools helping to elucidate the dynamics of key biogeochemical processes when combined with isotope tracing and greenhouse gas measuring techniques. Insights gained from the gathered studies can help inform efficient monitoring practices for rewetted peatlands and the development of climate-smart restoration and management strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-024-01122-6.
Collapse
Affiliation(s)
- Emilie Gios
- NINA, Norwegian Institute for Nature Research, PO Box 5685, Torgarden, NO-7485 Trondheim, Norway
| | - Erik Verbruggen
- Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
| | - Rachel Burns
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Klaus Butterbach-Bahl
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
- Department of Agroecology, Pioneer Center for Research in Sustainable Agricultural Futures (Land-CRAFT), Aarhus University, 8000 Aarhus, Denmark
| | - Mikk Espenberg
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 St., Vanemuise, 51003 Tartu, Estonia
| | - Christian Fritz
- Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Stephan Glatzel
- Department of Geography and Regional Research, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Gerald Jurasinski
- Faculty of Agriculture and Environment, Landscape Ecology and Site Evaluation, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department of Maritime Systems, Faculty of Interdisciplinary Research, University of Rostock, Albert- Einstein-Straße 3, 18059 Rostock, Germany
| | - Tuula Larmola
- Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
| | - Ülo Mander
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 St., Vanemuise, 51003 Tartu, Estonia
| | - Claudia Nielsen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
- CBIO, Centre for Circular Bioeconomy, Aarhus University, 8830 Tjele, Denmark
| | - Andres F. Rodriguez
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Clemens Scheer
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
| | - Dominik Zak
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Hanna M. Silvennoinen
- NINA, Norwegian Institute for Nature Research, PO Box 5685, Torgarden, NO-7485 Trondheim, Norway
| |
Collapse
|
8
|
Hudson EP. The Calvin Benson cycle in bacteria: New insights from systems biology. Semin Cell Dev Biol 2024; 155:71-83. [PMID: 37002131 DOI: 10.1016/j.semcdb.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
The Calvin Benson cycle in phototrophic and chemolithoautotrophic bacteria has ecological and biotechnological importance, which has motivated study of its regulation. I review recent advances in our understanding of how the Calvin Benson cycle is regulated in bacteria and the technologies used to elucidate regulation and modify it, and highlight differences between and photoautotrophic and chemolithoautotrophic models. Systems biology studies have shown that in oxygenic phototrophic bacteria, Calvin Benson cycle enzymes are extensively regulated at post-transcriptional and post-translational levels, with multiple enzyme activities connected to cellular redox status through thioredoxin. In chemolithoautotrophic bacteria, regulation is primarily at the transcriptional level, with effector metabolites transducing cell status, though new methods should now allow facile, proteome-wide exploration of biochemical regulation in these models. A biotechnological objective is to enhance CO2 fixation in the cycle and partition that carbon to a product of interest. Flux control of CO2 fixation is distributed over multiple enzymes, and attempts to modulate gene Calvin cycle gene expression show a robust homeostatic regulation of growth rate, though the synthesis rates of products can be significantly increased. Therefore, de-regulation of cycle enzymes through protein engineering may be necessary to increase fluxes. Non-canonical Calvin Benson cycles, if implemented with synthetic biology, could have reduced energy demand and enzyme loading, thus increasing the attractiveness of these bacteria for industrial applications.
Collapse
Affiliation(s)
- Elton P Hudson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
9
|
Nguyen TM, Pombubpa N, Huntemann M, Clum A, Foster B, Foster B, Roux S, Palaniappan K, Varghese N, Mukherjee S, Reddy TBK, Daum C, Copeland A, Chen IMA, Ivanova NN, Kyrpides NC, Harmon-Smith M, Eloe-Fadrosh EA, Pietrasiak N, Stajich JE, Hom EFY. Metatranscriptomes of two biological soil crust types from the Mojave desert in response to wetting. Microbiol Resour Announc 2024; 13:e0108023. [PMID: 38189307 PMCID: PMC10868201 DOI: 10.1128/mra.01080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
We present eight metatranscriptomic datasets of light algal and cyanolichen biological soil crusts from the Mojave Desert in response to wetting. These data will help us understand gene expression patterns in desert biocrust microbial communities after they have been reactivated by the addition of water.
Collapse
Affiliation(s)
- Thuy M. Nguyen
- Department of Biology and Center for Biodiversity and Conservation Research, University, University of Mississippi, Mississippi, USA
| | - Nuttapon Pombubpa
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Marcel Huntemann
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Brian Foster
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Bryce Foster
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Simon Roux
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Krishnaveni Palaniappan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Neha Varghese
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Supratim Mukherjee
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - T. B. K. Reddy
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Chris Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alex Copeland
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - I-Min A. Chen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Natalia N. Ivanova
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nikos C. Kyrpides
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Miranda Harmon-Smith
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Emiley A. Eloe-Fadrosh
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nicole Pietrasiak
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Erik F. Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University, University of Mississippi, Mississippi, USA
| |
Collapse
|
10
|
Filippidou S, Price A, Spencer-Jones C, Scales A, Macey MC, Franchi F, Lebogang L, Cavalazzi B, Schwenzer SP, Olsson-Francis K. Diversity of Microbial Mats in the Makgadikgadi Salt Pans, Botswana. Microorganisms 2024; 12:147. [PMID: 38257974 PMCID: PMC10818877 DOI: 10.3390/microorganisms12010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
The Makgadikgadi Salt Pans are the remnants of a mega paleo-lake system in the central Kalahari, Botswana. Today, the Makgadikgadi Basin is an arid to semi-arid area receiving water of meteoric origin during the short, wet season. Large microbial mats, which support primary production, are formed due to desiccation during the dry season. This study aimed to characterise the microbial diversity of the microbial mats and the underlying sediment. The focus was the Ntwetwe Pan, located west of the Makgadikgadi Basin. Metagenomic analyses demonstrated that the mats consisted of a high relative abundance of Cyanobacteriota (synonym Cyanobacteria) (20.50-41.47%), Pseudomonadota (synonym Proteobacteria) (15.71 to 32.18%), and Actinomycetota (synonym Actinobacteria) (8.53-32.56%). In the underlying sediments, Pseudomonadota, Actinomycetota, and Euryarchaeota represented over 70% of the community. Localised fluctuations in water content and pH did not significantly affect the microbial diversity of the sediment or the mats.
Collapse
Affiliation(s)
- Sevasti Filippidou
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (S.F.); (A.P.); (C.S.-J.); (A.S.); (M.C.M.); (S.P.S.)
- School of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alex Price
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (S.F.); (A.P.); (C.S.-J.); (A.S.); (M.C.M.); (S.P.S.)
| | - Charlotte Spencer-Jones
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (S.F.); (A.P.); (C.S.-J.); (A.S.); (M.C.M.); (S.P.S.)
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - Anthony Scales
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (S.F.); (A.P.); (C.S.-J.); (A.S.); (M.C.M.); (S.P.S.)
| | - Michael C. Macey
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (S.F.); (A.P.); (C.S.-J.); (A.S.); (M.C.M.); (S.P.S.)
| | - Fulvio Franchi
- Earth and Environmental Science Department, Botswana International University of Science and Technology, Palapye 10071, Botswana;
- School of Geosciences, University of the Witwatersrand, Johannesburg 2001, South Africa
| | - Lesedi Lebogang
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye 10071, Botswana;
| | - Barbara Cavalazzi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- Department of Geology, University of Johannesburg, Johannesburg 2006, South Africa
| | - Susanne P. Schwenzer
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (S.F.); (A.P.); (C.S.-J.); (A.S.); (M.C.M.); (S.P.S.)
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (S.F.); (A.P.); (C.S.-J.); (A.S.); (M.C.M.); (S.P.S.)
| |
Collapse
|
11
|
Mugnai G, Borruso L, Wu YL, Gallinaro M, Cappitelli F, Zerboni A, Villa F. Ecological strategies of bacterial communities in prehistoric stone wall paintings across weathering gradients: A case study from the Borana zone in southern Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168026. [PMID: 37907101 DOI: 10.1016/j.scitotenv.2023.168026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Rock art paintings represent fragile ecosystems supporting complex microbial communities tuned to the lithic substrate and climatic conditions. The composition and activity of these microbial communities associated with different weathering patterns affecting rock art sites remain unexplored. This study aimed to explore how bacterial communities adapt their ecological strategies based on substrate weathering, while also examining the role of their metabolic pathways in either biodeterioration or bioprotection of the underlying stone. SEM-EDS investigations coupled with 16S rRNA gene sequencing and PICRUSt2 analysis were applied on different weathered surfaces that affect southern Ethiopian rock paintings to investigate the relationships between the current stone microbiome and weathering patterns. The findings revealed that samples experiencing low and high weathering reached a climax stage characterized by stable microenvironments and limited resources. This condition favored K-strategist microorganisms, leading to reduced α-biodiversity and a community with a positive or neutral impact on the substrate. In contrast, moderately-weathered samples displayed diverse microhabitats, resulting in the prevalence of r-strategist bacteria, increased α-biodiversity, and the presence of specialist microorganisms. Moreover, the bacterial communities in moderately-weathered samples demonstrated the highest potential for carbon fixation, stress responses, and complete nitrogen and sulfur cycles. This bacterial community also showed the potential to negatively impact the underlying substrate. This research provided valuable insights into the little-understood ecology of bacterial communities inhabiting deteriorated surfaces, shedding light on the potential role of these microorganisms in the sustainable conservation of rock art.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agriculture, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, I-06121 Perugia (PG), IT, Italy.
| | - Luigimaria Borruso
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy.
| | - Ying-Li Wu
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marina Gallinaro
- Dipartimento di Scienze dell'Antichità, Università di Roma La Sapienza, 00185 Rome, Italy.
| | - Francesca Cappitelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Federica Villa
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
12
|
Dong L, Li MX, Li S, Yue LX, Ali M, Han JR, Lian WH, Hu CJ, Lin ZL, Shi GY, Wang PD, Gao SM, Lian ZH, She TT, Wei QC, Deng QQ, Hu Q, Xiong JL, Liu YH, Li L, Abdelshafy OA, Li WJ. Aridity drives the variability of desert soil microbiomes across north-western China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168048. [PMID: 37890638 DOI: 10.1016/j.scitotenv.2023.168048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/23/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Dryland covers >35 % of the terrestrial surface and the global extent of dryland increases due to the forecasted increase in aridity driven by climate change. Due to the climate change-driven aridity ecosystems, deserts provide one of the most hostile environments for microbial life and survival. Therefore, a detailed study was carried out to explore the deserts with different aridity levels (exposed to severe climate change) influence on microbial (bacteria, fungi, and protist) diversity patterns, assembly processes, and co-occurrence. The results revealed that the aridity (semi-arid, arid, and hyper-arid) patterns caused distinct changes in environmental heterogeneity in desert ecosystems. Similarly, microbial diversities were also reduced with increasing the aridity pattern, and it was found that environmental heterogeneity is highly involved in affecting microbial diversities under different ecological niches. Interestingly, it was found that certain microbes, including bacterial (Firmicutes), fungal (Sordariomycetes), and protistan (Ciliophora) abundance increased with increasing aridity levels, indicating that these microbes might possess the capability to tolerate the environmental stress conditions. Moreover, microbial community turnover analysis revealed that bacterial diversities followed homogenous selection, whereas fungi and protists were mostly driven by the dispersal limitation pattern. Co-occurrence network analysis showed that hyper-arid and arid conditions tightened the bacterial and fungal communities and had more positive associations compared to protistan. In conclusion, multiple lines of evidence were provided to shed light on the habitat specialization impact on microbial (bacteria, fungi, and protists) communities and composition under different desert ecosystems.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mei-Xiang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ling-Xiang Yue
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jia-Rui Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Guo-Yuan Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Pan-Deng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Shao-Ming Gao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ting-Ting She
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Qi-Chuang Wei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qian Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Jia-Liang Xiong
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Osama Abdalla Abdelshafy
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
13
|
Lappan R, Thakar J, Molares Moncayo L, Besser A, Bradley JA, Goordial J, Trembath-Reichert E, Greening C. The atmosphere: a transport medium or an active microbial ecosystem? THE ISME JOURNAL 2024; 18:wrae092. [PMID: 38804464 PMCID: PMC11214262 DOI: 10.1093/ismejo/wrae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The atmosphere may be Earth's largest microbial ecosystem. It is connected to all of Earth's surface ecosystems and plays an important role in microbial dispersal on local to global scales. Despite this grand scale, surprisingly little is understood about the atmosphere itself as a habitat. A key question remains unresolved: does the atmosphere simply transport microorganisms from one location to another, or does it harbour adapted, resident, and active microbial communities that overcome the physiological stressors and selection pressures the atmosphere poses to life? Advances in extreme microbiology and astrobiology continue to push our understanding of the limits of life towards ever greater extremes of temperature, pressure, salinity, irradiance, pH, and water availability. Earth's atmosphere stands as a challenging, but potentially surmountable, extreme environment to harbour living, active, resident microorganisms. Here, we confront the current understanding of the atmosphere as a microbial habitat, highlighting key advances and limitations. We pose major ecological and mechanistic questions about microbial life in the atmosphere that remain unresolved and frame the problems and technical pitfalls that have largely hindered recent developments in this space, providing evidence-based insights to drive future research in this field. New innovations supported by rigorous technical standards are needed to enable progress in understanding atmospheric microorganisms and their influence on global processes of weather, climate, nutrient cycling, biodiversity, and microbial connectivity, especially in the context of rapid global change.
Collapse
Affiliation(s)
- Rachael Lappan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria 3800, Australia
- Securing Antarctica’s Environmental Future, Monash University, Clayton, Victoria 3800, Australia
| | - Jordan Thakar
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Laura Molares Moncayo
- School of Geography, Queen Mary University of London, London E1 4NS, United Kingdom
- Natural History Museum, London SW7 5BD, United Kingdom
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, Marseille 13009, France
| | - Alexi Besser
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, United States
| | - James A Bradley
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, Marseille 13009, France
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Jacqueline Goordial
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | | | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Securing Antarctica’s Environmental Future, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Garvin ZK, Abades SR, Trefault N, Alfaro FD, Sipes K, Lloyd KG, Onstott TC. Prevalence of trace gas-oxidizing soil bacteria increases with radial distance from Polloquere hot spring within a high-elevation Andean cold desert. THE ISME JOURNAL 2024; 18:wrae062. [PMID: 38625060 PMCID: PMC11094475 DOI: 10.1093/ismejo/wrae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
High-elevation arid regions harbor microbial communities reliant on metabolic niches and flexibility to survive under biologically stressful conditions, including nutrient limitation that necessitates the utilization of atmospheric trace gases as electron donors. Geothermal springs present "oases" of microbial activity, diversity, and abundance by delivering water and substrates, including reduced gases. However, it is unknown whether these springs exhibit a gradient of effects, increasing their impact on trace gas-oxidizers in the surrounding soils. We assessed whether proximity to Polloquere, a high-altitude geothermal spring in an Andean salt flat, alters the diversity and metabolic structure of nearby soil bacterial populations compared to the surrounding cold desert. Recovered DNA and metagenomic analyses indicate that the spring represents an oasis for microbes in this challenging environment, supporting greater biomass with more diverse metabolic functions in proximal soils that declines sharply with radial distance from the spring. Despite the sharp decrease in biomass, potential rates of atmospheric hydrogen (H2) and carbon monoxide (CO) uptake increase away from the spring. Kinetic estimates suggest this activity is due to high-affinity trace gas consumption, likely as a survival strategy for energy/carbon acquisition. These results demonstrate that Polloquere regulates a gradient of diverse microbial communities and metabolisms, culminating in increased activity of trace gas-oxidizers as the influence of the spring yields to that of the regional salt flat environment. This suggests the spring holds local importance within the context of the broader salt flat and potentially represents a model ecosystem for other geothermal systems in high-altitude desert environments.
Collapse
Affiliation(s)
- Zachary K Garvin
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Sebastián R Abades
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, 8580745, Santiago, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, 8580745, Santiago, Chile
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, 8580745, Santiago, Chile
| | - Katie Sipes
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
15
|
Ray AE, Tribbia DZ, Cowan DA, Ferrari BC. Clearing the air: unraveling past and guiding future research in atmospheric chemosynthesis. Microbiol Mol Biol Rev 2023; 87:e0004823. [PMID: 37914532 PMCID: PMC10732025 DOI: 10.1128/mmbr.00048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
SUMMARY Atmospheric chemosynthesis is a recently proposed form of chemoautotrophic microbial primary production. The proposed process relies on the oxidation of trace concentrations of hydrogen (≤530 ppbv), carbon monoxide (≤90 ppbv), and methane (≤1,870 ppbv) gases using high-affinity enzymes. Atmospheric hydrogen and carbon monoxide oxidation have been primarily linked to microbial growth in desert surface soils scarce in liquid water and organic nutrients, and low in photosynthetic communities. It is well established that the oxidation of trace hydrogen and carbon monoxide gases widely supports the persistence of microbial communities in a diminished metabolic state, with the former potentially providing a reliable source of metabolic water. Microbial atmospheric methane oxidation also occurs in oligotrophic desert soils and is widespread throughout copiotrophic environments, with established links to microbial growth. Despite these findings, the direct link between trace gas oxidation and carbon fixation remains disputable. Here, we review the supporting evidence, outlining major gaps in our understanding of this phenomenon, and propose approaches to validate atmospheric chemosynthesis as a primary production process. We also explore the implications of this minimalistic survival strategy in terms of nutrient cycling, climate change, aerobiology, and astrobiology.
Collapse
Affiliation(s)
- Angelique E. Ray
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| | - Dana Z. Tribbia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| |
Collapse
|
16
|
Wen Y, Zhang G, Zhang W, Liu G. Distribution patterns and functional characteristics of soil bacterial communities in desert ecosystems of northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167081. [PMID: 37714348 DOI: 10.1016/j.scitotenv.2023.167081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Deserts are extremely arid environments where life is exposed to multiple environmental stresses, including low water availability, high temperatures, intense radiation environments and soil carbon and nitrogen limitation. Microorganisms have enormous potential applications due to their unique physiological adaptation mechanisms, extensive involvement in geochemical cycles and production of new antibiotics, among many other characteristics. With the increasing amount of open data provides unprecedented opportunities to further reveal bacterial biodiversity and its global role in ecosystem function. Through the collection of published high-quality sequencing data supplemented with experimental findings, we investigated the distribution characteristics and functional properties of bacteria in desert ecosystems in northern China. We show that there are significant differences in bacterial diversity among different sandy areas, and that soil properties and climatic factors are the main factors affecting bacterial diversity in desert ecosystems. The mean annual precipitation in growing season, soil organic carbon, total nitrogen and total phosphorus had significant effects on the diversity of desert bacteria and main bacteria. Desert bacteria primarily participate in the macromolecular decomposition, phototrophy, and geochemical cycling of nitrogen. These findings deepen our understanding of the regional-scale soil microbial diversity patterns in Chinese desert ecosystems and broaden our understanding of the ecological functions carried out by bacteria in these environments.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
17
|
Kong W, Shi S, Peng D, Feng S, Xu L, Wang X, Shen B, Bi Y, Lyu H. Effects of phytohormone on Chlorella vulgaris grown in wastewater-flue gas: C/N/S fixation, wastewater treatment and metabolome analysis. CHEMOSPHERE 2023; 345:140398. [PMID: 37844705 DOI: 10.1016/j.chemosphere.2023.140398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
Chlorella vulgaris (C. vulgaris) can provide the means to fix CO2 from complicated flue gas, treat wastewater and reach a sustainable production of petrochemical substitutes simultaneously. However, a prerequisite to achieving this goal is to promote C. vulgaris growth and improve the CO2-to-fatty acids conversion efficiency under different conditions of flue gas and wastewater. Thus, the addition of indole-3-acetic acid (IAA) in C. vulgaris cultivation was proposed. Results showed that C. vulgaris were more easily inhibited by 100 ppm NO and 200 ppm SO2 under low nitrogen (N) condition. NO and SO2 decreased the carbon (C) fixation; but increased N and sulfur (S) fixation. IAA adjusted the content of superoxide dismutase (SOD) and malondialdehyde (MDA), improved the expression of psbA, rbcL, and accD, attenuated the toxicity of NO and SO2 on C. vulgaris, and ultimately improved cell growth (2014.64-2458.16 mgdw·L-1) and restored CO2 fixation rate (170.98-220.92 mg CO2·L-1·d-1). Moreover, wastewater was found to have a high treatment efficiency because C. vulgaris grew well in all treatments, and the maximal removal rates of both N and phosphorus (P) reached 100%. Metabonomic analysis showed that IAA, "NO and SO2" were involved in the down-regulated and up-regulated expression of multiple metabolites, such as fatty acids, amino acids, and carbohydrates. IAA was beneficial for improving lipid accumulation with 24584.21-27634.23 μg g-1, especially monounsaturated fatty acids (MUFAs) dominated by 16-18 C fatty acids, in C. vulgaris cells. It was concluded that IAA enhanced the CO2 fixation, fatty acids production of C. vulgaris and its nutrients removal rate.
Collapse
Affiliation(s)
- Wenwen Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China
| | - Shilin Shi
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China
| | - Denghui Peng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China
| | - Shuo Feng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China
| | - Lianfei Xu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China
| | - Xin Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China.
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China.
| |
Collapse
|
18
|
Liu L, Chen Y, Shen J, Pan Y, Lin W. Metabolic versatility of soil microbial communities below the rocks of the hyperarid Dalangtan Playa. Appl Environ Microbiol 2023; 89:e0107223. [PMID: 37902391 PMCID: PMC10686078 DOI: 10.1128/aem.01072-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The hyperarid Dalangtan Playa in the western Qaidam Basin, northwestern China, is a unique terrestrial analog of Mars. Despite the polyextreme environments of this area, habitats below translucent rocks capable of environmental buffering could serve as refuges for microbial life. In this study, the hybrid assembly of Illumina short reads and Nanopore long reads recovered high-quality and high-continuity genomes, allowing for high-accuracy analysis and a deeper understanding of extremophiles in the sheltered soils of the Dalangtan Playa. Our findings reveal self-supporting and metabolically versatile sheltered soil communities adapted to a hyperarid and hypersaline playa, which provides implications for the search for life signals on Mars.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Chen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Bei Q, Reitz T, Schnabel B, Eisenhauer N, Schädler M, Buscot F, Heintz-Buschart A. Extreme summers impact cropland and grassland soil microbiomes. THE ISME JOURNAL 2023; 17:1589-1600. [PMID: 37419993 PMCID: PMC10504347 DOI: 10.1038/s41396-023-01470-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
The increasing frequency of extreme weather events highlights the need to understand how soil microbiomes respond to such disturbances. Here, metagenomics was used to investigate the effects of future climate scenarios (+0.6 °C warming and altered precipitation) on soil microbiomes during the summers of 2014-2019. Unexpectedly, Central Europe experienced extreme heatwaves and droughts during 2018-2019, causing significant impacts on the structure, assembly, and function of soil microbiomes. Specifically, the relative abundance of Actinobacteria (bacteria), Eurotiales (fungi), and Vilmaviridae (viruses) was significantly increased in both cropland and grassland. The contribution of homogeneous selection to bacterial community assembly increased significantly from 40.0% in normal summers to 51.9% in extreme summers. Moreover, genes associated with microbial antioxidant (Ni-SOD), cell wall biosynthesis (glmSMU, murABCDEF), heat shock proteins (GroES/GroEL, Hsp40), and sporulation (spoIID, spoVK) were identified as potential contributors to drought-enriched taxa, and their expressions were confirmed by metatranscriptomics in 2022. The impact of extreme summers was further evident in the taxonomic profiles of 721 recovered metagenome-assembled genomes (MAGs). Annotation of contigs and MAGs suggested that Actinobacteria may have a competitive advantage in extreme summers due to the biosynthesis of geosmin and 2-methylisoborneol. Future climate scenarios caused a similar pattern of changes in microbial communities as extreme summers, but to a much lesser extent. Soil microbiomes in grassland showed greater resilience to climate change than those in cropland. Overall, this study provides a comprehensive framework for understanding the response of soil microbiomes to extreme summers.
Collapse
Affiliation(s)
- Qicheng Bei
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany.
| | - Thomas Reitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Beatrix Schnabel
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Li S, Lian WH, Han JR, Ali M, Lin ZL, Liu YH, Li L, Zhang DY, Jiang XZ, Li WJ, Dong L. Capturing the microbial dark matter in desert soils using culturomics-based metagenomics and high-resolution analysis. NPJ Biofilms Microbiomes 2023; 9:67. [PMID: 37736746 PMCID: PMC10516943 DOI: 10.1038/s41522-023-00439-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Deserts occupy one-third of the Earth's terrestrial surface and represent a potentially significant reservoir of microbial biodiversity, yet the majority of desert microorganisms remain uncharacterized and are seen as "microbial dark matter". Here, we introduce a multi-omics strategy, culturomics-based metagenomics (CBM) that integrates large-scale cultivation, full-length 16S rRNA gene amplicon, and shotgun metagenomic sequencing. The results showed that CBM captured a significant amount of taxonomic and functional diversity missed in direct sequencing by increasing the recovery of amplicon sequence variants (ASVs) and high/medium-quality metagenome-assembled genomes (MAGs). Importantly, CBM allowed the post hoc recovery of microbes of interest (e.g., novel or specific taxa), even those with extremely low abundance in the culture. Furthermore, strain-level analyses based on CBM and direct sequencing revealed that the desert soils harbored a considerable number of novel bacterial candidates (1941, 51.4%), of which 1095 (from CBM) were culturable. However, CBM would not exactly reflect the relative abundance of true microbial composition and functional pathways in the in situ environment, and its use coupled with direct metagenomic sequencing could provide greater insight into desert microbiomes. Overall, this study exemplifies the CBM strategy with high-resolution is an ideal way to deeply explore the untapped novel bacterial resources in desert soils, and substantially expands our knowledge on the microbial dark matter hidden in the vast expanse of deserts.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
- School of Life Science, Jiaying University, Meizhou, 514015, China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Jia-Rui Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Dong-Ya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou, 510700, China
| | - Xian-Zhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou, 510700, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China.
| |
Collapse
|
21
|
Abstract
Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture.
Collapse
Affiliation(s)
- Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, Arizona, USA;
| |
Collapse
|
22
|
Li S, Yang S, Wei X, Jiao S, Luo W, Chen W, Wei G. Reduced trace gas oxidizers as a response to organic carbon availability linked to oligotrophs in desert fertile islands. THE ISME JOURNAL 2023; 17:1257-1266. [PMID: 37253970 PMCID: PMC10356767 DOI: 10.1038/s41396-023-01437-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023]
Abstract
Atmospheric trace gases, such as H2 and CO, are important energy sources for microbial growth and maintenance in various ecosystems, especially in arid deserts with little organic substrate. Nonetheless, the impact of soil organic C availability on microbial trace gas oxidation and the underlying mechanisms are unclear at the community level. This study investigated the energy and life-history strategies of soil microbiomes along an organic C gradient inside and out of Hedysarum scoparium islands dispersed in the Mu Us Desert, China. Metagenomic analysis showed that with increasing organic C availability from bare areas into "fertile islands", the abundance of trace gas oxidizers (TGOs) decreased, but that of trace gas nonoxidizers (TGNOs) increased. The variation in their abundance was more related to labile/soluble organic C levels than to stable/insoluble organic C levels. The consumption rates of H2 and CO confirmed that organic C addition, especially soluble organic C addition, inhibited microbial trace gas oxidation. Moreover, microorganisms with distinct energy-acquiring strategies showed different life-history traits. The TGOs had lower 16 S rRNA operon copy numbers, lower predicted maximum growth rates and higher proportions of labile C degradation genes, implying the prevalence of oligotrophs. In contrast, copiotrophs were prevalent in the TGNOs. These results revealed a mechanism for the microbial community to adapt to the highly heterogeneous distribution of C resources by adjusting the abundances of taxa with distinct energy and life-history strategies, which would further affect trace gas consumption and C turnover in desert ecosystems.
Collapse
Affiliation(s)
- Shuyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shanshan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaomeng Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
23
|
Mashamaite L, Lebre PH, Varliero G, Maphosa S, Ortiz M, Hogg ID, Cowan DA. Microbial diversity in Antarctic Dry Valley soils across an altitudinal gradient. Front Microbiol 2023; 14:1203216. [PMID: 37555066 PMCID: PMC10406297 DOI: 10.3389/fmicb.2023.1203216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION The Antarctic McMurdo Dry Valleys are geologically diverse, encompassing a wide variety of soil habitats. These environments are largely dominated by microorganisms, which drive the ecosystem services of the region. While altitude is a well-established driver of eukaryotic biodiversity in these Antarctic ice-free areas (and many non-Antarctic environments), little is known of the relationship between altitude and microbial community structure and functionality in continental Antarctica. METHODS We analysed prokaryotic and lower eukaryotic diversity from soil samples across a 684 m altitudinal transect in the lower Taylor Valley, Antarctica and performed a phylogenic characterization of soil microbial communities using short-read sequencing of the 16S rRNA and ITS marker gene amplicons. RESULTS AND DISCUSSION Phylogenetic analysis showed clear altitudinal trends in soil microbial composition and structure. Cyanobacteria were more prevalent in higher altitude samples, while the highly stress resistant Chloroflexota and Deinococcota were more prevalent in lower altitude samples. We also detected a shift from Basidiomycota to Chytridiomycota with increasing altitude. Several genera associated with trace gas chemotrophy, including Rubrobacter and Ornithinicoccus, were widely distributed across the entire transect, suggesting that trace-gas chemotrophy may be an important trophic strategy for microbial survival in oligotrophic environments. The ratio of trace-gas chemotrophs to photoautotrophs was significantly higher in lower altitude samples. Co-occurrence network analysis of prokaryotic communities showed some significant differences in connectivity within the communities from different altitudinal zones, with cyanobacterial and trace-gas chemotrophy-associated taxa being identified as potential keystone taxa for soil communities at higher altitudes. By contrast, the prokaryotic network at low altitudes was dominated by heterotrophic keystone taxa, thus suggesting a clear trophic distinction between soil prokaryotic communities at different altitudes. Based on these results, we conclude that altitude is an important driver of microbial ecology in Antarctic ice-free soil habitats.
Collapse
Affiliation(s)
- Lefentse Mashamaite
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Pedro H. Lebre
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Gilda Varliero
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Silindile Maphosa
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Max Ortiz
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- Clemson University Genomics & Bioinformatics Facility, Clemson University, Clemson, SC, United States
| | - Ian D. Hogg
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, NU, Canada
| | - Don A. Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Contreras MJ, Leal K, Bruna P, Nuñez-Montero K, Goméz-Espinoza O, Santos A, Bravo L, Valenzuela B, Solis F, Gahona G, Cayo M, Dinamarca MA, Ibacache-Quiroga C, Zamorano P, Barrientos L. Commonalities between the Atacama Desert and Antarctica rhizosphere microbial communities. Front Microbiol 2023; 14:1197399. [PMID: 37538842 PMCID: PMC10395097 DOI: 10.3389/fmicb.2023.1197399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Plant-microbiota interactions have significant effects on plant growth, health, and productivity. Rhizosphere microorganisms are involved in processes that promote physiological responses to biotic and abiotic stresses in plants. In recent years, the interest in microorganisms to improve plant productivity has increased, mainly aiming to find promising strains to overcome the impact of climate change on crops. In this work, we hypothesize that given the desertic environment of the Antarctic and the Atacama Desert, different plant species inhabiting these areas might share microbial taxa with functions associated with desiccation and drought stress tolerance. Therefore, in this study, we described and compared the composition of the rhizobacterial community associated with Deschampsia antarctica (Da), Colobanthus quitensis (Cq) from Antarctic territories, and Croton chilensis (Cc), Eulychnia iquiquensis (Ei) and Nicotiana solanifolia (Ns) from coastal Atacama Desert environments by using 16S rRNA amplicon sequencing. In addition, we evaluated the putative functions of that rhizobacterial community that are likely involved in nutrient acquisition and stress tolerance of these plants. Even though each plant microbial rhizosphere presents a unique taxonomic pattern of 3,019 different sequences, the distribution at the genus level showed a core microbiome with a higher abundance of Haliangium, Bryobacter, Bacillus, MND1 from the Nitrosomonadaceae family, and unclassified taxa from Gemmatiamonadaceae and Chitinophagaceae families in the rhizosphere of all samples analyzed (781 unique sequences). In addition, species Gemmatirosa kalamazoonesis and Solibacter usitatus were shared by the core microbiome of both Antarctic and Desert plants. All the taxa mentioned above had been previously associated with beneficial effects in plants. Also, this microbial core composition converged with the functional prediction related to survival under harsh conditions, including chemoheterotrophy, ureolysis, phototrophy, nitrogen fixation, and chitinolysis. Therefore, this study provides relevant information for the exploration of rhizospheric microorganisms from plants in extreme conditions of the Atacama Desert and Antarctic as promising plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- María José Contreras
- Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Karla Leal
- Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Pablo Bruna
- Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Kattia Nuñez-Montero
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco, Chile
- Biotechnology Research Center, Instituto Tecnológico de Costa Rica, Cártago, Costa Rica
| | - Olman Goméz-Espinoza
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural Sciences and Environment, Universidad de La Frontera, Temuco, Chile
| | - Andrés Santos
- Universitat Autònoma de Barcelona, Departament de Genètica i de Microbiologia, Institut Biotecnologia i de Biomedicina, Cerdanyola del Vallès, Barcelona, Spain
| | - León Bravo
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural Sciences and Environment, Universidad de La Frontera, Temuco, Chile
| | - Bernardita Valenzuela
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Francisco Solis
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Giovanni Gahona
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Mayra Cayo
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - M. Alejandro Dinamarca
- Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudia Ibacache-Quiroga
- Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso, Chile
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Leticia Barrientos
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco, Chile
| |
Collapse
|
25
|
Groult B, St-Jean V, Lazar CS. Linking Groundwater to Surface Discharge Ecosystems: Archaeal, Bacterial, and Eukaryotic Community Diversity and Structure in Quebec (Canada). Microorganisms 2023; 11:1674. [PMID: 37512847 PMCID: PMC10384904 DOI: 10.3390/microorganisms11071674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Aquifer systems are composed of water flowing from surface recharge areas, to the subsurface and back to the surface in discharge regions. Groundwater habitats harbor a large microbial biomass and diversity, potentially contributing to surface aquatic ecosystems. Although this contribution has been widely studied in marine environments, very little is known about the connection between underground and surface microbial communities in freshwater settings. Therefore, in this study, we used amplicon sequencing to analyze the archaeal, bacterial, and eukaryotic community diversity and structure in groundwater and surface water samples, spanning the vast regions of the Laurentides and Lanaudières in the Quebec province (Canada). Our results show significant differences between subsurface and surface taxa; with more fungi, Amoebozoa, and chemolithoautotrophic prokaryotes involved in nitrogen-, sulfur-, and iron-cycling dominating the underground samples; while algae, ciliates, methanogens, and Actinobacteria dominate the surface discharge waters. Microbial source tracking suggested that only a small portion of the microbial communities in the groundwater contributed to the surface discharge communities. However, many taxa were shared between both habitats, with a large range of functional diversity, likely explaining their survival in both subsurface and surface water ecosystems.
Collapse
Affiliation(s)
- Benjamin Groult
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Vicky St-Jean
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Cassandre Sara Lazar
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
26
|
Huang J, Yang J, Han M, Wang B, Sun X, Jiang H. Microbial carbon fixation and its influencing factors in saline lake water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162922. [PMID: 36933719 DOI: 10.1016/j.scitotenv.2023.162922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Microbial carbon fixation in saline lakes constitutes an important part of the global lacustrine carbon budget. However, the microbial inorganic carbon uptake rates in saline lake water and its influencing factors are still not fully understood. Here, we studied in situ microbial carbon uptake rates under light-dependent and dark conditions in the saline water of Qinghai Lake using a carbon isotopic labeling (14C-bicarbonate) technique, followed by geochemical and microbial analyses. The results showed that the light-dependent inorganic carbon uptake rates were 135.17-293.02 μg C L-1 h-1 during the summer cruise, while dark inorganic carbon uptake rates ranged from 4.27 to 14.10 μg C L-1 h-1. Photoautotrophic prokaryotes and algae (e.g. Oxyphotobacteria, Chlorophyta, Cryptophyta and Ochrophyta) may be the major contributors to light-dependent carbon fixation processes. Microbial inorganic carbon uptake rates were mainly influenced by the level of nutrients (e.g., ammonium, dissolved inorganic carbon, dissolved organic carbon, total nitrogen), with dissolved inorganic carbon content being predominant. Environmental and microbial factors jointly regulate the total, light-dependent and dark inorganic carbon uptake rates in the studied saline lake water. In summary, microbial light-dependent and dark carbon fixation processes are active and contribute significantly to carbon sequestration in saline lake water. Therefore, more attention should be given to microbial carbon fixation and its response to climate and environmental changes of the lake carbon cycle in the context of climate change.
Collapse
Affiliation(s)
- Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Mingxian Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiaoxi Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
27
|
Selmani Z, Attard E, Lauga B, Barakat M, Ortet P, Tulumello J, Achouak W, Kaci Y, Heulin T. Culturing the desert microbiota. Front Microbiol 2023; 14:1098150. [PMID: 37113232 PMCID: PMC10126307 DOI: 10.3389/fmicb.2023.1098150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Over the last 30 years, the description of microbial diversity has been mainly based on culture-independent approaches (metabarcoding and metagenomics) allowing an in-depth analysis of microbial diversity that no other approach allows. Bearing in mind that culture-dependent approaches cannot replace culture-independent approaches, we have improved an original method for isolating strains consisting of "culturing" grains of sand directly on Petri dishes (grain-by-grain method). This method allowed to cultivate up to 10% of the bacteria counted on the surface of grains of the three sites studied in the Great Western Erg in Algeria (Timoudi, Béni Abbès, and Taghit), knowing that on average about 10 bacterial cells colonize each grain. The diversity of culturable bacteria (collection of 290 strains) predicted by 16S rRNA gene sequencing revealed that Arthrobacter subterraneus, Arthrobacter tecti, Pseudarthrobacter phenanthrenivorans, Pseudarthrobacter psychrotolerans, and Massilia agri are the dominant species. The comparison of the culture-dependent and -independent (16S rRNA gene metabarcoding) approaches at the Timoudi site revealed 18 bacterial genera common to both approaches with a relative overestimation of the genera Arthrobacter/Pseudarthrobacter and Kocuria, and a relative underestimation of the genera Blastococcus and Domibacillus by the bacterial culturing approach. The bacterial isolates will allow further study on the mechanisms of tolerance to desiccation, especially in Pseudomonadota (Proteobacteria).
Collapse
Affiliation(s)
- Zakia Selmani
- Laboratoire de Biologie et Physiologie des Organismes, Faculté des Sciences Biologiques, University of Science and Technology Houari Boumediene (USTHB), Algiers, Algeria
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
| | - Eleonore Attard
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l’Adour, Pau, France
| | - Béatrice Lauga
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l’Adour, Pau, France
| | - Mohamed Barakat
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
| | - Philippe Ortet
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
| | - Joris Tulumello
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
| | - Wafa Achouak
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
| | - Yahia Kaci
- Laboratoire de Biologie et Physiologie des Organismes, Faculté des Sciences Biologiques, University of Science and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Thierry Heulin
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
- *Correspondence: Thierry Heulin,
| |
Collapse
|
28
|
Liao H, Hao X, Qin F, Delgado-Baquerizo M, Liu Y, Zhou J, Cai P, Chen W, Huang Q. Microbial autotrophy explains large-scale soil CO 2 fixation. GLOBAL CHANGE BIOLOGY 2023; 29:231-242. [PMID: 36226978 DOI: 10.1111/gcb.16452] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Microbial communities play critical roles in fixing carbon from the atmosphere and fixing it in the soils. However, the large-scale variations and drivers of these microbial communities remain poorly understood. Here, we conducted a large-scale survey across China and found that soil autotrophic organisms are critical for explaining CO2 fluxes from the atmosphere to soils. In particular, we showed that large-scale variations in CO2 fixation rates are highly correlated to those in autotrophic bacteria and phototrophic protists. Paddy soils, supporting a larger proportion of obligate bacterial and protist autotrophs, display four-fold of CO2 fixation rates over upland and forest soils. Precipitation and pH, together with key ecological clusters of autotrophic microbes, also played important roles in controlling CO2 fixation. Our work provides a novel quantification on the contribution of terrestrial autotrophic microbes to soil CO2 fixation processes at a large scale, with implications for global carbon regulation under climate change.
Collapse
Affiliation(s)
- Hao Liao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Fei Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | | | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Chown SL. Macrophysiology for decision‐making. J Zool (1987) 2022. [DOI: 10.1111/jzo.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- S. L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
30
|
Wang K, Pan R, Fei H, Tong Q, Han F. Changes in soil prokaryotic communities and nitrogen cycling functions along a groundwater table drawdown gradient in desert wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156868. [PMID: 35752234 DOI: 10.1016/j.scitotenv.2022.156868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Desert wetlands are evolving into deserts by groundwater table (GWT) drawdown. However, the changes in microbial communities and functions during the GWT drawdown are unclear, which hinders the predictive power of biogeochemical processes across the desertification. Here, 16S rRNA gene sequencing, PICRUSt2 and qPCR were used to investigate soil prokaryotic diversity, composition and nitrogen cycling gene abundance at four vegetation types [flooded swamp (FS), drained swamp (DS), desert grassland (DG), and bare sandy land (BS)] along a GWT decline gradient in the Mu Us Desert, northern China. Results showed that prokaryotic Shannon and Chao1 indexes were significantly reduced at BS than those at FS (p < 0.05). Whereas no significant difference was observed between FS, DS and DG (p > 0.05). Distinct shifts in community composition were found along the GWT decline gradient. The dominant taxa gradually changed from obligate anaerobes and eutrophic microbes to facultative anaerobes, and finally to aerobic, oligotrophic and drought-tolerant microbes. Soil moisture was the most important factor in regulating the communities. In addition, GWT drawdown inhibited the relative abundance of genes involved in nitrogen fixation, assimilatory nitrite reduction, and nitrate oxidation, but enhanced the relative abundance of genes related to denitrification, assimilated nitrate reduction, ammonia oxidation and ammonification. Thus, GWT drawdown inhibits nitrogen input potential and exacerbates nitrogen loss potential. These results help in understanding the succession characteristics of desert wetland desertification.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Ruopeng Pan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongyan Fei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Qian Tong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Fengpeng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Research Center on Soil & Water Conservation, Institute of Soil and Water Conservation, Chinese Academy of Sciences Ministry of Water Resources, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
31
|
Microorganisms as New Sources of Energy. ENERGIES 2022. [DOI: 10.3390/en15176365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of fossil energy sources has a negative impact on the economic and socio-political stability of specific regions and countries, causing environmental changes due to the emission of greenhouse gases. Moreover, the stocks of mineral energy are limited, causing the demand for new types and forms of energy. Biomass is a renewable energy source and represents an alternative to fossil energy sources. Microorganisms produce energy from the substrate and biomass, i.e., from substances in the microenvironment, to maintain their metabolism and life. However, specialized microorganisms also produce specific metabolites under almost abiotic circumstances that often do not have the immediate task of sustaining their own lives. This paper presents the action of biogenic and biogenic–thermogenic microorganisms, which produce methane, alcohols, lipids, triglycerides, and hydrogen, thus often creating renewable energy from waste biomass. Furthermore, some microorganisms acquire new or improved properties through genetic interventions for producing significant amounts of energy. In this way, they clean the environment and can consume greenhouse gases. Particularly suitable are blue-green algae or cyanobacteria but also some otherwise pathogenic microorganisms (E. coli, Klebsiella, and others), as well as many other specialized microorganisms that show an incredible ability to adapt. Microorganisms can change the current paradigm, energy–environment, and open up countless opportunities for producing new energy sources, especially hydrogen, which is an ideal energy source for all systems (biological, physical, technological). Developing such energy production technologies can significantly change the already achieved critical level of greenhouse gases that significantly affect the climate.
Collapse
|
32
|
Ray AE, Zaugg J, Benaud N, Chelliah DS, Bay S, Wong HL, Leung PM, Ji M, Terauds A, Montgomery K, Greening C, Cowan DA, Kong W, Williams TJ, Hugenholtz P, Ferrari BC. Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts. THE ISME JOURNAL 2022; 16:2547-2560. [PMID: 35933499 PMCID: PMC9561532 DOI: 10.1038/s41396-022-01298-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Cold desert soil microbiomes thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, bacterial primary production is supported by trace gas oxidation and the light-independent RuBisCO form IE. This study aims to determine if atmospheric chemosynthesis is widespread within Antarctic, Arctic and Tibetan cold deserts, to identify the breadth of trace gas chemosynthetic taxa and to further characterize the genetic determinants of this process. H2 oxidation was ubiquitous, far exceeding rates reported to fulfill the maintenance needs of similarly structured edaphic microbiomes. Atmospheric chemosynthesis occurred globally, contributing significantly (p < 0.05) to carbon fixation in Antarctica and the high Arctic. Taxonomic and functional analyses were performed upon 18 cold desert metagenomes, 230 dereplicated medium-to-high-quality derived metagenome-assembled genomes (MAGs) and an additional 24,080 publicly available genomes. Hydrogenotrophic and carboxydotrophic growth markers were widespread. RuBisCO IE was discovered to co-occur alongside trace gas oxidation enzymes in representative Chloroflexota, Firmicutes, Deinococcota and Verrucomicrobiota genomes. We identify a novel group of high-affinity [NiFe]-hydrogenases, group 1m, through phylogenetics, gene structure analysis and homology modeling, and reveal substantial genetic diversity within RuBisCO form IE (rbcL1E), and high-affinity 1h and 1l [NiFe]-hydrogenase groups. We conclude that atmospheric chemosynthesis is a globally-distributed phenomenon, extending throughout cold deserts, with significant implications for the global carbon cycle and bacterial survival within environmental reservoirs.
Collapse
|
33
|
Han Y, Wang Q, Li Q, Hu C. Active metabolism and biomass dynamics of biocrusts are shaped by variation in their successional state and seasonal energy sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154756. [PMID: 35339556 DOI: 10.1016/j.scitotenv.2022.154756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Seasonal growth and changes in biomass within communities are the core of ecosystem dynamics. Biocrusts play a prominent role as pioneers in dryland soils. However, the seasonal dynamics of biocrusts remain poorly resolved. In this study, we collected biocrusts across a successional gradient (cyanobacteria, cyanolichen, chlorolichen, and moss-dominated) from southeastern Tengger Desert (China) during the summer and autumn seasons, and explored seasonal changes in metabolism and biomass using multi-omics approaches. We found that Cyanobacteria and Ascomycota were the dominant active taxa and both exhibited higher abundances in autumn. We also found that the dominant primary producers in biocrusts strongly affected community-wide characteristics of metabolism. Along with seasonal differences in light energy utilization, utilization of inorganic energy sources exhibited higher expression in the summer while for organic sources, in the autumn. We found that overall metabolism was significantly regulated by the ratio of intracellular to extracellular polymer degradation, and affected by NO3-, PO43- and EC (in the summer)/NO2- (in the autumn). In summary, biocrust growth varied with seasonal variation in light energy utilization and complementary chemical energy sources, with the most suitable season varying with biocrust successional type.
Collapse
Affiliation(s)
- Yingchun Han
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
34
|
Gao L, Fang BZ, Liu YH, Jiao JY, Li MM, Antunes A, Li WJ. Rhabdothermincola salaria sp. nov., a novel actinobacterium isolated from a saline lake sediment. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An actinobacterium, designated strain EGI L10124T, was isolated from saline lake sediment collected in Xinjiang province, PR China. The taxonomic position of the isolate was determined based on polyphasic taxonomic and phylogenomic analyses. Phylogenetic analysis and 16S rRNA gene sequence similarities indicated that strain EGI L10124T formed a distinct clade with
Rhabdothermincola sediminis
SYSU G02662T, with a shared sequence identity of 95.2 %. The novel isolate could be distinguished from species in the genus
Rhabdothermincola
by its distinct phenotypic, physiological and genotypic characteristics. The cells of strain EGI L10124T were aerobic, Gram-stain-positive and short rod-shaped. Optimal growth conditions of strain EGI L10124T on marine agar 2216 were registered at pH 8.0 at 37 °C. In addition, meso-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The major respiratory quinone was MK-9 (H8), while the major fatty acids were iso-C16 : 0, C17 : 0 and C16 : 0. The polar lipids included diphosphatidylglycerol, phosphatidylinositol mannoside and phosphatidylinositol. Based on the genome sequence of strain EGI L10124T, it appears that the G+C content of the novel isolate was 71.8 mol%. According to our data, strain EGI L10124T represents a new species of the genus
Rhabdothermincola
, for which the name Rhabdothermincola salaria sp. nov. is proposed. The type strain of the proposed novel isolate is EGI L10124T (=CGMCC 1.19113T=KCTC 49679T).
Collapse
Affiliation(s)
- Lei Gao
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau SAR, PR China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| |
Collapse
|
35
|
Greening C, Grinter R. Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol 2022; 20:513-528. [PMID: 35414013 DOI: 10.1038/s41579-022-00724-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
The atmosphere has recently been recognized as a major source of energy sustaining life. Diverse aerobic bacteria oxidize the three most abundant reduced trace gases in the atmosphere, namely hydrogen (H2), carbon monoxide (CO) and methane (CH4). This Review describes the taxonomic distribution, physiological role and biochemical basis of microbial oxidation of these atmospheric trace gases, as well as the ecological, environmental, medical and astrobiological importance of this process. Most soil bacteria and some archaea can survive by using atmospheric H2 and CO as alternative energy sources, as illustrated through genetic studies on Mycobacterium cells and Streptomyces spores. Certain specialist bacteria can also grow on air alone, as confirmed by the landmark characterization of Methylocapsa gorgona, which grows by simultaneously consuming atmospheric CH4, H2 and CO. Bacteria use high-affinity lineages of metalloenzymes, namely hydrogenases, CO dehydrogenases and methane monooxygenases, to utilize atmospheric trace gases for aerobic respiration and carbon fixation. More broadly, trace gas oxidizers enhance the biodiversity and resilience of soil and marine ecosystems, drive primary productivity in extreme environments such as Antarctic desert soils and perform critical regulatory services by mitigating anthropogenic emissions of greenhouse gases and toxic pollutants.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia. .,Centre to Impact AMR, Monash University, Clayton, Victoria, Australia.
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
36
|
Schiro G, Chen Y, Blankinship JC, Barberán A. Ride the dust: Linking dust dispersal and spatial distribution of microorganisms across an arid landscape. Environ Microbiol 2022; 24:4094-4107. [PMID: 35384241 DOI: 10.1111/1462-2920.15998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022]
Abstract
In arid ecosystems, where the soil is directly exposed to the action of the wind due to sparse vegetation, dust aerosolization is a consequence of soil degradation and concomitantly, a major vector of microbial dispersal. Disturbances such as livestock grazing or fire can exacerbate wind erosion and dust production. Here, we sampled surface soils in 29 locations across an arid landscape in southwestern USA and characterized their prokaryotic and fungal communities. At four of these locations, we also sampled potential fugitive dust. By comparing the composition of soil and dust samples, we determined the role of dust dispersal in structuring the biogeography of soil microorganisms across the landscape. For Bacteria/Archaea, we found dust associated taxa to have on average, higher regional occupancies compared to soil associated taxa. Complementarily, we found dust samples to harbor a higher amount of widely distributed taxa compared to soil samples. Overall, our study shows how dust dispersal plays a role in the spatial distribution of soil Bacteria/Archaea, but not soil Fungi, and might inform indicators of soil health and stability in arid ecosystems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gabriele Schiro
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - Yongjian Chen
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - Joseph C Blankinship
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
37
|
Buzzard V, Thorne D, Gil-Loaiza J, Cueva A, Meredith LK. Sensitivity of soil hydrogen uptake to natural and managed moisture dynamics in a semiarid urban ecosystem. PeerJ 2022; 10:e12966. [PMID: 35317075 PMCID: PMC8934528 DOI: 10.7717/peerj.12966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/28/2022] [Indexed: 01/11/2023] Open
Abstract
The North American Monsoon season (June-September) in the Sonoran Desert brings thunderstorms and heavy rainfall. These rains bring cooler temperature and account for roughly half of the annual precipitation making them important for biogeochemical processes. The intensity of the monsoon rains also increase flooding in urban areas and rely on green infrastructure (GI) stormwater management techniques such as water harvesting and urban rain gardens to capture runoff. The combination of increased water availability during the monsoon and water management provide a broad moisture regime for testing responses in microbial metabolism to natural and managed soil moisture pulses in drylands. Soil microbes rely on atmospheric hydrogen (H2) as an important energy source in arid and semiarid landscapes with low soil moisture and carbon availability. Unlike mesic ecosystems, transient water availability in arid and semiarid ecosystems has been identified as a key limiting driver of microbe-mediated H2 uptake. We measured soil H2 uptake in rain gardens exposed to three commonly used water harvesting practices during the monsoon season in Tucson AZ, USA. In situ static chamber measurements were used to calculate H2 uptake in each of the three water harvesting treatments passive (stormwater runoff), active (stored rooftop runoff), and greywater (used laundry water) compared to an unaltered control treatment to assess the effects of water management practices on soil microbial activity. In addition, soils were collected from each treatment and brought to the lab for an incubation experiment manipulating the soil moisture to three levels capturing the range observed from field samples. H2 fluxes from all treatments ranged between -0.72 nmol m-2 s-1 and -3.98 nmol m-2 s-1 over the monsoon season. Soil H2 uptake in the greywater treatment was on average 53% greater than the other treatments during pre-monsoon, suggesting that the increased frequency and availability of water in the greywater treatment resulted in higher H2 uptake during the dry season. H2 uptake was significantly correlated with soil moisture (r = -0.393, p = 0.001, df = 62) and temperature (r = 0.345, p = 0.005, df = 62). Our findings suggest that GI managed residential soils can maintain low levels of H2 uptake during dry periods, unlike unmanaged systems. The more continuous H2 uptake associated with GI may help reduce the impacts of drought on H2 cycling in semiarid urban ecosystems.
Collapse
Affiliation(s)
- Vanessa Buzzard
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
| | - Dana Thorne
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
| | - Alejandro Cueva
- Biosphere2, University of Arizona, Oracle, Arizona, United States
| | - Laura K. Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States,BIO5 Institute, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
38
|
Wu T, Liao X, Zou Y, Liu Y, Yang K, White JC, Lin D. Fe-based nanomaterial transformation to amorphous Fe: Enhanced alfalfa rhizoremediation of PCBs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127973. [PMID: 34894512 DOI: 10.1016/j.jhazmat.2021.127973] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Nano-enabled phytoremediation is an emerging remediation strategy for soils that are moderately contaminated with persistent organic contaminants, and there is a significant need for increased mechanistic understanding and for case studies. Herein, we evaluated the remediation of PCB28-contaminated soil using combined alfalfa and Fe-based materials, including zero-valent iron at 20 nm, 100 nm, and 5 µm, and also iron oxide nanomaterials including α-Fe2O3, γ-Fe2O3, and Fe3O4 around 20-30 nm. Compared with alfalfa remediation alone (63.2%), Fe-based nanomaterials increased PCB28 removal values to 72.4-93.5% in planted soil, with α-Fe2O3 treatment promoting the most effective pollutant removal. Mechanistically, the crystalline Fe-based nanoparticles were transformed into amorphous forms in the plant rhizosphere, resulting in greater availability and enhanced iron nutrition. This nutritional shift induced root metabolic reprogramming of amino acid and carbohydrate cycling, and related functional bacterial enrichment of Ramlibacter, Dyella, Bacillus, and Paraburkholderia in rhizosphere. A significant positive correlation between amorphous iron and root metabolites-associated microbes with PCB28 removal was evident, implying that iron supplementation selected for rhizospheric microorganisms favored PCBs degradation. Overall, this rhizoremediation promotion strategy of Fe species-metabolites-microbes highlights the potential for the hybrid application of nano-enabled phytotechnology in the remediation of soils contaminated with persistent organic xenobiotics.
Collapse
Affiliation(s)
- Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Liao
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yiting Zou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yangzhi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| |
Collapse
|
39
|
Meredith LK, Tfaily MM. Capturing the microbial volatilome: an oft overlooked 'ome'. Trends Microbiol 2022; 30:622-631. [PMID: 35039213 DOI: 10.1016/j.tim.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022]
Abstract
Among the diverse metabolites produced by microbial communities, some are volatile. Volatile organic compounds (VOCs) are vigorously cycled by microbes as metabolic substrates and products and as signaling molecules. Yet, current microbial metabolomic studies predominantly focus on nonvolatile metabolites and overlook VOCs, which therefore represent a missing component of the metabolome. Advances in VOC detection now allow simultaneous observation of the numerous VOCs constituting the 'volatilome' of microbial systems. We present a roadmap for integrating and advancing VOC and other 'omics approaches and highlight the potential for realtime VOC measurements to help overcome limitations in discrete 'omics sampling. Including volatile metabolites in metabolomics, both conceptually and in practice, will build a more comprehensive understanding of microbial processes across ecological communities.
Collapse
Affiliation(s)
- Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Malak M Tfaily
- BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Environmental Science, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
40
|
Hwang Y, Schulze-Makuch D, Arens FL, Saenz JS, Adam PS, Sager C, Bornemann TLV, Zhao W, Zhang Y, Airo A, Schloter M, Probst AJ. Leave no stone unturned: individually adapted xerotolerant Thaumarchaeota sheltered below the boulders of the Atacama Desert hyperarid core. MICROBIOME 2021; 9:234. [PMID: 34836555 PMCID: PMC8627038 DOI: 10.1186/s40168-021-01177-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The hyperarid core of the Atacama Desert is an extremely harsh environment thought to be colonized by only a few heterotrophic bacterial species. Current concepts for understanding this extreme ecosystem are mainly based on the diversity of these few species, yet a substantial area of the Atacama Desert hyperarid topsoil is covered by expansive boulder accumulations, whose underlying microbiomes have not been investigated so far. With the hypothesis that these sheltered soils harbor uniquely adapted microbiomes, we compared metagenomes and geochemistry between soils below and beside boulders across three distantly located boulder accumulations in the Atacama Desert hyperarid core. RESULTS Genome-resolved metagenomics of eleven samples revealed substantially different microbial communities in soils below and beside boulders, despite the presence of shared species. Archaea were found in significantly higher relative abundance below the boulders across all samples within distances of up to 205 km. These key taxa belong to a novel genus of ammonia-oxidizing Thaumarchaeota, Candidatus Nitrosodeserticola. We resolved eight mid-to-high quality genomes of this genus and used comparative genomics to analyze its pangenome and site-specific adaptations. Ca. Nitrosodeserticola genomes contain genes for ammonia oxidation, the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation pathway, and acetate utilization indicating a chemolithoautotrophic and mixotrophic lifestyle. They also possess the capacity for tolerating extreme environmental conditions as highlighted by the presence of genes against oxidative stress and DNA damage. Site-specific adaptations of the genomes included the presence of additional genes for heavy metal transporters, multiple types of ATP synthases, and divergent genes for aquaporins. CONCLUSION We provide the first genomic characterization of hyperarid soil microbiomes below the boulders in the Atacama Desert, and report abundant and highly adapted Thaumarchaeaota with ammonia oxidation and carbon fixation potential. Ca. Nitrosodeserticola genomes provide the first metabolic and physiological insight into a thaumarchaeal lineage found in globally distributed terrestrial habitats characterized by various environmental stresses. We consequently expand not only the known genetic repertoire of Thaumarchaeota but also the diversity and microbiome functioning in hyperarid ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yunha Hwang
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Dirk Schulze-Makuch
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany.
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), 14473, Potsdam, Germany.
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Stechlin, Germany.
- School of the Environment, Washington State University, Pullman, WA, 99164, USA.
| | - Felix L Arens
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
| | - Johan S Saenz
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, 85758, Oberschleißheim, Germany
| | - Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Christof Sager
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
| | - Till L V Bornemann
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Weishu Zhao
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alessandro Airo
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, 85758, Oberschleißheim, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 , Essen, Germany.
| |
Collapse
|
41
|
Greening C, Islam ZF, Bay SK. Hydrogen is a major lifeline for aerobic bacteria. Trends Microbiol 2021; 30:330-337. [PMID: 34462186 DOI: 10.1016/j.tim.2021.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022]
Abstract
Molecular hydrogen (H2) is available in trace amounts in most ecosystems through atmospheric, biological, geochemical, and anthropogenic sources. Aerobic bacteria use this energy-dense gas, including at atmospheric concentrations, to support respiration and carbon fixation. While it was thought that aerobic H2 consumers are rare community members, here we summarize evidence suggesting that they are dominant throughout soils and other aerated ecosystems. Bacterial cultures from at least eight major phyla can consume atmospheric H2. At the ecosystem scale, H2 consumers are abundant, diverse, and active across diverse soils and are key primary producers in extreme environments such as hyper-arid deserts. On this basis, we propose that H2 is a universally available energy source for the survival of aerobic bacteria.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| | - Zahra F Islam
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Sean K Bay
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia; School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|