1
|
Payne D, Keller LM, Larson J, Bothner B, Colman DR, Boyd ES. Alternative sources of molybdenum for Methanococcus maripaludis and their implication for the evolution of molybdoenzymes. Commun Biol 2024; 7:1337. [PMID: 39414898 PMCID: PMC11484787 DOI: 10.1038/s42003-024-07049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Molybdoenzymes are essential in global nitrogen, carbon, and sulfur cycling. To date, the only known bioavailable source of molybdenum (Mo) is molybdate. However, in the sulfidic and anoxic (euxinic) habitats that predominate in modern subsurface environments and that were pervasive prior to Earth's widespread oxygenation, Mo occurs as soluble tetrathiomolybdate ion and molybdenite mineral that is not known to be bioavailable. This presents a paradox for how organisms obtain Mo to support molybdoenzymes in these environments. Here, we show that tetrathiomolybdate and molybdenite sustain the high Mo demand of a model anaerobic methanogen, Methanococcus maripaludis, grown via Mo-dependent formate dehydrogenase, formylmethanofuran dehydrogenase, and nitrogenase. Cells grown with tetrathiomolybdate and molybdenite have similar growth kinetics, Mo content, and transcript levels of proteins involved in Mo transport and cofactor biosynthesis when compared to those grown with molybdate, implying similar mechanisms of transport and cofactor biosynthesis. These results help to reconcile the paradox of how Mo is acquired in modern and ancient anaerobes and provide new insight into how molybdoenzymes could have evolved prior to Earth's oxygenation.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
2
|
Liao Q, Sun L, Lu H, Qin X, Liu J, Zhu X, Li XY, Lin L, Li RH. Iron driven organic carbon capture, pretreatment, recovery and upgrade in wastewater: Process technologies, mechanisms, and implications. WATER RESEARCH 2024; 263:122173. [PMID: 39111213 DOI: 10.1016/j.watres.2024.122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024]
Abstract
Wastewater treatment plants face significant challenges in transitioning from energy-intensive systems to carbon-neutral, energy-saving systems, and a large amount of chemical energy in wastewater remains untapped. Iron is widely used in modern wastewater treatment. Research shows that leveraging the coupled redox relationship of iron and carbon can redirect this energy (in the form of carbon) towards resource utilization. Therefore, re-examining the application of iron in existing wastewater carbon processes is particularly important. In this review, we investigate the latest research progress on iron for wastewater carbon flow restructuring. During the iron-based chemically enhanced primary treatment (CEPT) process, organic carbon is captured into sludge and its bioavailability is enhanced through iron-based advanced oxidation processes (AOP) pretreatment, further being recovered or upgraded to value-added products in anaerobic biological processes. We discuss the roles and mechanisms of iron in CEPT, AOP, anaerobic biological processes, and biorefining in driving organic carbon conversion. The dosage of iron, as a critical parameter, significantly affects the recovery and utilization of sludge carbon resources, particularly by promoting effective electron transfer. We propose a pathway for beneficial conversion of wastewater organic carbon driven by iron and analyze the benefits of the main products in detail. Through this review, we hope to provide new insights into the application of iron chemicals and current wastewater treatment models.
Collapse
Affiliation(s)
- Quan Liao
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lianpeng Sun
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Hui Lu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Xianglin Qin
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Junhong Liu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinzhe Zhu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Lin Lin
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Ruo-Hong Li
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| |
Collapse
|
3
|
Fernandes-Martins MC, Springer C, Colman DR, Boyd ES. Acquisition of elemental sulfur by sulfur-oxidising Sulfolobales. Environ Microbiol 2024; 26:e16691. [PMID: 39206712 DOI: 10.1111/1462-2920.16691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Elemental sulfur (S8 0)-oxidising Sulfolobales (Archaea) dominate high-temperature acidic hot springs (>80°C, pH <4). However, genomic analyses of S8 0-oxidising members of the Sulfolobales reveal a patchy distribution of genes encoding sulfur oxygenase reductase (SOR), an S8 0 disproportionating enzyme attributed to S8 0 oxidation. Here, we report the S8 0-dependent growth of two Sulfolobales strains previously isolated from acidic hot springs in Yellowstone National Park, one of which associated with bulk S8 0 during growth and one that did not. The genomes of each strain encoded different sulfur metabolism enzymes, with only one encoding SOR. Dialysis membrane experiments showed that direct contact is not required for S8 0 oxidation in the SOR-encoding strain. This is attributed to the generation of hydrogen sulfide (H2S) from S8 0 disproportionation that can diffuse out of the cell to solubilise bulk S8 0 to form soluble polysulfides (Sx 2-) and/or S8 0 nanoparticles that readily diffuse across dialysis membranes. The Sulfolobales strain lacking SOR required direct contact to oxidise S8 0, which could be overcome by the addition of H2S. High concentrations of S8 0 inhibited the growth of both strains. These results implicate alternative strategies to acquire and metabolise sulfur in Sulfolobales and have implications for their distribution and ecology in their hot spring habitats.
Collapse
Affiliation(s)
| | - Carli Springer
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
4
|
Larson J, Tokmina-Lukaszewska M, Payne D, Spietz RL, Fausset H, Alam MG, Brekke BK, Pauley J, Hasenoehrl EJ, Shepard EM, Boyd ES, Bothner B. Impact of mineral and non-mineral sources of iron and sulfur on the metalloproteome of Methanosarcina barkeri. Appl Environ Microbiol 2024; 90:e0051624. [PMID: 39023267 PMCID: PMC11337800 DOI: 10.1128/aem.00516-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Methanogens often inhabit sulfidic environments that favor the precipitation of transition metals such as iron (Fe) as metal sulfides, including mackinawite (FeS) and pyrite (FeS2). These metal sulfides have historically been considered biologically unavailable. Nonetheless, methanogens are commonly cultivated with sulfide (HS-) as a sulfur source, a condition that would be expected to favor metal precipitation and thus limit metal availability. Recent studies have shown that methanogens can access Fe and sulfur (S) from FeS and FeS2 to sustain growth. As such, medium supplied with FeS2 should lead to higher availability of transition metals when compared to medium supplied with HS-. Here, we examined how transition metal availability under sulfidic (i.e., cells provided with HS- as sole S source) versus non-sulfidic (cells provided with FeS2 as sole S source) conditions impact the metalloproteome of Methanosarcina barkeri Fusaro. To achieve this, we employed size exclusion chromatography coupled with inductively coupled plasma mass spectrometry and shotgun proteomics. Significant changes were observed in the composition and abundance of iron, cobalt, nickel, zinc, and molybdenum proteins. Among the differences were alterations in the stoichiometry and abundance of multisubunit protein complexes involved in methanogenesis and electron transport chains. Our data suggest that M. barkeri utilizes the minimal iron-sulfur cluster complex and canonical cysteine biosynthesis proteins when grown on FeS2 but uses the canonical Suf pathway in conjunction with the tRNA-Sep cysteine pathway for iron-sulfur cluster and cysteine biosynthesis under sulfidic growth conditions.IMPORTANCEProteins that catalyze biochemical reactions often require transition metals that can have a high affinity for sulfur, another required element for life. Thus, the availability of metals and sulfur are intertwined and can have large impacts on an organismismal biochemistry. Methanogens often occupy anoxic, sulfide-rich (euxinic) environments that favor the precipitation of transition metals as metal sulfides, thereby creating presumed metal limitation. Recently, several methanogens have been shown to acquire iron and sulfur from pyrite, an abundant iron-sulfide mineral that was traditionally considered to be unavailable to biology. The work presented here provides new insights into the distribution of metalloproteins, and metal uptake of Methanosarcina barkeri Fusaro grown under euxinic or pyritic growth conditions. Thorough characterizations of this methanogen under different metal and sulfur conditions increase our understanding of the influence of metal availability on methanogens, and presumably other anaerobes, that inhabit euxinic environments.
Collapse
Affiliation(s)
- James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Rachel L. Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Md Gahangir Alam
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Brooklyn K. Brekke
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Jordan Pauley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Ethan J. Hasenoehrl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric M. Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
5
|
van der Graaf CM, Sánchez-España J, Ilin AM, Yusta I, Stams AJM, Sánchez-Andrea I. Micrometric pyrite catalyzes abiotic sulfidogenesis from elemental sulfur and hydrogen. Sci Rep 2024; 14:17702. [PMID: 39085257 PMCID: PMC11291890 DOI: 10.1038/s41598-024-66006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Hydrogen sulfide (H2S) in environments with temperatures below 100 °C is generally assumed to be of microbial origin, while abiotic H2S production is typically restricted to higher temperatures (T). In this study, we report an abiotic process for sulfidogenesis through the reduction of elemental sulfur (S0) by hydrogen (H2), mediated by pyrite (FeS2). The process was investigated in detail at pH 4 and 80 °C, but experimental conditions ranged between 40 and 80 °C and pH 4-6. The experiments were conducted with H2 as reducing molecule, and µm-sized spherical (but not framboidal) pyrite particles that formed in situ from the H2S, S0 and Fe2+ present in the experiments. Fe monosulfides, likely mackinawite, were identified as potential pyrite precursors. The absence of H2 production in controls, combined with geochemical modelling, suggests that pyrite formation occurred through the polysulfide pathway, which is unexpected under acidic conditions. Most spherical aggregates of authigenic pyrite were composed of nanometric, acicular crystals oriented in diverse directions, displaying varying degrees of organization. Although it was initially hypothesized that the catalytic properties were related to the surface structure, commercially sourced, milled pyrite particles (< 50 μm) mediated H2S production at comparable rates. This suggests that the catalytic properties of pyrite depend on particle size rather than surface structure, requiring pyrite surfaces to act as electron shuttles between S0 and H2.
Collapse
Affiliation(s)
- Charlotte M van der Graaf
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- Faculty of Civil Engineering and Geoscience, Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands.
| | - Javier Sánchez-España
- Planetary Geology Research Group, Department of Planetology and Habitability, Centro de Astrobiología (CAB, CSIC-INTA), 28850, Torrejón de Ardoz, Madrid, Spain.
| | - Andrey M Ilin
- Department of Geology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain
| | - Iñaki Yusta
- Department of Geology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- Department of Environmental Sciences for Sustainability, IE University, C. Cardenal Zúñiga, 12, 40003, Segovia, Spain.
| |
Collapse
|
6
|
Fausset H, Spietz RL, Cox S, Cooper G, Spurzem S, Tokmina-Lukaszewska M, DuBois J, Broderick JB, Shepard EM, Boyd ES, Bothner B. A shift between mineral and nonmineral sources of iron and sulfur causes proteome-wide changes in Methanosarcina barkeri. Microbiol Spectr 2024; 12:e0041823. [PMID: 38179920 PMCID: PMC10846266 DOI: 10.1128/spectrum.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Iron (Fe) and sulfur (S) are required elements for life, and changes in their availability can limit the ecological distribution and function of microorganisms. In anoxic environments, soluble Fe typically exists as ferrous iron [Fe(II)] and S as sulfide (HS-). These species exhibit a strong affinity that ultimately drives the formation of sedimentary pyrite (FeS2). Recently, paradigm-shifting studies indicate that Fe and S in FeS2 can be made bioavailable by methanogens through a reductive dissolution process. However, the impact of the utilization of FeS2, as opposed to canonical Fe and S sources, on the phenotype of cells is not fully understood. Here, shotgun proteomics was utilized to measure changes in the phenotype of Methanosarcina barkeri MS grown with FeS2, Fe(II)/HS-, or Fe(II)/cysteine. Shotgun proteomics tracked 1,019 proteins overall, with 307 observed to change between growth conditions. Functional characterization and pathway analyses revealed these changes to be systemic and largely tangential to Fe/S metabolism. As a final step, the proteomics data were viewed with respect to previously collected transcriptomics data to deepen the analysis. Presented here is evidence that M. barkeri adopts distinct phenotypes to exploit specific sources of Fe and S in its environment. This is supported by observed protein abundance changes across broad categories of cellular biology. DNA adjacent metabolism, central carbon metabolism methanogenesis, metal trafficking, quorum sensing, and porphyrin biosynthesis pathways are all features in the phenotypic differentiation. Differences in trace metal availability attributed to complexation with HS-, either as a component of the growth medium [Fe(II)/HS-] or generated through reduction of FeS2, were likely a major factor underpinning these phenotypic differences.IMPORTANCEThe methanogenic archaeon Methanosarcina barkeri holds great potential for industrial bio-mining and energy generation technologies. Much of the biochemistry of this microbe is poorly understood, and its characterization will provide a glimpse into biological processes that evolved close to life's origin. The discovery of its ability to extract iron and sulfur from bulk, solid-phase minerals shifted a longstanding paradigm that these elements were inaccessible to biological systems. The full elucidation of this process has the potential to help scientists and engineers extract valuable metals from low-grade ore and mine waste generating energy in the form of methane while doing so.
Collapse
Affiliation(s)
- Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Rachel L. Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Savannah Cox
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Gwendolyn Cooper
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Scott Spurzem
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Jennifer DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric M. Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
7
|
Kour M, Taborosi A, Boyd ES, Szilagyi RK. Development of molecular cluster models to probe pyrite surface reactivity. J Comput Chem 2023; 44:2486-2500. [PMID: 37650712 DOI: 10.1002/jcc.27213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic-scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S2 2- ) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low-energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano-reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron-transfer reactions can occur.
Collapse
Affiliation(s)
- Manjinder Kour
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Attila Taborosi
- Research Initiative for Supra-Materials, Faculty of Engineering, Shinshu University, Nagano, Japan
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Robert K Szilagyi
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
8
|
Spietz RL, Payne D, Boyd ES. Methanogens acquire and bioaccumulate nickel during reductive dissolution of nickelian pyrite. Appl Environ Microbiol 2023; 89:e0099123. [PMID: 37830848 PMCID: PMC10617489 DOI: 10.1128/aem.00991-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 10/14/2023] Open
Abstract
Nickel (Ni) is a key component of the active site metallocofactors of numerous enzymes required for methanogenesis, including [NiFe]-hydrogenase, carbon monoxide dehydrogenase, and methyl CoM reductase, leading to a high demand for Ni among methanogens. However, methanogens often inhabit euxinic environments that favor the sequestration of nickel as metal-sulfide minerals, such as nickelian pyrite [(Ni,Fe)S2], that have low solubilities and that are not considered bioavailable. Recently, however, several different model methanogens (Methanosarcina barkeri, Methanococcus voltae, Methanococcus maripaludis) were shown to reductively dissolve pyrite (FeS2) and to utilize dissolution products to meet iron and sulfur biosynthetic demands. Here, using M. barkeri Fusaro, and laboratory-synthesized (Ni,Fe)S2 that was physically isolated from cells using dialysis membranes, we show that trace nickel (<20 nM) abiotically solubilized from the mineral can support methanogenesis and limited growth, roughly fivefold less than the minimum concentration known to support methanogenesis. Furthermore, when provided direct contact with (Ni,Fe)S2, M. barkeri promoted the reductive dissolution of (Ni,Fe)S2 and assimilated solubilized nickel, iron, and sulfur as its sole source of these elements. Cells that reductively dissolved (Ni,Fe)S2 bioaccumulated approximately fourfold more nickel than those grown with soluble nickel and sulfide but had similar metabolic coupling efficiencies. While the mechanism for Ni uptake in archaeal methanogens is not known, homologs of the bacterial Nik uptake system were shown to be ubiquitous across methanogen genomes. Collectively, these observations indicate that (Ni,Fe)S2 is bioavailable in anoxic environments and that methanogens can convert this mineral into nickel-, iron-, and sulfur-containing metalloenzymes to support methanogenesis and growth. IMPORTANCE Nickel is an essential metal, and its availability has changed dramatically over Earth history due to shifts in the predominant type of volcanism in the late Archean that limited its availability and an increase in euxinic conditions in the early Proterozoic that favored its precipitation as nickel sulfide minerals. Observations presented herein indicate that the methanogen, Methanosarcina barkeri, can acquire nickel at low concentration (<20 nM) from soluble and mineral sources. Furthermore, M. barkeri was shown to actively reduce nickelian pyrite; use dissolution products to meet their iron, sulfur, and nickel demands; and bioaccumulate nickel. These data help to explain how M. barkeri (and possibly other methanogens and anaerobes) can acquire nickel in contemporary and past anoxic or euxinic environments.
Collapse
Affiliation(s)
- Rachel L. Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
9
|
Saini J, Deere TM, Lessner DJ. The minimal SUF system is not required for Fe-S cluster biogenesis in the methanogenic archaeon Methanosarcina acetivorans. Sci Rep 2023; 13:15120. [PMID: 37704679 PMCID: PMC10500019 DOI: 10.1038/s41598-023-42400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023] Open
Abstract
Iron-sulfur (Fe-S) proteins are essential for the ability of methanogens to carry out methanogenesis and biological nitrogen fixation (diazotrophy). Nonetheless, the factors involved in Fe-S cluster biogenesis in methanogens remain largely unknown. The minimal SUF Fe-S cluster biogenesis system (i.e., SufBC) is postulated to serve as the primary system in methanogens. Here, the role of SufBC in Methanosarcina acetivorans, which contains two sufCB gene clusters, was investigated. The CRISPRi-dCas9 and CRISPR-Cas9 systems were utilized to repress or delete sufC1B1 and sufC2B2, respectively. Neither the dual repression of sufC1B1 and sufC2B2 nor the deletion of both sufC1B1 and sufC2B2 affected the growth of M. acetivorans under any conditions tested, including diazotrophy. Interestingly, deletion of only sufC1B1 led to a delayed-growth phenotype under all growth conditions, suggesting that the deletion of sufC2B2 acts as a suppressor mutation in the absence of sufC1B1. In addition, the deletion of sufC1B1 and/or sufC2B2 did not affect the total Fe-S cluster content in M. acetivorans cells. Overall, these results reveal that the minimal SUF system is not required for Fe-S cluster biogenesis in M. acetivorans and challenge the universal role of SufBC in Fe-S cluster biogenesis in methanogens.
Collapse
Affiliation(s)
- Jasleen Saini
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Thomas M Deere
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Daniel J Lessner
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, AR, USA.
| |
Collapse
|
10
|
Payne D, Spietz RL, Newell DL, Dijkstra P, Boyd ES. Influence of sulfide on diazotrophic growth of the methanogen Methanococcus maripaludis and its implications for the origin of nitrogenase. Commun Biol 2023; 6:799. [PMID: 37524775 PMCID: PMC10390477 DOI: 10.1038/s42003-023-05163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Methanogens inhabit euxinic (sulfide-rich) or ferruginous (iron-rich) environments that promote the precipitation of transition metals as metal sulfides, such as pyrite, reducing metal or sulfur availability. Such environments have been common throughout Earth's history raising the question as to how anaerobes obtain(ed) these elements for the synthesis of enzyme cofactors. Here, we show a methanogen can synthesize molybdenum nitrogenase metallocofactors from pyrite as the source of iron and sulfur, enabling nitrogen fixation. Pyrite-grown, nitrogen-fixing cells grow faster and require 25-fold less molybdenum than cells grown under euxinic conditions. Growth yields are 3 to 8 times higher in cultures grown under ferruginous relative to euxinic conditions. Physiological, transcriptomic, and geochemical data indicate these observations are due to sulfide-promoted metal limitation, in particular molybdenum. These findings suggest that molybdenum nitrogenase may have originated in a ferruginous environment that titrated sulfide to form pyrite, facilitating the availability of sufficient iron, sulfur, and molybdenum for cofactor biosynthesis.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Dennis L Newell
- Department of Geosciences, Utah State University, Logan, UT, 84322, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
11
|
Jespersen M, Wagner T. Assimilatory sulfate reduction in the marine methanogen Methanothermococcus thermolithotrophicus. Nat Microbiol 2023:10.1038/s41564-023-01398-8. [PMID: 37277534 DOI: 10.1038/s41564-023-01398-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Methanothermococcus thermolithotrophicus is the only known methanogen that grows on sulfate as its sole sulfur source, uniquely uniting methanogenesis and sulfate reduction. Here we use physiological, biochemical and structural analyses to provide a snapshot of the complete sulfate reduction pathway of this methanogenic archaeon. We find that later steps in this pathway are catalysed by atypical enzymes. PAPS (3'-phosphoadenosine 5'-phosphosulfate) released by APS kinase is converted into sulfite and 3'-phosphoadenosine 5'-phosphate (PAP) by a PAPS reductase that is similar to the APS reductases of dissimilatory sulfate reduction. A non-canonical PAP phosphatase then hydrolyses PAP. Finally, the F420-dependent sulfite reductase converts sulfite to sulfide for cellular assimilation. While metagenomic and metatranscriptomic studies suggest that the sulfate reduction pathway is present in several methanogens, the sulfate assimilation pathway in M. thermolithotrophicus is distinct. We propose that this pathway was 'mix-and-matched' through the acquisition of assimilatory and dissimilatory enzymes from other microorganisms and then repurposed to fill a unique metabolic role.
Collapse
Affiliation(s)
- Marion Jespersen
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Tristan Wagner
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
12
|
Wang T, Yang X, Li Z, Chen W, Wen X, He Y, Ma C, Yang Z, Zhang C. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131682. [PMID: 37270963 DOI: 10.1016/j.jhazmat.2023.131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
The mechanisms by which eutrophication affects methylmercury (MeHg) production have not been comprehensively summarized, which hinders accurately predicting the MeHg risk in eutrophic lakes. In this review, we first discussed the effects of eutrophication on biogeochemical cycle of mercury (Hg). Special attentions were paid to the roles of algal organic matter (AOM) and iron (Fe)-sulfur (S)-phosphorus (P) dynamics in MeHg production. Finally, the suggestions for risk control of MeHg in eutrophic lakes were proposed. AOM can affect in situ Hg methylation by stimulating the abundance and activities of Hg methylating microorganisms and regulating Hg bioavailability, which are dependent on bacteria-strain and algae species, the molecular weight and composition of AOM as well as environmental conditions (e.g., light). Fe-S-P dynamics under eutrophication including sulfate reduction, FeS formation and P release could also play crucial but complicated roles in MeHg production, in which AOM may participate through influencing the dissolution and aggregation processes, structural order and surface properties of HgS nanoparticles (HgSNP). Future studies should pay more attention to the dynamics of AOM in responses to the changing environmental conditions (e.g., light penetration and redox fluctuations) and how such variations will subsequently affect MeHg production. The effects of Fe-S-P dynamics on MeHg production under eutrophication also deserve further investigations, especially the interactions between AOM and HgSNP. Remediation strategies with lower disturbance, greater stability and less cost like the technology of interfacial O2 nanobubbles are urgent to be explored. This review will deepen our understanding of the mechanisms of MeHg production in eutrophic lakes and provide theoretical guidance for its risk control.
Collapse
Affiliation(s)
- Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
13
|
Sheng Y, Baars O, Guo D, Whitham J, Srivastava S, Dong H. Mineral-Bound Trace Metals as Cofactors for Anaerobic Biological Nitrogen Fixation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7206-7216. [PMID: 37116091 DOI: 10.1021/acs.est.3c01371] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitrogenase is the only known biological enzyme capable of reducing N2 to bioavailable NH3. Most nitrogenases use Mo as a metallocofactor, while alternative cofactors V and Fe are also viable. Both geological and bioinformatic evidence suggest an ancient origin of Mo-based nitrogenase in the Archean, despite the low concentration of dissolved Mo in the Archean oceans. This apparent paradox would be resolvable if mineral-bound Mo were bioavailable for nitrogen fixation by ancient diazotrophs. In this study, the bioavailability of mineral-bound Mo, V, and Fe was determined by incubating an obligately anaerobic diazotroph Clostridium kluyveri with Mo-, V-, and Fe-bearing minerals (molybdenite, cavansite, and ferrihydrite, respectively) and basalt under diazotrophic conditions. The results showed that C. kluyveri utilized mineral-associated metals to express nitrogenase genes and fix nitrogen, as measured by the reverse transcription quantitative polymerase chain reaction and acetylene reduction assay, respectively. C. kluyveri secreted chelating molecules to extract metals from the minerals. As a result of microbial weathering, mineral surface chemistry significantly changed, likely due to surface coating by microbial exudates for metal extraction. These results provide important support for the ancient origin of Mo-based nitrogenase, with profound implications for coevolution of the biosphere and geosphere.
Collapse
Affiliation(s)
- Yizhi Sheng
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Dongyi Guo
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Jason Whitham
- Department of Plant and Molecular Biology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shreya Srivastava
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
14
|
Steward KF, Refai M, Dyer WE, Copié V, Lachowiec J, Bothner B. Acute stress reduces population-level metabolic and proteomic variation. BMC Bioinformatics 2023; 24:87. [PMID: 36882728 PMCID: PMC9993721 DOI: 10.1186/s12859-023-05185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Variation in omics data due to intrinsic biological stochasticity is often viewed as a challenging and undesirable feature of complex systems analyses. In fact, numerous statistical methods are utilized to minimize the variation among biological replicates. RESULTS We demonstrate that the common statistics relative standard deviation (RSD) and coefficient of variation (CV), which are often used for quality control or part of a larger pipeline in omics analyses, can also be used as a metric of a physiological stress response. Using an approach we term Replicate Variation Analysis (RVA), we demonstrate that acute physiological stress leads to feature-wide canalization of CV profiles of metabolomes and proteomes across biological replicates. Canalization is the repression of variation between replicates, which increases phenotypic similarity. Multiple in-house mass spectrometry omics datasets in addition to publicly available data were analyzed to assess changes in CV profiles in plants, animals, and microorganisms. In addition, proteomics data sets were evaluated utilizing RVA to identify functionality of reduced CV proteins. CONCLUSIONS RVA provides a foundation for understanding omics level shifts that occur in response to cellular stress. This approach to data analysis helps characterize stress response and recovery, and could be deployed to detect populations under stress, monitor health status, and conduct environmental monitoring.
Collapse
Affiliation(s)
- Katherine F Steward
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Mohammed Refai
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - William E Dyer
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.,Thermal Biology Institute, Montana State University, Bozeman, USA
| | - Jennifer Lachowiec
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA. .,Thermal Biology Institute, Montana State University, Bozeman, USA.
| |
Collapse
|
15
|
Boyd ES, Spietz RL, Kour M, Colman DR. A naturalist perspective of microbiology: Examples from methanogenic archaea. Environ Microbiol 2023; 25:184-198. [PMID: 36367391 DOI: 10.1111/1462-2920.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Storytelling has been the primary means of knowledge transfer over human history. The effectiveness and reach of stories are improved when the message is appropriate for the target audience. Oftentimes, the stories that are most well received and recounted are those that have a clear purpose and that are told from a variety of perspectives that touch on the varied interests of the target audience. Whether scientists realize or not, they are accustomed to telling stories of their own scientific discoveries through the preparation of manuscripts, presentations, and lectures. Perhaps less frequently, scientists prepare review articles or book chapters that summarize a body of knowledge on a given subject matter, meant to be more holistic recounts of a body of literature. Yet, by necessity, such summaries are often still narrow in their scope and are told from the perspective of a particular discipline. In other words, interdisciplinary reviews or book chapters tend to be the rarity rather than the norm. Here, we advocate for and highlight the benefits of interdisciplinary perspectives on microbiological subjects.
Collapse
Affiliation(s)
- Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Manjinder Kour
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
16
|
Dunham EC, Keller LM, Skidmore ML, Mitchell KR, Boyd ES. Iron Minerals Influence the Assembly of Microbial Communities in a Basaltic Glacial Catchment. FEMS Microbiol Ecol 2022; 99:6960670. [PMID: 36565717 DOI: 10.1093/femsec/fiac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022] Open
Abstract
The influence of mineralogy on the assembly of microbial communities in glacial environments has been difficult to assess due to complications in isolating mineralogy from other variables. Here we assess the abundance and composition of microbial communities that colonized defined minerals incubated for 12 months in two meltwater streams (N and S) emanating from Kaldalónsjökull (Kal), a basalt-hosted glacier in Iceland. The two streams shared similar meltwater geochemistry as well as bedrock and proglacial sediment elemental compositions. Yet genomic DNA and PCR-amplifiable 16S rRNA genes were detected only in Kal S. The amount of recoverable DNA was highest for hematite incubated in Kal S and the composition of 16S rRNA genes recovered from Kal S sediments was most like those recovered from hematite and magnetite, an effect driven largely by similarities in the relative abundance of the putative hydrogenotrophic iron reducer Rhodoferax. We suggest this is attributable to comminution and weathering reactions involving exposed iron silicate minerals that generate and release hydrogen and Fe(III) that can be coupled to support microbial metabolism in Kaldalónsjökull, and possibly other basaltic habitats. The low abundance of cells in Kal N could be due to low availability of Fe(III) or another substrate.
Collapse
Affiliation(s)
- Eric C Dunham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Mark L Skidmore
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, United States
| | - K Rebecca Mitchell
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, United States
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
17
|
Spietz RL, Payne D, Szilagyi R, Boyd ES. Reductive biomining of pyrite by methanogens. Trends Microbiol 2022; 30:1072-1083. [PMID: 35624031 DOI: 10.1016/j.tim.2022.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/13/2023]
Abstract
Pyrite (FeS2) is the most abundant iron sulfide mineral in Earth's crust. Until recently, FeS2 has been considered a sink for iron (Fe) and sulfur (S) at low temperature in the absence of oxygen or oxidative weathering, making these elements unavailable to biology. However, anaerobic methanogens can transfer electrons extracellularly to reduce FeS2 via direct contact with the mineral. Reduction of FeS2 occurs through a multistep process that generates aqueous sulfide (HS-) and FeS2-associated pyrrhotite (Fe1-xS). Subsequent dissolution of Fe1-xS provides Fe(II)(aq), but not HS-, that rapidly complexes with HS-(aq) generated from FeS2 reduction to form soluble iron sulfur clusters [nFeS(aq)]. Cells assimilate nFeS(aq) to meet Fe/S nutritional demands by mobilizing and hyperaccumulating Fe and S from FeS2. As such, reductive dissolution of FeS2 by methanogens has important implications for element cycling in anoxic habitats, both today and in the geologic past.
Collapse
Affiliation(s)
- Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Robert Szilagyi
- Department of Chemistry, University of British Columbia - Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
18
|
Steward KF, Payne D, Kincannon W, Johnson C, Lensing M, Fausset H, Németh B, Shepard EM, Broderick WE, Broderick JB, Dubois J, Bothner B. Proteomic Analysis of Methanococcus voltae Grown in the Presence of Mineral and Nonmineral Sources of Iron and Sulfur. Microbiol Spectr 2022; 10:e0189322. [PMID: 35876569 PMCID: PMC9431491 DOI: 10.1128/spectrum.01893-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Iron sulfur (Fe-S) proteins are essential and ubiquitous across all domains of life, yet the mechanisms underpinning assimilation of iron (Fe) and sulfur (S) and biogenesis of Fe-S clusters are poorly understood. This is particularly true for anaerobic methanogenic archaea, which are known to employ more Fe-S proteins than other prokaryotes. Here, we utilized a deep proteomics analysis of Methanococcus voltae A3 cultured in the presence of either synthetic pyrite (FeS2) or aqueous forms of ferrous iron and sulfide to elucidate physiological responses to growth on mineral or nonmineral sources of Fe and S. The liquid chromatography-mass spectrometry (LCMS) shotgun proteomics analysis included 77% of the predicted proteome. Through a comparative analysis of intra- and extracellular proteomes, candidate proteins associated with FeS2 reductive dissolution, Fe and S acquisition, and the subsequent transport, trafficking, and storage of Fe and S were identified. The proteomic response shows a large and balanced change, suggesting that M. voltae makes physiological adjustments involving a range of biochemical processes based on the available nutrient source. Among the proteins differentially regulated were members of core methanogenesis, oxidoreductases, membrane proteins putatively involved in transport, Fe-S binding ferredoxin and radical S-adenosylmethionine proteins, ribosomal proteins, and intracellular proteins involved in Fe-S cluster assembly and storage. This work improves our understanding of ancient biogeochemical processes and can support efforts in biomining of minerals. IMPORTANCE Clusters of iron and sulfur are key components of the active sites of enzymes that facilitate microbial conversion of light or electrical energy into chemical bonds. The proteins responsible for transporting iron and sulfur into cells and assembling these elements into metal clusters are not well understood. Using a microorganism that has an unusually high demand for iron and sulfur, we conducted a global investigation of cellular proteins and how they change based on the mineral forms of iron and sulfur. Understanding this process will answer questions about life on early earth and has application in biomining and sustainable sources of energy.
Collapse
Affiliation(s)
- Katherine F. Steward
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Will Kincannon
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Christina Johnson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Malachi Lensing
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Brigitta Németh
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric M. Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - William E. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Jen Dubois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
19
|
Spietz RL, Payne D, Kulkarni G, Metcalf WW, Roden EE, Boyd ES. Investigating Abiotic and Biotic Mechanisms of Pyrite Reduction. Front Microbiol 2022; 13:878387. [PMID: 35615515 PMCID: PMC9124975 DOI: 10.3389/fmicb.2022.878387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pyrite (FeS2) has a very low solubility and therefore has historically been considered a sink for iron (Fe) and sulfur (S) and unavailable to biology in the absence of oxygen and oxidative weathering. Anaerobic methanogens were recently shown to reduce FeS2 and assimilate Fe and S reduction products to meet nutrient demands. However, the mechanism of FeS2 mineral reduction and the forms of Fe and S assimilated by methanogens remained unclear. Thermodynamic calculations described herein indicate that H2 at aqueous concentrations as low as 10-10 M favors the reduction of FeS2, with sulfide (HS-) and pyrrhotite (Fe1- x S) as products; abiotic laboratory experiments confirmed the reduction of FeS2 with dissolved H2 concentrations greater than 1.98 × 10-4 M H2. Growth studies of Methanosarcina barkeri provided with FeS2 as the sole source of Fe and S resulted in H2 production but at concentrations too low to drive abiotic FeS2 reduction, based on abiotic laboratory experimental data. A strain of M. barkeri with deletions in all [NiFe]-hydrogenases maintained the ability to reduce FeS2 during growth, providing further evidence that extracellular electron transport (EET) to FeS2 does not involve H2 or [NiFe]-hydrogenases. Physical contact between cells and FeS2 was required for mineral reduction but was not required to obtain Fe and S from dissolution products. The addition of a synthetic electron shuttle, anthraquinone-2,6-disulfonate, allowed for biological reduction of FeS2 when physical contact between cells and FeS2 was prohibited, indicating that exogenous electron shuttles can mediate FeS2 reduction. Transcriptomics experiments revealed upregulation of several cytoplasmic oxidoreductases during growth of M. barkeri on FeS2, which may indicate involvement in provisioning low potential electrons for EET to FeS2. Collectively, the data presented herein indicate that reduction of insoluble FeS2 by M. barkeri occurred via electron transfer from the cell surface to the mineral surface resulting in the generation of soluble HS- and mineral-associated Fe1- x S. Solubilized Fe(II), but not HS-, from mineral-associated Fe1- x S reacts with aqueous HS- yielding aqueous iron sulfur clusters (FeS aq ) that likely serve as the Fe and S source for methanogen growth and activity. FeS aq nucleation and subsequent precipitation on the surface of cells may result in accelerated EET to FeS2, resulting in positive feedback between cell activity and FeS2 reduction.
Collapse
Affiliation(s)
- Rachel L. Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Gargi Kulkarni
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - William W. Metcalf
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Eric E. Roden
- Department of Geosciences, University of Wisconsin, Madison, WI, United States
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
20
|
Gorlas A, Mariotte T, Morey L, Truong C, Bernard S, Guigner JM, Oberto J, Baudin F, Landrot G, Baya C, Le Pape P, Morin G, Forterre P, Guyot F. Precipitation of greigite and pyrite induced by Thermococcales: an advantage to live in Fe- and S-rich environments? Environ Microbiol 2022; 24:626-642. [PMID: 35102700 PMCID: PMC9306673 DOI: 10.1111/1462-2920.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
Thermococcales, a major order of archaea inhabiting the iron- and sulfur-rich anaerobic parts of hydrothermal deep-sea vents, have been shown to rapidly produce abundant quantities of pyrite FeS2 in iron-sulfur-rich fluids at 85°C, suggesting that they may contribute to the formation of 'low temperature' FeS2 in their ecosystem. We show that this process operates in Thermococcus kodakarensis only when zero-valent sulfur is directly available as intracellular sulfur vesicles. Whether in the presence or absence of zero-valent sulfur, significant amounts of Fe3 S4 greigite nanocrystals are formed extracellularly. We also show that mineralization of iron sulfides induces massive cell mortality but that concomitantly with the formation of greigite and/or pyrite, a new generation of cells can grow. This phenomenon is observed for Fe concentrations of 5 mM but not higher suggesting that above a threshold in the iron pulse all cells are lysed. We hypothesize that iron sulfides precipitation on former cell materials might induce the release of nutrients in the mineralization medium further used by a fraction of surviving non-mineralized cells allowing production of new alive cells. This suggests that biologically induced mineralization of iron-sulfides could be part of a survival strategy employed by Thermococcales to cope with mineralizing high-temperature hydrothermal environments.
Collapse
Affiliation(s)
- A Gorlas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - T Mariotte
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - L Morey
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - C Truong
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - S Bernard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - J-M Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - J Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - F Baudin
- Institut des Sciences de la Terre de Paris, UMR 7193 - Sorbonne Université - CNRS, Paris, 75005, France
| | - G Landrot
- Synchrotron SOLEIL - SAMBA beamline, Saint-Aubin, 91190, France
| | - C Baya
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - P Le Pape
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - G Morin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - P Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - F Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
21
|
Do methanogenic archaea cause reductive pyrite dissolution in subsurface sediments? THE ISME JOURNAL 2022; 16:1-2. [PMID: 34253852 PMCID: PMC8692408 DOI: 10.1038/s41396-021-01055-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023]
|
22
|
Pathways of Iron and Sulfur Acquisition, Cofactor Assembly, Destination, and Storage in Diverse Archaeal Methanogens and Alkanotrophs. J Bacteriol 2021; 203:e0011721. [PMID: 34124941 PMCID: PMC8351635 DOI: 10.1128/jb.00117-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Archaeal methanogens, methanotrophs, and alkanotrophs have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, traffic, deploy, and store these elements. Here, we examined the distribution of homologs of proteins mediating key steps in Fe/S metabolism in model microorganisms, including iron(II) sensing/uptake (FeoAB), sulfide extraction from cysteine (SufS), and the biosynthesis of iron-sulfur [Fe-S] clusters (SufBCDE), siroheme (Pch2 dehydrogenase), protoheme (AhbABCD), cytochrome c (Cyt c) (CcmCF), and iron storage/detoxification (Bfr, FtrA, and IssA), among 326 publicly available, complete or metagenome-assembled genomes of archaeal methanogens/methanotrophs/alkanotrophs. The results indicate several prevalent but nonuniversal features, including FeoB, SufBC, and the biosynthetic apparatus for the basic tetrapyrrole scaffold, as well as its siroheme (and F430) derivatives. However, several early-diverging genomes lacked SufS and pathways to synthesize and deploy heme. Genomes encoding complete versus incomplete heme biosynthetic pathways exhibited equivalent prevalences of [Fe-S] cluster binding proteins, suggesting an expansion of catalytic capabilities rather than substitution of heme for [Fe-S] in the former group. Several strains with heme binding proteins lacked heme biosynthesis capabilities, while other strains with siroheme biosynthesis capability lacked homologs of known siroheme binding proteins, indicating heme auxotrophy and unknown siroheme biochemistry, respectively. While ferritin proteins involved in ferric oxide storage were widespread, those involved in storing Fe as thioferrate were unevenly distributed. Collectively, the results suggest that differences in the mechanisms of Fe and S acquisition, deployment, and storage have accompanied the diversification of methanogens/methanotrophs/alkanotrophs, possibly in response to differential availability of these elements as these organisms evolved. IMPORTANCE Archaeal methanogens, methanotrophs, and alkanotrophs, argued to be among the most ancient forms of life, have a high demand for iron (Fe) and sulfur (S) for cofactor biosynthesis, among other uses. Here, using comparative bioinformatic approaches applied to 326 genomes, we show that major differences in Fe/S acquisition, trafficking, deployment, and storage exist in this group. Variation in these characters was generally congruent with the phylogenetic placement of these genomes, indicating that variation in Fe/S usage and deployment has contributed to the diversification and ecology of these organisms. However, incongruency was observed among the distribution of cofactor biosynthesis pathways and known protein destinations for those cofactors, suggesting auxotrophy or yet-to-be-discovered pathways for cofactor biosynthesis.
Collapse
|
23
|
Examining pathways of iron and sulfur acquisition, trafficking, deployment, and storage in mineral-grown methanogen cells. J Bacteriol 2021; 203:e0014621. [PMID: 34251867 PMCID: PMC8516115 DOI: 10.1128/jb.00146-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanogens have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, deploy, and store these elements and how this, in turn, affects their physiology. Methanogens were recently shown to reduce pyrite (FeS2) generating aqueous iron-sulfide (FeS(aq)) clusters that are likely assimilated as a source of Fe and S. Here, we compare the phenotype of Methanococcus voltae when grown with FeS2 or ferrous iron (Fe(II)) and sulfide (HS-). FeS2-grown cells are 33% smaller yet have 193% more Fe than Fe(II)/HS--grown cells. Whole cell EPR revealed similar distributions of paramagnetic Fe, although FeS2-grown cells showed a broad spectral feature attributed to intracellular thioferrate-like nanoparticles. Differential proteomic analyses showed similar expression of core methanogenesis enzymes, indicating that Fe and S source does not substantively alter the energy metabolism of cells. However, a homolog of the Fe(II) transporter FeoB and its putative transcriptional regulator DtxR were up-expressed in FeS2-grown cells, suggesting that cells sense Fe(II) limitation. Two homologs of IssA, a protein putatively involved in coordinating thioferrate nanoparticles, were also up-expressed in FeS2-grown cells. We interpret these data to indicate that, in FeS2-grown cells, DtxR cannot sense Fe(II) and therefore cannot down-regulate FeoB. We suggest this is due to the transport of Fe(II) complexed with sulfide (FeS(aq)) leading to excess Fe that is sequestered by IssA as a thioferrate-like species. This model provides a framework for the design of targeted experiments aimed at further characterizing Fe acquisition and homeostasis in M. voltae and other methanogens. IMPORTANCE FeS2 is the most abundant sulfide mineral in the Earth's crust and is common in environments inhabited by methanogenic archaea. FeS2 can be reduced by methanogens, yielding aqueous FeS(aq) clusters that are thought to be a source of Fe and S. Here, we show that growth of Methanococcus voltae on FeS2 results in smaller cell size and higher Fe content per cell, with Fe likely stored intracellularly as thioferrate-like nanoparticles. Fe(II) transporters and storage proteins were up-regulated in FeS2-grown cells. These responses are interpreted to result from cells incorrectly sensing Fe(II) limitation due to assimilation of Fe(II) as FeS(aq). These findings have implications for our understanding of how Fe/S availability influences methanogen physiology and the biogeochemical cycling of these elements.
Collapse
|