1
|
Xiao W, Weissman JL, Johnson PLF. Ecological drivers of CRISPR immune systems. mSystems 2024:e0056824. [PMID: 39503509 DOI: 10.1128/msystems.00568-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR-Cas is the only known adaptive immune system of prokaryotes. It is a powerful defense system against mobile genetic elements such as bacteriophages. While CRISPR-Cas systems can be found throughout the prokaryotic tree of life, they are distributed unevenly across taxa and environments. Since adaptive immunity is more useful in environments where pathogens persist or reoccur, the density and/or diversity of the host/pathogen community may drive the uneven distribution of CRISPR systems. We directly tested hypotheses connecting CRISPR incidence with prokaryotic density/diversity by analyzing 16S rRNA and metagenomic data from publicly available environmental sequencing projects. In terms of density, we found that CRISPR systems are significantly favored in lower abundance (less dense) taxa and disfavored in higher abundance taxa, at least in marine environments. When we extended this work to compare taxonomic diversity between samples, we found CRISPR system incidence strongly correlated with diversity in human oral environments. Together, these observations confirm that, at least in certain types of environments, the prokaryotic ecological context indeed plays a key role in selecting for CRISPR immunity. IMPORTANCE Microbes must constantly defend themselves against viral pathogens, and a large proportion of prokaryotes do so using the highly effective CRISPR-Cas adaptive immune system. However, many prokaryotes do not. We investigated the ecological factors behind this uneven distribution of CRISPR-Cas immune systems in natural microbial populations. We found strong patterns linking CRISPR-Cas systems to prokaryotic density within ocean environments and to prokaryotic diversity within human oral environments. Our study validates previous within-lab experimental results that suggested these factors might be important and confirms that local environment and ecological context interact to select for CRISPR immunity.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - J L Weissman
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
- Department of Biology, The City College of New York, New York, New York, USA
| | - Philip L F Johnson
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Tang A, Zhang J, Huang J, Deng Y, Wang D, Yu P, Zhao R, Wang Y, Chen Z, Zhang T, Li B. Decrypting the viral community in aerobic activated sludge reactors treating antibiotic production wastewater. WATER RESEARCH 2024; 265:122253. [PMID: 39167968 DOI: 10.1016/j.watres.2024.122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Viruses are the most abundant yet understudied members that may influence microbial metabolism in activated sludge treating antibiotic production wastewater. This study comprehensively investigated virome community characteristics under the selection pressure of nine types and different concentrations of antibiotics using a metagenomics approach. Of the 15,514 total viral operational taxonomic units (tOTUs) recovered, only 37.5 % were annotated. Antibiotics altered the original viral community structure in activated sludge. The proportion of some pathogenic viral families, including Herpesviridae_like, increased significantly in reactors treating erythromycin production wastewater. In total, 16.5 % of the tOTUs were associated with two or more hosts. tOTUs rarely carried antibiotic resistance genes (ARGs), and the ARG types in the tOTUs did not match the ARGs carried by the bacterial hosts. This suggests that transduction contributes little to the horizontal ARG transfer. Auxiliary metabolic genes (AMGs) were prevalent in tOTUs, and those involved in folate biosynthesis were particularly abundant, indicating their potential to mitigate antibiotic-induced host damage. This study provides comprehensive insights into the virome community in activated sludge treating antibiotic production wastewater and sheds light on the potential role of viral AMGs in mitigating antibiotic-induced stress.
Collapse
Affiliation(s)
- Aixi Tang
- Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiayu Zhang
- Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Huang
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Renxin Zhao
- Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yulin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Zihan Chen
- Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Bing Li
- Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Rahlff J, Westmeijer G, Weissenbach J, Antson A, Holmfeldt K. Surface microlayer-mediated virome dissemination in the Central Arctic. MICROBIOME 2024; 12:218. [PMID: 39449105 PMCID: PMC11515562 DOI: 10.1186/s40168-024-01902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/06/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Aquatic viruses act as key players in shaping microbial communities. In polar environments, they face significant challenges such as limited host availability and harsh conditions. However, due to the restricted accessibility of these ecosystems, our understanding of viral diversity, abundance, adaptations, and host interactions remains limited. RESULTS To fill this knowledge gap, we studied viruses from atmosphere-close aquatic ecosystems in the Central Arctic and Northern Greenland. Aquatic samples for virus-host analysis were collected from ~60 cm depth and the submillimeter surface microlayer (SML) during the Synoptic Arctic Survey 2021 on icebreaker Oden in the Arctic summer. Water was sampled from a melt pond and open water before undergoing size-fractioned filtration, followed by genome-resolved metagenomic and cultivation investigations. The prokaryotic diversity in the melt pond was considerably lower compared to that of open water. The melt pond was dominated by a Flavobacterium sp. and Aquiluna sp., the latter having a relatively small genome size of 1.2 Mb and the metabolic potential to generate ATP using the phosphate acetyltransferase-acetate kinase pathway. Viral diversity on the host fraction (0.2-5 µm) of the melt pond was strikingly limited compared to that of open water. From the 1154 viral operational taxonomic units (vOTUs), of which two-thirds were predicted bacteriophages, 17.2% encoded for auxiliary metabolic genes (AMGs) with metabolic functions. Some AMGs like glycerol-3-phosphate cytidylyltransferase and ice-binding like proteins might serve to provide cryoprotection for the host. Prophages were often associated with SML genomes, and two active prophages of new viral genera from the Arctic SML strain Leeuwenhoekiella aequorea Arc30 were induced. We found evidence that vOTU abundance in the SML compared to that of ~60 cm depth was more positively correlated with the distribution of a vOTU across five different Arctic stations. CONCLUSIONS The results indicate that viruses employ elaborate strategies to endure in extreme, host-limited environments. Moreover, our observations suggest that the immediate air-sea interface serves as a platform for viral distribution in the Central Arctic. Video Abstract.
Collapse
Affiliation(s)
- Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | - George Westmeijer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Julia Weissenbach
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Alfred Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
4
|
Cook LSJ, Briscoe AG, Fonseca VG, Boenigk J, Woodward G, Bass D. Microbial, holobiont, and Tree of Life eDNA/eRNA for enhanced ecological assessment. Trends Microbiol 2024:S0966-842X(24)00173-2. [PMID: 39164135 DOI: 10.1016/j.tim.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024]
Abstract
Microbial environmental DNA and RNA (collectively 'eNA') originate from a diverse and abundant array of microbes present in environmental samples. These eNA signals, largely representing whole organisms, serve as a powerful complement to signals derived from fragments or remnants of larger organisms. Integrating microbial data into the toolbox of ecosystem assessments and biotic indices therefore has the potential to transform how we use eNA data to understand biodiversity dynamics and ecosystem functions, and to inform the next generation of environmental monitoring. Incorporating holobiont and Tree of Life approaches into eNA analyses offers further holistic insight into the range of ecological interactions between microbes and other organisms, paving the way for advancing our understanding of, and ultimately manipulating ecosystem properties pertinent to environmental management, conservation, wildlife health, and food production.
Collapse
Affiliation(s)
- Lauren S J Cook
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK; Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Andrew G Briscoe
- Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; NatureMetrics, Surrey Research Park, Guildford GU2 7HJ, UK
| | - Vera G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK; Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
5
|
Wu Z, Guo L, Wu Y, Yang M, Du S, Shao J, Zhang Z, Zhao Y. Novel phage infecting the Roseobacter CHUG lineage reveals a diverse and globally distributed phage family. mSphere 2024; 9:e0045824. [PMID: 38926906 PMCID: PMC11288001 DOI: 10.1128/msphere.00458-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteriophages play an essential role in shaping the diversity and metabolism of bacterial communities. Marine Roseobacter group is an abundant heterotrophic bacterial group that is involved in many major element cycles, especially carbon and sulfur. Members of the Roseobacter CHUG (Clade Hidden and Underappreciated Globally) lineage are globally distributed and are activated in pelagic marine environments. In this study, we isolated and characterized a phage, CRP-810, that infects the CHUG strain FZCC0198. The genome of CRP-810 was dissimilar to those of other known phages. Additionally, 251 uncultured viral genomes (UViGs) closely related to CRP-810 were obtained from the uncultivated marine viral contig databases. Comparative genomic and phylogenetic analyses revealed that CRP-810 and these related UViGs exhibited conserved genome synteny, representing a new phage family with at least eight subgroups. Most of the CRP-810-type phages contain an integrase gene, and CRP-810 can be integrated into the host genome. Further analysis revealed that three CRP-810-type members were prophages found in the genomes of marine SAR11, Poseidonocella, and Sphingomonadaceae. Finally, viromic read-mapping analysis showed that CRP-810-type phages were globally distributed and displayed distinct biogeographic patterns related to temperature and latitude. Many members with a lower G + C content were mainly distributed in the trade station, whereas members with a higher G + C content were mainly distributed in polar and westerlies station, indicating that the niche differentiation of phages was subject to host adaptation. Collectively, these findings identify a novel phage family and expand our understanding of phylogenetic diversity, evolution, and biogeography of marine phages. IMPORTANCE The Roseobacter CHUG lineage, affiliated with the Pelagic Roseobacter Cluster (PRC), is widely distributed in the global oceans and is active in oligotrophic seawater. However, knowledge of the bacteriophages that infect CHUG members is limited. In this study, a CHUG phage, CRP-810, that infects the CHUG strain FZCC0198, was isolated and shown to have a novel genomic architecture. In addition, 251 uncultured viral genomes closely related to CRP-810 were recovered and included in the analyses. Phylogenomic analyses revealed that the CRP-810-type phages represent a new phage family containing at least eight genus-level subgroups. Members of this family were predicted to infect various marine bacteria. We also demonstrated that the CRP-810-type phages are widely distributed in global oceans and display distinct biogeographic patterns related to latitude. Collectively, this study provides important insights into the genomic organization, diversity, and ecology of a novel phage family that infect ecologically important bacteria in the global ocean.
Collapse
Affiliation(s)
- Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luyuan Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabing Shao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Guo X, Zhang X, Shao H, McMinn A, Liang Y, Wang M. A novel flavobacterial phage abundant during green tide, representing a new viral family, Zblingviridae. Appl Environ Microbiol 2024; 90:e0036724. [PMID: 38953371 PMCID: PMC11267871 DOI: 10.1128/aem.00367-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Flavobacteriia are the dominant and active bacteria during algal blooms and play an important role in polysaccharide degradation. However, little is known about phages infecting Flavobacteriia, especially during green tide. In this study, a novel virus, vB_TgeS_JQ, infecting Flavobacteriia was isolated from the surface water of the Golden Beach of Qingdao, China. Transmission electron microscopy demonstrated that vB_TgeS_JQ had the morphology of siphovirus. The experiments showed that it was stable from -20°C to 45°C and pH 5 to pH 8, with latent and burst periods both lasting for 20 min. Genomic analysis showed that the phage vB_TgeS_JQ contained a 40,712-bp dsDNA genome with a GC content of 30.70%, encoding 74 open-reading frames. Four putative auxiliary metabolic genes were identified, encoding electron transfer-flavoprotein dehydrogenase, calcineurin-like phosphoesterase, phosphoribosyl-ATP pyrophosphohydrolase, and TOPRIM nucleotidyl hydrolase. The abundance of phage vB_TgeS_JQ was higher during Ulva prolifera (U. prolifera) blooms compared with other marine environments. The phylogenetic and comparative genomic analyses revealed that vB_TgeS_JQ exhibited significant differences from all other phage isolates in the databases and therefore was classified as an undiscovered viral family, named Zblingviridae. In summary, this study expands the knowledge about the genomic, phylogenetic diversity and distribution of flavobacterial phages (flavophages), especially their roles during U. prolifera blooms. IMPORTANCE The phage vB_TgeS_JQ was the first flavobacterial phage isolated during green tide, representing a new family in Caudoviricetes and named Zblingviridae. The abundance of phage vB_TgeS_JQ was higher during the Ulva prolifera blooms. This study provides insights into the genomic, phylogenetic diversity, and distribution of flavophages, especially their roles during U. prolifera blooms.
Collapse
Affiliation(s)
- Xiaoyue Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Mäkelä K, Laanto E, Sundberg LR. Determinants in the phage life cycle: The dynamic nature of ssDNA phage FLiP and host interactions under varying environmental conditions and growth phases. Environ Microbiol 2024; 26:e16670. [PMID: 38952172 DOI: 10.1111/1462-2920.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/24/2024] [Indexed: 07/03/2024]
Abstract
The influence of environmental factors on the interactions between phages and bacteria, particularly single-stranded DNA (ssDNA) phages, has been largely unexplored. In this study, we used Finnlakevirus FLiP, the first known ssDNA phage species with a lipid membrane, as our model phage. We examined the infectivity of FLiP with three Flavobacterium host strains, B330, B167 and B114. We discovered that FLiP infection is contingent on the host strain and conditions such as temperature and bacterial growth phase. FLiP can infect its hosts across a wide temperature range, but optimal phage replication varies with each host. We uncovered some unique aspects of phage infectivity: FLiP has limited infectivity in liquid-suspended cells, but it improves when cells are surface-attached. Moreover, FLiP infects stationary phase B167 and B114 cells more rapidly and efficiently than exponentially growing cells, a pattern not observed with the B330 host. We also present the first experimental evidence of endolysin function in ssDNA phages. The activity of FLiP's lytic enzymes was found to be condition-dependent. Our findings underscore the importance of studying phage ecology in contexts that are relevant to the environment, as both the host and the surrounding conditions can significantly alter the outcome of phage-host interactions.
Collapse
Affiliation(s)
- Kati Mäkelä
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Elina Laanto
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
8
|
Piontek J, Hassenrück C, Zäncker B, Jürgens K. Environmental control and metabolic strategies of organic-matter-responsive bacterioplankton in the Weddell Sea (Antarctica). Environ Microbiol 2024; 26:e16675. [PMID: 39022885 DOI: 10.1111/1462-2920.16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024]
Abstract
Heterotrophic microbial communities play a significant role in driving carbon fluxes in marine ecosystems. Despite their importance, these communities remain understudied in remote polar oceans, which are known for their substantial contribution to the biological drawdown of atmospheric carbon dioxide. Our research focused on understanding the environmental factors and genetic makeup of key bacterial players involved in carbon remineralization in the Weddell Sea, including its coastal polynyas. Our experiments demonstrated that the combination of labile organic matter supply and temperature increase synergistically boosted bacterial growth. This suggests that, besides low seawater temperature, carbon limitation also hinders heterotrophic bacterial activity. Through the analysis of metagenome-assembled genomes, we discovered distinct genomic adaptation strategies in Bacteroidia and Gammaproteobacteria, both of which respond to organic matter. Both natural phytoplankton blooms and experimental addition of organic matter favoured Bacteroidia, which possess a large number of gene copies and a wide range of functional membrane transporters, glycoside hydrolases, and aminopeptidases. In contrast, the genomes of organic-matter-responsive Gammaproteobacteria were characterized by high densities of transcriptional regulators and transporters. Our findings suggest that bacterioplankton in the Weddell Sea, which respond to organic matter, employ metabolic strategies similar to those of their counterparts in temperate oceans. These strategies enable efficient growth at extremely low seawater temperatures, provided that organic carbon limitation is alleviated.
Collapse
|
9
|
Xiao W, Weissman JL, Johnson PLF. Ecological drivers of CRISPR immune systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594560. [PMID: 38952799 PMCID: PMC11216370 DOI: 10.1101/2024.05.16.594560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
CRISPR-Cas is the only known adaptive immune system of prokaryotes. It is a powerful defense system against mobile genetic elements such as bacteriophages. While CRISPR-Cas systems can be found throughout the prokaryotic tree of life, they are distributed unevenly across taxa and environments. Since adaptive immunity is more useful in environments where pathogens persist or reoccur, the density and/or diversity of the host/pathogen community may drive the uneven distribution of CRISPR system. We directly tested hypotheses connecting CRISPR incidence with prokaryotic density/diversity by analyzing 16S rRNA and metagenomic data from publicly available environmental sequencing projects. In terms of density, we found that CRISPR systems are significantly favored in lower abundance (less dense) taxa and disfavored in higher abundance taxa, at least in marine environments. When we extended this work to compare taxonomic diversity between samples, we found CRISPR system incidence strongly correlated with diversity in human oral environments. Together, these observations confirm that, at least in certain types of environments, the prokaryotic ecological context indeed plays a key role in selecting for CRISPR immunity. Importance 2Microbes must constantly defend themselves against viral pathogens, and a large proportion of prokaryotes do so using the highly effective CRISPR-Cas adaptive immune system. However, many prokaryotes do not. We investigated the ecological factors behind this uneven distribution of CRISPR-Cas immune systems in natural microbial populations. We found strong patterns linking CRISPR-Cas systems to prokaryotic density within ocean environments and to prokaryotic diversity within human oral environments. Our study validates previous within-lab experimental results that suggested these factors might be important and confirms that local environment and ecological context interact to select for CRISPR immunity.
Collapse
|
10
|
Beidler I, Steinke N, Schulze T, Sidhu C, Bartosik D, Zühlke MK, Martin LT, Krull J, Dutschei T, Ferrero-Bordera B, Rielicke J, Kale V, Sura T, Trautwein-Schult A, Kirstein IV, Wiltshire KH, Teeling H, Becher D, Bengtsson MM, Hehemann JH, Bornscheuer UT, Amann RI, Schweder T. Alpha-glucans from bacterial necromass indicate an intra-population loop within the marine carbon cycle. Nat Commun 2024; 15:4048. [PMID: 38744821 PMCID: PMC11093988 DOI: 10.1038/s41467-024-48301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.
Collapse
Affiliation(s)
- Irena Beidler
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Nicola Steinke
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany
| | - Tim Schulze
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Chandni Sidhu
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Daniel Bartosik
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Marie-Katherin Zühlke
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Laura Torres Martin
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Joris Krull
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Theresa Dutschei
- Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Borja Ferrero-Bordera
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Julia Rielicke
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Vaikhari Kale
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Thomas Sura
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Anke Trautwein-Schult
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Inga V Kirstein
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, 27483, Helgoland, Germany
| | - Karen H Wiltshire
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, 27483, Helgoland, Germany
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Mia Maria Bengtsson
- Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany
| | - Uwe T Bornscheuer
- Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany.
- Institute of Marine Biotechnology, 17489, Greifswald, Germany.
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, 27483, Helgoland, Germany.
| |
Collapse
|
11
|
Takebe H, Tominaga K, Isozaki T, Watanabe T, Yamamoto K, Kamikawa R, Yoshida T. Taxonomic difference in marine bloom-forming phytoplanktonic species affects the dynamics of both bloom-responding prokaryotes and prokaryotic viruses. mSystems 2024; 9:e0094923. [PMID: 38441030 PMCID: PMC11019789 DOI: 10.1128/msystems.00949-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
The production of dissolved organic matter during phytoplankton blooms and consumption by heterotrophic prokaryotes promote marine carbon biogeochemical cycling. Although prokaryotic viruses presumably affect this process, their dynamics during blooms are not fully understood. Here, we investigated the effects of taxonomic difference in bloom-forming phytoplankton on prokaryotes and their viruses. We analyzed the dynamics of coastal prokaryotic communities and viruses under the addition of dissolved intracellular fractions from taxonomically distinct phytoplankton, the diatom Chaetoceros sp. (CIF) and the raphidophycean alga Heterosigma akashiwo (HIF), using microcosm experiments. Ribosomal RNA gene amplicon and viral metagenomic analyses revealed that particular prokaryotes and prokaryotic viruses specifically increased in either CIF or HIF, indicating that taxonomic difference in bloom-forming phytoplankton promotes distinct dynamics of not only the prokaryotic community but also prokaryotic viruses. Furthermore, combining our microcosm experiments with publicly available environmental data mining, we identified both known and novel possible host-virus pairs. In particular, the growth of prokaryotes associating with phytoplanktonic organic matter, such as Bacteroidetes (Polaribacter and NS9 marine group), Vibrio spp., and Rhodobacteriales (Nereida and Planktomarina), was accompanied by an increase in viruses predicted to infect Bacteroidetes, Vibrio, and Rhodobacteriales, respectively. Collectively, our findings suggest that changes in bloom-forming species can be followed by an increase in a specific group of prokaryotes and their viruses and that elucidating these tripartite relationships among specific phytoplankton, prokaryotes, and prokaryotic viruses improves our understanding of coastal biogeochemical cycling in blooms.IMPORTANCEThe primary production during marine phytoplankton bloom and the consumption of the produced organic matter by heterotrophic prokaryotes significantly contribute to coastal biogeochemical cycles. While the activities of those heterotrophic prokaryotes are presumably affected by viral infection, the dynamics of their viruses during blooms are not fully understood. In this study, we experimentally demonstrated that intracellular fractions of taxonomically distinct bloom-forming phytoplankton species, the diatom Chaetoceros sp. and the raphidophycean alga Heterosigma akashiwo, promoted the growth of taxonomically different prokaryotes and prokaryotic viruses. Based on their dynamics and predicted hosts of those viruses, we succeeded in detecting already-known and novel possible host-virus pairs associating with either phytoplankton species. Altogether, we propose that the succession of bloom-forming phytoplankton would change the composition of the abundant prokaryotes, resulting in an increase in their viruses. These changes in viral composition, depending on bloom-forming species, would alter the dynamics and metabolism of prokaryotes, affecting biogeochemical cycling in blooms.
Collapse
Affiliation(s)
- Hiroaki Takebe
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Tominaga
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Keigo Yamamoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Osaka, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Zhao J, Nair S, Zhang Z, Wang Z, Jiao N, Zhang Y. Macroalgal virosphere assists with host-microbiome equilibrium regulation and affects prokaryotes in surrounding marine environments. THE ISME JOURNAL 2024; 18:wrae083. [PMID: 38709876 PMCID: PMC11126160 DOI: 10.1093/ismejo/wrae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/23/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.
Collapse
Affiliation(s)
- Jiulong Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Shailesh Nair
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zenghu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengmeng Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Yongyu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
14
|
Turner D, Adriaenssens EM, Lehman SM, Moraru C, Kropinski AM. Bacteriophage Taxonomy: A Continually Evolving Discipline. Methods Mol Biol 2024; 2734:27-45. [PMID: 38066361 DOI: 10.1007/978-1-0716-3523-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
While taxonomy is an often underappreciated branch of science, it serves very important roles. Bacteriophage taxonomy has evolved from a discipline based mainly on morphology, characterized by the work of David Bradley and Hans-Wolfgang Ackermann, to the sequence-based approach that is taken today. The Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) takes a holistic approach to classifying prokaryote viruses by measuring overall DNA and protein similarity and phylogeny before making decisions about the taxonomic position of a new virus. The huge number of complete genomes being deposited with the National Center for Biotechnology Information (NCBI) and other public databases has resulted in a reassessment of the taxonomy of many viruses, and the future will see the introduction of new viral families and higher orders.
Collapse
Affiliation(s)
- Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, UK
| | | | - Susan M Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Cristina Moraru
- Department of The Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
15
|
Carratalà A, Chappelier C, Selmoni O, Guillaume AS, Chmiel HE, Pasche N, Weil C, Kohn T, Joost S. Vertical distribution and seasonal dynamics of planktonic cyanobacteria communities in a water column of deep mesotrophic Lake Geneva. Front Microbiol 2023; 14:1295193. [PMID: 38169808 PMCID: PMC10758419 DOI: 10.3389/fmicb.2023.1295193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background Temperate subalpine lakes recovering from eutrophication in central Europe are experiencing harmful blooms due to the proliferation of Planktothrix rubescens, a potentially toxic cyanobacteria. To optimize the management of cyanobacteria blooms there is the need to better comprehend the combination of factors influencing the diversity and dominance of cyanobacteria and their impact on the lake's ecology. The goal of this study was to characterize the diversity and seasonal dynamics of cyanobacteria communities found in a water column of Lake Geneva, as well as the associated changes on bacterioplankton abundance and composition. Methods We used 16S rRNA amplicon high throughput sequencing on more than 200 water samples collected from surface to 100 meters deep monthly over 18 months. Bacterioplankton abundance was determined by quantitative PCR and PICRUSt predictions were used to explore the functional pathways present in the community and to calculate functional diversity indices. Results The obtained results confirmed that the most dominant cyanobacteria in Lake Geneva during autumn and winter was Planktothrix (corresponding to P. rubescens). Our data also showed an unexpectedly high relative abundance of picocyanobacterial genus Cyanobium, particularly during summertime. Multidimensional scaling of Bray Curtis dissimilarity revealed that the dominance of P. rubescens was coincident with a shift in the bacterioplankton community composition and a significant decline in bacterioplankton abundance, as well as a temporary reduction in the taxonomic and PICRUSt2 predicted functional diversity. Conclusion Overall, this study expands our fundamental understanding of the seasonal dynamics of cyanobacteria communities along a vertical column in Lake Geneva and the ecology of P. rubescens, ultimately contributing to improve our preparedness against the potential occurrence of toxic blooms in the largest lake of western Europe.
Collapse
Affiliation(s)
- Anna Carratalà
- Environmental Chemistry Laboratory, ENAC, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Coralie Chappelier
- Environmental Chemistry Laboratory, ENAC, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Oliver Selmoni
- Department of Embryology, Department of Plant Biology, Carnegie Institution for Science, Washington, DC, United States
- Laboratory for Biological Geochemistry (LGB), Geospatial Molecular Epidemiology Group (GEOME), ENAC Faculty, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Annie S. Guillaume
- Laboratory for Biological Geochemistry (LGB), Geospatial Molecular Epidemiology Group (GEOME), ENAC Faculty, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hannah E. Chmiel
- Eusserthal Ecosystem Research Station (EERES), Institute for Environmental Sciences (iES), University of Kaiserslautern-Landau, Landau, Germany
- Limnology Center, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Natacha Pasche
- Limnology Center, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Weil
- ENAC-IT4R, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, ENAC, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Joost
- Laboratory for Biological Geochemistry (LGB), Geospatial Molecular Epidemiology Group (GEOME), ENAC Faculty, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
16
|
Brunet M, Le Duff N, Rigaut-Jalabert F, Romac S, Barbeyron T, Thomas F. Seasonal dynamics of a glycan-degrading flavobacterial genus in a tidally mixed coastal temperate habitat. Environ Microbiol 2023; 25:3192-3206. [PMID: 37722696 DOI: 10.1111/1462-2920.16505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023]
Abstract
Coastal marine habitats constitute hotspots of primary productivity. In temperate regions, this is due both to massive phytoplankton blooms and dense colonisation by macroalgae that mostly store carbon as glycans, contributing substantially to local and global carbon sequestration. Because they control carbon and energy fluxes, algae-degrading microorganisms are crucial for coastal ecosystem functions. Environmental surveys revealed consistent seasonal dynamics of alga-associated bacterial assemblages, yet resolving what factors regulate the in situ abundance, growth rate and ecological functions of individual taxa remains a challenge. Here, we specifically investigated the seasonal dynamics of abundance and activity for a well-known alga-degrading marine flavobacterial genus in a tidally mixed coastal habitat of the Western English Channel. We show that members of the genus Zobellia are a stable, low-abundance component of healthy macroalgal microbiota and can also colonise particles in the water column. This genus undergoes recurring seasonal variations with higher abundances in winter, significantly associated to biotic and abiotic variables. Zobellia can become a dominant part of bacterial communities on decaying macroalgae, showing a strong activity and high estimated in situ growth rates. These results provide insights into the seasonal dynamics and environmental constraints driving natural populations of alga-degrading bacteria that influence coastal carbon cycling.
Collapse
Affiliation(s)
- Maéva Brunet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | | | - Sarah Romac
- Sorbonne Université, CNRS, Adaptation et Diversité en Milieu Marin (AD2M)-UMR7144, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|
17
|
Lücking D, Mercier C, Alarcón-Schumacher T, Erdmann S. Extracellular vesicles are the main contributor to the non-viral protected extracellular sequence space. ISME COMMUNICATIONS 2023; 3:112. [PMID: 37848554 PMCID: PMC10582014 DOI: 10.1038/s43705-023-00317-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Environmental virus metagenomes, commonly referred to as "viromes", are typically generated by physically separating virus-like particles (VLPs) from the microbial fraction based on their size and mass. However, most methods used to purify VLPs, enrich extracellular vesicles (EVs) and gene transfer agents (GTAs) simultaneously. Consequently, the sequence space traditionally referred to as a "virome" contains host-associated sequences, transported via EVs or GTAs. We therefore propose to call the genetic material isolated from size-fractionated (0.22 µm) and DNase-treated samples protected environmental DNA (peDNA). This sequence space contains viral genomes, DNA transduced by viruses and DNA transported in EVs and GTAs. Since there is no genetic signature for peDNA transported in EVs, GTAs and virus particles, we rely on the successful removal of contaminating remaining cellular and free DNA when analyzing peDNA. Using marine samples collected from the North Sea, we generated a thoroughly purified peDNA dataset and developed a bioinformatic pipeline to determine the potential origin of the purified DNA. This pipeline was applied to our dataset as well as existing global marine "viromes". Through this pipeline, we identified known GTA and EV producers, as well as organisms with actively transducing proviruses as the source of the peDNA, thus confirming the reliability of our approach. Additionally, we identified novel and widespread EV producers, and found quantitative evidence suggesting that EV-mediated gene transfer plays a significant role in driving horizontal gene transfer (HGT) in the world's oceans.
Collapse
Affiliation(s)
- Dominik Lücking
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Coraline Mercier
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | | | - Susanne Erdmann
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| |
Collapse
|
18
|
Cai H, Zhou Y, Li X, Xu T, Ni Y, Wu S, Yu Y, Wang Y. Genomic Analysis and Taxonomic Characterization of Seven Bacteriophage Genomes Metagenomic-Assembled from the Dishui Lake. Viruses 2023; 15:2038. [PMID: 37896815 PMCID: PMC10611076 DOI: 10.3390/v15102038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Viruses in aquatic ecosystems exhibit remarkable abundance and diversity. However, scattered studies have been conducted to mine uncultured viruses and identify them taxonomically in lake water. Here, whole genomes (29-173 kbp) of seven uncultured dsDNA bacteriophages were discovered in Dishui Lake, the largest artificial lake in Shanghai. We analyzed their genomic signatures and found a series of viral auxiliary metabolic genes closely associated with protein synthesis and host metabolism. Dishui Lake phages shared more genes with uncultivated environmental viruses than with reference viruses based on the gene-sharing network classification. Phylogeny of proteomes and comparative genomics delineated three new genera within two known viral families of Kyanoviridae and Autographiviridae, and four new families in Caudoviricetes for these seven novel phages. Their potential hosts appeared to be from the dominant bacterial phyla in Dishui Lake. Altogether, our study provides initial insights into the composition and diversity of bacteriophage communities in Dishui Lake, contributing valuable knowledge to the ongoing research on the roles played by viruses in freshwater ecosystems.
Collapse
Affiliation(s)
- Haoyun Cai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Yifan Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Xiefei Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Tianqi Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Yimin Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Shuang Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
19
|
Abstract
Two decades of metagenomic analyses have revealed that in many environments, small (∼5 kb), single-stranded DNA phages of the family Microviridae dominate the virome. Although the emblematic microvirus phiX174 is ubiquitous in the laboratory, most other microviruses, particularly those of the gokushovirus and amoyvirus lineages, have proven to be much more elusive. This puzzling lack of representative isolates has hindered insights into microviral biology. Furthermore, the idiosyncratic size and nature of their genomes have resulted in considerable misjudgments of their actual abundance in nature. Fortunately, recent successes in microvirus isolation and improved metagenomic methodologies can now provide us with more accurate appraisals of their abundance, their hosts, and their interactions. The emerging picture is that phiX174 and its relatives are rather rare and atypical microviruses, and that a tremendous diversity of other microviruses is ready for exploration.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA;
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
20
|
Kelly A, Went SC, Mariano G, Shaw LP, Picton DM, Duffner SJ, Coates I, Herdman-Grant R, Gordeeva J, Drobiazko A, Isaev A, Lee YJ, Luyten Y, Morgan RD, Weigele P, Severinov K, Wenner N, Hinton JCD, Blower TR. Diverse Durham collection phages demonstrate complex BREX defense responses. Appl Environ Microbiol 2023; 89:e0062323. [PMID: 37668405 PMCID: PMC10537673 DOI: 10.1128/aem.00623-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023] Open
Abstract
Bacteriophages (phages) outnumber bacteria ten-to-one and cause infections at a rate of 1025 per second. The ability of phages to reduce bacterial populations makes them attractive alternative antibacterials for use in combating the rise in antimicrobial resistance. This effort may be hindered due to bacterial defenses such as Bacteriophage Exclusion (BREX) that have arisen from the constant evolutionary battle between bacteria and phages. For phages to be widely accepted as therapeutics in Western medicine, more must be understood about bacteria-phage interactions and the outcomes of bacterial phage defense. Here, we present the annotated genomes of 12 novel bacteriophage species isolated from water sources in Durham, UK, during undergraduate practical classes. The collection includes diverse species from across known phylogenetic groups. Comparative analyses of two novel phages from the collection suggest they may be founding members of a new genus. Using this Durham phage collection, we determined that particular BREX defense systems were likely to confer a varied degree of resistance against an invading phage. We concluded that the number of BREX target motifs encoded in the phage genome was not proportional to the degree of susceptibility. IMPORTANCE Bacteriophages have long been the source of tools for biotechnology that are in everyday use in molecular biology research laboratories worldwide. Phages make attractive new targets for the development of novel antimicrobials. While the number of phage genome depositions has increased in recent years, the expected bacteriophage diversity remains underrepresented. Here we demonstrate how undergraduates can contribute to the identification of novel phages and that a single City in England can provide ample phage diversity and the opportunity to find novel technologies. Moreover, we demonstrate that the interactions and intricacies of the interplay between bacterial phage defense systems such as Bacteriophage Exclusion (BREX) and phages are more complex than originally thought. Further work will be required in the field before the dynamic interactions between phages and bacterial defense systems are fully understood and integrated with novel phage therapies.
Collapse
Affiliation(s)
- Abigail Kelly
- Department of Biosciences, Durham University, Durham, UK
| | - Sam C. Went
- Department of Biosciences, Durham University, Durham, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Liam P. Shaw
- Department of Biosciences, Durham University, Durham, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | - Isabel Coates
- Department of Biosciences, Durham University, Durham, UK
| | | | - Julia Gordeeva
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yan-Jiun Lee
- New England Biolabs, Ipswich, Massachusetts, USA
| | | | | | | | | | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Tim R. Blower
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
21
|
Rahlff J, Wietz M, Giebel HA, Bayfield O, Nilsson E, Bergström K, Kieft K, Anantharaman K, Ribas-Ribas M, Schweitzer HD, Wurl O, Hoetzinger M, Antson A, Holmfeldt K. Ecogenomics and cultivation reveal distinctive viral-bacterial communities in the surface microlayer of a Baltic Sea slick. ISME COMMUNICATIONS 2023; 3:97. [PMID: 37723220 PMCID: PMC10507051 DOI: 10.1038/s43705-023-00307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Visible surface films, termed slicks, can extensively cover freshwater and marine ecosystems, with coastal regions being particularly susceptible to their presence. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (herein slick SML) harbors a distinctive bacterial community, but generally little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we characterized viruses and bacteria in a brackish slick SML in comparison to non-slick SML as well as seawater below slick and non-slick areas (subsurface water = SSW). Size-fractionated filtration of all samples distinguished viral attachment to hosts and particles. The slick SML contained higher abundances of virus-like particles, prokaryotic cells, and dissolved organic carbon compared to non-slick SML and SSW. The community of 428 viral operational taxonomic units (vOTUs), 426 predicted as lytic, distinctly differed across all size fractions in the slick SML compared to non-slick SML and SSW. Specific metabolic profiles of bacterial metagenome-assembled genomes and isolates in the slick SML included a prevalence of genes encoding motility and carbohydrate-active enzymes (CAZymes). Several vOTUs were enriched in slick SML, and many virus variants were associated with particles. Nine vOTUs were only found in slick SML, six of them being targeted by slick SML-specific clustered-regularly interspaced short palindromic repeats (CRISPR) spacers likely originating from Gammaproteobacteria. Moreover, isolation of three previously unknown lytic phages for Alishewanella sp. and Pseudoalteromonas tunicata, abundant and actively replicating slick SML bacteria, suggests that viral activity in slicks contributes to biogeochemical cycling in coastal ecosystems.
Collapse
Affiliation(s)
- Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Center for Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Oliver Bayfield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Kristofer Bergström
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Mariana Ribas-Ribas
- Center of Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | | | - Oliver Wurl
- Center of Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Matthias Hoetzinger
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Alfred Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
22
|
Šimoliūnas E, Šimoliūnienė M, Laskevičiūtė G, Kvederavičiūtė K, Skapas M, Kaupinis A, Valius M, Meškys R, Kuisienė N. Characterization of Parageobacillus Bacteriophage vB_PtoS_NIIg3.2-A Representative of a New Genus within Thermophilic Siphoviruses. Int J Mol Sci 2023; 24:13980. [PMID: 37762288 PMCID: PMC10530707 DOI: 10.3390/ijms241813980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
A high temperature-adapted bacteriophage, vB_PtoS_NIIg3.2 (NIIg3.2), was isolated in Lithuania from compost heaps using Parageobacillus toebii strain NIIg-3 as a host for phage propagation. Furthermore, NIIg3.2 was active against four strains of Geobacillus thermodenitrificans, and it infected the host cells from 50 to 80 °C. Transmission electron microscopy analysis revealed siphovirus morphology characterized by an isometric head (~59 nm in diameter) and a noncontractile tail (~226 nm in length). The double-stranded DNA genome of NIIg3.2 (38,970 bp) contained 71 probable protein-encoding genes and no genes for tRNA. In total, 29 NIIg3.2 ORFs were given a putative functional annotation, including those coding for the proteins responsible for DNA packaging, virion structure/morphogenesis, phage-host interactions, lysis/lysogeny, replication/regulation, and nucleotide metabolism. Based on comparative phylogenetic and bioinformatic analysis, NIIg3.2 cannot be assigned to any genus currently recognized by ICTV and potentially represents a new one within siphoviruses. The results of this study not only extend our knowledge about poorly explored thermophilic bacteriophages but also provide new insights for further investigation and understanding the evolution of Bacilllus-group bacteria-infecting viruses.
Collapse
Affiliation(s)
- Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
- Department of Microbiology and Biotechnology, Institute of Bioscience, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| | - Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Gintarė Laskevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| | - Martynas Skapas
- Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Nomeda Kuisienė
- Department of Microbiology and Biotechnology, Institute of Bioscience, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
23
|
Matrishin CB, Haase EM, Dewhirst FE, Mark Welch JL, Miranda-Sanchez F, Chen T, MacFarland DC, Kauffman KM. Phages are unrecognized players in the ecology of the oral pathogen Porphyromonas gingivalis. MICROBIOME 2023; 11:161. [PMID: 37491415 PMCID: PMC10367356 DOI: 10.1186/s40168-023-01607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Porphyromonas gingivalis (hereafter "Pg") is an oral pathogen that has been hypothesized to act as a keystone driver of inflammation and periodontal disease. Although Pg is most readily recovered from individuals with actively progressing periodontal disease, healthy individuals and those with stable non-progressing disease are also colonized by Pg. Insights into the factors shaping the striking strain-level variation in Pg, and its variable associations with disease, are needed to achieve a more mechanistic understanding of periodontal disease and its progression. One of the key forces often shaping strain-level diversity in microbial communities is infection of bacteria by their viral (phage) predators and symbionts. Surprisingly, although Pg has been the subject of study for over 40 years, essentially nothing is known of its phages, and the prevailing paradigm is that phages are not important in the ecology of Pg. RESULTS Here we systematically addressed the question of whether Pg are infected by phages-and we found that they are. We found that prophages are common in Pg, they are genomically diverse, and they encode genes that have the potential to alter Pg physiology and interactions. We found that phages represent unrecognized targets of the prevalent CRISPR-Cas defense systems in Pg, and that Pg strains encode numerous additional mechanistically diverse candidate anti-phage defense systems. We also found that phages and candidate anti-phage defense system elements together are major contributors to strain-level diversity and the species pangenome of this oral pathogen. Finally, we demonstrate that prophages harbored by a model Pg strain are active in culture, producing extracellular viral particles in broth cultures. CONCLUSION This work definitively establishes that phages are a major unrecognized force shaping the ecology and intra-species strain-level diversity of the well-studied oral pathogen Pg. The foundational phage sequence datasets and model systems that we establish here add to the rich context of all that is already known about Pg, and point to numerous avenues of future inquiry that promise to shed new light on fundamental features of phage impacts on human health and disease broadly. Video Abstract.
Collapse
Affiliation(s)
- Cole B Matrishin
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Elaine M Haase
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Floyd E Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Donald C MacFarland
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Kathryn M Kauffman
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
24
|
Du X, Li X, Cheng K, Zhao W, Cai Z, Chen G, Zhou J. Virome reveals effect of Ulva prolifera green tide on the structural and functional profiles of virus communities in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163609. [PMID: 37100126 DOI: 10.1016/j.scitotenv.2023.163609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/03/2023]
Abstract
Viruses are widely distributed in marine environments, where they influence the transformation of matter and energy by modulating host metabolism. Driven by eutrophication, green tides are a rising concern in Chinese coastal areas, and are a serious ecological disaster that negatively affects coastal ecosystems and disrupts biogeochemical cycles. Although the composition of bacterial communities in green algae has been investigated, the diversity and roles of viruses in green algal blooms are largely unexplored. Therefore, the diversity, abundance, lifestyle, and metabolic potential of viruses in a natural bloom in Qingdao coastal area were investigated at three different stages (pre-bloom, during-bloom, and post-bloom) by metagenomics analysis. The dsDNA viruses, Siphoviridae, Myoviridae, Podoviridae, and Phycodnaviridae, were found to dominate the viral community. The viral dynamics exhibited distinct temporal patterns across different stages. The composition of the viral community varied during the bloom, especially in populations with low abundance. The lytic cycle was most predominant, and the abundance of lytic viruses increased slightly in the post-bloom stage. The diversity and richness of the viral communities varied distinctly during the green tide, and the post-bloom stage favored viral diversity and richness. The total organic carbon, dissolved oxygen, NO3-, NO2-, PO43-, chlorophyll-a contents, and temperature variably co-influenced the viral communities. The primary hosts included bacteria, algae, and other microplankton. Network analysis revealed the closer links between the viral communities as the bloom progressed. Functional prediction revealed that the viruses possibly influenced the biodegradation of microbial hydrocarbons and carbon by metabolic augmentation via auxiliary metabolic genes. The composition, structure, metabolic potential, and interaction taxonomy of the viromes differed significantly across the different stages of the green tide. The study demonstrated that the ecological event shaped the viral communities during algal bloom, and the viral communities played a significant role in phycospheric microecology.
Collapse
Affiliation(s)
- Xiaopeng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wei Zhao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
25
|
Spatiotemporal Dynamics of Coastal Viral Community Structure and Potential Biogeochemical Roles Affected by an Ulva prolifera Green Tide. mSystems 2023; 8:e0121122. [PMID: 36815859 PMCID: PMC10134843 DOI: 10.1128/msystems.01211-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The world's largest macroalgal green tide, caused by Ulva prolifera, has resulted in serious consequences for coastal waters of the Yellow Sea, China. Although viruses are considered to be one of the key factors in controlling microalgal bloom demise, understanding of the relationship between viral communities and the macroalgal green tide is still poor. Here, a Qingdao coastal virome (QDCV) time-series data set was constructed based on the metagenomic analysis of 17 DNA viromes along three coastal stations of the Yellow Sea, covering different stages of the green tide from Julian days 165 to 271. A total of 40,076 viral contigs were detected and clustered into 28,058 viral operational taxonomic units (vOTUs). About 84% of the vOTUs could not be classified, and 62% separated from vOTUs in other ecosystems. Green tides significantly influenced the spatiotemporal dynamics of the viral community structure, diversity, and potential functions. For the classified vOTUs, the relative abundance of Pelagibacter phages declined with the arrival of the bloom and rebounded after the bloom, while Synechococcus and Roseobacter phages increased, although with a time lag from the peak of their hosts. More than 80% of the vOTUs reached peaks in abundance at different specific stages, and the viral peaks were correlated with specific hosts at different stages of the green tide. Most of the viral auxiliary metabolic genes (AMGs) were associated with carbon and sulfur metabolism and showed spatiotemporal dynamics relating to the degradation of the large amount of organic matter released by the green tide. IMPORTANCE To the best of our knowledge, this study is the first to investigate the responses of viruses to the world's largest macroalgal green tide. It revealed the spatiotemporal dynamics of the unique viral assemblages and auxiliary metabolic genes (AMGs) following the variation and degradation of Ulva prolifera. These findings demonstrate a tight coupling between viral assemblages, and prokaryotic and eukaryotic abundances were influenced by the green tide.
Collapse
|
26
|
Nowlan JP, Sies AN, Britney SR, Cameron ADS, Siah A, Lumsden JS, Russell S. Genomics of Tenacibaculum Species in British Columbia, Canada. Pathogens 2023; 12:pathogens12010101. [PMID: 36678448 PMCID: PMC9864904 DOI: 10.3390/pathogens12010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Tenacibaculum is a genus of Gram-negative filamentous bacteria with a cosmopolitan distribution. The research describing Tenacibaculum genomes stems primarily from Norway and Chile due to their impacts on salmon aquaculture. Canadian salmon aquaculture also experiences mortality events related to the presence of Tenacibaculum spp., yet no Canadian Tenacibaculum genomes are publicly available. Ribosomal DNA sequencing of 16S and four species-specific 16S quantitative-PCR assays were used to select isolates cultured from Atlantic salmon with mouthrot in British Columbia (BC), Canada. Ten isolates representing four known and two unknown species of Tenacibaculum were selected for shotgun whole genome sequencing using the Oxford Nanopore's MinION platform. The genome assemblies achieved closed circular chromosomes for seven isolates and long contigs for the remaining three isolates. Average nucleotide identity analysis identified T. ovolyticum, T. maritimum, T. dicentrarchi, two genomovars of T. finnmarkense, and two proposed novel species T. pacificus sp. nov. type strain 18-2881-AT and T. retecalamus sp. nov. type strain 18-3228-7BT. Annotation in most of the isolates predicted putative virulence and antimicrobial resistance genes, most-notably toxins (i.e., hemolysins), type-IX secretion systems, and oxytetracycline resistance. Comparative analysis with the T. maritimum type-strain predicted additional toxins and numerous C-terminal secretion proteins, including an M12B family metalloprotease in the T. maritimum isolates from BC. The genomic prediction of virulence-associated genes provides important targets for studies of mouthrot disease, and the annotation of the antimicrobial resistance genes provides targets for surveillance and diagnosis in veterinary medicine.
Collapse
Affiliation(s)
- Joseph P. Nowlan
- Center for Innovation in Fish Health, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| | - Ashton N. Sies
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Scott R. Britney
- Center for Innovation in Fish Health, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrew D. S. Cameron
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Ahmed Siah
- BC Center for Aquatic Health Sciences, Campbell River, BC V9W 2C2, Canada
| | - John S. Lumsden
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Spencer Russell
- Center for Innovation in Fish Health, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
27
|
Evseev P, Gutnik D, Shneider M, Miroshnikov K. Use of an Integrated Approach Involving AlphaFold Predictions for the Evolutionary Taxonomy of Duplodnaviria Viruses. Biomolecules 2023; 13:biom13010110. [PMID: 36671495 PMCID: PMC9855967 DOI: 10.3390/biom13010110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The evaluation of the evolutionary relationships is exceptionally important for the taxonomy of viruses, which is a rapidly expanding area of research. The classification of viral groups belonging to the realm Duplodnaviria, which include tailed bacteriophages, head-tailed archaeal viruses and herpesviruses, has undergone many changes in recent years and continues to improve. One of the challenging tasks of Duplodnaviria taxonomy is the classification of high-ranked taxa, including families and orders. At the moment, only 17 of 50 families have been assigned to orders. The evaluation of the evolutionary relationships between viruses is complicated by the high level of divergence of viral proteins. However, the development of structure prediction algorithms, including the award-winning AlphaFold, encourages the use of the results of structural predictions to clarify the evolutionary history of viral proteins. In this study, the evolutionary relationships of two conserved viral proteins, the major capsid protein and terminase, representing different viruses, including all classified Duplodnaviria families, have been analysed using AlphaFold modelling. This analysis has been undertaken using structural comparisons and different phylogenetic methods. The results of the analyses mainly indicated the high quality of AlphaFold modelling and the possibility of using the AlphaFold predictions, together with other methods, for the reconstruction of the evolutionary relationships between distant viral groups. Based on the results of this integrated approach, assumptions have been made about refining the taxonomic classification of bacterial and archaeal Duplodnaviria groups, and problems relating to the taxonomic classification of Duplodnaviria have been discussed.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- Correspondence: (P.E.); (K.M.)
| | - Daria Gutnik
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- Correspondence: (P.E.); (K.M.)
| |
Collapse
|
28
|
Zhang X, Liang Y, Zheng K, Wang Z, Dong Y, Liu Y, Ren L, Wang H, Han Y, McMinn A, Sung YY, Mok WJ, Wong LL, He J, Wang M. Characterization and genomic analysis of phage vB_ValR_NF, representing a new viral family prevalent in the Ulva prolifera blooms. Front Microbiol 2023; 14:1161265. [PMID: 37213492 PMCID: PMC10196503 DOI: 10.3389/fmicb.2023.1161265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Vibrio is an important bacterial genus containing many pathogenic species. Although more and more Vibrio phages were isolated, the genome, ecology and evolution of Vibrio phages and their roles in bacteriophage therapy, have not been fully revealed. Methods Novel Vibrio phage vB_ValR_NF infecting Vibrio alginolyticus was isolated from the coastal waters of Qingdao during the Ulva prolifera blooms, Characterization and genomic feature of phage vB_ValR_NF has been analysed using phage isolation, sequencing and metagenome method. Results and Discussion Phage vB_ValR_NF has a siphoviral morphology (icosahedral head 114±1 nm in diameter; a tail length of 231±1 nm), a short latent period (30 minutes) and a large burst size (113 virions per cell), and the thermal/pH stability study showed that phage vB_ValR_NF was highly tolerant to a range of pHs (4-12) and temperatures (-20 - 45 °C), respectively. Host range analysis suggests that phage vB_ValR_NF not only has a high inhibitory ability against the host strain V. alginolyticus, but also can infect 7 other Vibrio strains. In addition, the phage vB_ValR_NF has a double-stranded 44, 507 bp DNA genome, with 43.10 % GC content and 75 open reading frames. Three auxiliary metabolic genes associated with aldehyde dehydrogenase, serine/threonine protein phosphatase and calcineurin-like phosphoesterase were predicted, might help the host V. alginolyticus occupy the survival advantage, thus improving the survival chance of phage vB_ValR_NF under harsh conditions. This point can be supported by the higher abundance of phage vB_ValR_NF during the U. prolifera blooms than in other marine environments. Further phylogenetic and genomic analysis shows that the viral group represented by Vibrio phage vB_ValR_NF is different from other well-defined reference viruses, and can be classified into a new family, named Ruirongviridae. In general, as a new marine phage infecting V. alginolyticus, phage vB_ValR_NF provides basic information for further molecular research on phage-host interactions and evolution, and may unravel a novel insight into changes in the community structure of organisms during the U. prolifera blooms. At the same time, its high tolerance to extreme conditions and excellent bactericidal ability will become important reference factors when evaluating the potential of phage vB_ValR_NF in bacteriophage therapy in the future.
Collapse
Affiliation(s)
- Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Antarctic Great Wall Ecology National Observation and Research Station, MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yue Dong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ying Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jianfeng He
- Antarctic Great Wall Ecology National Observation and Research Station, MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| |
Collapse
|
29
|
Brown TL, Charity OJ, Adriaenssens EM. Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut. Curr Opin Microbiol 2022; 70:102229. [PMID: 36347213 DOI: 10.1016/j.mib.2022.102229] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
While they are the most abundant biological entities on the planet, the role of bacteriophages (phages) in the microbiome remains enigmatic and understudied. With a rise in the number of metagenomics studies and the publication of highly efficient phage mining programmes, we now have extensive data on the genomic and taxonomic diversity of (mainly) DNA bacteriophages in a wide range of environments. In addition, the higher throughput and quality of sequencing is allowing for strain-level reconstructions of phage genomes from metagenomes. These factors will ultimately help us to understand the role these phages play as part of specific microbial communities, enabling the tracking of individual virus genomes through space and time. Using lessons learned from the latest metagenomic studies, we focus on two explicit aspects of the role bacteriophages play within the microbiome, their ecological role in structuring bacterial populations, and their contribution to microbiome functioning by encoding auxiliary metabolism genes.
Collapse
Affiliation(s)
- Teagan L Brown
- Quadram Institute Bioscience, Norwich NR4 7UQ, United Kingdom
| | | | | |
Collapse
|
30
|
Zucker F, Bischoff V, Olo Ndela E, Heyerhoff B, Poehlein A, Freese HM, Roux S, Simon M, Enault F, Moraru C. New Microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of single-stranded DNA phages infecting marine and terrestrial Alphaproteobacteria. Virus Evol 2022; 8:veac070. [PMID: 36533142 PMCID: PMC9753089 DOI: 10.1093/ve/veac070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 10/01/2023] Open
Abstract
The Microviridae family represents one of the major clades of single-stranded DNA (ssDNA) phages. Their cultivated members are lytic and infect Proteobacteria, Bacteroidetes, and Chlamydiae. Prophages have been predicted in the genomes from Bacteroidales, Hyphomicrobiales, and Enterobacteriaceae and cluster within the 'Alpavirinae', 'Amoyvirinae', and Gokushovirinae. We have isolated 'Ascunsovirus oldenburgi' ICBM5, a novel phage distantly related to known Microviridae. It infects Sulfitobacter dubius SH24-1b and uses both a lytic and a carrier-state life strategy. Using ICBM5 proteins as a query, we uncovered in publicly available resources sixty-five new Microviridae prophages and episomes in bacterial genomes and retrieved forty-seven environmental viral genomes (EVGs) from various viromes. Genome clustering based on protein content and phylogenetic analysis showed that ICBM5, together with Rhizobium phages, new prophages, episomes, and EVGs cluster within two new phylogenetic clades, here tentatively assigned the rank of subfamily and named 'Tainavirinae' and 'Occultatumvirinae'. They both infect Rhodobacterales. Occultatumviruses also infect Hyphomicrobiales, including nitrogen-fixing endosymbionts from cosmopolitan legumes. A biogeographical assessment showed that tainaviruses and occultatumviruses are spread worldwide, in terrestrial and marine environments. The new phage isolated here sheds light onto new and diverse branches of the Microviridae tree, suggesting that much of the ssDNA phage diversity remains in the dark.
Collapse
Affiliation(s)
- Falk Zucker
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Vera Bischoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Eric Olo Ndela
- Laboratoire Microorganismes: Genome Environment (LMGE), Université Clermont Auvergne, CNRS, 1 Imp. Amélie Murat, Aubière 63170, Frankreich
| | - Benedikt Heyerhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August-University Göttingen, Institute of Microbiology and Genetics, Grisebachstr. 8, Göttingen D-37077, Germany
| | - Heike M Freese
- Leibniz-Institut DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, Braunschweig D-38124, Germany
| | - Simon Roux
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Francois Enault
- Laboratoire Microorganismes: Genome Environment (LMGE), Université Clermont Auvergne, CNRS, 1 Imp. Amélie Murat, Aubière 63170, Frankreich
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| |
Collapse
|
31
|
Abstract
The recovery of DNA from viromes is a major obstacle in the use of long-read sequencing to study their genomes. For this reason, the use of cellular metagenomes (>0.2-μm size range) emerges as an interesting complementary tool, since they contain large amounts of naturally amplified viral genomes from prelytic replication. We have applied second-generation (Illumina NextSeq; short reads) and third-generation (PacBio Sequel II; long reads) sequencing to compare the diversity and features of the viral community in a marine sample obtained from offshore waters of the western Mediterranean. We found that a major wedge of the expected marine viral diversity was directly recovered by the raw PacBio circular consensus sequencing (CCS) reads. More than 30,000 sequences were detected only in this data set, with no homologues in the long- and short-read assembly, and ca. 26,000 had no homologues in the large data set of the Global Ocean Virome 2 (GOV2), highlighting the information gap created by the assembly bias. At the level of complete viral genomes, the performance was similar in both approaches. However, the hybrid long- and short-read assembly provided the longest average length of the sequences and improved the host assignment. Although no novel major clades of viruses were found, there was an increase in the intraclade genomic diversity recovered by long reads that produced an enriched assessment of the real diversity and allowed the discovery of novel genes with biotechnological potential (e.g., endolysin genes). IMPORTANCE We explored the vast genetic diversity of environmental viruses by using a combination of cellular metagenome (as opposed to virome) sequencing using high-fidelity long-read sequences (in this case, PacBio CCS). This approach resulted in the recovery of a representative sample of the viral population, and it performed better (more phage contigs, larger average contig size) than Illumina sequencing applied to the same sample. By this approach, the many biases of assembly are avoided, as the CCS reads recovers (typically around 5 kb) complete genes and even operons, resulting in a better discovery of the viral gene diversity based on viral marker proteins. Thus, biotechnologically promising genes, such as endolysin genes, can be very efficiently searched with this approach. In addition, hybrid assembly produces more complete and longer contigs, which is particularly important for studying little-known viral groups such as the nucleocytoplasmic large DNA viruses (NCLDV).
Collapse
|
32
|
Heinrichs ME, Heyerhoff B, Arslan-Gatz BS, Seidel M, Niggemann J, Engelen B. Deciphering the Virus Signal Within the Marine Dissolved Organic Matter Pool. Front Microbiol 2022; 13:863686. [PMID: 35694303 PMCID: PMC9184803 DOI: 10.3389/fmicb.2022.863686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses are ubiquitously distributed in the marine environment, influencing microbial population dynamics and biogeochemical cycles on a large scale. Due to their small size, they fall into the oceanographic size-class definition of dissolved organic matter (DOM; <0.7 μm). The purpose of our study was to investigate if there is a detectable imprint of virus particles in natural DOM following standard sample preparation and molecular analysis routines using ultrahigh-resolution mass spectrometry (FT-ICR-MS). Therefore, we tested if a molecular signature deriving from virus particles can be detected in the DOM fingerprint of a bacterial culture upon prophage induction and of seawater containing the natural microbial community. Interestingly, the virus-mediated lysate of the infected bacterial culture differed from the cell material of a physically disrupted control culture in its molecular composition. Overall, a small subset of DOM compounds correlated significantly with virus abundances in the bacterial culture setup, accounting for <1% of the detected molecular formulae and <2% of the total signal intensity of the DOM dataset. These were phosphorus- and nitrogen-containing compounds and they were partially also detected in DOM samples from other studies that included high virus abundances. While some of these formulae matched with typical biomolecules that are constituents of viruses, others matched with bacterial cell wall components. Thus, the identified DOM molecular formulae were probably not solely derived from virus particles but were partially also derived from processes such as the virus-mediated bacterial cell lysis. Our results indicate that a virus-derived DOM signature is part of the natural DOM and barely detectable within the analytical window of ultrahigh-resolution mass spectrometry when a high natural background is present.
Collapse
Affiliation(s)
- Mara E. Heinrichs
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Benedikt Heyerhoff
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Berin S. Arslan-Gatz
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Michael Seidel
- Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Jutta Niggemann
- Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Bert Engelen
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
33
|
Abstract
Microviruses encompass an astonishing array of small, single-stranded DNA phages that, due to the surge in metagenomic surveys, are now known to be prevalent in most environments. Current taxonomy concedes the considerable diversity within this lineage to a single family (the Microviridae), which has rendered it difficult to adequately and accurately assess the amount of variation that actually exists within this group. We amassed and curated the largest collection of microviral genomes to date and, through a combination of protein-sharing networks and phylogenetic analysis, discovered at least three meaningful taxonomic levels between the current ranks of family and genus. When considering more than 13,000 microviral genomes from recognized lineages and as-yet-unclassified microviruses in metagenomic samples, microviral diversity is better understood by elevating microviruses to the level of an order that consists of three suborders and at least 19 putative families, each with their respective subfamilies. These revisions enable fine-scale assessment of microviral dynamics: for example, in the human gut, there are considerable differences in the abundances of microviral families both between urban and rural populations and in individuals over time. In addition, our analysis of genome contents and gene exchange shows that microviral families carry no recognizable accessory metabolic genes and rarely, if ever, engage in horizontal gene transfer across microviral families or with their bacterial hosts. These insights bring microviral taxonomy in line with current developments in the taxonomy of other phages and increase the understanding of microvirus biology.
Collapse
|
34
|
Dong Y, Zheng K, Zou X, Liang Y, Liu Y, Li X, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Characterization and Genomic Analysis of the First Podophage Infecting Shewanella, Representing a Novel Viral Cluster. Front Microbiol 2022; 13:853973. [PMID: 35432264 PMCID: PMC9011153 DOI: 10.3389/fmicb.2022.853973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Shewanella is a common bacterial genus in marine sediments and deep seas, with a variety of metabolic abilities, suggesting its important roles in the marine biogeochemical cycles. In this study, a novel lytic Shewanella phage, vB_SInP-X14, was isolated from the surface coastal waters of Qingdao, China. The vB_SInP-X14 contains a linear, double-strand 36,396-bp with the G + C content of 44.1% and harbors 40 predicted open reading frames. Morphological, growth, and genomic analysis showed that it is the first isolated podovirus infecting Shewanella, with a short propagation time (40 min), which might be resulted from three lytic-related genes. Phylogenetic analysis suggested that vB_SInP-X14 could represent a novel viral genus, named Bocovirus, with four isolated but not classified phages. In addition, 14 uncultured viral genomes assembled from the marine metagenomes could provide additional support to establish this novel viral genus. This study reports the first podovirus infecting Shewanella, establishes a new interaction system for the study of virus–host interactions, and also provides new reference genomes for the marine viral metagenomic analysis.
Collapse
Affiliation(s)
- Yue Dong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
- *Correspondence: Yantao liang,
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
| | - Xiang Li
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
- Min Wang,
| |
Collapse
|