1
|
Scott MR, McClung CA. Bipolar Disorder. Curr Opin Neurobiol 2023; 83:102801. [PMID: 38223491 PMCID: PMC10786345 DOI: 10.1016/j.conb.2023.102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This review focuses on recent advances made towards understanding the neurobiology of bipolar disorder (BD), a chronic neuropsychiatric illness characterized by altered mood and energy states. The past few years have seen the completion of the largest genetic studies by far, which have emphasized the polygenic nature of BD as well as it's connection to other psychiatric illnesses. Furthermore, the use of inducible pluripotent stem cells has rapidly expanded. These studies support previous work that implicates dysregulation of neurodevelopment, mitochondria, and calcium homeostasis, while also allowing for investigation into the underlying mechanisms of individual responsivity to lithium. Sleep and circadian rhythms have also been heavily implicated in BD, from disruptions in activity patterns to molecular abnormalities.
Collapse
Affiliation(s)
- Madeline R Scott
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Colleen A McClung
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
2
|
Hara T, Owada Y, Takata A. Genetics of bipolar disorder: insights into its complex architecture and biology from common and rare variants. J Hum Genet 2023; 68:183-191. [PMID: 35614313 DOI: 10.1038/s10038-022-01046-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Bipolar disorder (BD) is a common mental disorder characterized by recurrent mood episodes, which causes major socioeconomic burdens globally. Though its disease pathogenesis is largely unknown, the high heritability of BD indicates strong contributions from genetic factors. In this review, we summarize the recent achievements in the genetics of BD, particularly those from genome-wide association study (GWAS) of common variants and next-generation sequencing analysis of rare variants. These include the identification of dozens of robust disease-associated loci, deepening of our understanding of the biology of BD, objective description of correlations with other psychiatric disorders and behavioral traits, formulation of methods for predicting disease risk and drug response, and the discovery of a single gene associated with bipolar disorder and schizophrenia spectrum with a large effect size. On the other hand, the findings to date have not yet made a clear contribution to the improvement of clinical psychiatry of BD. We overview the remaining challenges as well as possible paths to resolve them, referring to studies of other major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tomonori Hara
- Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Atsushi Takata
- Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
3
|
Ballinger ML, Pattnaik S, Mundra PA, Zaheed M, Rath E, Priestley P, Baber J, Ray-Coquard I, Isambert N, Causeret S, van der Graaf WTA, Puri A, Duffaud F, Le Cesne A, Seddon B, Chandrasekar C, Schiffman JD, Brohl AS, James PA, Kurtz JE, Penel N, Myklebost O, Meza-Zepeda LA, Pickett H, Kansara M, Waddell N, Kondrashova O, Pearson JV, Barbour AP, Li S, Nguyen TL, Fatkin D, Graham RM, Giannoulatou E, Green MJ, Kaplan W, Ravishankar S, Copty J, Powell JE, Cuppen E, van Eijk K, Veldink J, Ahn JH, Kim JE, Randall RL, Tucker K, Judson I, Sarin R, Ludwig T, Genin E, Deleuze JF, Haber M, Marshall G, Cairns MJ, Blay JY, Thomas DM, Tattersall M, Neuhaus S, Lewis C, Tucker K, Carey-Smith R, Wood D, Porceddu S, Dickinson I, Thorne H, James P, Ray-Coquard I, Blay JY, Cassier P, Le Cesne A, Duffaud F, Penel N, Isambert N, Kurtz JE, Puri A, Sarin R, Ahn JH, Kim JE, Ward I, Judson I, van der Graaf W, Seddon B, Chandrasekar C, Rickar R, Hennig I, Schiffman J, Randall RL, Silvestri A, Zaratzian A, Tayao M, Walwyn K, Niedermayr E, Mang D, Clark R, Thorpe T, MacDonald J, Riddell K, Mar J, Fennelly V, Wicht A, Zielony B, Galligan E, Glavich G, Stoeckert J, Williams L, Djandjgava L, Buettner I, Osinki C, Stephens S, Rogasik M, Bouclier L, Girodet M, Charreton A, Fayet Y, Crasto S, Sandupatla B, Yoon Y, Je N, Thompson L, Fowler T, Johnson B, Petrikova G, Hambridge T, Hutchins A, Bottero D, Scanlon D, Stokes-Denson J, Génin E, Campion D, Dartigues JF, Deleuze JF, Lambert JC, Redon R, Ludwig T, Grenier-Boley B, Letort S, Lindenbaum P, Meyer V, Quenez O, Dina C, Bellenguez C, Le Clézio CC, Giemza J, Chatel S, Férec C, Le Marec H, Letenneur L, Nicolas G, Rouault K. Heritable defects in telomere and mitotic function selectively predispose to sarcomas. Science 2023; 379:253-260. [PMID: 36656928 DOI: 10.1126/science.abj4784] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/16/2022] [Indexed: 01/20/2023]
Abstract
Cancer genetics has to date focused on epithelial malignancies, identifying multiple histotype-specific pathways underlying cancer susceptibility. Sarcomas are rare malignancies predominantly derived from embryonic mesoderm. To identify pathways specific to mesenchymal cancers, we performed whole-genome germline sequencing on 1644 sporadic cases and 3205 matched healthy elderly controls. Using an extreme phenotype design, a combined rare-variant burden and ontologic analysis identified two sarcoma-specific pathways involved in mitotic and telomere functions. Variants in centrosome genes are linked to malignant peripheral nerve sheath and gastrointestinal stromal tumors, whereas heritable defects in the shelterin complex link susceptibility to sarcoma, melanoma, and thyroid cancers. These studies indicate a specific role for heritable defects in mitotic and telomere biology in risk of sarcomas.
Collapse
Affiliation(s)
- Mandy L Ballinger
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | - Swetansu Pattnaik
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | - Piyushkumar A Mundra
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | - Milita Zaheed
- Hereditary Cancer Centre, Prince of Wales Hospital, Sydney 2031, Australia
| | - Emma Rath
- Garvan Institute of Medical Research, Sydney 2010, Australia
| | - Peter Priestley
- Hartwig Medical Foundation, 1098 XH Amsterdam, Netherlands
- Hartwig Medical Foundation Australia, Sydney 2000, Australia
| | - Jonathan Baber
- Hartwig Medical Foundation, 1098 XH Amsterdam, Netherlands
- Hartwig Medical Foundation Australia, Sydney 2000, Australia
| | - Isabelle Ray-Coquard
- Department of Adult Medical Oncology, Centre Leon Berard, University Claude Bernard, 69373 Lyon, France
| | | | | | | | - Ajay Puri
- Department of Orthopedic Oncology, Tata Memorial Hospital, Mumbai, Maharashtra 400012, India
| | | | | | - Beatrice Seddon
- Sarcoma Unit, University College Hospital, London NW1 2BU, UK
| | | | - Joshua D Schiffman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew S Brohl
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Paul A James
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne 3000, Australia
| | | | | | - Ola Myklebost
- Western Norway Familial Cancer Centre, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
- Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway
| | | | - Hilda Pickett
- Children's Medical Research Institute, The University of Sydney, Westmead 2145, Australia
| | - Maya Kansara
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Andrew P Barbour
- Faculty of Medicine. The University of Queensland, Brisbane 4072, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne 3010, Australia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3800, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3051, Australia
| | - Tuong L Nguyen
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne 3010, Australia
| | - Diane Fatkin
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst 2010, Australia
- Cardiology Department, St Vincent's Hospital, Sydney 2010, Australia
| | - Robert M Graham
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst 2010, Australia
| | - Eleni Giannoulatou
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
- Computational Genomics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales, Sydney 2052, Australia
- Neuorscience Research Australia, Sydney 2031, Australia
| | - Warren Kaplan
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | | | - Joseph Copty
- Garvan Institute of Medical Research, Sydney 2010, Australia
| | - Joseph E Powell
- Garvan Institute of Medical Research, Sydney 2010, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney 2052, Australia
| | - Edwin Cuppen
- Hartwig Medical Foundation, 1098 XH Amsterdam, Netherlands
| | - Kristel van Eijk
- Department of Neurology, University Medical Centre Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Jan Veldink
- Department of Neurology, University Medical Centre Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Centre, Seoul 05505, South Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Centre, Seoul 05505, South Korea
| | - R Lor Randall
- Department of Orthopaedic Surgery, University of California, Davis Health, Sacramento, CA 95817, USA
| | - Kathy Tucker
- Hereditary Cancer Centre, Prince of Wales Hospital, Sydney 2031, Australia
| | - Ian Judson
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Rajiv Sarin
- Cancer Genetics Unit, ACTREC, Tata Memorial Centre, Mumbai, Maharashtra 410210, India
| | - Thomas Ludwig
- Université de Brest, Inserm, EFS, UMR 1078, GGB, CHU de Brest, 29200 Brest, France
| | - Emmanuelle Genin
- Université de Brest, Inserm, EFS, UMR 1078, GGB, CHU de Brest, 29200 Brest, France
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Génomique, 91057 Evry, France
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington 2033, Australia
| | - Glenn Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington 2033, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan 2308, Australia
- Centre for Brain and Mental Health Research, The Hunter Medical Research Institute, Newcastle 2305, Australia
| | - Jean-Yves Blay
- Department of Adult Medical Oncology, Centre Leon Berard, University Claude Bernard, 69373 Lyon, France
| | - David M Thomas
- Garvan Institute of Medical Research, Sydney 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Li X, Ma S, Yan W, Wu Y, Kong H, Zhang M, Luo X, Xia J. dbBIP: a comprehensive bipolar disorder database for genetic research. Database (Oxford) 2022; 2022:baac049. [PMID: 35779245 PMCID: PMC9250320 DOI: 10.1093/database/baac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/28/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Bipolar disorder (BIP) is one of the most common hereditary psychiatric disorders worldwide. Elucidating the genetic basis of BIP will play a pivotal role in mechanistic delineation. Genome-wide association studies (GWAS) have successfully reported multiple susceptibility loci conferring BIP risk, thus providing insight into the effects of its underlying pathobiology. However, difficulties remain in the extrication of important and biologically relevant data from genetic discoveries related to psychiatric disorders such as BIP. There is an urgent need for an integrated and comprehensive online database with unified access to genetic and multi-omics data for in-depth data mining. Here, we developed the dbBIP, a database for BIP genetic research based on published data. The dbBIP consists of several modules, i.e.: (i) single nucleotide polymorphism (SNP) module, containing large-scale GWAS genetic summary statistics and functional annotation information relevant to risk variants; (ii) gene module, containing BIP-related candidate risk genes from various sources and (iii) analysis module, providing a simple and user-friendly interface to analyze one's own data. We also conducted extensive analyses, including functional SNP annotation, integration (including summary-data-based Mendelian randomization and transcriptome-wide association studies), co-expression, gene expression, tissue expression, protein-protein interaction and brain expression quantitative trait loci analyses, thus shedding light on the genetic causes of BIP. Finally, we developed a graphical browser with powerful search tools to facilitate data navigation and access. The dbBIP provides a comprehensive resource for BIP genetic research as well as an integrated analysis platform for researchers and can be accessed online at http://dbbip.xialab.info. Database URL: http://dbbip.xialab.info.
Collapse
Affiliation(s)
- Xiaoyan Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Shunshuai Ma
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Wenhui Yan
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Yong Wu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, 93 Youyi Road, Qiaokou District, Wuhan, Hubei 430030, China
| | - Hui Kong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Mingshan Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Xiongjian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang East Road, Wuhua District, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Road, Panlong District, Kunming, Yunnan 650204, China
| | - Junfeng Xia
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| |
Collapse
|
5
|
Morán-Kneer J, Ríos U, Costa-Cordella S, Barría C, Carvajal V, Valenzuela K, Wasserman D. Childhood Trauma and Social Cognition in participants with Bipolar Disorder: The Moderating Role of Attachment. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nat Genet 2022; 54:541-547. [DOI: 10.1038/s41588-022-01034-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022]
|
7
|
Abstract
BACKGROUND To date, besides genome-wide association studies, a variety of other genetic analyses (e.g. polygenic risk scores, whole-exome sequencing and whole-genome sequencing) have been conducted, and a large amount of data has been gathered for investigating the involvement of common, rare and very rare types of DNA sequence variants in bipolar disorder. Also, non-invasive neuroimaging methods can be used to quantify changes in brain structure and function in patients with bipolar disorder. AIMS To provide a comprehensive assessment of genetic findings associated with bipolar disorder, based on the evaluation of different genomic approaches and neuroimaging studies. METHOD We conducted a PubMed search of all relevant literatures from the beginning to the present, by querying related search strings. RESULTS ANK3, CACNA1C, SYNE1, ODZ4 and TRANK1 are five genes that have been replicated as key gene candidates in bipolar disorder pathophysiology, through the investigated studies. The percentage of phenotypic variance explained by the identified variants is small (approximately 4.7%). Bipolar disorder polygenic risk scores are associated with other psychiatric phenotypes. The ENIGMA-BD studies show a replicable pattern of lower cortical thickness, altered white matter integrity and smaller subcortical volumes in bipolar disorder. CONCLUSIONS The low amount of explained phenotypic variance highlights the need for further large-scale investigations, especially among non-European populations, to achieve a more complete understanding of the genetic architecture of bipolar disorder and the missing heritability. Combining neuroimaging data with genetic data in large-scale studies might help researchers acquire a better knowledge of the engaged brain regions in bipolar disorder.
Collapse
Affiliation(s)
- Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, USA
| |
Collapse
|
8
|
Identification of molecular signatures and pathways common to blood cells and brain tissue based RNA-Seq datasets of bipolar disorder: Insights from comprehensive bioinformatics approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Hubert JN, Suybeng V, Vallée M, Delhomme TM, Maubec E, Boland A, Bacq D, Deleuze JF, Jouenne F, Brennan P, McKay JD, Avril MF, Bressac-de Paillerets B, Chanudet E. The PI3K/mTOR Pathway Is Targeted by Rare Germline Variants in Patients with Both Melanoma and Renal Cell Carcinoma. Cancers (Basel) 2021; 13:2243. [PMID: 34067022 PMCID: PMC8125037 DOI: 10.3390/cancers13092243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Malignant melanoma and RCC have different embryonic origins, no common lifestyle risk factors but intriguingly share biological properties such as immune regulation and radioresistance. An excess risk of malignant melanoma is observed in RCC patients and vice versa. This bidirectional association is poorly understood, and hypothetic genetic co-susceptibility remains largely unexplored. Results: We hereby provide a clinical and genetic description of a series of 125 cases affected by both malignant melanoma and RCC. Clinical germline mutation testing identified a pathogenic variant in a melanoma and/or RCC predisposing gene in 17/125 cases (13.6%). This included mutually exclusive variants in MITF (p.E318K locus, N = 9 cases), BAP1 (N = 3), CDKN2A (N = 2), FLCN (N = 2), and PTEN (N = 1). A subset of 46 early-onset cases, without underlying germline variation, was whole-exome sequenced. In this series, thirteen genes were significantly enriched in mostly exclusive rare variants predicted to be deleterious, compared to 19,751 controls of similar ancestry. The observed variation mainly consisted of novel or low-frequency variants (<0.01%) within genes displaying strong evolutionary mutational constraints along the PI3K/mTOR pathway, including PIK3CD, NFRKB, EP300, MTOR, and related epigenetic modifier SETD2. The screening of independently processed germline exomes from The Cancer Genome Atlas confirmed an association with melanoma and RCC but not with cancers of established differing etiology such as lung cancers. Conclusions: Our study highlights that an exome-wide case-control enrichment approach may better characterize the rare variant-based missing heritability of multiple primary cancers. In our series, the co-occurrence of malignant melanoma and RCC was associated with germline variation in the PI3K/mTOR signaling cascade, with potential relevance for early diagnostic and clinical management.
Collapse
Affiliation(s)
- Jean-Noël Hubert
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - Voreak Suybeng
- Gustave Roussy, Département de Biopathologie, 94805 Villejuif, France; (V.S.); (F.J.)
| | - Maxime Vallée
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - Tiffany M. Delhomme
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - Eve Maubec
- Department of Dermatology, AP-HP, Hôpital Avicenne, University Paris 13, 93000 Bobigny, France;
- UMRS-1124, Campus Paris Saint-Germain-des-Prés, University of Paris, 75006 Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057 Evry, France; (A.B.); (D.B.); (J.-F.D.)
| | - Delphine Bacq
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057 Evry, France; (A.B.); (D.B.); (J.-F.D.)
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057 Evry, France; (A.B.); (D.B.); (J.-F.D.)
| | - Fanélie Jouenne
- Gustave Roussy, Département de Biopathologie, 94805 Villejuif, France; (V.S.); (F.J.)
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - James D. McKay
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | | | - Brigitte Bressac-de Paillerets
- Gustave Roussy, Département de Biopathologie, 94805 Villejuif, France; (V.S.); (F.J.)
- INSERM U1279, Tumor Cell Dynamics, 94805 Villejuif, France
| | - Estelle Chanudet
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| |
Collapse
|
10
|
Swietlik EM, Prapa M, Martin JM, Pandya D, Auckland K, Morrell NW, Gräf S. 'There and Back Again'-Forward Genetics and Reverse Phenotyping in Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:E1408. [PMID: 33256119 PMCID: PMC7760524 DOI: 10.3390/genes11121408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Although the invention of right heart catheterisation in the 1950s enabled accurate clinical diagnosis of pulmonary arterial hypertension (PAH), it was not until 2000 when the landmark discovery of the causative role of bone morphogenetic protein receptor type II (BMPR2) mutations shed new light on the pathogenesis of PAH. Since then several genes have been discovered, which now account for around 25% of cases with the clinical diagnosis of idiopathic PAH. Despite the ongoing efforts, in the majority of patients the cause of the disease remains elusive, a phenomenon often referred to as "missing heritability". In this review, we discuss research approaches to uncover the genetic architecture of PAH starting with forward phenotyping, which in a research setting should focus on stable intermediate phenotypes, forward and reverse genetics, and finally reverse phenotyping. We then discuss potential sources of "missing heritability" and how functional genomics and multi-omics methods are employed to tackle this problem.
Collapse
Affiliation(s)
- Emilia M. Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Matina Prapa
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jennifer M. Martin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Divya Pandya
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Kathryn Auckland
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| |
Collapse
|
11
|
Amanat S, Requena T, Lopez-Escamez JA. A Systematic Review of Extreme Phenotype Strategies to Search for Rare Variants in Genetic Studies of Complex Disorders. Genes (Basel) 2020; 11:genes11090987. [PMID: 32854191 PMCID: PMC7564972 DOI: 10.3390/genes11090987] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Exome sequencing has been commonly used to characterize rare diseases by selecting multiplex families or singletons with an extreme phenotype (EP) and searching for rare variants in coding regions. The EP strategy covers both extreme ends of a disease spectrum and it has been also used to investigate the contribution of rare variants to the heritability of complex clinical traits. We conducted a systematic review to find evidence supporting the use of EP strategies in the search for rare variants in genetic studies of complex diseases and highlight the contribution of rare variations to the genetic structure of polygenic conditions. After assessing the quality of the retrieved records, we selected 19 genetic studies considering EPs to demonstrate genetic association. All studies successfully identified several rare or de novo variants, and many novel candidate genes were also identified by selecting an EP. There is enough evidence to support that the EP approach for patients with an early onset of a disease can contribute to the identification of rare variants in candidate genes or pathways involved in complex diseases. EP patients may contribute to a better understanding of the underlying genetic architecture of common heterogeneous disorders such as tinnitus or age-related hearing loss.
Collapse
Affiliation(s)
- Sana Amanat
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO—Centre for Genomics and Oncological Research—Pfizer/University of Granada/Junta de Andalucía, PTS, 18016 Granada, Spain;
| | - Teresa Requena
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK;
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO—Centre for Genomics and Oncological Research—Pfizer/University of Granada/Junta de Andalucía, PTS, 18016 Granada, Spain;
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18016 Granada, Spain
- Department of Surgery, Division of Otolaryngology, Universidad de Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-715-500-160
| |
Collapse
|
12
|
Courtois E, Schmid M, Wajsbrot O, Barau C, Le Corvoisier P, Aouizerate B, Bellivier F, Belzeaux R, Dubertret C, Kahn JP, Leboyer M, Olie E, Passerieux C, Polosan M, Etain B, Jamain S. Contribution of common and rare damaging variants in familial forms of bipolar disorder and phenotypic outcome. Transl Psychiatry 2020; 10:124. [PMID: 32345981 PMCID: PMC7188882 DOI: 10.1038/s41398-020-0783-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies on bipolar disorders (BD) have revealed an additive polygenic contribution of common single-nucleotide polymorphisms (SNPs). However, these SNPs explain only 25% of the overall genetic variance and suggest a role of rare variants in BD vulnerability. Here, we combined high-throughput genotyping data and whole-exome sequencing in cohorts of individuals with BD as well as in multiplex families with a high density of affected individuals in order to determine the contribution of both common and rare variants to BD genetic vulnerability. Using polygenic risk scores (PRS), we showed a strong contribution of common polymorphisms previously associated with BD and schizophrenia (SZ) and noticed that those specifically associated with SZ contributed more in familial forms of BD than in non-familial ones. The analysis of rare damaging variants shared by affected individuals in multiplex families with BD revealed a single interaction network enriched in neuronal and developmental biological pathways, as well as in the regulation of gene expression. We identified four genes with a higher mutation rate in individuals with BD than in the general population and showed that mutations in two of them were associated with specific clinical manifestations. In addition, we showed a significant negative correlation between PRS and the number of rare damaging variants specifically in unaffected individuals of multiplex families. Altogether, our results suggest that common and rare genetic variants both contribute to the familial aggregation of BD and this genetic architecture may explain the heterogeneity of clinical manifestations in multiplex families.
Collapse
Affiliation(s)
- Elisa Courtois
- INSERM U955, Psychiatrie Translationnelle, Créteil, 94000, France
- Université Paris Est, Faculté de Médecine, Créteil, 94000, France
- Fondation FondaMental, Créteil, 94000, France
| | - Mark Schmid
- INSERM U955, Psychiatrie Translationnelle, Créteil, 94000, France
- Université Paris Est, Faculté de Médecine, Créteil, 94000, France
- Fondation FondaMental, Créteil, 94000, France
| | - Orly Wajsbrot
- Fondation FondaMental, Créteil, 94000, France
- Université de Lorraine, CHRU de Nancy et Pôle de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy, Laxou, 54520, France
| | - Caroline Barau
- AP-HP, Hôpital H. Mondor-A. Chenevier, Plateforme de Ressources Biologiques, Créteil, 94000, France
| | - Philippe Le Corvoisier
- Inserm, Centre d'Investigation Clinique 1430 and APHP, Henri Mondor Hospital, Créteil, 94000, France
| | - Bruno Aouizerate
- Fondation FondaMental, Créteil, 94000, France
- Centre Expert Troubles Bipolaires, Service de Psychiatrie Adulte, Hôpital Charles-Perrens, Bordeaux, 33000, France
| | - Frank Bellivier
- Fondation FondaMental, Créteil, 94000, France
- AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, 75010, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, 75010, France
- Inserm, UMR-S1144, Paris, 75010, France
| | - Raoul Belzeaux
- Fondation FondaMental, Créteil, 94000, France
- Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, INT-UMR7289, CNRS Aix-Marseille Université, Marseille, 13009, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, 94000, France
- AP-HP, Département de Psychiatrie, Hôpital Louis Mourier, INSERM U894, Université de Paris, Colombes, 92700, France
| | - Jean-Pierre Kahn
- Fondation FondaMental, Créteil, 94000, France
- Université de Lorraine, CHRU de Nancy et Pôle de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy, Laxou, 54520, France
| | - Marion Leboyer
- INSERM U955, Psychiatrie Translationnelle, Créteil, 94000, France
- Université Paris Est, Faculté de Médecine, Créteil, 94000, France
- Fondation FondaMental, Créteil, 94000, France
- AP-HP, DHU PePSY, Pôle de Psychiatrie et d'Addictologie des Hôpitaux Universitaires Henri Mondor, Créteil, 94000, France
| | - Emilie Olie
- Fondation FondaMental, Créteil, 94000, France
- Département urgence et Post-urgence psychiatrique, CHU Montpellier, INSERM U1061, Université de Montpellier, Montpellier, 34000, France
| | - Christine Passerieux
- Fondation FondaMental, Créteil, 94000, France
- Service Universitaire de Psychiatrie d'Adultes, Centre Hospitalier de Versailles, Laboratoire HandiRESP, EA4047, UFR des Sciences de la Santé Simone Veil, Université de Versailles Saint-Quentin-En-Yvelines, Le Chesnay, 78150, France
| | - Mircea Polosan
- Fondation FondaMental, Créteil, 94000, France
- Université Grenoble Alpes, CHU de Grenoble et des Alpes, Grenoble Institut des Neurosciences (GIN) Inserm U 1216, La Tronche, 38700, France
| | - Bruno Etain
- Fondation FondaMental, Créteil, 94000, France
- AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, 75010, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, 75010, France
- Inserm, UMR-S1144, Paris, 75010, France
| | - Stéphane Jamain
- INSERM U955, Psychiatrie Translationnelle, Créteil, 94000, France.
- Université Paris Est, Faculté de Médecine, Créteil, 94000, France.
- Fondation FondaMental, Créteil, 94000, France.
| |
Collapse
|
13
|
Cuellar-Barboza AB, Winham SJ, Biernacka JM, Frye MA, McElroy SL. Clinical phenotype and genetic risk factors for bipolar disorder with binge eating: an update. Expert Rev Neurother 2019; 19:867-879. [PMID: 31269819 DOI: 10.1080/14737175.2019.1638764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Introduction: Clinical and genetic study of psychiatric conditions has underscored the co-occurrence of complex phenotypes and the need to refine them. Bipolar Disorder (BD) and Binge Eating (BE) behavior are common psychiatric conditions that have high heritability and high co-occurrence, such that at least one quarter of BD patients have BE (BD + BE). Genetic studies of BD alone and of BE alone suggest complex polygenic risk models, with many genetic risk loci yet to be identified. Areas covered: We review studies of the epidemiology of BD+BE, its clinical features (cognitive traits, psychiatric comorbidity, and role of obesity), genomic studies (of BD, eating disorders (ED) defined by BE, and BD + BE), and therapeutic implications of BD + BE. Expert opinion: Subphenotyping of complex psychiatric disorders reduces heterogeneity and increases statistical power and effect size; thus, it enhances our capacity to find missing genetic (and other) risk factors. BD + BE has a severe clinical picture and genetic studies suggests a distinct genetic architecture. Differential therapeutic interventions may be needed for patients with BD + BE compared with BD patients without BE. Recognizing the BD + BE subphenotype is an example of moving towards more precise clinical and genetic entities.
Collapse
Affiliation(s)
- Alfredo B Cuellar-Barboza
- Universidad Autonoma de Nuevo Leon, Department of Psychiatry, School of Medicine , Monterrey , NL , Mexico.,Department of Psychiatry and Psychology, Mayo Clinic , Rochester , MN , USA
| | - Stacey J Winham
- Department of Psychiatry and Psychology, Mayo Clinic , Rochester , MN , USA.,Department of Health Sciences Research, Mayo Clinic , Rochester , MN , USA
| | - Joanna M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic , Rochester , MN , USA.,Department of Health Sciences Research, Mayo Clinic , Rochester , MN , USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic , Rochester , MN , USA.,Department of Health Sciences Research, Mayo Clinic , Rochester , MN , USA
| | - Susan L McElroy
- Lindner Center of HOPE , Mason , OH , USA.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|