1
|
Omiye JA, Ghanzouri I, Lopez I, Wang F, Cabot J, Amal S, Ye J, Lopez NG, Adebayo-Tijani F, Ross EG. Clinical use of polygenic risk scores for detection of peripheral artery disease and cardiovascular events. PLoS One 2024; 19:e0303610. [PMID: 38758931 PMCID: PMC11101066 DOI: 10.1371/journal.pone.0303610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
We have previously shown that polygenic risk scores (PRS) can improve risk stratification of peripheral artery disease (PAD) in a large, retrospective cohort. Here, we evaluate the potential of PRS in improving the detection of PAD and prediction of major adverse cardiovascular and cerebrovascular events (MACCE) and adverse events (AE) in an institutional patient cohort. We created a cohort of 278 patients (52 cases and 226 controls) and fit a PAD-specific PRS based on the weighted sum of risk alleles. We built traditional clinical risk models and machine learning (ML) models using clinical and genetic variables to detect PAD, MACCE, and AE. The models' performances were measured using the area under the curve (AUC), net reclassification index (NRI), integrated discrimination improvement (IDI), and Brier score. We also evaluated the clinical utility of our PAD model using decision curve analysis (DCA). We found a modest, but not statistically significant improvement in the PAD detection model's performance with the inclusion of PRS from 0.902 (95% CI: 0.846-0.957) (clinical variables only) to 0.909 (95% CI: 0.856-0.961) (clinical variables with PRS). The PRS inclusion significantly improved risk re-classification of PAD with an NRI of 0.07 (95% CI: 0.002-0.137), p = 0.04. For our ML model predicting MACCE, the addition of PRS did not significantly improve the AUC, however, NRI analysis demonstrated significant improvement in risk re-classification (p = 2e-05). Decision curve analysis showed higher net benefit of our combined PRS-clinical model across all thresholds of PAD detection. Including PRS to a clinical PAD-risk model was associated with improvement in risk stratification and clinical utility, although we did not see a significant change in AUC. This result underscores the potential clinical utility of incorporating PRS data into clinical risk models for prevalent PAD and the need for use of evaluation metrics that can discern the clinical impact of using new biomarkers in smaller populations.
Collapse
Affiliation(s)
- Jesutofunmi A. Omiye
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ilies Ghanzouri
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ivan Lopez
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Fudi Wang
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - John Cabot
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Saeed Amal
- Department of Bioengineering, The Roux Institute at Northeastern University, Portland, Maine, United States of America
| | - Jianqin Ye
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicolas Gabriel Lopez
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Faatihat Adebayo-Tijani
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elsie Gyang Ross
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Vascular Surgery, Department of Surgery, UC San Diego School of Medicine, La Jolla, California, United States of America
| |
Collapse
|
2
|
Li Q, Lv X, Qian Q, Liao K, Du X. Neuroticism polygenic risk predicts conversion from mild cognitive impairment to Alzheimer's disease by impairing inferior parietal surface area. Hum Brain Mapp 2024; 45:e26709. [PMID: 38746977 PMCID: PMC11094517 DOI: 10.1002/hbm.26709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
The high prevalence of conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD) makes early prevention of AD extremely critical. Neuroticism, a heritable personality trait associated with mental health, has been considered a risk factor for conversion from aMCI to AD. However, whether the neuroticism genetic risk could predict the conversion of aMCI and its underlying neural mechanisms is unclear. Neuroticism polygenic risk score (N-PRS) was calculated in 278 aMCI patients with qualified genomic and neuroimaging data from ADNI. After 1-year follow-up, N-PRS in patients of aMCI-converted group was significantly greater than those in aMCI-stable group. Logistic and Cox survival regression revealed that N-PRS could significantly predict the early-stage conversion risk from aMCI to AD. These results were well replicated in an internal dataset and an independent external dataset of 933 aMCI patients from the UK Biobank. One sample Mendelian randomization analyses confirmed a potentially causal association from higher N-PRS to lower inferior parietal surface area to higher conversion risk of aMCI patients. These analyses indicated that neuroticism genetic risk may increase the conversion risk from aMCI to AD by impairing the inferior parietal structure.
Collapse
Affiliation(s)
- Qiaojun Li
- College of Information EngineeringTianjin University of CommerceTianjinChina
| | - Xingping Lv
- College of SciencesTianjin University of CommerceTianjinChina
| | - Qian Qian
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Kun Liao
- College of SciencesTianjin University of CommerceTianjinChina
| | - Xin Du
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | | |
Collapse
|
3
|
Xiang R, Kelemen M, Xu Y, Harris LW, Parkinson H, Inouye M, Lambert SA. Recent advances in polygenic scores: translation, equitability, methods and FAIR tools. Genome Med 2024; 16:33. [PMID: 38373998 PMCID: PMC10875792 DOI: 10.1186/s13073-024-01304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Polygenic scores (PGS) can be used for risk stratification by quantifying individuals' genetic predisposition to disease, and many potentially clinically useful applications have been proposed. Here, we review the latest potential benefits of PGS in the clinic and challenges to implementation. PGS could augment risk stratification through combined use with traditional risk factors (demographics, disease-specific risk factors, family history, etc.), to support diagnostic pathways, to predict groups with therapeutic benefits, and to increase the efficiency of clinical trials. However, there exist challenges to maximizing the clinical utility of PGS, including FAIR (Findable, Accessible, Interoperable, and Reusable) use and standardized sharing of the genomic data needed to develop and recalculate PGS, the equitable performance of PGS across populations and ancestries, the generation of robust and reproducible PGS calculations, and the responsible communication and interpretation of results. We outline how these challenges may be overcome analytically and with more diverse data as well as highlight sustained community efforts to achieve equitable, impactful, and responsible use of PGS in healthcare.
Collapse
Affiliation(s)
- Ruidong Xiang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Martin Kelemen
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Laura W Harris
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
| | - Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
4
|
Chang T, Fu M, Valiente-Banuet L, Wadhwa S, Pasaniuc B, Vossel K. Improving genetic risk modeling of dementia from real-world data in underrepresented populations. RESEARCH SQUARE 2024:rs.3.rs-3911508. [PMID: 38410460 PMCID: PMC10896371 DOI: 10.21203/rs.3.rs-3911508/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited. METHODS We employed an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compared this model with APOE and polygenic risk score models across genetic ancestry groups, using electronic health records from UCLA Health for discovery and All of Us cohort for validation. RESULTS Our model significantly outperforms other models across multiple ancestries, improving the area-under-precision-recall curve by 21-61% and the area-under-the-receiver-operating characteristic by 10-21% compared to the APOEand the polygenic risk score models. We identified shared and ancestry-specific risk genes and biological pathways, reinforcing and adding to existing knowledge. CONCLUSIONS Our study highlights benefits of integrating functional mapping, multiple neurodegenerative diseases, and machine learning for genetic risk models in diverse populations. Our findings hold potential for refining precision medicine strategies in dementia diagnosis.
Collapse
Affiliation(s)
- Timothy Chang
- David Geffen School of Medicine, University of California, Los Angeles
| | | | | | | | | | | |
Collapse
|
5
|
Fu M, Valiente-Banuet L, Wadhwa SS, Pasaniuc B, Vossel K, Chang TS. Improving genetic risk modeling of dementia from real-world data in underrepresented populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24302355. [PMID: 38370649 PMCID: PMC10871463 DOI: 10.1101/2024.02.05.24302355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
BACKGROUND Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited. METHODS We employed an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compared this model with APOE and polygenic risk score models across genetic ancestry groups, using electronic health records from UCLA Health for discovery and All of Us cohort for validation. RESULTS Our model significantly outperforms other models across multiple ancestries, improving the area-under-precision-recall curve by 21-61% and the area-under-the-receiver-operating characteristic by 10-21% compared to the APOE and the polygenic risk score models. We identified shared and ancestry-specific risk genes and biological pathways, reinforcing and adding to existing knowledge. CONCLUSIONS Our study highlights benefits of integrating functional mapping, multiple neurodegenerative diseases, and machine learning for genetic risk models in diverse populations. Our findings hold potential for refining precision medicine strategies in dementia diagnosis.
Collapse
Affiliation(s)
- Mingzhou Fu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, United States
- Medical Informatics Home Area, Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90024, United States
| | - Leopoldo Valiente-Banuet
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Satpal S. Wadhwa
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | | | | | - Bogdan Pasaniuc
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Keith Vossel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Timothy S. Chang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| |
Collapse
|
6
|
Goddard TR, Brookes KJ, Sharma R, Moemeni A, Rajkumar AP. Dementia with Lewy Bodies: Genomics, Transcriptomics, and Its Future with Data Science. Cells 2024; 13:223. [PMID: 38334615 PMCID: PMC10854541 DOI: 10.3390/cells13030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Dementia with Lewy bodies (DLB) is a significant public health issue. It is the second most common neurodegenerative dementia and presents with severe neuropsychiatric symptoms. Genomic and transcriptomic analyses have provided some insight into disease pathology. Variants within SNCA, GBA, APOE, SNCB, and MAPT have been shown to be associated with DLB in repeated genomic studies. Transcriptomic analysis, conducted predominantly on candidate genes, has identified signatures of synuclein aggregation, protein degradation, amyloid deposition, neuroinflammation, mitochondrial dysfunction, and the upregulation of heat-shock proteins in DLB. Yet, the understanding of DLB molecular pathology is incomplete. This precipitates the current clinical position whereby there are no available disease-modifying treatments or blood-based diagnostic biomarkers. Data science methods have the potential to improve disease understanding, optimising therapeutic intervention and drug development, to reduce disease burden. Genomic prediction will facilitate the early identification of cases and the timely application of future disease-modifying treatments. Transcript-level analyses across the entire transcriptome and machine learning analysis of multi-omic data will uncover novel signatures that may provide clues to DLB pathology and improve drug development. This review will discuss the current genomic and transcriptomic understanding of DLB, highlight gaps in the literature, and describe data science methods that may advance the field.
Collapse
Affiliation(s)
- Thomas R. Goddard
- Mental Health and Clinical Neurosciences Academic Unit, Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham NG7 2TU, UK
| | - Keeley J. Brookes
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Riddhi Sharma
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Armaghan Moemeni
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Anto P. Rajkumar
- Mental Health and Clinical Neurosciences Academic Unit, Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham NG7 2TU, UK
| |
Collapse
|
7
|
Bhalala OG, Watson R, Yassi N. Multi-Omic Blood Biomarkers as Dynamic Risk Predictors in Late-Onset Alzheimer's Disease. Int J Mol Sci 2024; 25:1231. [PMID: 38279230 PMCID: PMC10816901 DOI: 10.3390/ijms25021231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Late-onset Alzheimer's disease is the leading cause of dementia worldwide, accounting for a growing burden of morbidity and mortality. Diagnosing Alzheimer's disease before symptoms are established is clinically challenging, but would provide therapeutic windows for disease-modifying interventions. Blood biomarkers, including genetics, proteins and metabolites, are emerging as powerful predictors of Alzheimer's disease at various timepoints within the disease course, including at the preclinical stage. In this review, we discuss recent advances in such blood biomarkers for determining disease risk. We highlight how leveraging polygenic risk scores, based on genome-wide association studies, can help stratify individuals along their risk profile. We summarize studies analyzing protein biomarkers, as well as report on recent proteomic- and metabolomic-based prediction models. Finally, we discuss how a combination of multi-omic blood biomarkers can potentially be used in memory clinics for diagnosis and to assess the dynamic risk an individual has for developing Alzheimer's disease dementia.
Collapse
Affiliation(s)
- Oneil G. Bhalala
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| | - Rosie Watson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| | - Nawaf Yassi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| |
Collapse
|
8
|
Yu C, Ryan J, Orchard SG, Robb C, Woods RL, Wolfe R, Renton AE, Goate AM, Brodtmann A, Shah RC, Chong TTJ, Sheets K, Kyndt C, Sood A, Storey E, Murray AM, McNeil JJ, Lacaze P. Validation of newly derived polygenic risk scores for dementia in a prospective study of older individuals. Alzheimers Dement 2023; 19:5333-5342. [PMID: 37177856 PMCID: PMC10640662 DOI: 10.1002/alz.13113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
INTRODUCTION Recent genome-wide association studies identified new dementia-associated variants. We assessed the performance of updated polygenic risk scores (PRSs) using these variants in an independent cohort. METHODS We used Cox models and area under the curve (AUC) to validate new PRSs (PRS-83SNP, PRS-SBayesR, and PRS-CS) compared with an older PRS-23SNP in 12,031 initially-healthy participants ≥70 years of age. Dementia was rigorously adjudicated according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. RESULTS PRS-83SNP, PRS-SBayesR, and PRS-CS were associated with incident dementia, with fully adjusted (including apolipoprotein E [APOE] ε4) hazard ratios per standard deviation (SD) of 1.35 (1.23-1.47), 1.37 (1.25-1.50), and 1.42 (1.30-1.56), respectively. The AUC of a model containing conventional/non-genetic factors and APOE was 74.7%. This was improved to 75.7% (p = 0.007), 76% (p = 0.004), and 76.1% (p = 0.003) with addition of PRS-83SNP, PRS-SBayesR, and PRS-CS, respectively. The PRS-23SNP did not improve AUC (74.7%, p = 0.95). CONCLUSION New PRSs for dementia significantly improve risk-prediction performance, but still account for less risk than APOE genotype overall.
Collapse
Affiliation(s)
- Chenglong Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Suzanne G. Orchard
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Catherine Robb
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robyn L. Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Alan E. Renton
- Department Genetics and Genomic Sciences and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alison M. Goate
- Department Genetics and Genomic Sciences and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amy Brodtmann
- Cognitive Health Initiative, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Raj C. Shah
- Department of Family & Preventive Medicine and the Rush Alzheimer’s Disease Center, Chicago, Illinois, USA
| | - Trevor T.-J. Chong
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Clinical Neurosciences, St. Vincent’s Hospital, Melbourne, Victoria, Australia
| | - Kerry Sheets
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Geriatrics, Hennepin Healthcare, Minneapolis, Minnesota, USA
| | - Christopher Kyndt
- Department of Neurology, Melbourne Health, Parkville, Victoria, Australia
- Department of Neuroscience, Eastern Health, Box Hill, Victoria, Australia
| | - Ajay Sood
- Department of Neurology and the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Elsdon Storey
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anne M. Murray
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Geriatrics, Hennepin Healthcare, Minneapolis, Minnesota, USA
- Berman Center for Outcomes and Clinical Research, Hennepin Healthcare Research Institute, Hennepin Healthcare, and University of Minnesota, Minneapolis, Minnesota, USA
| | - John J. McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Liu T, Li C, Zhang R, Millender EF, Miao H, Ormsbee M, Guo J, Westbrook A, Pan Y, Wang J, Kelly TN. A longitudinal study of polygenic score and cognitive function decline considering baseline cognitive function, lifestyle behaviors, and diabetes among middle-aged and older US adults. Alzheimers Res Ther 2023; 15:196. [PMID: 37950263 PMCID: PMC10636974 DOI: 10.1186/s13195-023-01343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Genomic study of cognition decline while considering baseline cognition and lifestyle behaviors is scarce. We aimed to evaluate the impact of a polygenic score for general cognition on cognition decline rate, while considering baseline cognition and lifestyle behaviors, among the general population and people with diabetes, a patient group commonly affected by cognition impairment. METHODS We tested associations of the polygenic score for general cognition with annual changing rates of cognition measures in 8 years of follow-up among 12,090 White and 3100 Black participants of the Health and Retirement Study (HRS), a nationally representative sample of adults aged 50 years and older in the USA. Cognition measures including word recall, mental status, and total cognitive score were measured biannually. To maximize sample size and length of follow-up, we treated the 2010 wave of survey as baseline, and follow-up data until 2018 were analyzed. Baseline lifestyle behaviors, APOE status, and measured cognition were sequentially adjusted. Given racial differences in polygenic score, all analyses were conducted by race. RESULTS The polygenic score was significantly associated with annual changing rates of all cognition measures independent of lifestyle behaviors and APOE status. Together with age and sex, the polygenic score explained 29.9%, 15.9%, and 26.5% variances of annual changing rates of word recall, mental status, and total cognitive scores among Whites and explained 17.2%, 13.9%, and 18.7% variance of the three traits among Blacks. Among both White and Black participants, those in the top quartile of polygenic score had the three cognition measures increased annually, while those in the bottom quartile had the three cognition measures decreased annually. After further adjusting for the average cognition assessed in 3 visits around baseline, the polygenic score was still positively associated with annual changing rates of all cognition measures for White (P ≤ 2.89E - 19) but not for Black (P ≥ 0.07) participants. In addition, among participants with diabetes, physical activity offset the genetic susceptibility to decline of mental status (interaction P ≤ 0.01) and total cognitive scores (interaction P = 0.03). CONCLUSIONS Polygenic score predicted cognition changes in addition to measured cognition. Physical activity offset genetic risk for cognition decline among diabetes patients.
Collapse
Affiliation(s)
- Tingting Liu
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street Suite 2000, New Orleans, LA, 70112, USA.
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street Suite 2000, New Orleans, LA, 70112, USA
| | - Eugenia Flores Millender
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
- Center of Population Sciences for Health Equity, Florida State University College of Nursing, Tallahassee, FL, 32306, USA
| | - Hongyu Miao
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael Ormsbee
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Jinzhen Guo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Adrianna Westbrook
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yang Pan
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jing Wang
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
10
|
Suh EH, Lee G, Jung SH, Wen Z, Bao J, Nho K, Huang H, Davatzikos C, Saykin AJ, Thompson PM, Shen L, Kim D. An interpretable Alzheimer's disease oligogenic risk score informed by neuroimaging biomarkers improves risk prediction and stratification. Front Aging Neurosci 2023; 15:1281748. [PMID: 37953885 PMCID: PMC10637854 DOI: 10.3389/fnagi.2023.1281748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Stratification of Alzheimer's disease (AD) patients into risk subgroups using Polygenic Risk Scores (PRS) presents novel opportunities for the development of clinical trials and disease-modifying therapies. However, the heterogeneous nature of AD continues to pose significant challenges for the clinical broadscale use of PRS. PRS remains unfit in demonstrating sufficient accuracy in risk prediction, particularly for individuals with mild cognitive impairment (MCI), and in allowing feasible interpretation of specific genes or SNPs contributing to disease risk. We propose adORS, a novel oligogenic risk score for AD, to better predict risk of disease by using an optimized list of relevant genetic risk factors. Methods Using whole genome sequencing data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (n = 1,545), we selected 20 genes that exhibited the strongest correlations with FDG-PET and AV45-PET, recognized neuroimaging biomarkers that detect functional brain changes in AD. This subset of genes was incorporated into adORS to assess, in comparison to PRS, the prediction accuracy of CN vs. AD classification and MCI conversion prediction, risk stratification of the ADNI cohort, and interpretability of the genetic information included in the scores. Results adORS improved AUC scores over PRS in both CN vs. AD classification and MCI conversion prediction. The oligogenic model also refined risk-based stratification, even without the assistance of APOE, thus reflecting the true prevalence rate of the ADNI cohort compared to PRS. Interpretation analysis shows that genes included in adORS, such as ATF6, EFCAB11, ING5, SIK3, and CD46, have been observed in similar neurodegenerative disorders and/or are supported by AD-related literature. Discussion Compared to conventional PRS, adORS may prove to be a more appropriate choice of differentiating patients into high or low genetic risk of AD in clinical studies or settings. Additionally, the ability to interpret specific genetic information allows the focus to be shifted from general relative risk based on a given population to the information that adORS can provide for a single individual, thus permitting the possibility of personalized treatments for AD.
Collapse
Affiliation(s)
- Erica H. Suh
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Garam Lee
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zixuan Wen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Heng Huang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
11
|
Hu X, Jiang X, Li J, Zhao N, Gan H, Hu X, Li L, Liu X, Shan H, Bai Y, Pang P. Identification of potential genetic Loci and polygenic risk model for Budd-Chiari syndrome in Chinese population. iScience 2023; 26:107287. [PMID: 37539039 PMCID: PMC10393737 DOI: 10.1016/j.isci.2023.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/19/2023] [Accepted: 07/02/2023] [Indexed: 08/05/2023] Open
Abstract
Budd-Chiari syndrome (BCS) is characterized by hepatic venous outflow obstruction, posing life-threatening risks in severe cases. Reported risk factors include inherited and acquired hypercoagulable states or other predisposing factors. However, many patients have no identifiable etiology, and causes of BCS differ between the West and East. This study recruited 500 BCS patients and 696 normal individuals for whole-exome sequencing and developed a polygenic risk scoring (PRS) model using PLINK, LASSOSUM, BLUP, and BayesA methods. Risk factors for venous thromboembolism and vascular malformations were also assessed for BCS risk prediction. Ultimately, we discovered potential BCS risk mutations, such as rs1042331, and the optimal BayesA-generated PRS model presented an AUC >0.9 in the external replication cohort. This model provides particular insights into genetic risk differences between China and the West and suggests shared genetic risks among BCS, venous thromboembolism, and vascular malformations, offering different perspectives on BCS pathogenesis.
Collapse
Affiliation(s)
- Xiaojun Hu
- Center for Interventional Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaosen Jiang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Shijiazhuang BGI Genomics Co., Ltd, Shijiazhuang, China
| | - Ni Zhao
- Center for Interventional Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hairun Gan
- Center for Interventional Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xinyan Hu
- Center for Interventional Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Luting Li
- Center for Interventional Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xingtao Liu
- Changfeng Hospital of Jinjiang District, Chengdu, China
| | - Hong Shan
- Center for Interventional Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | | | - Pengfei Pang
- Center for Interventional Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
12
|
Dou J, Bakulski K, Guo K, Hur J, Zhao L, Saez-Atienzar S, Stark A, Chia R, García-Redondo A, Rojas-Garcia R, Vázquez Costa JF, Fernandez Santiago R, Bandres-Ciga S, Gómez-Garre P, Periñán MT, Mir P, Pérez-Tur J, Cardona F, Menendez-Gonzalez M, Riancho J, Borrego-Hernández D, Galán-Dávila L, Infante Ceberio J, Pastor P, Paradas C, Dols-Icardo O, Traynor BJ, Feldman EL, Goutman SA. Cumulative Genetic Score and C9orf72 Repeat Status Independently Contribute to Amyotrophic Lateral Sclerosis Risk in 2 Case-Control Studies. Neurol Genet 2023; 9:e200079. [PMID: 37293291 PMCID: PMC10245939 DOI: 10.1212/nxg.0000000000200079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 06/10/2023]
Abstract
Background and Objectives Most patients with amyotrophic lateral sclerosis (ALS) lack a monogenic mutation. This study evaluates ALS cumulative genetic risk in an independent Michigan and Spanish replication cohort using polygenic scores. Methods Participant samples from University of Michigan were genotyped and assayed for the chromosome 9 open reading frame 72 hexanucleotide expansion. Final cohort size was 219 ALS and 223 healthy controls after genotyping and participant filtering. Polygenic scores excluding the C9 region were generated using an independent ALS genome-wide association study (20,806 cases, 59,804 controls). Adjusted logistic regression and receiver operating characteristic curves evaluated the association and classification between polygenic scores and ALS status, respectively. Population attributable fractions and pathway analyses were conducted. An independent Spanish study sample (548 cases, 2,756 controls) was used for replication. Results Polygenic scores constructed from 275 single-nucleotide variation (SNV) had the best model fit in the Michigan cohort. An SD increase in ALS polygenic score associated with 1.28 (95% CI 1.04-1.57) times higher odds of ALS with area under the curve of 0.663 vs a model without the ALS polygenic score (p value = 1 × 10-6). The population attributable fraction of the highest 20th percentile of ALS polygenic scores, relative to the lowest 80th percentile, was 4.1% of ALS cases. Genes annotated to this polygenic score enriched for important ALS pathomechanisms. Meta-analysis with the Spanish study, using a harmonized 132 single nucleotide variation polygenic score, yielded similar logistic regression findings (odds ratio: 1.13, 95% CI 1.04-1.23). Discussion ALS polygenic scores can account for cumulative genetic risk in populations and reflect disease-relevant pathways. If further validated, this polygenic score will inform future ALS risk models.
Collapse
Affiliation(s)
- John Dou
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Kelly Bakulski
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Kai Guo
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Junguk Hur
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Lili Zhao
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Sara Saez-Atienzar
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Ali Stark
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Ruth Chia
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Alberto García-Redondo
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Ricardo Rojas-Garcia
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Juan Francisco Vázquez Costa
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Ruben Fernandez Santiago
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Sara Bandres-Ciga
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Pilar Gómez-Garre
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Maria Teresa Periñán
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Pablo Mir
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Jordi Pérez-Tur
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Fernando Cardona
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Manuel Menendez-Gonzalez
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Javier Riancho
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Daniel Borrego-Hernández
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Lucia Galán-Dávila
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Jon Infante Ceberio
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Pau Pastor
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Carmen Paradas
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Oriol Dols-Icardo
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Bryan J Traynor
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Eva L Feldman
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| | - Stephen A Goutman
- From the Department of Epidemiology (J.D., K.B.), School of Public Health, Department of Neurology (K.G., E.L.F., S.A.G.), NeuroNetwork for Emerging Therapies (K.G., E.L.F., S.A.G.), University of Michigan, Ann Arbor; Department of Biomedical Sciences (J.H.), University of North Dakota, Grand Forks; Department of Biostatistics (L.Z.), School of Public Health, University of Michigan, Ann Arbor; Neuromuscular Diseases Research Section (S.S.-A., A.S., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD; ALS Unit (A.G.-R., D.B.-H.), Instituto de Investigación Sanitaria "i + 12" del Hospital Universitario 12 de Octubre de Madrid, SERMAS, CIBERER (A.G.-R., R.R.-G., J.F.V.C., D.B.-H.), Center for Networked Biomedical Research into Rare Diseases, Madrid; Neuromuscular Disorders Unit (R.R.-G.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona; Neuromuscular Unit (J.F.V.C.), Hospital Universitario y Politécnico la Fe, IIS La Fe; Department of Medicine (J.F.V.C.), Universitat de València; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (R.F.S., P.G.-G., M.T.P., P.M., J.P.-T., F.C., O.D.-I.), Madrid; Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders (R.F.S.), IDIBAPS-Institut d'Investigacions Biomèdiques, Barcelona; Unitat de Parkinson i Trastorns del Moviment, Servicio de Neurologia (R.F.S.), Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain; Center for Alzheimer's and Related Dementias (S.B.-C.), National Institute on Aging, Bethesda, MD; Unidad de Trastornos del Movimiento (P.G.-G., M.T.P., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC; Departamento de Medicina (P.M.), Universidad de Sevilla; Neurology and Molecular Genetics Mixed Investigation Unit (J.P.-T., F.C.), Instituto de Investigación Sanitaria La Fe, Molecular Genetics Unit (J.P.-T., F.C.), Institut de Biomedicina de València-CSIC; Department of Medicine (M.M.-G.), Universidad de Oviedo; Department of Neurology (M.M.-G.), Hospital Universitario Central de Asturias; Instituto de Investigación Sanitaria del Principado de Asturias (M.M.-G.), Oviedo, Spain; Service of Neurology (J.R.), Hospital Sierrallana, IDIVAL University of Cantabria, Torrelavega; Instituto de Investigación Marqués de Valdecilla (J.R., J.I.C.), Santander; Department of Neurology (L.G.-D.), ALS Unit, Hospital Clínico Universitario "San Carlos," Madrid; Unit of Neurodegenerative Diseases (P.P.), Department of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.), Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Spain
| |
Collapse
|
13
|
Chung R, Xu Z, Arnold M, Ip S, Harrison H, Barrett J, Pennells L, Kim LG, Di Angelantonio E, Paige E, Ritchie SC, Inouye M, Usher‐Smith JA, Wood AM. Using Polygenic Risk Scores for Prioritizing Individuals at Greatest Need of a Cardiovascular Disease Risk Assessment. J Am Heart Assoc 2023; 12:e029296. [PMID: 37489768 PMCID: PMC7614905 DOI: 10.1161/jaha.122.029296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
Background The aim of this study was to provide quantitative evidence of the use of polygenic risk scores for systematically identifying individuals for invitation for full formal cardiovascular disease (CVD) risk assessment. Methods and Results A total of 108 685 participants aged 40 to 69 years, with measured biomarkers, linked primary care records, and genetic data in UK Biobank were used for model derivation and population health modeling. Prioritization tools using age, polygenic risk scores for coronary artery disease and stroke, and conventional risk factors for CVD available within longitudinal primary care records were derived using sex-specific Cox models. We modeled the implications of initiating guideline-recommended statin therapy after prioritizing individuals for invitation to a formal CVD risk assessment. If primary care records were used to prioritize individuals for formal risk assessment using age- and sex-specific thresholds corresponding to 5% false-negative rates, then the numbers of men and women needed to be screened to prevent 1 CVD event are 149 and 280, respectively. In contrast, adding polygenic risk scores to both prioritization and formal assessments, and selecting thresholds to capture the same number of events, resulted in a number needed to screen of 116 for men and 180 for women. Conclusions Using both polygenic risk scores and primary care records to prioritize individuals at highest risk of a CVD event for a formal CVD risk assessment can efficiently prioritize those who need interventions the most than using primary care records alone. This could lead to better allocation of resources by reducing the number of risk assessments in primary care while still preventing the same number of CVD events.
Collapse
Affiliation(s)
- Ryan Chung
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeUnited Kingdom
| | - Zhe Xu
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeUnited Kingdom
| | - Matthew Arnold
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeUnited Kingdom
| | - Samantha Ip
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeUnited Kingdom
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
| | - Hannah Harrison
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
| | - Jessica Barrett
- Medical Research Council Biostatistics UnitUniversity of CambridgeUnited Kingdom
| | - Lisa Pennells
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeUnited Kingdom
| | - Lois G. Kim
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeUnited Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and BehaviourUniversity of CambridgeUnited Kingdom
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeUnited Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and BehaviourUniversity of CambridgeUnited Kingdom
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeUnited Kingdom
- Health Data Research UK CambridgeWellcome Genome Campus and University of CambridgeUnited Kingdom
- Health Data Science Research CentreHuman TechnopoleMilanItaly
| | - Ellie Paige
- National Centre for Epidemiology and Population HealthAustralian National UniversityCanberraAustralia
- The George Institute for Global HealthUNSW SydneyAustralia
| | - Scott C. Ritchie
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeUnited Kingdom
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeUnited Kingdom
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
| | - Michael Inouye
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeUnited Kingdom
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeUnited Kingdom
- Health Data Research UK CambridgeWellcome Genome Campus and University of CambridgeUnited Kingdom
- The George Institute for Global HealthUNSW SydneyAustralia
- Cambridge Baker Systems Genomics InitiativeBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Juliet A. Usher‐Smith
- Primary Care Unit, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
| | - Angela M. Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeUnited Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and BehaviourUniversity of CambridgeUnited Kingdom
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeUnited Kingdom
- Health Data Research UK CambridgeWellcome Genome Campus and University of CambridgeUnited Kingdom
- Cambridge Centre of Artificial Intelligence in MedicineUniversity of CambridgeUnited Kingdom
| |
Collapse
|
14
|
Granot-Hershkovitz E, Spitzer B, Yang Y, Tarraf W, Yu B, Boerwinkle E, Fornage M, Mosley TH, DeCarli C, Kristal BS, González HM, Sofer T. Genetic loci of beta-aminoisobutyric acid are associated with aging-related mild cognitive impairment. Transl Psychiatry 2023; 13:140. [PMID: 37120436 PMCID: PMC10148805 DOI: 10.1038/s41398-023-02437-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023] Open
Abstract
We studied the genetic associations of a previously developed Metabolomic Risk Score (MRS) for Mild Cognitive Impairment (MCI) and beta-aminoisobutyric acid metabolite (BAIBA)-the metabolite highlighted by results from a genome-wide association study (GWAS) of the MCI-MRS, and assessed their association with MCI in datasets of diverse race/ethnicities. We first performed a GWAS for the MCI-MRS and BAIBA, in Hispanic/Latino adults (n = 3890) from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We identified ten independent genome-wide significant (p value <5 × 10-8) variants associated with MCI-MRS or BAIBA. Variants associated with the MCI-MRS are located in the Alanine-Glyoxylate Aminotransferase 2 (AGXT2 gene), which is known to be associated with BAIBA metabolism. Variants associated with BAIBA are located in the AGXT2 gene and in the SLC6A13 gene. Next, we tested the variants' association with MCI in independent datasets of n = 3178 HCHS/SOL older individuals, n = 3775 European Americans, and n = 1032 African Americans from the Atherosclerosis Risk In Communities (ARIC) study. Variants were considered associated with MCI if their p value <0.05 in the meta-analysis of the three datasets and their direction of association was consistent with expectation. Rs16899972 and rs37369 from the AGXT2 region were associated with MCI. Mediation analysis supported the mediation effect of BAIBA between the two genetic variants and MCI (p value = 0.004 for causal mediated effect). In summary, genetic variants in the AGXT2 region are associated with MCI in Hispanic/Latino, African, and European American populations in the USA, and their effect is likely mediated by changes in BAIBA levels.
Collapse
Affiliation(s)
- Einat Granot-Hershkovitz
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brian Spitzer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yunju Yang
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wassim Tarraf
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Bing Yu
- Human Genetics Center, School of Public Health University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Thomas H Mosley
- Department of Neurology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charles DeCarli
- Alzheimer's Disease Center, Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Bruce S Kristal
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hector M González
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H Chan School of Public Health, Boston, MA, USA.
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
15
|
Hampel H, Gao P, Cummings J, Toschi N, Thompson PM, Hu Y, Cho M, Vergallo A. The foundation and architecture of precision medicine in neurology and psychiatry. Trends Neurosci 2023; 46:176-198. [PMID: 36642626 PMCID: PMC10720395 DOI: 10.1016/j.tins.2022.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Neurological and psychiatric diseases have high degrees of genetic and pathophysiological heterogeneity, irrespective of clinical manifestations. Traditional medical paradigms have focused on late-stage syndromic aspects of these diseases, with little consideration of the underlying biology. Advances in disease modeling and methodological design have paved the way for the development of precision medicine (PM), an established concept in oncology with growing attention from other medical specialties. We propose a PM architecture for central nervous system diseases built on four converging pillars: multimodal biomarkers, systems medicine, digital health technologies, and data science. We discuss Alzheimer's disease (AD), an area of significant unmet medical need, as a case-in-point for the proposed framework. AD can be seen as one of the most advanced PM-oriented disease models and as a compelling catalyzer towards PM-oriented neuroscience drug development and advanced healthcare practice.
Collapse
Affiliation(s)
- Harald Hampel
- Alzheimer's Disease & Brain Health, Eisai Inc., Nutley, NJ, USA.
| | - Peng Gao
- Alzheimer's Disease & Brain Health, Eisai Inc., Nutley, NJ, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yan Hu
- Alzheimer's Disease & Brain Health, Eisai Inc., Nutley, NJ, USA
| | - Min Cho
- Alzheimer's Disease & Brain Health, Eisai Inc., Nutley, NJ, USA
| | - Andrea Vergallo
- Alzheimer's Disease & Brain Health, Eisai Inc., Nutley, NJ, USA
| |
Collapse
|
16
|
Crawford K, Leonenko G, Baker E, Grozeva D, Lan-Leung B, Holmans P, Williams J, O'Donovan MC, Escott-Price V, Ivanov DK. Golgi apparatus, endoplasmic reticulum and mitochondrial function implicated in Alzheimer's disease through polygenic risk and RNA sequencing. Mol Psychiatry 2023; 28:1327-1336. [PMID: 36577842 PMCID: PMC10005937 DOI: 10.1038/s41380-022-01926-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Polygenic risk scores (PRS) have been widely adopted as a tool for measuring common variant liability and they have been shown to predict lifetime risk of Alzheimer's disease (AD) development. However, the relationship between PRS and AD pathogenesis is largely unknown. To this end, we performed a differential gene-expression and associated disrupted biological pathway analyses of AD PRS vs. case/controls in human brain-derived cohort sample (cerebellum/temporal cortex; MayoRNAseq). The results highlighted already implicated mechanisms: immune and stress response, lipids, fatty acids and cholesterol metabolisms, endosome and cellular/neuronal death, being disrupted biological pathways in both case/controls and PRS, as well as previously less well characterised processes such as cellular structures, mitochondrial respiration and secretion. Despite heterogeneity in terms of differentially expressed genes in case/controls vs. PRS, there was a consensus of commonly disrupted biological mechanisms. Glia and microglia-related terms were also significantly disrupted, albeit not being the top disrupted Gene Ontology terms. GWAS implicated genes were significantly and in their majority, up-regulated in response to different PRS among the temporal cortex samples, suggesting potential common regulatory mechanisms. Tissue specificity in terms of disrupted biological pathways in temporal cortex vs. cerebellum was observed in relation to PRS, but limited tissue specificity when the datasets were analysed as case/controls. The largely common biological mechanisms between a case/control classification and in association with PRS suggests that PRS stratification can be used for studies where suitable case/control samples are not available or the selection of individuals with high and low PRS in clinical trials.
Collapse
Affiliation(s)
- Karen Crawford
- UK Dementia Research Institute (UKDRI) at Cardiff University, College of Biomedical and Life Sciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, School of Medicine, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Ganna Leonenko
- UK Dementia Research Institute (UKDRI) at Cardiff University, College of Biomedical and Life Sciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Emily Baker
- UK Dementia Research Institute (UKDRI) at Cardiff University, College of Biomedical and Life Sciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Detelina Grozeva
- UK Dementia Research Institute (UKDRI) at Cardiff University, College of Biomedical and Life Sciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
- Centre for Trials Research, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Benoit Lan-Leung
- UK Dementia Research Institute (UKDRI) at Cardiff University, College of Biomedical and Life Sciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, School of Medicine, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Julie Williams
- UK Dementia Research Institute (UKDRI) at Cardiff University, College of Biomedical and Life Sciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, School of Medicine, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Valentina Escott-Price
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, School of Medicine, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Dobril K Ivanov
- UK Dementia Research Institute (UKDRI) at Cardiff University, College of Biomedical and Life Sciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
17
|
Sensi SL, Russo M, Tiraboschi P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer's disease and synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:187-218. [PMID: 36796942 DOI: 10.1016/b978-0-323-85538-9.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, β-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pietro Tiraboschi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
18
|
Stites SD, Coe NB. Let's Not Repeat History's Mistakes: Two Cautions to Scientists on the Use of Race in Alzheimer's Disease and Alzheimer's Disease Related Dementias Research. J Alzheimers Dis 2023; 92:729-740. [PMID: 36806503 PMCID: PMC10123855 DOI: 10.3233/jad-220507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD) research has advanced gene and biomarker technologies to aid identification of individuals at risk for dementia. This innovation is a lynchpin in development of disease-modifying therapies. The emerging science could transform outcomes for patients and families. However, current limitations in the racial representation and inclusion of racial diversity in research limits the relevance of these technologies: AD/ADRD research cohorts used to define biomarker cutoffs are mostly White, despite clinical and epidemiologic research that shows Black populations are among those experiencing the greatest burdens of AD/ADRD. White cohorts alone are insufficient to characterize heterogeneity in disease and in life experiences that can alter AD/ADRD's courses. The National Institute on Aging (NIA) has called for increased racial diversity in AD/ADRD research. While scientists are working to implement NIA's plan to build more diverse research cohorts, they are also seeking out opportunities to consider race in AD/ADRD research. Recently, scientists have posed two ways of including race in AD/ADRD research: ancestry-based verification of race and race-based adjustment of biomarker test results. Both warrant careful examination for how they are impacting AD/ADRD science with respect to specific study objectives and the broader mission of the field. If these research methods are not grounded in pursuit of equity and justice, biases they introduce into AD/ADRD science could perpetuate, or even worsen, disparities in AD/ADRD research and care.
Collapse
Affiliation(s)
- Shana D. Stites
- Department of Psychiatry, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norma B. Coe
- Department of Medical Ethics and Health Policy, Perelman School of Medicine and Co-Director of the Population Aging Research Center (PARC), University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Eissman JM, Wells G, Khan OA, Liu D, Petyuk VA, Gifford KA, Dumitrescu L, Jefferson AL, Hohman TJ. Polygenic resilience score may be sensitive to preclinical Alzheimer's disease changes. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2023; 28:449-460. [PMID: 36540999 PMCID: PMC9888419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Late-onset Alzheimer's disease (LOAD) is a polygenic disorder with a long prodromal phase, making early diagnosis challenging. Twin studies estimate LOAD as 60-80% heritable, and while common genetic variants can account for 30% of this heritability, nearly 70% remains "missing". Polygenic risk scores (PRS) leverage combined effects of many loci to predict LOAD risk, but often lack sensitivity to preclinical disease changes, limiting clinical utility. Our group has built and published on a resilience phenotype to model better-than-expected cognition give amyloid pathology burden and hypothesized it may assist in preclinical polygenic risk prediction. Thus, we built a LOAD PRS and a resilience PRS and evaluated both in predicting cognition in a dementia-free cohort (N=254). The LOAD PRS had a significant main effect on baseline memory (β=-0.18, P=1.68E-03). Both the LOAD PRS (β=-0.03, P=1.19E-03) and the resilience PRS (β=0.02, P=0.03) had significant main effects on annual memory decline. The resilience PRS interacted with CSF Aβ on baseline memory (β=-6.04E-04, P=0.02), whereby it predicted baseline memory among Aβ+ individuals (β=0.44, P=0.01) but not among Aβ- individuals (β=0.06, P=0.46). Excluding APOE from PRS resulted in mainly LOAD PRS associations attenuating, but notably the resilience PRS interaction with CSF Aβ and selective prediction among Aβ+ individuals was consistent. Although the resilience PRS is currently somewhat limited in scope from the phenotype's cross-sectional nature, our results suggest that the resilience PRS may be a promising tool in assisting in preclinical disease risk prediction among dementia-free and Aβ+ individuals, though replication and fine-tuning are needed.
Collapse
Affiliation(s)
- Jaclyn M. Eissman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Greyson Wells
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Omair A. Khan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Dandan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Vladislav A. Petyuk
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest, National Laboratory, Richland, WA 99354, USA
| | - Katherine A. Gifford
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Angela L. Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA,
| |
Collapse
|
20
|
Hooshmand K, Goldstein D, Timmins HC, Li T, Harrison M, Friedlander ML, Lewis CR, Lees JG, Moalem-Taylor G, Guennewig B, Park SB, Kwok JB. Polygenic risk of paclitaxel-induced peripheral neuropathy: a genome-wide association study. J Transl Med 2022; 20:564. [PMID: 36474270 PMCID: PMC9724416 DOI: 10.1186/s12967-022-03754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genetic risk factors for chemotherapy-induced peripheral neuropathy (CIPN), a major dose-limiting side-effect of paclitaxel, are not well understood. METHODS We performed a genome-wide association study (GWAS) in 183 paclitaxel-treated patients to identify genetic loci associated with CIPN assessed via comprehensive neuropathy phenotyping tools (patient-reported, clinical and neurological grading scales). Bioinformatic analyses including pathway enrichment and polygenic risk score analysis were used to identify mechanistic pathways of interest. RESULTS In total, 77% of the cohort were classified with CIPN (n = 139), with moderate/severe neuropathy in 36%. GWAS was undertaken separately for the three measures of CIPN. GWAS of patient-reported CIPN identified 4 chromosomal regions that exceeded genome-wide significance (rs9846958, chromosome 3; rs117158921, chromosome 18; rs4560447, chromosome 4; rs200091415, chromosome 10). rs4560447 is located within a protein-coding gene, LIMCH1, associated with actin and neural development and expressed in the dorsal root ganglia (DRG). There were additional risk loci that exceeded the statistical threshold for suggestive genome-wide association (P < 1 × 10-5) for all measures. A polygenic risk score calculated from the top 46 ranked SNPs was highly correlated with patient-reported CIPN (r2 = 0.53; P = 1.54 × 10-35). Overlap analysis was performed to identify 3338 genes which were in common between the patient-reported CIPN, neurological grading scale and clinical grading scale GWAS. The common gene set was subsequently analysed for enrichment of gene ontology (GO) and Reactome pathways, identifying a number of pathways, including the axon development pathway (GO:0061564; P = 1.78 × 10-6) and neuronal system (R-HSA-112316; adjusted P = 3.33 × 10-7). CONCLUSIONS Our findings highlight the potential role of axon development and regeneration pathways in paclitaxel-induced CIPN.
Collapse
Affiliation(s)
- Kosar Hooshmand
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| | - David Goldstein
- grid.1005.40000 0004 4902 0432Prince of Wales Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Hannah C. Timmins
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| | - Tiffany Li
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| | | | - Michael L. Friedlander
- grid.1005.40000 0004 4902 0432Prince of Wales Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Craig R. Lewis
- grid.1005.40000 0004 4902 0432Prince of Wales Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Justin G. Lees
- grid.1005.40000 0004 4902 0432School of Biomedical Sciences, University of New South Wales, UNSW Sydney, Sydney, NSW Australia
| | - Gila Moalem-Taylor
- grid.1005.40000 0004 4902 0432School of Biomedical Sciences, University of New South Wales, UNSW Sydney, Sydney, NSW Australia
| | - Boris Guennewig
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| | - Susanna B. Park
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| | - John B. Kwok
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| |
Collapse
|
21
|
Torres GG, Dose J, Hasenbein TP, Nygaard M, Krause-Kyora B, Mengel-From J, Christensen K, Andersen-Ranberg K, Kolbe D, Lieb W, Laudes M, Görg S, Schreiber S, Franke A, Caliebe A, Kuhlenbäumer G, Nebel A. Long-Lived Individuals Show a Lower Burden of Variants Predisposing to Age-Related Diseases and a Higher Polygenic Longevity Score. Int J Mol Sci 2022; 23:10949. [PMID: 36142858 PMCID: PMC9504529 DOI: 10.3390/ijms231810949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022] Open
Abstract
Longevity is a complex phenotype influenced by both environmental and genetic factors. The genetic contribution is estimated at about 25%. Despite extensive research efforts, only a few longevity genes have been validated across populations. Long-lived individuals (LLI) reach extreme ages with a relative low prevalence of chronic disability and major age-related diseases (ARDs). We tested whether the protection from ARDs in LLI can partly be attributed to genetic factors by calculating polygenic risk scores (PRSs) for seven common late-life diseases (Alzheimer's disease (AD), atrial fibrillation (AF), coronary artery disease (CAD), colorectal cancer (CRC), ischemic stroke (ISS), Parkinson's disease (PD) and type 2 diabetes (T2D)). The examined sample comprised 1351 German LLI (≥94 years, including 643 centenarians) and 4680 German younger controls. For all ARD-PRSs tested, the LLI had significantly lower scores than the younger control individuals (areas under the curve (AUCs): ISS = 0.59, p = 2.84 × 10-35; AD = 0.59, p = 3.16 × 10-25; AF = 0.57, p = 1.07 × 10-16; CAD = 0.56, p = 1.88 × 10-12; CRC = 0.52, p = 5.85 × 10-3; PD = 0.52, p = 1.91 × 10-3; T2D = 0.51, p = 2.61 × 10-3). We combined the individual ARD-PRSs into a meta-PRS (AUC = 0.64, p = 6.45 × 10-15). We also generated two genome-wide polygenic scores for longevity, one with and one without the TOMM40/APOE/APOC1 gene region (AUC (incl. TOMM40/APOE/APOC1) = 0.56, p = 1.45 × 10-5, seven variants; AUC (excl. TOMM40/APOE/APOC1) = 0.55, p = 9.85 × 10-3, 10,361 variants). Furthermore, the inclusion of nine markers from the excluded region (not in LD with each other) plus the APOE haplotype into the model raised the AUC from 0.55 to 0.61. Thus, our results highlight the importance of TOMM40/APOE/APOC1 as a longevity hub.
Collapse
Affiliation(s)
- Guillermo G. Torres
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Janina Dose
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Tim P. Hasenbein
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
- Department of Neurology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- Institute of Pharmacology and Toxicology, Technical University Munich, Biedersteiner Str. 29, 80802 Munich, Germany
| | - Marianne Nygaard
- Department of Public Health, Epidemiology, Biostatistics and Biodemography, University of Southern, Denmark, J.B. Winsloews Vej 9B, 5000 Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000 Odense, Denmark
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Jonas Mengel-From
- Department of Public Health, Epidemiology, Biostatistics and Biodemography, University of Southern, Denmark, J.B. Winsloews Vej 9B, 5000 Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000 Odense, Denmark
| | - Kaare Christensen
- Department of Public Health, Epidemiology, Biostatistics and Biodemography, University of Southern, Denmark, J.B. Winsloews Vej 9B, 5000 Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000 Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Kløvervænget 47, 5000 Odense, Denmark
| | - Karen Andersen-Ranberg
- Department of Public Health, Epidemiology, Biostatistics and Biodemography, University of Southern, Denmark, J.B. Winsloews Vej 9B, 5000 Odense, Denmark
- Department of Geriatric Medicine, Odense University Hospital, Kløvervænget 23, 5000 Odense, Denmark
| | - Daniel Kolbe
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Niemannsweg 11, 24105 Kiel, Germany
| | - Matthias Laudes
- Clinic for Internal Medicine I, Division of Endocrinology, Diabetes and Clinical Nutrition, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Siegfried Görg
- Institute of Transfusion Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| |
Collapse
|
22
|
Xiao X, Wu Q. Multiple polygenic scores improve bone mineral density prediction in an independent sample of Caucasian women. Postgrad Med J 2022; 98:670-674. [PMID: 34810269 DOI: 10.1136/postgradmedj-2021-139722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF THE STUDY To determine if multiple Genetic Risk Scores (GRSs) improve bone mineral density (BMD) prediction over single GRS in an independent sample of Caucasian women. STUDY DESIGN Based on summary statistics of four genome-wide association studies related to two osteoporosis-associated traits, namely BMD and heel quantitative ultrasound derived estimated BMD (eBMD), four GRSs were derived for 1205 individuals in the Genome-Wide Scan for Female Osteoporosis Gene Study. The effect of each GRS on BMD variation was assessed using multivariable linear regression, with conventional risk factors adjusted for. Next, the eBMD-related GRS that explained the most variance in BMD was selected to be entered into a multi-score model, along with the BMD-related GRS. Elastic net regularised regression was used to develop the multiscore model, which estimated the joint effect of two GRSs (GRS_BMD and GRS_eBMD) on BMD variation, after being adjusted for conventional risk factors. RESULTS With the same clinical risk factors having been adjusted for, the model that included GRS_BMD performed best by explaining 32.53% of the variance in BMD; the single-score model that included GRS_eBMD explained 34.03% of BMD variance. The model that includes both GRS_BMD and GRS_ eBMD, as well as the clinical risk factors, aggregately explained 35.05% in BMD variation. Compared with the single GRS models, the multiscore model explained significantly more variance in BMD. CONCLUSIONS The multipolygenic score model explained a considerable amount of BMD variation. Compared with single score models, multipolygenic score model provided significant improvement in explaining BMD variation.
Collapse
Affiliation(s)
- Xiangxue Xiao
- Nevada Institute of Personalized Medicine, College of Science, University of Nevada Las Vegas, Las Vegas, Nevada, USA.,Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Qing Wu
- Nevada Institute of Personalized Medicine, College of Science, University of Nevada Las Vegas, Las Vegas, Nevada, USA .,Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
23
|
Xicota L, Gyorgy B, Grenier-Boley B, Lecoeur A, Fontaine G, Danjou F, Gonzalez JS, Colliot O, Amouyel P, Martin G, Levy M, Villain N, Habert MO, Dubois B, Lambert JC, Potier MC. Association of APOE-Independent Alzheimer Disease Polygenic Risk Score With Brain Amyloid Deposition in Asymptomatic Older Adults. Neurology 2022; 99:e462-e475. [PMID: 35606148 PMCID: PMC9421597 DOI: 10.1212/wnl.0000000000200544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Brain amyloid deposition, a major risk factor for Alzheimer disease (AD), is currently estimated by measuring CSF or plasma amyloid peptide levels or by PET imaging. Assessing genetic risks relating to amyloid deposition before any accumulation has occurred would allow for earlier intervention in persons at increased risk for developing AD. Previous work linking amyloid burden and genetic risk relied almost exclusively on APOE, a major AD genetic risk factor. Here, we ask whether a polygenic risk score (PRS) that incorporates an optimized list of common variants linked to AD and excludes APOE is associated with brain amyloid load in cognitively unimpaired older adults. METHODS We included 291 asymptomatic older participants from the INveStIGation of AlzHeimer's PredicTors (INSIGHT pre-AD) cohort who underwent amyloid imaging, including 83 amyloid-positive (+) participants. We used an Alzheimer's (A) PRS composed of 33 AD risk variants excluding APOE and selected the 17 variants that showed the strongest association with amyloid positivity to define an optimized (oA) PRS. Participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study (228 participants, 90 amyloid [+]) were tested as a validation cohort. Finally, 2,300 patients with AD and 6,994 controls from the European Alzheimer's Disease Initiative (EADI) were evaluated. RESULTS A-PRS was not significantly associated with amyloid burden in the INSIGHT or ADNI cohorts with or without correction for the APOE genotype. However, oA-PRS was significantly associated with amyloid status independently of APOE adjustment (INSIGHT odds ratio [OR]: 5.26 [1.71-16.88]; ADNI OR: 3.38 [1.02-11.63]). Of interest, oA-PRS accurately discriminated amyloid (+) and (-) APOE ε4 carriers (INSIGHT OR: 181.6 [7.53-10,674.6]; ADNI OR: 44.94 [3.03-1,277]). A-PRS and oA-PRS showed a significant association with disease status in the EADI cohort (OR: 1.68 [1.53-1.85] and 2.06 [1.73-2.45], respectively). Genes assigned to oA-PRS variants were enriched in ontologies related to β-amyloid metabolism and deposition. DISCUSSION PRSs relying on AD genetic risk factors excluding APOE may improve risk prediction for brain amyloid, allowing stratification of cognitively unimpaired individuals at risk of AD independent of their APOE status.
Collapse
Affiliation(s)
- Laura Xicota
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Beata Gyorgy
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Benjamin Grenier-Boley
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Alexandre Lecoeur
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Gaëlle Fontaine
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Fabrice Danjou
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Jorge Samper Gonzalez
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Olivier Colliot
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Philippe Amouyel
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Garance Martin
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Marcel Levy
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Nicolas Villain
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Marie-Odile Habert
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Bruno Dubois
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Jean-Charles Lambert
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France
| | - Marie-Claude Potier
- From the ICM Paris Brain Institute (L.X., B.G., A.L., G.«F., F.D., J.S.G., O.C., N.V., B.D., M.-C.P.), CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière; Univ. Lille (B.G.-B., P.A., J.-C.L.), Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement; Inria (J.S.G., O.C.), Aramis-Project Team, Paris; Centre d'Acquisition et Traitement des Images (CATI platform) (G.M., M.-O.H.), cati-neuroimaging.com, Paris; Centre des Maladies Cognitives et Comportementales (M.L., M.-O.H., B.D.), IM2A, AP-HP, Sorbonne Université, Hôpital de la Salpêtrière; Department of Neurology (N.V., B.D.), Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université; Sorbonne Université (M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB; and AP-HP (M.-O.H.), Hôpital Pitié-Salpêtrière, Médecine Nucléaire, Paris, France.
| |
Collapse
|
24
|
Kannappan B, Gunasekaran TI, te Nijenhuis J, Gopal M, Velusami D, Kothandan G, Lee KH. Polygenic score for Alzheimer’s disease identifies differential atrophy in hippocampal subfield volumes. PLoS One 2022; 17:e0270795. [PMID: 35830443 PMCID: PMC9278752 DOI: 10.1371/journal.pone.0270795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
Hippocampal subfield atrophy is a prime structural change in the brain, associated with cognitive aging and neurodegenerative diseases such as Alzheimer’s disease. Recent developments in genome-wide association studies (GWAS) have identified genetic loci that characterize the risk of hippocampal volume loss based on the processes of normal and abnormal aging. Polygenic risk scores are the genetic proxies mimicking the genetic role of the pre-existing vulnerabilities of the underlying mechanisms influencing these changes. Discriminating the genetic predispositions of hippocampal subfield atrophy between cognitive aging and neurodegenerative diseases will be helpful in understanding the disease etiology. In this study, we evaluated the polygenic risk of Alzheimer’s disease (AD PGRS) for hippocampal subfield atrophy in 1,086 individuals (319 cognitively normal (CN), 591 mild cognitively impaired (MCI), and 176 Alzheimer’s disease dementia (ADD)). Our results showed a stronger association of AD PGRS effect on the left hemisphere than on the right hemisphere for all the hippocampal subfield volumes in a mixed clinical population (CN+MCI+ADD). The subfields CA1, CA4, hippocampal tail, subiculum, presubiculum, molecular layer, GC-ML-DG, and HATA showed stronger AD PGRS associations with the MCI+ADD group than with the CN group. The subfields CA3, parasubiculum, and fimbria showed moderately higher AD PGRS associations with the MCI+ADD group than with the CN group. Our findings suggest that the eight subfield regions, which were strongly associated with AD PGRS are likely involved in the early stage ADD and a specific focus on the left hemisphere could enhance the early prediction of ADD.
Collapse
Affiliation(s)
- Balaji Kannappan
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Tamil Iniyan Gunasekaran
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Jan te Nijenhuis
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- * E-mail: (JN); (KHL)
| | - Muthu Gopal
- Health Systems Research & MRHRU, ICMR-National Institute of Epidemiology, Tirunelveli, Tamil Nadu, India
| | - Deepika Velusami
- Department of Physiology, Sri Manakula Vinayagar Medical College and Hospital, Puducherry, Tamil Nadu, India
| | - Gugan Kothandan
- Biopolymer Modeling and Protein Chemistry Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Kun Ho Lee
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- Korea Brain Research Institute, Daegu, Republic of Korea
- * E-mail: (JN); (KHL)
| | | |
Collapse
|
25
|
Ibnidris A, Fußer F, Kranz TM, Prvulovic D, Reif A, Pantel J, Albanese E, Karakaya T, Matura S. Investigating the Association Between Polygenic Risk Scores for Alzheimer’s Disease With Cognitive Performance and Intrinsic Functional Connectivity in Healthy Adults. Front Aging Neurosci 2022; 14:837284. [PMID: 35645768 PMCID: PMC9131016 DOI: 10.3389/fnagi.2022.837284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Alzheimer’s disease (AD) pathology is present many years before the onset of clinical symptoms. AD dementia cannot be treated. Timely and early detection of people at risk of developing AD is key for primary and secondary prevention. Moreover, understanding the underlying pathology that is present in the earliest stages of AD, and the genetic predisposition to that might contribute to the development of targeted disease-modifying treatments. Objectives In this study, we aimed to explore whether genetic disposition to AD in asymptomatic individuals is associated with altered intrinsic functional connectivity as well as cognitive performance on neuropsychological tests. Methods We examined 136 cognitively healthy adults (old group: mean age = 69.32, SD = 4.23; young group: mean age = 31.34, SD = 13.12). All participants had undergone resting-state functional magnetic resonance imagining (fMRI), DNA genotyping to ascertain polygenic risk scores (PRS), and neuropsychological testing for global cognition, working memory, verbal fluency, and executive functions. Results Two-step hierarchical regression analysis revealed that higher PRS was significantly associated with lower scores in working memory tasks [Letter Number Span: ΔR2 = 0.077 (p < 0.05); Spatial Span: ΔR2 = 0.072 (p < 0.05)] in older adults (>60 years). PRS did not show significant modulations of the intrinsic functional connectivity of the posterior cingulate cortex (PCC) with other regions of interest in the brain that are affected in AD. Conclusion Allele polymorphisms may modify the effect of other AD risk factors. This potential modulation warrants further investigations, particularly in cognitively healthy adults.
Collapse
Affiliation(s)
- Aliaa Ibnidris
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- *Correspondence: Aliaa Ibnidris,
| | - Fabian Fußer
- Department of Gerontopsychiatry, Psychosomatic Medicine, and Psychotherapy, Pfalzklinikum, Klingenmünster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Thorsten M. Kranz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - David Prvulovic
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Johannes Pantel
- Institute of General Practice, Goethe University Frankfurt, Frankfurt, Germany
| | - Emiliano Albanese
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Tarik Karakaya
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
26
|
Georgakis MK, Ntanasi E, Ramirez A, Grenier-Boley B, Lambert JC, Sakka P, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou GM, Charissis S, Mourtzi N, Hatzimanolis A, Scarmeas N. Vascular burden and genetic risk in association with cognitive performance and dementia in a population-based study. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100145. [PMID: 36324400 PMCID: PMC9616333 DOI: 10.1016/j.cccb.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/19/2022] [Accepted: 04/28/2022] [Indexed: 06/16/2023]
Abstract
Background and purpose Vascular risk factors may influence cognitive function and thus represent possible targets for preventive approaches against dementia. Yet it remains unknown, if they associate with cognition independently of the individual genetic risk for dementia. Methods In a population-based study of 1172 community-dwelling individuals aged ≥65 years in Greece, we constructed a vascular burden score (VBS; based on presence of hypertension, diabetes, hyperlipidemia, heart disease, and cerebrovascular disease, range 0-5) and a polygenic risk score (PRS) for clinically-diagnosed Alzheimer's disease (AD) based on 23 genetic variants. We then explored in joint models the associations of the PRS for AD and VBS with global cognitive performance, cognitive performance across multiple cognitive domains, and odds of dementia. Results The mean age of study participants was 73.9 ± 5.2 years (57.1% females). Both the PRS for AD and VBS were associated with worse global cognitive performance (beta per-SD-increment in PRS: -0.06, 95%CI: -0.10 to -0.02, beta per-point-increment in VBS: -0.05, 95%CI: -0.09 to -0.02), worse performance across individual cognitive domains (memory, executive function, attention, language, visuospatial ability), and higher odds of dementia (OR per-SD increment in PRS: 1.56, 95%CI: 1.17-2.09, OR per-point increment in VBS: 1.38, 95%CI: 1.05-1.81). There was no evidence of an interaction between the two scores. Higher VBS was associated with worse cognitive performance equally across tertiles of the PRS for AD, even among individuals at the highest tertile. Conclusions Both genetic risk and vascular burden are independently and additively associated with worse cognitive performance and higher odds of dementia.
Collapse
Affiliation(s)
- Marios K. Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University LMU, Feodor-Lynen-Str. 17, Munich 81377, Germany
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Programme in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eva Ntanasi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Alfredo Ramirez
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Benjamin Grenier-Boley
- U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liés au Vieillissement, University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Jean-Charles Lambert
- U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liés au Vieillissement, University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Marousi, Greece
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Mary H. Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | | | - Sokratis Charissis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Niki Mourtzi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alexandros Hatzimanolis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
- Theodor-Theohari Cozzika Foundation, Neurobiology Research Institute, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Li Q, Lv X, Jin F, Liao K, Gao L, Xu J. Associations of Polygenic Risk Score for Late-Onset Alzheimer's Disease With Biomarkers. Front Aging Neurosci 2022; 14:849443. [PMID: 35493930 PMCID: PMC9047857 DOI: 10.3389/fnagi.2022.849443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a common irreversible neurodegenerative disease with heterogeneous genetic characteristics. Identifying the biological biomarkers with the potential to predict the conversion from normal controls to LOAD is clinically important for early interventions of LOAD and clinical treatment. The polygenic risk score for LOAD (AD-PRS) has been reported the potential possibility for reliably identifying individuals with risk of developing LOAD recently. To investigate the external phenotype changes resulting from LOAD and the underlying etiology, we summarize the comprehensive associations of AD-PRS with multiple biomarkers, including neuroimaging, cerebrospinal fluid and plasma biomarkers, cardiovascular risk factors, cognitive behavior, and mental health. This systematic review helps improve the understanding of the biomarkers with potential predictive value for LOAD and further optimizing the prediction and accurate treatment of LOAD.
Collapse
Affiliation(s)
- Qiaojun Li
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
| | - Xingping Lv
- School of Sciences, Tianjin University of Commerce, Tianjin, China
| | - Fei Jin
- Department of Molecular Imaging, Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Kun Liao
- School of Sciences, Tianjin University of Commerce, Tianjin, China
| | - Liyuan Gao
- School of Sciences, Tianjin University of Commerce, Tianjin, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
28
|
Fu M, Chang TS. Phenome-Wide Association Study of Polygenic Risk Score for Alzheimer's Disease in Electronic Health Records. Front Aging Neurosci 2022; 14:800375. [PMID: 35370621 PMCID: PMC8965623 DOI: 10.3389/fnagi.2022.800375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and a growing public health burden in the United States. Significant progress has been made in identifying genetic risk for AD, but limited studies have investigated how AD genetic risk may be associated with other disease conditions in an unbiased fashion. In this study, we conducted a phenome-wide association study (PheWAS) by genetic ancestry groups within a large academic health system using the polygenic risk score (PRS) for AD. PRS was calculated using LDpred2 with genome-wide association study (GWAS) summary statistics. Phenotypes were extracted from electronic health record (EHR) diagnosis codes and mapped to more clinically meaningful phecodes. Logistic regression with Firth's bias correction was used for PRS phenotype analyses. Mendelian randomization was used to examine causality in significant PheWAS associations. Our results showed a strong association between AD PRS and AD phenotype in European ancestry (OR = 1.26, 95% CI: 1.13, 1.40). Among a total of 1,515 PheWAS tests within the European sample, we observed strong associations of AD PRS with AD and related phenotypes, which include mild cognitive impairment (MCI), memory loss, and dementias. We observed a phenome-wide significant association between AD PRS and gouty arthropathy (OR = 0.90, adjusted p = 0.05). Further causal inference tests with Mendelian randomization showed that gout was not causally associated with AD. We concluded that genetic predisposition of AD was negatively associated with gout, but gout was not a causal risk factor for AD. Our study evaluated AD PRS in a real-world EHR setting and provided evidence that AD PRS may help to identify individuals who are genetically at risk of AD and other related phenotypes. We identified non-neurodegenerative diseases associated with AD PRS, which is essential to understand the genetic architecture of AD and potential side effects of drugs targeting genetic risk factors of AD. Together, these findings expand our understanding of AD genetic and clinical risk factors, which provide a framework for continued research in aging with the growing number of real-world EHR linked with genetic data.
Collapse
Affiliation(s)
- Mingzhou Fu
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Medical Informatics Home Area, Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Timothy S. Chang
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
29
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
30
|
Dissanayake AS, Tan YB, Bowie CR, Butters MA, Flint AJ, Gallagher D, Golas AC, Herrmann N, Ismail Z, Kennedy JL, Kumar S, Lanctot KL, Mah L, Mulsant BH, Pollock BG, Rajji TK, Tau M, Maraj A, Churchill NW, Tsuang D, Schweizer TA, Munoz DG, Fischer CE. Sex Modifies the Associations of APOEɛ4 with Neuropsychiatric Symptom Burden in Both At-Risk and Clinical Cohorts of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1571-1588. [PMID: 36314203 DOI: 10.3233/jad-220586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent work suggests that APOEɛ4/4 females with Alzheimer's disease (AD) are more susceptible to developing neuropsychiatric symptoms (NPS). OBJECTIVE To examine the interaction of sex and APOEɛ4 status on NPS burden using two independent cohorts: 1) patients at risk for AD with mild cognitive impairment and/or major depressive disorder (n = 252) and 2) patients with probable AD (n = 7,261). METHODS Regression models examined the interactive effects of sex and APOEɛ4 on the number of NPS experienced and NPS Severity. APOEɛ3/4 and APOEɛ4/4 were pooled in the at-risk cohort due to the sample size. RESULTS In the at-risk cohort, there was a significant sex*APOEɛ4 interaction (p = 0.007) such that the association of APOEɛ4 with NPS was greater in females than in males (incident rate ratio (IRR) = 2.0). APOEɛ4/4 females had the most NPS (mean = 1.9) and the highest severity scores (mean = 3.5) of any subgroup. In the clinical cohort, APOEɛ4/4 females had significantly more NPS (IRR = 1.1, p = 0.001, mean = 3.1) and higher severity scores (b = 0.31, p = 0.015, mean = 3.7) than APOEɛ3/3 females (meanNPS = 2.9, meanSeverity = 3.3). No association was found in males. CONCLUSION Our study suggests that sex modifies the association of APOEɛ4 on NPS burden. APOEɛ4/4 females may be particularly susceptible to increased NPS burden among individuals with AD and among individuals at risk for AD. Further investigation into the mechanisms behind these associations are needed.
Collapse
Affiliation(s)
- Andrew S Dissanayake
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Yu Bin Tan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Christopher R Bowie
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Queen's University, Kingston, ON, Canada
| | - Meryl A Butters
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Alastair J Flint
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Damien Gallagher
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Angela C Golas
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Zahinoor Ismail
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - James L Kennedy
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sanjeev Kumar
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Krista L Lanctot
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Linda Mah
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Baycrest Health Science Centre, Toronto, ON, Canada
| | - Benoit H Mulsant
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bruce G Pollock
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Division of Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Michael Tau
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Unity Health, St. Michaels Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Anika Maraj
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Unity Health, St. Michaels Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Unity Health, St. Michaels Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Debby Tsuang
- GRECC, VA Puget Sound and Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Unity Health, St. Michaels Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David G Munoz
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Unity Health, St. Michaels Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Unity Health, St. Michaels Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
de Silva E, Sudre CH, Barnes J, Scelsi MA, Altmann A. Polygenic coronary artery disease association with brain atrophy in the cognitively impaired. Brain Commun 2022; 4:fcac314. [PMID: 36523268 PMCID: PMC9746681 DOI: 10.1093/braincomms/fcac314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
While a number of low-frequency genetic variants of large effect size have been shown to underlie both cardiovascular disease and dementia, recent studies have highlighted the importance of common genetic variants of small effect size, which, in aggregate, are embodied by a polygenic risk score. We investigate the effect of polygenic risk for coronary artery disease on brain atrophy in Alzheimer's disease using whole-brain volume and put our findings in context with the polygenic risk for Alzheimer's disease and presumed small vessel disease as quantified by white-matter hyperintensities. We use 730 subjects from the Alzheimer's disease neuroimaging initiative database to investigate polygenic risk score effects (beyond APOE) on whole-brain volumes, total and regional white-matter hyperintensities and amyloid beta across diagnostic groups. In a subset of these subjects (N = 602), we utilized longitudinal changes in whole-brain volume over 24 months using the boundary shift integral approach. Linear regression and linear mixed-effects models were used to investigate the effect of white-matter hyperintensities at baseline as well as Alzheimer's disease-polygenic risk score and coronary artery disease-polygenic risk score on whole-brain atrophy and whole-brain atrophy acceleration, respectively. All genetic associations were examined under the oligogenic (P = 1e-5) and the more variant-inclusive polygenic (P = 0.5) scenarios. Results suggest no evidence for a link between the polygenic risk score and markers of Alzheimer's disease pathology at baseline (when stratified by diagnostic group). However, both Alzheimer's disease-polygenic risk score and coronary artery disease-polygenic risk score were associated with longitudinal decline in whole-brain volume (Alzheimer's disease-polygenic risk score t = 3.3, P FDR = 0.007 over 24 months in healthy controls) and surprisingly, under certain conditions, whole-brain volume atrophy is statistically more correlated with cardiac polygenic risk score than Alzheimer's disease-polygenic risk score (coronary artery disease-polygenic risk score t = 2.1, P FDR = 0.04 over 24 months in the mild cognitive impairment group). Further, in our regional analysis of white-matter hyperintensities, Alzheimer's disease-polygenic risk score beyond APOE is predictive of white-matter volume in the occipital lobe in Alzheimer's disease subjects in the polygenic regime. Finally, the rate of change of brain volume (or atrophy acceleration) may be sensitive to Alzheimer's disease-polygenic risk beyond APOE in healthy individuals (t = 2, P = 0.04). For subjects with mild cognitive impairment, beyond APOE, a more inclusive polygenic risk score including more variants, shows coronary artery disease-polygenic risk score to be more predictive of whole-brain volume atrophy, than an oligogenic approach including fewer larger effect size variants.
Collapse
Affiliation(s)
- Eric de Silva
- Centre for Medical Image Computing, University College London, London, UK.,NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Carole H Sudre
- Centre for Medical Image Computing, University College London, London, UK.,MRC Unit for Lifelong Health and Ageing, University College London, London, UK.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Josephine Barnes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Marzia A Scelsi
- Centre for Medical Image Computing, University College London, London, UK
| | - Andre Altmann
- Centre for Medical Image Computing, University College London, London, UK
| | | |
Collapse
|
32
|
Zou H, Li K, Zeng D, Luo S. Bayesian inference and dynamic prediction of multivariate joint model with functional data: An application to Alzheimer's disease. Stat Med 2021; 40:6855-6872. [PMID: 34649301 PMCID: PMC8671252 DOI: 10.1002/sim.9214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder impairing multiple domains, for example, cognition and behavior. Assessing the risk of AD progression and initiating timely interventions at early stages are critical to improve the quality of life for AD patients. Due to the heterogeneous nature and complex mechanisms of AD, one single longitudinal outcome is insufficient to assess AD severity and disease progression. Therefore, AD studies collect multiple longitudinal outcomes, including cognitive and behavioral measurements, as well as structural brain images such as magnetic resonance imaging (MRI). How to utilize the multivariate longitudinal outcomes and MRI data to make efficient statistical inference and prediction is an open question. In this article, we propose a multivariate joint model with functional data (MJM-FD) framework that relates multiple correlated longitudinal outcomes to a survival outcome, and use the scalar-on-function regression method to include voxel-based whole-brain MRI data as functional predictors in both longitudinal and survival models. We adopt a Bayesian paradigm to make statistical inference and develop a dynamic prediction framework to predict an individual's future longitudinal outcomes and risk of a survival event. We validate the MJM-FD framework through extensive simulation studies and apply it to the motivating Alzheimer's Disease Neuroimaging Initiative (ADNI) study.
Collapse
Affiliation(s)
- Haotian Zou
- Gillings School of Global Public Health, Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Kan Li
- Merck Research Lab, Merck & Co, North Wales, Pennsylvania
| | - Donglin Zeng
- Department of Biostatistics, Gillings School of Global Public Health, CB#7420, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Sheng Luo
- Corresponding author: Sheng Luo, Department of Biostatistics and Informatics, Duke University, 2424 Erwin Rd, Durham, NC 27705, USA ()
| | | |
Collapse
|
33
|
Liu H, Lutz M, Luo S. Association Between Polygenic Risk Score and the Progression from Mild Cognitive Impairment to Alzheimer's Disease. J Alzheimers Dis 2021; 84:1323-1335. [PMID: 34657885 DOI: 10.3233/jad-210700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a heterogeneous condition and MCI patients are at increased risk of progression to dementia due to Alzheimer's disease (AD). OBJECTIVE In this study, we aim to evaluate the associations between polygenic risk scores (PRSs) and 1) time to AD progression from MCI, 2) changes in longitudinal cognitive impairment, and 3) biomarkers from cerebrospinal fluid and imaging. METHODS We constructed PRS by using 40 independent non-APOE SNPs from well-replicated AD GWASs and tested its association with the progression time from MCI to AD by using 767 MCI patients from the ADNI study and 1373 patients from the NACC study. PRSs calculated with other methods were also computed. RESULTS We found that the PRS constructed with SNPs that reached genome-wide significance predicted the progression from MCI to AD (beta = 0.182, SE = 0.061, p = 0.003) after adjusting for the demographic and clinical variables. This association was replicated in the NACC dataset (beta = 0.094, SE = 0.037, p = 0.009). Further analyses revealed that PRS was associated with the increased ADAS-Cog11/ADAS-Cog13/ADASQ4 scores, tau/ptau levels, and cortical amyloid burdens (PiB-PET and AV45-PET), but decreased hippocampus and entorhinal cortex volumes (p < 0.05). Mediation analysis showed that the effect of PRS on the increased risk of AD may be mediated by Aβ42 (beta = 0.056, SE = 0.026, p = 0.036). CONCLUSION Our findings suggest that PRS can be useful for the prediction of time to AD and other clinical changes after the diagnosis of MCI.
Collapse
Affiliation(s)
- Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Michael Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | | |
Collapse
|
34
|
Dickson SP, Hendrix SB, Brown BL, Ridge PG, Nicodemus-Johnson J, Hardy ML, McKeany AM, Booth SB, Fortna RR, Kauwe JSK. GenoRisk: A polygenic risk score for Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12211. [PMID: 34621978 PMCID: PMC8485054 DOI: 10.1002/trc2.12211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Recent clinical trials are considering inclusion of more than just apolipoprotein E (APOE) ε4 genotype as a way of reducing variability in analysis of outcomes. METHODS Case-control data were used to compare the capacity of age, sex, and 58 Alzheimer's disease (AD)-associated single nucleotide polymorphisms (SNPs) to predict AD status using several statistical models. Model performance was assessed with Brier scores and tenfold cross-validation. Genotype and sex × age estimates from the best performing model were combined with age and intercept estimates from the general population to develop a personalized genetic risk score, termed age, and sex-adjusted GenoRisk. RESULTS The elastic net model that included age, age x sex interaction, allelic APOE terms, and 29 additional SNPs performed the best. This model explained an additional 19% of the heritable risk compared to APOE genotype alone and achieved an area under the curve of 0.747. DISCUSSION GenoRisk could improve the risk assessment of individuals identified for prevention studies.
Collapse
Affiliation(s)
| | | | - Bruce L Brown
- Department of Psychology Brigham Young University Provo Utah USA
| | - Perry G Ridge
- Department of Biology Brigham Young University-Hawaii Laie Hawaii USA
| | | | | | | | | | | | - John S K Kauwe
- Department of Psychology Brigham Young University Provo Utah USA
- Department of Biology Brigham Young University-Hawaii Laie Hawaii USA
| |
Collapse
|
35
|
Systematic Search for Novel Circulating Biomarkers Associated with Extracellular Vesicles in Alzheimer's Disease: Combining Literature Screening and Database Mining Approaches. J Pers Med 2021; 11:jpm11100946. [PMID: 34683087 PMCID: PMC8538213 DOI: 10.3390/jpm11100946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs play an important role in neurodegenerative diseases. Many miRNA-target gene interactions (MTI) have been experimentally confirmed and associated with Alzheimer’s disease (AD). miRNAs may also be contained within extracellular vesicles (EVs), mediators of cellular communication and a potential source of circulating biomarkers in body fluids. Therefore, EV-associated miRNAs (EV-miRNAs) in peripheral blood could support earlier and less invasive AD diagnostics. We aimed to prioritize EV-related miRNA with AD-related genes and to identify the most promising candidates for novel AD biomarkers. A list of unique EV-miRNAs from the literature was combined with a known set of AD risk genes and enriched for MTI. Additionally, miRNAs associated with the AD phenotype were combined with all known target genes in MTI enrichment. Expression in different sample types was analyzed to identify AD-associated miRNAs with the greatest potential as AD circulating biomarkers. Four common MTI were observed between EV-miRNAs and AD-associated miRNAs: hsa-miR-375–APH1B, hsa-miR-107–CDC42SE2, hsa-miR-375–CELF2, and hsa-miR-107–IL6. An additional 61 out of 169 unique miRNAs (36.1%) and seven out of 84 unique MTI (8.3%), observed in the body fluids of AD patients, were proposed as very strong AD-circulating biomarker candidates. Our analysis summarized several potential novel AD biomarkers, but further studies are needed to evaluate their potential in clinical practice.
Collapse
|
36
|
Jia L, Li F, Wei C, Zhu M, Qu Q, Qin W, Tang Y, Shen L, Wang Y, Shen L, Li H, Peng D, Tan L, Luo B, Guo Q, Tang M, Du Y, Zhang J, Zhang J, Lyu J, Li Y, Zhou A, Wang F, Chu C, Song H, Wu L, Zuo X, Han Y, Liang J, Wang Q, Jin H, Wang W, Lü Y, Li F, Zhou Y, Zhang W, Liao Z, Qiu Q, Li Y, Kong C, Li Y, Jiao H, Lu J, Jia J. Prediction of Alzheimer's disease using multi-variants from a Chinese genome-wide association study. Brain 2021; 144:924-937. [PMID: 33188687 PMCID: PMC8041344 DOI: 10.1093/brain/awaa364] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
Previous genome-wide association studies have identified dozens of susceptibility loci for sporadic Alzheimer’s disease, but few of these loci have been validated in longitudinal cohorts. Establishing predictive models of Alzheimer’s disease based on these novel variants is clinically important for verifying whether they have pathological functions and provide a useful tool for screening of disease risk. In the current study, we performed a two-stage genome-wide association study of 3913 patients with Alzheimer’s disease and 7593 controls and identified four novel variants (rs3777215, rs6859823, rs234434, and rs2255835; Pcombined = 3.07 × 10−19, 2.49 × 10−23, 1.35 × 10−67, and 4.81 × 10−9, respectively) as well as nine variants in the apolipoprotein E region with genome-wide significance (P < 5.0 × 10−8). Literature mining suggested that these novel single nucleotide polymorphisms are related to amyloid precursor protein transport and metabolism, antioxidation, and neurogenesis. Based on their possible roles in the development of Alzheimer’s disease, we used different combinations of these variants and the apolipoprotein E status and successively built 11 predictive models. The predictive models include relatively few single nucleotide polymorphisms useful for clinical practice, in which the maximum number was 13 and the minimum was only four. These predictive models were all significant and their peak of area under the curve reached 0.73 both in the first and second stages. Finally, these models were validated using a separate longitudinal cohort of 5474 individuals. The results showed that individuals carrying risk variants included in the models had a shorter latency and higher incidence of Alzheimer’s disease, suggesting that our models can predict Alzheimer’s disease onset in a population with genetic susceptibility. The effectiveness of the models for predicting Alzheimer’s disease onset confirmed the contributions of these identified variants to disease pathogenesis. In conclusion, this is the first study to validate genome-wide association study-based predictive models for evaluating the risk of Alzheimer’s disease onset in a large Chinese population. The clinical application of these models will be beneficial for individuals harbouring these risk variants, and particularly for young individuals seeking genetic consultation.
Collapse
Affiliation(s)
- Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Min Zhu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Luxi Shen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yanjiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglei Li
- Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Shandong, China
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Muni Tang
- Department of Geriatrics, Guangzhou Huiai Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Hubei, China
| | - Jihui Lyu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Aihong Zhou
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fen Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Changbiao Chu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haiqing Song
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Liyong Wu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiumei Zuo
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yue Han
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Junhua Liang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hongmei Jin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Li
- Department of Geriatric, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center for Cognitive Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhengluan Liao
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiongqiong Qiu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chaojun Kong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haishan Jiao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
37
|
Zhou QM, Zhe L, Brooke RJ, Hudson MM, Yuan Y. A relationship between the incremental values of area under the ROC curve and of area under the precision-recall curve. Diagn Progn Res 2021; 5:13. [PMID: 34261544 PMCID: PMC8278775 DOI: 10.1186/s41512-021-00102-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Incremental value (IncV) evaluates the performance change between an existing risk model and a new model. Different IncV metrics do not always agree with each other. For example, compared with a prescribed-dose model, an ovarian-dose model for predicting acute ovarian failure has a slightly lower area under the receiver operating characteristic curve (AUC) but increases the area under the precision-recall curve (AP) by 48%. This phenomenon of disagreement is not uncommon, and can create confusion when assessing whether the added information improves the model prediction accuracy. METHODS In this article, we examine the analytical connections and differences between the AUC IncV (ΔAUC) and AP IncV (ΔAP). We also compare the true values of these two IncV metrics in a numerical study. Additionally, as both are semi-proper scoring rules, we compare them with a strictly proper scoring rule: the IncV of the scaled Brier score (ΔsBrS) in the numerical study. RESULTS We demonstrate that ΔAUC and ΔAP are both weighted averages of the changes (from the existing model to the new one) in separating the risk score distributions between events and non-events. However, ΔAP assigns heavier weights to the changes in higher-risk regions, whereas ΔAUC weights the changes equally. Due to this difference, the two IncV metrics can disagree, and the numerical study shows that their disagreement becomes more pronounced as the event rate decreases. In the numerical study, we also find that ΔAP has a wide range, from negative to positive, but the range of ΔAUC is much smaller. In addition, ΔAP and ΔsBrS are highly consistent, but ΔAUC is negatively correlated with ΔsBrS and ΔAP when the event rate is low. CONCLUSIONS ΔAUC treats the wins and losses of a new risk model equally across different risk regions. When neither the existing or new model is the true model, this equality could attenuate a superior performance of the new model for a sub-region. In contrast, ΔAP accentuates the change in the prediction accuracy for higher-risk regions.
Collapse
Affiliation(s)
- Qian M. Zhou
- grid.260120.70000 0001 0816 8287Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS USA
| | - Lu Zhe
- grid.17089.37School of Public Health, University of Alberta, Edmonton, AB Canada
| | - Russell J. Brooke
- grid.240871.80000 0001 0224 711XSt. Jude Children’s Research Hospital, Memphis, TN USA
| | - Melissa M. Hudson
- grid.240871.80000 0001 0224 711XSt. Jude Children’s Research Hospital, Memphis, TN USA
| | - Yan Yuan
- grid.17089.37School of Public Health, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
38
|
Young J, Gallagher E, Koska K, Guetta-Baranes T, Morgan K, Thomas A, Brookes KJ. Genome-wide association findings from the brains for dementia research cohort. Neurobiol Aging 2021; 107:159-167. [PMID: 34183186 DOI: 10.1016/j.neurobiolaging.2021.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
The Brains for Dementia Research (BDR) cohort (~3200) is a longitudinal clinicopathological programme, complimented with genetic analysis for the purposes of aetiological investigation into dementia. Here the data from genetic association analyses are presented from the initial collection of DNA from the BDR cohort. The aim of this study was to investigate the preliminary association signals for pathologically confirmed Alzheimer's disease samples compared to controls with no other pathology (n = 520). Genome-wide genotyping was carried out using the NeuroChip platform. Analysis utilised the standard PLINK software for association studies. Genome-wide Bonferroni significant association were observed on chr19 around the APOE/TOMM40 locus across 2 distinct linkage disequilibrium blocks. Eleven of the top 35 association signals have been identified in previous studies, in addition to an intriguing SNP association within the FPR1 gene locus. This study suggests the BDR is genetically comparable to other Alzheimer's disease cohorts and offers an independent resource to verify findings, and additional genetic data for meta-analyses.
Collapse
Affiliation(s)
- Joshua Young
- Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - Emily Gallagher
- Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - Klaudia Koska
- Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | | | - Kevin Morgan
- Human Genetics, Life Sciences, University of Nottingham, Nottingham, UK
| | - Alan Thomas
- Brains for Dementia Research Coordinating Centre, Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Keeley J Brookes
- Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
39
|
Riaz M, Huq A, Ryan J, Orchard SG, Tiller J, Lockery J, Woods RL, Wolfe R, Renton AE, Goate AM, Sebra R, Schadt E, Brodtmann A, Shah RC, Storey E, Murray AM, McNeil JJ, Lacaze P. Effect of APOE and a polygenic risk score on incident dementia and cognitive decline in a healthy older population. Aging Cell 2021; 20:e13384. [PMID: 34041846 PMCID: PMC8208779 DOI: 10.1111/acel.13384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 01/09/2023] Open
Abstract
Few studies have measured the effect of genetic factors on dementia and cognitive decline in healthy older individuals followed prospectively. We studied cumulative incidence of dementia and cognitive decline, stratified by APOE genotypes and polygenic risk score (PRS) tertiles, in 12,978 participants of the ASPirin in Reducing Events in the Elderly (ASPREE) trial. At enrolment, participants had no history of diagnosed dementia, cardiovascular disease, physical disability or cognitive impairment. Dementia (adjudicated trial endpoint) and cognitive decline, defined as a >1.5 standard deviation decline in test score for either global cognition, episodic memory, language/executive function or psychomotor speed, versus baseline scores. Cumulative incidence for all‐cause dementia and cognitive decline was calculated with mortality as a competing event, stratified by APOE genotypes and tertiles of a PRS based on 23 common non‐APOE variants. During a median 4.5 years of follow‐up, 324 participants developed dementia, 503 died. Cumulative incidence of dementia to age 85 years was 7.4% in all participants, 12.6% in APOE ε3/ε4 and 26.6% in ε4/ε4. APOE ε4 heterozygosity/homozygosity was associated with a 2.5/6.3‐fold increased dementia risk and 1.4/1.8‐fold cognitive decline risk, versus ε3/ε3 (p < 0.001 for both). High PRS tertile was associated with a 1.4‐fold dementia risk versus low (CI 1.04–1.76, p = 0.02), but was not associated with cognitive decline (CI 0.96–1.22, p = 0.18). Incidence of dementia among healthy older individuals is low across all genotypes; however, APOE ε4 and high PRS increase relative risk. APOE ε4 is associated with cognitive decline, but PRS is not.
Collapse
Affiliation(s)
- Moeen Riaz
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne Vic Australia
| | - Aamira Huq
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne Vic Australia
- Department of Genomic Medicine Royal Melbourne Hospital University of Melbourne Melbourne Vic Australia
- Department of Medicine Royal Melbourne Hospital University of Melbourne Melbourne Vic Australia
| | - Joanne Ryan
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne Vic Australia
| | - Suzanne G Orchard
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne Vic Australia
| | - Jane Tiller
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne Vic Australia
| | - Jessica Lockery
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne Vic Australia
| | - Robyn L. Woods
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne Vic Australia
| | - Rory Wolfe
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne Vic Australia
| | - Alan E. Renton
- Nash Family Department of Neuroscience and Ronald Loeb Center for Alzheimer’s Disease Icahn School of Medicine at Mount Sinai New York NY USA
- Departments of Neurology and Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York NY USA
| | - Alison M. Goate
- Nash Family Department of Neuroscience and Ronald Loeb Center for Alzheimer’s Disease Icahn School of Medicine at Mount Sinai New York NY USA
- Departments of Neurology and Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York NY USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences Icahn Institute for Data Science and Genomic Technology Icahn School of Medicine at Mount Sinai New York NY USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences Icahn Institute for Data Science and Genomic Technology Icahn School of Medicine at Mount Sinai New York NY USA
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health Melbourne Vic Australia
- Melbourne Dementia Research Centre University of Melbourne Melbourne Vic Australia
| | - Raj C. Shah
- Department of Family Medicine and Rush Alzheimer's Disease Center Rush University Medical Center Chicago Illinois USA
| | - Elsdon Storey
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne Vic Australia
| | - Anne M Murray
- Berman Center for Outcomes and Clinical Research Hennepin Healthcare Research Institute University of Minnesota Minneapolis MN USA
| | - John J. McNeil
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne Vic Australia
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne Vic Australia
| |
Collapse
|
40
|
Lawingco T, Chaudhury S, Brookes KJ, Guetta-Baranes T, Guerreiro R, Bras J, Hardy J, Francis P, Thomas A, Belbin O, Morgan K. Genetic variants in glutamate-, Aβ-, and tau-related pathways determine polygenic risk for Alzheimer's disease. Neurobiol Aging 2021; 101:299.e13-299.e21. [PMID: 33303219 DOI: 10.1016/j.neurobiolaging.2020.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/29/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
Synapse loss is an early event in late-onset Alzheimer's disease (LOAD). In this study, we have assessed the capacity of a polygenic risk score (PRS) restricted to synapse-encoding loci to predict LOAD. We used summary statistics from the International Genetics of Alzheimer's Project genome-wide association meta-analysis of 74,046 patients for model construction and tested the "synaptic PRS" in 2 independent data sets of controls and pathologically confirmed LOAD. The mean synaptic PRS was 2.3-fold higher in LOAD than that in controls (p < 0.0001) with a predictive accuracy of 72% in the target data set (n = 439) and 73% in the validation data set (n = 136), a 5%-6% improvement compared with the APOE locus (p < 0.00001). The model comprises 8 variants from 4 previously identified (BIN1, PTK2B, PICALM, APOE) and 2 novel (DLG2, MINK1) LOAD loci involved in glutamate signaling (p = 0.01) or APP catabolism or tau binding (p = 0.005). As the simplest PRS model with good predictive accuracy to predict LOAD, we conclude that synapse-encoding genes are enriched for LOAD risk-modifying loci. The synaptic PRS could be used to identify individuals at risk of LOAD before symptom onset.
Collapse
Affiliation(s)
- Ted Lawingco
- Human Genetics Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Sultan Chaudhury
- Human Genetics Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Keeley J Brookes
- Human Genetics Group, School of Life Sciences, University of Nottingham, Nottingham, UK; Biosciences School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - Tamar Guetta-Baranes
- Human Genetics Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - John Hardy
- UK Dementia Research Institute and Department of Neurodegenerative Disease and Reta Lila Weston Institute, UCL Institute of Neurology and UCL Movement Disorders Centre, University College London, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Alan Thomas
- Brains for Dementia Research Resource, Newcastle, UK
| | - Olivia Belbin
- Sant Pau Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Kevin Morgan
- Human Genetics Group, School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
41
|
Wang X, Huang K, Yang F, Chen D, Cai S, Huang L. Association between structural brain features and gene expression by weighted gene co-expression network analysis in conversion from MCI to AD. Behav Brain Res 2021; 410:113330. [PMID: 33940051 DOI: 10.1016/j.bbr.2021.113330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease. Mild cognitive impairment (MCI) represents a state of cognitive function between normal cognition and dementia. Longitudinal studies showed that some MCI patients remained in a state of MCI, and some developed AD. The reason for these different conversions from MCI remains to be investigated. 180 MCI participants were followed for eight years. 143 MCI patients maintained the MCI state (MCI_S), and the remaining thirty-seven MCI patients were re-evaluated as having AD (MCI_AD). We obtained 1,036 structural brain characteristics and 15,481 gene expression values from the 180 MCI participants and applied weighted gene co-expression network analysis (WGCNA) to explore the relationship between structural brain features and gene expression. Regulating mediator effect analysis was employed to explore the relationships among gene expression, brain region measurements and clinical phenotypes. We found that 60 genes from the MCI_S group and 18 genes from the MCI_AD group respectively had the most significant correlations with left paracentral lobule and sulcus (L.PTS) and right subparietal sulcus (R.SubPS) thickness; CTCF, UQCR11 and WDR5B were the mutual genes between the two groups. The expression of CTCF gene and clinical score are completely mediated by L.PTS thickness, and the UQCR11 and WDR5B gene expression levels significantly regulate the mediating effect pathway. In conclusion, the factors affecting the different conversions from MCI are closely related to L.PTS thickness and the CTCF, UQCR11 and WDR5B gene expression levels. Our results add a theoretical foundation of imaging genetics for conversion from MCI to AD.
Collapse
Affiliation(s)
- Xuwen Wang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China
| | - Kexin Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China
| | - Fan Yang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China
| | - Dihun Chen
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China
| | - Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China.
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China.
| |
Collapse
|
42
|
Di Narzo AF, Hart A, Kosoy R, Peters L, Stojmirovic A, Cheng H, Zhang Z, Shan M, Cho J, Kasarskis A, Argmann C, Peter I, Schadt EE, Hao K. Polygenic risk score for alcohol drinking behavior improves prediction of inflammatory bowel disease risk. Hum Mol Genet 2021; 30:514-523. [PMID: 33601420 PMCID: PMC8599895 DOI: 10.1093/hmg/ddab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/23/2021] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Epidemiological studies have long recognized risky behaviors as potentially modifiable factors for the onset and flares of inflammatory bowel disease (IBD); yet, the underlying mechanisms are largely unknown. Recently, the genetic susceptibilities to cigarette smoking, alcohol and cannabis use [i.e. substance use (SU)] have been characterized by well-powered genome-wide association studies (GWASs). We aimed to assess the impact of genetic determinants of SU on IBD risk. Using Mount Sinai Crohn's and Colitis Registry (MSCCR) cohort of 1058 IBD cases and 188 healthy controls, we computed the polygenic risk score (PRS) for SU and correlated them with the observed IBD diagnoses, while adjusting for genetic ancestry, PRS for IBD and SU behavior at enrollment. The results were validated in a pediatric cohort with no SU exposure. PRS of alcohol consumption (DrnkWk), smoking cessation and age of smoking initiation, were associated with IBD risk in MSCCR even after adjustment for PRSIBD and actual smoking status. One interquartile range decrease in PRSDrnkWk was significantly associated to higher IBD risk (i.e. inverse association) (with odds ratio = 1.65 and 95% confidence interval: 1.32, 2.06). The association was replicated in a pediatric Crohn's disease cohort. Colocalization analysis identified a locus on chromosome 16 with polymorphisms in IL27, SULT1A2 and SH2B1, which reached genome-wide statistical significance in GWAS (P < 7.7e-9) for both alcohol consumption and IBD risk. This study demonstrated that the genetic predisposition to SU was associated with IBD risk, independent of PRSIBD and in the absence of SU behaviors. Our study may help further stratify individuals at risk of IBD.
Collapse
Affiliation(s)
- Antonio F Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amy Hart
- Immunology Translational Sciences, Janssen R&D, LLC, Spring House, PA 19477, USA
| | - Roman Kosoy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lauren Peters
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Statistical Genomics, Sema4, Stamford, CT 06902, USA
| | | | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mingxu Shan
- Statistical Genomics, Sema4, Stamford, CT 06902, USA
| | - Judy Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Statistical Genomics, Sema4, Stamford, CT 06902, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Statistical Genomics, Sema4, Stamford, CT 06902, USA
| |
Collapse
|
43
|
Creese B, Arathimos R, Brooker H, Aarsland D, Corbett A, Lewis C, Ballard C, Ismail Z. Genetic risk for Alzheimer's disease, cognition, and mild behavioral impairment in healthy older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12164. [PMID: 33748395 PMCID: PMC7968121 DOI: 10.1002/dad2.12164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The neuropsychiatric syndrome mild behavioral impairment (MBI) describes an at-risk state for dementia and may be a useful screening tool for sample enrichment. We hypothesized that stratifying a cognitively normal sample on MBI status would enhance the association between genetic risk for Alzheimer's disease (AD) and cognition. METHODS Data from 4458 participants over age 50 without dementia was analyzed. A cognitive composite score was constructed and the MBI Checklist was used to stratify those with MBI and those without. Polygenic scores for AD were generated using summary statistics from the IGAP study. RESULTS AD genetic risk was associated with worse cognition in the MBI group but not in the no MBI group (MBI: β = -0.09, 95% confidence interval: -0.13 to -0.03, P = 0.002, R2 = 0.003). The strongest association was in those with more severe MBI aged ≥65. CONCLUSIONS MBI is an important feature of aging; screening on MBI may be a useful sample enrichment strategy for clinical research.
Collapse
Affiliation(s)
- Byron Creese
- Medical SchoolCollege of Medicine and HealthUniversity of ExeterExeterUK
| | - Ryan Arathimos
- King's College LondonSocial Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceLondonUK
| | - Helen Brooker
- Medical SchoolCollege of Medicine and HealthUniversity of ExeterExeterUK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Anne Corbett
- Medical SchoolCollege of Medicine and HealthUniversity of ExeterExeterUK
| | - Cathryn Lewis
- King's College LondonSocial Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceLondonUK
| | - Clive Ballard
- Medical SchoolCollege of Medicine and HealthUniversity of ExeterExeterUK
| | - Zahinoor Ismail
- Medical SchoolCollege of Medicine and HealthUniversity of ExeterExeterUK
- Departments of Psychiatry, Clinical Neurosciences, and Community Health SciencesHotchkiss Brain Institute and O'Brien Institute for PublicHealthUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
44
|
Zhou X, Li YYT, Fu AKY, Ip NY. Polygenic Score Models for Alzheimer's Disease: From Research to Clinical Applications. Front Neurosci 2021; 15:650220. [PMID: 33854414 PMCID: PMC8039467 DOI: 10.3389/fnins.2021.650220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
The high prevalence of Alzheimer's disease (AD) among the elderly population and its lack of effective treatments make this disease a critical threat to human health. Recent epidemiological and genetics studies have revealed the polygenic nature of the disease, which is possibly explainable by a polygenic score model that considers multiple genetic risks. Here, we systemically review the rationale and methods used to construct polygenic score models for studying AD. We also discuss the associations of polygenic risk scores (PRSs) with clinical outcomes, brain imaging findings, and biochemical biomarkers from both the brain and peripheral system. Finally, we discuss the possibility of incorporating polygenic score models into research and clinical practice along with potential challenges.
Collapse
Affiliation(s)
- Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, China
| | - Yolanda Y. T. Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Amy K. Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, China
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, China
- *Correspondence: Nancy Y. Ip,
| |
Collapse
|
45
|
Hannon E, Shireby GL, Brookes K, Attems J, Sims R, Cairns NJ, Love S, Thomas AJ, Morgan K, Francis PT, Mill J. Genetic risk for Alzheimer's disease influences neuropathology via multiple biological pathways. Brain Commun 2020; 2:fcaa167. [PMID: 33376986 PMCID: PMC7750986 DOI: 10.1093/braincomms/fcaa167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease is a highly heritable, common neurodegenerative disease characterized neuropathologically by the accumulation of β-amyloid plaques and tau-containing neurofibrillary tangles. In addition to the well-established risk associated with the APOE locus, there has been considerable success in identifying additional genetic variants associated with Alzheimer’s disease. Major challenges in understanding how genetic risk influences the development of Alzheimer’s disease are clinical and neuropathological heterogeneity, and the high level of accompanying comorbidities. We report a multimodal analysis integrating longitudinal clinical and cognitive assessment with neuropathological data collected as part of the Brains for Dementia Research study to understand how genetic risk factors for Alzheimer’s disease influence the development of neuropathology and clinical performance. Six hundred and ninety-three donors in the Brains for Dementia Research cohort with genetic data, semi-quantitative neuropathology measurements, cognitive assessments and established diagnostic criteria were included in this study. We tested the association of APOE genotype and Alzheimer’s disease polygenic risk score—a quantitative measure of genetic burden—with survival, four common neuropathological features in Alzheimer’s disease brains (neurofibrillary tangles, β-amyloid plaques, Lewy bodies and transactive response DNA-binding protein 43 proteinopathy), clinical status (clinical dementia rating) and cognitive performance (Mini-Mental State Exam, Montreal Cognitive Assessment). The APOE ε4 allele was significantly associated with younger age of death in the Brains for Dementia Research cohort. Our analyses of neuropathology highlighted two independent pathways from APOE ε4, one where β-amyloid accumulation co-occurs with the development of tauopathy, and a second characterized by direct effects on tauopathy independent of β-amyloidosis. Although we also detected association between APOE ε4 and dementia status and cognitive performance, these were all mediated by tauopathy, highlighting that they are a consequence of the neuropathological changes. Analyses of polygenic risk score identified associations with tauopathy and β-amyloidosis, which appeared to have both shared and unique contributions, suggesting that different genetic variants associated with Alzheimer’s disease affect different features of neuropathology to different degrees. Taken together, our results provide insight into how genetic risk for Alzheimer’s disease influences both the clinical and pathological features of dementia, increasing our understanding about the interplay between APOE genotype and other genetic risk factors.
Collapse
Affiliation(s)
- Eilis Hannon
- College of Medicine and Health, University of Exeter, Exeter, Devon, EX2 5DW, UK
| | - Gemma L Shireby
- College of Medicine and Health, University of Exeter, Exeter, Devon, EX2 5DW, UK
| | - Keeley Brookes
- School of Science & Technology, Nottingham Trent University, Nottingham, NG11 8NF, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Nigel J Cairns
- College of Medicine and Health, University of Exeter, Exeter, Devon, EX2 5DW, UK
| | - Seth Love
- Bristol Medical School (THS), University of Bristol, Bristol, BS2 8DZ, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kevin Morgan
- Human Genetics Group, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Paul T Francis
- College of Medicine and Health, University of Exeter, Exeter, Devon, EX2 5DW, UK
| | - Jonathan Mill
- College of Medicine and Health, University of Exeter, Exeter, Devon, EX2 5DW, UK
| |
Collapse
|
46
|
Zhang Y, Hao Y, Li L, Xia K, Wu G. A Novel Computational Proxy for Characterizing Cognitive Reserve in Alzheimer's Disease. J Alzheimers Dis 2020; 78:1217-1228. [PMID: 33252088 DOI: 10.3233/jad-201011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although the abnormal depositions of amyloid plaques and neurofibrillary tangles are the hallmark of Alzheimer's disease (AD), converging evidence shows that the individual's neurodegeneration trajectory is regulated by the brain's capability to maintain normal cognition. OBJECTIVE The concept of cognitive reserve has been introduced into the field of neuroscience, acting as a moderating factor for explaining the paradoxical relationship between the burden of AD pathology and the clinical outcome. It is of high demand to quantify the degree of conceptual cognitive reserve on an individual basis. METHODS We propose a novel statistical model to quantify an individual's cognitive reserve against neuropathological burdens, where the predictors include demographic data (such as age and gender), socioeconomic factors (such as education and occupation), cerebrospinal fluid biomarkers, and AD-related polygenetic risk score. We conceptualize cognitive reserve as a joint product of AD pathology and socioeconomic factors where their interaction manifests a significant role in counteracting the progression of AD in our statistical model. RESULTS We apply our statistical models to re-investigate the moderated neurodegeneration trajectory by considering cognitive reserve, where we have discovered that 1) high education individuals have significantly higher reserve against the neuropathology than the low education group; however, 2) the cognitive decline in the high education group is significantly faster than low education individuals after the level of pathological burden increases beyond the tipping point. CONCLUSION We propose a computational proxy of cognitive reserve that can be used in clinical routine to assess the progression of AD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lang Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kai Xia
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guorong Wu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
47
|
Associations between Alzheimer's disease polygenic risk scores and hippocampal subfield volumes in 17,161 UK Biobank participants. Neurobiol Aging 2020; 98:108-115. [PMID: 33259984 DOI: 10.1016/j.neurobiolaging.2020.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/20/2020] [Accepted: 11/01/2020] [Indexed: 11/23/2022]
Abstract
Hippocampal volume is an important biomarker of Alzheimer's disease (AD), and genetic risk of AD is associated with hippocampal atrophy. However, the hippocampus is not a uniform structure and has a number of subfields, the associations of which with age, sex, and polygenic risk score for AD (PRSAD) have been inadequately investigated. We examined these associations in 17,161 cognitively normal UK Biobank participants (44-80 years). Age was negatively associated with all the hippocampal subfield volumes and females had smaller volumes than men. Higher PRSAD was associated with lower volumes in the bilateral whole hippocampus, hippocampal-amygdala-transition-area, and hippocampal tail; right subiculum; left cornu ammonis 1, cornu ammonis 4, molecular layer, and granule cell layer of dentate gyrus. Older individuals (median age 63 years, n = 8984) showed greater subfield vulnerability to high PRSAD compared to the younger group (n = 8177), but the effect did not differ by sex. The pattern of subfield involvement in relation to the PRSAD in community dwelling healthy individuals sheds additional light on the pathogenesis of AD.
Collapse
|
48
|
Holmans PA. Using Genetics to Increase Specificity of Outcome Prediction in Psychiatric Disorders: Prospects for Progression. Am J Psychiatry 2020; 177:884-887. [PMID: 32998554 DOI: 10.1176/appi.ajp.2020.20081181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Peter A Holmans
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, United Kingdom
| |
Collapse
|
49
|
Tesi N, van der Lee SJ, Hulsman M, Jansen IE, Stringa N, van Schoor NM, Scheltens P, van der Flier WM, Huisman M, Reinders MJT, Holstege H. Immune response and endocytosis pathways are associated with the resilience against Alzheimer's disease. Transl Psychiatry 2020; 10:332. [PMID: 32994401 PMCID: PMC7524800 DOI: 10.1038/s41398-020-01018-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Developing Alzheimer's disease (AD) is influenced by multiple genetic variants that are involved in five major AD-pathways. Per individual, these pathways may differentially contribute to the modification of the AD-risk. The pathways involved in the resilience against AD have thus far been poorly addressed. Here, we investigated to what extent each molecular mechanism associates with (i) the increased risk of AD and (ii) the resilience against AD until extreme old age, by comparing pathway-specific polygenic risk scores (pathway-PRS). We used 29 genetic variants associated with AD to develop pathway-PRS for five major pathways involved in AD. We developed an integrative framework that allows multiple genes to associate with a variant, and multiple pathways to associate with a gene. We studied pathway-PRS in the Amsterdam Dementia Cohort of well-phenotyped AD patients (N = 1895), Dutch population controls from the Longitudinal Aging Study Amsterdam (N = 1654) and our unique 100-plus Study cohort of cognitively healthy centenarians who avoided AD (N = 293). Last, we estimated the contribution of each pathway to the genetic risk of AD in the general population. All pathway-PRS significantly associated with increased AD-risk and (in the opposite direction) with resilience against AD (except for angiogenesis, p < 0.05). The pathway that contributed most to the overall modulation of AD-risk was β-amyloid metabolism (29.6%), which was driven mainly by APOE-variants. After excluding APOE variants, all pathway-PRS associated with increased AD-risk (except for angiogenesis, p < 0.05), while specifically immune response (p = 0.003) and endocytosis (p = 0.0003) associated with resilience against AD. Indeed, the variants in these latter two pathways became the main contributors to the overall modulation of genetic risk of AD (45.5% and 19.2%, respectively). The genetic variants associated with the resilience against AD indicate which pathways are involved with maintained cognitive functioning until extreme ages. Our work suggests that a favorable immune response and a maintained endocytosis pathway might be involved in general neuro-protection, which highlight the need to investigate these pathways, next to β-amyloid metabolism.
Collapse
Affiliation(s)
- Niccolò Tesi
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Najada Stringa
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands.
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
50
|
Gamache J, Yun Y, Chiba-Falek O. Sex-dependent effect of APOE on Alzheimer's disease and other age-related neurodegenerative disorders. Dis Model Mech 2020; 13:dmm045211. [PMID: 32859588 PMCID: PMC7473656 DOI: 10.1242/dmm.045211] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The importance of apolipoprotein E (APOE) in late-onset Alzheimer's disease (LOAD) has been firmly established, but the mechanisms through which it exerts its pathogenic effects remain elusive. In addition, the sex-dependent effects of APOE on LOAD risk and endophenotypes have yet to be explained. In this Review, we revisit the different aspects of APOE involvement in neurodegeneration and neurological diseases, with particular attention to sex differences in the contribution of APOE to LOAD susceptibility. We discuss the role of APOE in a broader range of age-related neurodegenerative diseases, and summarize the biological factors linking APOE to sex hormones, drawing on supportive findings from rodent models to identify major mechanistic themes underlying the exacerbation of LOAD-associated neurodegeneration and pathology in the female brain. Additionally, we list sex-by-genotype interactions identified across neurodegenerative diseases, proposing APOE variants as a shared etiology for sex differences in the manifestation of these diseases. Finally, we present recent advancements in 'omics' technologies, which provide a new platform for more in-depth investigations of how dysregulation of this gene affects the development and progression of neurodegenerative diseases. Collectively, the evidence summarized in this Review highlights the interplay between APOE and sex as a key factor in the etiology of LOAD and other age-related neurodegenerative diseases. We emphasize the importance of careful examination of sex as a contributing factor in studying the underpinning genetics of neurodegenerative diseases in general, but particularly for LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Young Yun
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|