1
|
Mendoza-Berjano R, Leon-Larios F, Corrales-Gutierrez I, Gomez-Baya D, Medero-Canela R, Baena-Antequera F. High Prevalence of Tobacco Consumption among Pregnant Women in a Southern European City (Seville): A Challenge for the Health System. TOXICS 2024; 12:728. [PMID: 39453148 PMCID: PMC11511225 DOI: 10.3390/toxics12100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
The prevalence of prenatal tobacco exposure remains high in many countries, particularly in southern Europe. The aims of this study were to estimate the prevalence of smoking among pregnant women in a southern Spanish city (Seville) and to identify the associated sociodemographic and obstetric characteristics. In a descriptive, cross-sectional study, a random sample of pregnant women who were scheduled to undergo a morphology scan at their public referral hospital in their 20th week of gestation were interviewed in person. At the start of pregnancy, 38.2% of the pregnant women were smokers. In the twentieth week, 19.1% continued to smoke, and the same percentage had quit. The prevalence of smoking in pregnant women was higher among those with a low level of education (60% among pregnant women with no studies and 30.4% in those with primary education) and among those who had had abortions (38.5%). Pregnant smokers with obesity were the least likely to have given up smoking during pregnancy. Women with a lower educational level should be a prime target for cross-sectoral interventions aimed at preventing prenatal tobacco exposure. Implementation of support measures for providing effective clinical advice in preconception and prenatal care regarding healthy lifestyles is particularly needed.
Collapse
Affiliation(s)
- Ramón Mendoza-Berjano
- Research Group on Health Promotion and Development of Lifestyle across the Life Span, University of Huelva, 21007 Huelva, Spain; (R.M.-B.); (D.G.-B.)
- Department of Social, Developmental and Educational Psychology, University of Huelva, 21007 Huelva, Spain
| | - Fatima Leon-Larios
- Nursing Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41001 Seville, Spain;
| | - Isabel Corrales-Gutierrez
- Fetal Medicine Unit, University Hospital Virgen Macarena, 41009 Seville, Spain;
- Department of Surgery, Faculty of Medicine, University of Seville, 41001 Seville, Spain
| | - Diego Gomez-Baya
- Research Group on Health Promotion and Development of Lifestyle across the Life Span, University of Huelva, 21007 Huelva, Spain; (R.M.-B.); (D.G.-B.)
- Department of Social, Developmental and Educational Psychology, University of Huelva, 21007 Huelva, Spain
| | - Rocío Medero-Canela
- Huelva Costa Condado-Campiña Health District, Multidisciplinary Teaching Unit of Family and Community Care, 21005 Huelva, Spain;
| | - Francisca Baena-Antequera
- Obstetric Unit, University Hospital Virgen de Valme, 41014 Seville, Spain
- Nursing Department, Osuna University School, 41640 Osuna, Spain
| |
Collapse
|
2
|
Serra M, Simola N, Pollack AE, Costa G. Brain dysfunctions and neurotoxicity induced by psychostimulants in experimental models and humans: an overview of recent findings. Neural Regen Res 2024; 19:1908-1918. [PMID: 38227515 DOI: 10.4103/1673-5374.390971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Abstract
Preclinical and clinical studies indicate that psychostimulants, in addition to having abuse potential, may elicit brain dysfunctions and/or neurotoxic effects. Central toxicity induced by psychostimulants may pose serious health risks since the recreational use of these substances is on the rise among young people and adults. The present review provides an overview of recent research, conducted between 2018 and 2023, focusing on brain dysfunctions and neurotoxic effects elicited in experimental models and humans by amphetamine, cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylphenidate, caffeine, and nicotine. Detailed elucidation of factors and mechanisms that underlie psychostimulant-induced brain dysfunction and neurotoxicity is crucial for understanding the acute and enduring noxious brain effects that may occur in individuals who use psychostimulants for recreational and/or therapeutic purposes.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Alexia E Pollack
- Department of Biology, University of Massachusetts-Boston, Boston, MA, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Mayer FP, Stewart A, Varman DR, Moritz AE, Foster JD, Owens AW, Areal LB, Gowrishankar R, Velez M, Wickham K, Phelps H, Katamish R, Rabil M, Jayanthi LD, Vaughan RA, Daws LC, Blakely RD, Ramamoorthy S. Kappa Opioid Receptor Antagonism Restores Phosphorylation, Trafficking and Behavior induced by a Disease Associated Dopamine Transporter Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539310. [PMID: 37205452 PMCID: PMC10187322 DOI: 10.1101/2023.05.03.539310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aberrant dopamine (DA) signaling is implicated in schizophrenia, bipolar disorder (BPD), autism spectrum disorder (ASD), substance use disorder, and attention-deficit/hyperactivity disorder (ADHD). Treatment of these disorders remains inadequate, as exemplified by the therapeutic use of d-amphetamine and methylphenidate for the treatment of ADHD, agents with high abuse liability. In search for an improved and non-addictive therapeutic approach for the treatment of DA-linked disorders, we utilized a preclinical mouse model expressing the human DA transporter (DAT) coding variant DAT Val559, previously identified in individuals with ADHD, ASD, or BPD. DAT Val559, like several other disease-associated variants of DAT, exhibits anomalous DA efflux (ADE) that can be blocked by d-amphetamine and methylphenidate. Kappa opioid receptors (KORs) are expressed by DA neurons and modulate DA release and clearance, suggesting that targeting KORs might also provide an alternative approach to normalizing DA-signaling disrupted by perturbed DAT function. Here we demonstrate that KOR stimulation leads to enhanced surface trafficking and phosphorylation of Thr53 in wildtype DAT, effects achieved constitutively by the Val559 mutant. Moreover, these effects can be rescued by KOR antagonism of DAT Val559 in ex vivo preparations. Importantly, KOR antagonism also corrected in vivo DA release as well as sex-dependent behavioral abnormalities observed in DAT Val559 mice. Given their low abuse liability, our studies with a construct valid model of human DA associated disorders reinforce considerations of KOR antagonism as a pharmacological strategy to treat DA associated brain disorders.
Collapse
Affiliation(s)
- Felix P. Mayer
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy E. Moritz
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Anthony W. Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Lorena B. Areal
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Raajaram Gowrishankar
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Michelle Velez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Kyria Wickham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Hannah Phelps
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Rania Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian Rabil
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
4
|
Ozsvar J, Gissler M, Lavebratt C, Nilsson IAK. Exposures during pregnancy and at birth are associated with the risk of offspring eating disorders. Int J Eat Disord 2023; 56:2232-2249. [PMID: 37646613 DOI: 10.1002/eat.24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Eating disorders (ED) are severe psychiatric disorders, commonly debuting early. Aberrances in the intrauterine environment and at birth have been associated with risk of ED. Here, we explore if, and at what effect size, a variety of such exposures associate with offspring ED, that is, anorexia nervosa (AN), bulimia nervosa (BN), and eating disorder not otherwise specified (EDNOS). METHODS This population-based cohort study, conducted from September 2021 to August 2023, used Finnish national registries of all live births in 1996-2014 (N = 1,097,753). Cox proportional hazards modeling was used to compare ED risk in exposed versus unexposed offspring, adjusting for potential confounders and performing sex-stratified analyses. RESULTS A total of 6614 offspring were diagnosed with an ED; 3668 AN, 666 BN, and 4248 EDNOS. Lower risk of offspring AN was seen with young mothers, continued smoking, and instrumental delivery, while higher risk was seen with older mothers, inflammatory disorders, prematurity, small for gestational age, and low Apgar. Offspring risk of BN was higher with continued smoking and prematurity, while lower with postmature birth. Offspring risk of EDNOS was lower with instrumental delivery, higher for older mothers, polycystic ovary syndrome, insulin-treated pregestational diabetes, antibacterial treatment, prematurity, and small for gestational age. Sex-specific associations were found. CONCLUSIONS Several prenatal and at birth exposures are associated with offspring ED; however, we cannot exclude confounding by maternal BMI. Nevertheless, several exposures selectively associate with risk of either AN, BN, or EDNOS, and some are sex-specific, emphasizing the importance of subtype- and sex-stratified analyses of ED. PUBLIC SIGNIFICANCE We define environmental factors involved in the development of different ED, of importance as preventive measure, but also in order to aid in defining the molecular pathways involved and thus in the longer perspective contribute to the development of pharmacological treatment of ED.
Collapse
Affiliation(s)
- Judit Ozsvar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mika Gissler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Centre for Child Psychiatry, University of Turku, Turku, Finland
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Flores A, Gowen A, Schaal VL, Koul S, Hernandez JB, Yelamanchili SV, Pendyala G. Impact of Adolescent Nicotine Exposure in Pre- and Post-natal Oxycodone Exposed Offspring. J Neuroimmune Pharmacol 2023; 18:413-426. [PMID: 37351737 DOI: 10.1007/s11481-023-10074-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Perinatal exposure to prescription opioids pose a critical public health risk. Notably, research has found significant neurodevelopmental and behavioral deficits between in utero (IUO) and postnatal (PNO) oxycodone-exposed offspring but there is a notable gap in knowledge regarding the interaction of these groups to other drug exposure, particularly nicotine exposure. Nicotine's widespread use represents a ubiquitous clinical interaction that current research does not address. Children often experiment with drugs and risky behavior; therefore, adolescence is a key timepoint to characterize. This study employed an integrated systems approach to investigate escalating nicotine exposure in adolescence and subsequent nicotine withdrawal in the IUO- and PNO-offspring. Western blot analysis found synaptic protein alterations, especially upregulation of synaptophysin in IUO-withdrawal animals. RT-qPCR further validated immune dysfunction in the central nervous system (CNS). Peripheral nicotine metabolism was consistent with increased catabolism of nicotine concerning IUO animals. Lastly, behavioral assays found subtle deficits to withdrawal in nociception and anxiety-like behavior. This study showed, for the first time, the vulnerabilities of PNO- and IUO-exposed groups concerning nicotine use during early adolescence and withdrawal. Graphical Abstract.
Collapse
Affiliation(s)
- Adrian Flores
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Austin Gowen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Victoria L Schaal
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | | | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology, and Anatomy, UNMC, Omaha, NE, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.
- Department of Genetics, Cell Biology, and Anatomy, UNMC, Omaha, NE, USA.
- Child Health Research Institute, UNMC, Omaha, NE, USA.
- National Strategic Research Institute, UNMC, Omaha, NE, USA.
| |
Collapse
|
6
|
Wells AC, Lotfipour S. Prenatal nicotine exposure during pregnancy results in adverse neurodevelopmental alterations and neurobehavioral deficits. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11628. [PMID: 38389806 PMCID: PMC10880762 DOI: 10.3389/adar.2023.11628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/28/2023] [Indexed: 02/24/2024]
Abstract
Maternal tobacco use and nicotine exposure during pregnancy have been associated with adverse birth outcomes in infants and can lead to preventable pregnancy complications. Exposure to nicotine and other compounds in tobacco and electronic cigarettes (e-cigarettes) has been shown to increases the risk of miscarriage, prematurity, stillbirth, low birth weight, perinatal morbidity, and sudden infant death syndrome (SIDS). Additionally, recent data provided by clinical and pre-clinical research demonstrates that nicotine exposure during pregnancy may heighten the risk for adverse neurodevelopmental disorders such as Attention-Deficit Hyperactivity (ADHD), anxiety, and depression along with altering the infants underlying brain circuitry, response to neurotransmitters, and brain volume. In the United States, one in 14 women (7.2%) reported to have smoked cigarettes during their pregnancy with the global prevalence of smoking during pregnancy estimated to be 1.7%. Approximately 1.1% of women in the United States also reported to have used e-cigarettes during the last 3 months of pregnancy. Due to the large percentage of women utilizing nicotine products during pregnancy in the United States and globally, this review seeks to centralize pre-clinical and clinical studies focused on the neurobehavioral and neurodevelopmental complications associated with prenatal nicotine exposure (PNE) such as alterations to the hypothalamic-pituitary-adrenal (HPA) axis and brain regions such as the prefrontal cortex (PFC), ventral tegmental area (VTA), nucleus accumbens (NA), hippocampus, and caudate as well as changes to nAChR and cholinergic receptor signaling, long-term drug seeking behavior following PNE, and other related developmental disorders. Current literature analyzing the association between PNE and the risk for offspring developing schizophrenia, attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), anxiety, and obesity will also be discussed.
Collapse
Affiliation(s)
- Alicia C Wells
- School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Shahrdad Lotfipour
- School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Emergency Medicine, Pharmaceutical Sciences, Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Costa G, Pollack AE. Prenatal and postnatal drug exposure: focus on persistent central effects. Neural Regen Res 2023; 18:1697-1702. [PMID: 36751782 PMCID: PMC10154500 DOI: 10.4103/1673-5374.363190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Clinical studies indicate significant use of prescription, nonprescription and social/recreational drugs by women during pregnancy; however, limited knowledge exists about the detrimental effects that this practice may have on the developing central nervous system of the fetus. Importantly, few experimental and clinical data are available on how gestational exposure could exacerbate the effects of the same or a different drug consumed by the offspring later in life. The present review summarizes recent findings on the central toxicity elicited by several classes of drugs, administered prenatally and postnatally in experimental animals and humans, focusing on prescription and nonprescription analgesics, anti-inflammatory agents, alcohol and nicotine.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Alexia E. Pollack
- Department of Biology, University of Massachusetts-Boston, Boston, MA, USA
| |
Collapse
|
8
|
Flores A, Gowen A, Schaal VL, Koul S, Hernandez JB, Yelamanchili SV, Pendyala G. An Integrated Systems Approach to Decode the Impact of Adolescent Nicotine Exposure in Utero and Postnatally Oxycodone Exposed Offspring. RESEARCH SQUARE 2023:rs.3.rs-2753084. [PMID: 37066266 PMCID: PMC10104203 DOI: 10.21203/rs.3.rs-2753084/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Perinatal exposure to prescription opioids pose a critical public health risk. Notably, research has found significant neurodevelopmental and behavioral deficits between in utero (IUO) and postnatal (PNO) oxycodone-exposed offspring but there is a notable gap in knowledge regarding the interaction of these groups to other drug exposure, particularly nicotine exposure. Nicotine's widespread use represents a ubiquitous clinical interaction that current research does not address. Children often experiment with drugs and risky behavior; therefore, adolescence is a key timepoint to characterize. This study employed an integrated systems approach to investigate escalating nicotine exposure in adolescence and subsequent nicotine withdrawal in the IUO- and PNO-offspring. Western blot analysis found alterations of the blood-brain barrier (B.B.B.) and synaptic proteins. RT-qPCR further validated immune dysfunction in the central nervous system (CNS) consistent with compromised B.B.B. Peripheral nicotine metabolism was consistent with increased catabolism of nicotine concerning PNO & IUO, a predictor of greater addiction risk. Lastly, behavioral assays found subtle deficits to withdrawal in nociception and anxiety-like behavior. This study showed, for the first time, the vulnerabilities of PNO- and IUO-exposed groups concerning nicotine use during early adolescence and withdrawal.
Collapse
Affiliation(s)
| | | | | | - Sneh Koul
- University of Nebraska Medical Center (UNMC)
| | | | | | | |
Collapse
|
9
|
Castro EM, Lotfipour S, Leslie FM. Nicotine on the developing brain. Pharmacol Res 2023; 190:106716. [PMID: 36868366 PMCID: PMC10392865 DOI: 10.1016/j.phrs.2023.106716] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Developmental periods such as gestation and adolescence have enhanced plasticity leaving the brain vulnerable to harmful effects from nicotine use. Proper brain maturation and circuit organization is critical for normal physiological and behavioral outcomes. Although cigarette smoking has declined in popularity, noncombustible nicotine products are readily used. The misperceived safety of these alternatives lead to widespread use among vulnerable populations such as pregnant women and adolescents. Nicotine exposure during these sensitive developmental windows is detrimental to cardiorespiratory function, learning and memory, executive function, and reward related circuitry. In this review, we will discuss clinical and preclinical evidence of the adverse alterations in the brain and behavior following nicotine exposure. Time-dependent nicotine-induced changes in reward related brain regions and drug reward behaviors will be discussed and highlight unique sensitivities within a developmental period. We will also review long lasting effects of developmental exposure persisting into adulthood, along with permanent epigenetic changes in the genome which can be passed to future generations. Taken together, it is critical to evaluate the consequences of nicotine exposure during these vulnerable developmental windows due to its direct impact on cognition, potential trajectories for other substance use, and implicated mechanisms for the neurobiology of substance use disorders.
Collapse
Affiliation(s)
- Emily M Castro
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Emergency Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Frances M Leslie
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
10
|
Pereira Júnior AA, de Amorim GES, Garcia RCT, Ribeiro JM, Silva AO, Almeida CADF, Ceron CS, Ruginsk SG, Antunes-Rodrigues J, Elias LLK, Dias MVS, Marcourakis T, Torres LH. Nicotine exposure through breastfeeding affects BDNF and synaptic proteins levels in the brain of stressed adult female mice. Int J Dev Neurosci 2022; 82:759-771. [PMID: 36018565 DOI: 10.1002/jdn.10227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Nicotine has been used during pregnancy and lactation as a tobacco harm reduction strategy. However, it is unclear whether nicotine exposure during a critical development period negatively impacts stress responses in adulthood. This study investigated how nicotine, administered via breastfeeding, affects the brain-derived neurotrophic factor (BDNF), synaptic proteins levels, and anxiety-like behavior in adult female mice subjected to stress. Female Swiss mice were exposed to saline or nicotine (8 mg/kg/day) through breastfeeding between their fourth and 17th postnatal days (P) via implanted osmotic mini pumps. The unpredictable chronic mild stress (UCMS) protocol was performed during their adulthood (P65) for 10 consecutive days, followed by the elevated plus maze (EPM) test one day after the protocol. Animals were euthanized and their blood, collected for plasma corticosterone measurements and their brain structures, dissected for BDNF and synaptic proteins analyses. We found no significant differences in corticosterone levels between groups (Saline/Non-stress, Nicotine/Non-stress, Saline/Stress, and Nicotine/Stress). The UCMS protocol hindered weight gain. Mice exposed to nicotine through breastfeeding with or without the UCMS protocol in adulthood showed higher grooming and head dipping frequency; decreased BDNF levels in cerebellum and striatum; increased postsynaptic density protein 95 (PSD-95), synapsin I, and synaptophysin levels in cerebellum; and decreased PSD-95 and synapsin I levels in brainstem. Our results indicate that nicotine exposure through breastfeeding leads to long-lasting behavioral effects and synaptic protein changes, most of which were independent of the UCMS protocol, even after a long nicotine-free period, highlighting the importance of further studies on nicotine exposure during development.
Collapse
Affiliation(s)
- Antonio Alves Pereira Júnior
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Raphael Caio Tamborelli Garcia
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo Diadema, São Paulo, Brazil
| | - Jéssyca Milene Ribeiro
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Alessandra Oliveira Silva
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Carla Speroni Ceron
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Silvia Graciela Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucila Leico Kagohara Elias
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Larissa Helena Torres
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
11
|
White O, Roeder N, Blum K, Eiden RD, Thanos PK. Prenatal Effects of Nicotine on Obesity Risks: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159477. [PMID: 35954830 PMCID: PMC9368674 DOI: 10.3390/ijerph19159477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Nicotine usage by mothers throughout pregnancy has been observed to relate to numerous deleterious effects in children, especially relating to obesity. Children who have prenatally been exposed to nicotine tend to have lower birth weights, with an elevated risk of becoming overweight throughout development and into their adolescent and adult life. There are numerous theories as to how this occurs: catch-up growth theory, thrifty phenotype theory, neurotransmitter or endocrine imbalances theory, and a more recent examination on the genetic factors relating to obesity risk. In addition to the negative effect on bodyweight and BMI, individuals with obesity may also suffer from numerous comorbidities involving metabolic disease. These may include type 1 and 2 diabetes, high cholesterol levels, and liver disease. Predisposition for obesity with nicotine usage may also be associated with genetic risk alleles for obesity, such as the DRD2 A1 variant. This is important for prenatally nicotine-exposed individuals as an opportunity to provide early prevention and intervention of obesity-related risks.
Collapse
Affiliation(s)
- Olivia White
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Kenneth Blum
- Division of Addiction Research, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA;
| | - Rina D. Eiden
- Department of Psychology, Social Science Research Institute, The Pennsylvania State University, University Park, PA 16801, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
- Correspondence: ; Tel.: +1-(716)-881-7520
| |
Collapse
|
12
|
Saad AK, Akour A, Mahboob A, AbuRuz S, Sadek B. Role of Brain Modulators in Neurodevelopment: Focus on Autism Spectrum Disorder and Associated Comorbidities. Pharmaceuticals (Basel) 2022; 15:612. [PMID: 35631438 PMCID: PMC9144645 DOI: 10.3390/ph15050612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.
Collapse
Affiliation(s)
- Ali K. Saad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Abdulla Mahboob
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein AbuRuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
13
|
Zhang Y, Angley M, Qi X, Lu L, D'Alton ME, Kahe K. Maternal electronic cigarette exposure in relation to offspring development: a comprehensive review. Am J Obstet Gynecol MFM 2022; 4:100659. [PMID: 35568317 DOI: 10.1016/j.ajogmf.2022.100659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/27/2022] [Indexed: 01/04/2023]
Abstract
Electronic cigarettes (e-cigarettes) have become increasingly popular in young generations in the United States. Because the adverse pregnancy outcomes associated with combustible cigarette smoking are well-recognized, many pregnant women switch to e-cigarettes believing that this alternative is low in toxic chemicals. However, most e-cigarettes contain nicotine, which can easily pass through the placenta and accumulate to a high concentration in fetal blood circulation. Studies have also detected toxic metals (eg, lead, cadmium, and nickel) in e-cigarettes, and carbonyl compounds and flavorings, which are suggested to be irritative and even carcinogenic. There are questions that need to be answered about the risks of e-cigarette exposure during pregnancy. Unfortunately, research evaluating the association between maternal e-cigarette exposure and offspring health is scarce, especially with regard to human studies. Some evidence from laboratory and animal studies, although inconsistent, showed that maternal exposure to e-cigarette vapor may lead to restricted growth of offspring. E-cigarette exposure may also have an impact on the metabolic health of offspring, manifested as distorted glucose homeostasis and energy metabolism. In addition, in utero exposure may lead to defects in respiratory, vascular, and neurologic system development. For humans, investigations mostly focused on immediate birth outcomes such as small-for-gestational-age neonates, low birthweight, and preterm birth; however, the results were inconclusive. Research also suggests that maternal e-cigarette exposure may result in compromised neurodevelopment in newborns. In summary, current evidence is insufficient to rigorously evaluate the health impacts of maternal e-cigarette use on offspring development. Future investigations are warranted.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY (XX Zhang, XX Angley, XX Lu, XX D'Alton, and XX Kahe); Department of Epidemiology, Columbia University Irving Medical Center, New York, NY (XX Zhang, XX Angley, XX Lu, and XX Kahe)
| | - Meghan Angley
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY (XX Zhang, XX Angley, XX Lu, XX D'Alton, and XX Kahe); Department of Epidemiology, Columbia University Irving Medical Center, New York, NY (XX Zhang, XX Angley, XX Lu, and XX Kahe)
| | - Xinran Qi
- School of Nursing, Capital Medical University, Beijing, China (XX Qi)
| | - Liping Lu
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY (XX Zhang, XX Angley, XX Lu, XX D'Alton, and XX Kahe); Department of Epidemiology, Columbia University Irving Medical Center, New York, NY (XX Zhang, XX Angley, XX Lu, and XX Kahe)
| | - Mary E D'Alton
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY (XX Zhang, XX Angley, XX Lu, XX D'Alton, and XX Kahe)
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY (XX Zhang, XX Angley, XX Lu, XX D'Alton, and XX Kahe); Department of Epidemiology, Columbia University Irving Medical Center, New York, NY (XX Zhang, XX Angley, XX Lu, and XX Kahe).
| |
Collapse
|
14
|
Ren M, Lotfipour S, Leslie F. Unique effects of nicotine across the lifespan. Pharmacol Biochem Behav 2022; 214:173343. [PMID: 35122768 PMCID: PMC8904294 DOI: 10.1016/j.pbb.2022.173343] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Smoking remains the leading cause of preventable death in the United States. Although combustible cigarettes are largely being replaced by tobacco-free products, nicotine use continues to increase in vulnerable populations, including youth, adolescents, and pregnant women. Nicotine exerts unique effects on specific brain regions during distinct developmental periods due to the dynamic expression of nicotinic acetylcholine receptors (nAChRs) throughout the lifespan. Nicotine exposure is a health concern not only for adults but also has neurotoxic effects on the fetus, newborn, child, and adolescent. In this review, we aim to highlight the dynamic roles of nAChRs throughout gestation, adolescence, and adulthood. We also provide clinical and preclinical evidence of the neurodevelopmental, cognitive, and behavioral consequences of nicotine exposure at different developmental periods. This comprehensive review highlights unique effects of nicotine throughout the lifespan to help elucidate interventions and public health measures to protect sensitive populations from nicotine exposure.
Collapse
Affiliation(s)
- Michelle Ren
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Emergency Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Frances Leslie
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
15
|
Polli FS, Kohlmeier KA. Prenatal nicotine alters development of the laterodorsal tegmentum: Possible role for attention-deficit/hyperactivity disorder and drug dependence. World J Psychiatry 2022; 12:212-235. [PMID: 35317337 PMCID: PMC8900586 DOI: 10.5498/wjp.v12.i2.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
As we cycle between the states of wakefulness and sleep, a bilateral cholinergic nucleus in the pontine brain stem, the laterodorsal tegmentum (LDT), plays a critical role in controlling salience processing, attention, behavioral arousal, and electrophysiological signatures of the sub- and microstates of sleep. Disorders involving abnormal alterations in behavioral and motivated states, such as drug dependence, likely involve dysfunctions in LDT signaling. In addition, as the LDT exhibits connectivity with the thalamus and mesocortical circuits, as well as receives direct, excitatory input from the prefrontal cortex, a role for the LDT in cognitive symptoms characterizing attention-deficit/hyperactivity disorder (ADHD) including impulsivity, inflexibility, and dysfunctions of attention is suggested. Prenatal nicotine exposure (PNE) is associated with a higher risk for later life development of drug dependence and ADHD, suggesting alteration in development of brain regions involved in these behaviors. PNE has been shown to alter glutamate and cholinergic signaling within the LDT. As glutamate and acetylcholine are major excitatory mediators, these alterations would likely alter excitatory output to target regions in limbic motivational circuits and to thalamic and cortical networks mediating executive control. Further, PNE alters neuronal development and transmission within prefrontal cortex and limbic areas that send input to the LDT, which would compound effects of differential processing within the PNE LDT. When taken together, alterations in signaling in the LDT are likely to play a role in negative behavioral outcomes seen in PNE individuals, including a heightened risk of drug dependence and ADHD behaviors.
Collapse
Affiliation(s)
- Filip S Polli
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi A Kohlmeier
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
16
|
Abstract
During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.
Collapse
Affiliation(s)
- Sharon M Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
17
|
van der Wal JM, van Borkulo CD, Deserno MK, Breedvelt JJF, Lees M, Lokman JC, Borsboom D, Denys D, van Holst RJ, Smidt MP, Stronks K, Lucassen PJ, van Weert JCM, Sloot PMA, Bockting CL, Wiers RW. Advancing urban mental health research: from complexity science to actionable targets for intervention. Lancet Psychiatry 2021; 8:991-1000. [PMID: 34627532 DOI: 10.1016/s2215-0366(21)00047-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022]
Abstract
Urbanisation and common mental disorders (CMDs; ie, depressive, anxiety, and substance use disorders) are increasing worldwide. In this Review, we discuss how urbanicity and risk of CMDs relate to each other and call for a complexity science approach to advance understanding of this interrelationship. We did an ecological analysis using data on urbanicity and CMD burden in 191 countries. We found a positive, non-linear relationship with a higher CMD prevalence in more urbanised countries, particularly for anxiety disorders. We also did a review of meta-analytic studies on the association between urban factors and CMD risk. We identified factors relating to the ambient, physical, and social urban environment and showed differences per diagnosis of CMDs. We argue that factors in the urban environment are likely to operate as a complex system and interact with each other and with individual city inhabitants (including their psychological and neurobiological characteristics) to shape mental health in an urban context. These interactions operate on various timescales and show feedback loop mechanisms, rendering system behaviour characterised by non-linearity that is hard to predict over time. We present a conceptual framework for future urban mental health research that uses a complexity science approach. We conclude by discussing how complexity science methodology (eg, network analyses, system-dynamic modelling, and agent-based modelling) could enable identification of actionable targets for treatment and policy, aimed at decreasing CMD burdens in an urban context.
Collapse
Affiliation(s)
- Junus M van der Wal
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Department of Psychiatry, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands; Department of Public Health, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Claudia D van Borkulo
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Department of Psychological Methods, University of Amsterdam, Amsterdam, Netherlands
| | - Marie K Deserno
- Department of Psychological Methods, University of Amsterdam, Amsterdam, Netherlands; Centre for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Josefien J F Breedvelt
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; National Centre for Social Research, London, UK; Department of Psychiatry, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mike Lees
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Informatics Institute, University of Amsterdam, Amsterdam, Netherlands
| | - John C Lokman
- Department of Psychiatry, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Denny Borsboom
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Department of Psychological Methods, University of Amsterdam, Amsterdam, Netherlands
| | - Damiaan Denys
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Department of Psychiatry, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ruth J van Holst
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Department of Psychiatry, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marten P Smidt
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Karien Stronks
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Department of Public Health, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J Lucassen
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Julia C M van Weert
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Amsterdam School of Communication Research/ASCoR, University of Amsterdam, Amsterdam, Netherlands
| | - Peter M A Sloot
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam, Netherlands; National Centre for Cognitive Science, ITMO University, St Petersburg, Russia
| | - Claudi L Bockting
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Department of Psychiatry, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands.
| | - Reinout W Wiers
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands; Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
19
|
DeVito EE, Fagle T, Allen AM, Pang RD, Petersen N, Smith PH, Weinberger AH. Electronic Nicotine Delivery Systems (ENDS) Use and Pregnancy II: Perinatal Outcomes Following ENDS Use During Pregnancy. CURRENT ADDICTION REPORTS 2021; 8:366-379. [PMID: 35368552 PMCID: PMC8974704 DOI: 10.1007/s40429-021-00381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Purpose of Review This review examines the risk of adverse perinatal outcomes following electronic nicotine delivery system (ENDS) use during pregnancy, and considers whether there are sufficient data to support ENDS as a harm reduction approach during pregnancy. Recent Findings Seven papers assessed perinatal outcomes following ENDS use during pregnancy. There was evidence that ENDS use was associated with increased risk for some adverse perinatal outcomes (e.g., small for gestational age). However, the repeated use of data sets, insufficient data (e.g., timing of ENDS use, type of ENDS products used), and limited samples size, contributed to mixed findings on the degree to which ENDS use (alone or in combination with combustible cigarettes (CC)) impacts the risk of adverse perinatal outcomes relative to CC smoking alone. Summary The current data are still insufficient to support ENDS as a harm reduction approach, though findings do warrant concern and more detailed investigation of ENDS use during pregnancy. Future research directions, as well as implications for clinical recommendations and tobacco regulatory science are discussed.
Collapse
Affiliation(s)
- Elise E. DeVito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Tessa Fagle
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alicia M. Allen
- Department of Family and Community Medicine, College of Medicine – Tucson, University of Arizona, Tucson, AZ, USA
| | - Raina D. Pang
- Department of Preventative Medicine, Keck School of Medicine of USC, and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Nicole Petersen
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Philip H. Smith
- Department of Kinesiology, Nutrition and Health, College of Education, Health and Society, Miami University, Oxford, OH, USA
| | - Andrea H. Weinberger
- Ferkauf Graduate School of Psychology, Yeshiva University and Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
20
|
Lee B, Park SM, Jeong S, Kim K, Jeung EB. Combined Exposure to Diazinon and Nicotine Exerts a Synergistic Adverse Effect In Vitro and Disrupts Brain Development and Behaviors In Vivo. Int J Mol Sci 2021; 22:ijms22147742. [PMID: 34299375 PMCID: PMC8307861 DOI: 10.3390/ijms22147742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
A real-life environment during pregnancy involves multiple and simultaneous exposures to toxic chemicals. Perinatal exposures to toxic chemicals have been reported to exert an inhibitory effect on mouse neural development and behaviors. However, the effect of combined exposures of organophosphate and nicotine has not been previously reported. In this study, we investigated whether a combined exposure of diazinon and nicotine can have a synergistic effect. The effects of the combined chemical exposure on cell viability and neuronal differentiation were examined using mouse Sox1-GFP cells. Additionally, mice were maternally administered 0.18 mg/kg diazinon, a no adverse effect level (NOAEL) dose, combined with 0.4, 1, and 2 mg/kg nicotine. Mice offspring underwent behavior tests to assess locomotor, depressive, cognitive, and social behaviors. Morphological change in the brain was investigated with immunolocalization. We revealed that the combined exposure to diazinon and nicotine can have a synergistic adverse effect in vitro. In addition, the chemical-treated mouse offspring showed abnormalities in motor learning, compulsive-like behaviors, spatial learning, and social interaction patterns. Moreover, 0.18 mg/kg diazinon and 2 mg/kg nicotine co-exposure resulted in an increase in tyrosine hydroxylase (TH)-positive dopaminergic neurons. Thus, the findings suggest that perinatal co-exposure to nicotine and diazinon can result in abnormal neurodevelopment and behavior, even at low-level administration.
Collapse
Affiliation(s)
| | | | | | | | - Eui-Bae Jeung
- Correspondence: ; Tel.: +82-43-261-2397; Fax: +82-43-267-3150
| |
Collapse
|
21
|
Rorabaugh BR. Does Prenatal Exposure to CNS Stimulants Increase the Risk of Cardiovascular Disease in Adult Offspring? Front Cardiovasc Med 2021; 8:652634. [PMID: 33748200 PMCID: PMC7969998 DOI: 10.3389/fcvm.2021.652634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Prenatal exposure to an adverse uterine environment can have long lasting effects on adult offspring through DNA methylation, histone acetylation, and other epigenetic effects that alter gene expression and physiology. It is well-known that consumption of CNS stimulants such as caffeine, nicotine, amphetamines, and cocaine during pregnancy can adversely impact the offspring. However, most work in this area has focused on neurological and behavioral outcomes and has been limited to assessments in young offspring. The impact of prenatal exposure to these agents on the adult cardiovascular system has received relatively little attention. Evidence from both animal and human studies indicate that exposure to CNS stimulants during the gestational period can negatively impact the adult heart and vasculature, potentially leading to cardiovascular diseases later in life. This review discusses our current understanding of the impact of prenatal exposure to cocaine, methamphetamine, nicotine, and caffeine on the adult cardiovascular system.
Collapse
Affiliation(s)
- Boyd R Rorabaugh
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, Huntington, WV, United States
| |
Collapse
|
22
|
El-Merhie N, Krüger A, Uliczka K, Papenmeier S, Roeder T, Rabe KF, Wagner C, Angstmann H, Krauss-Etschmann S. Sex dependent effect of maternal e-nicotine on F1 Drosophila development and airways. Sci Rep 2021; 11:4441. [PMID: 33627715 PMCID: PMC7904947 DOI: 10.1038/s41598-021-81607-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/01/2021] [Indexed: 01/03/2023] Open
Abstract
E-cigarettes are heavily advertised as healthier alternative to common tobacco cigarettes, leading more and more women to switch from regular cigarettes to ENDS (electronic nicotine delivery system) during pregnancy. While the noxious consequences of tobacco smoking during pregnancy on the offspring health are well-described, information on the long-term consequences due to maternal use of e-cigarettes do not exist so far. Therefore, we aimed to investigate how maternal e-nicotine influences offspring development from earliest life until adulthood. To this end, virgin female Drosophila melanogaster flies were exposed to nicotine vapor (8 µg nicotine) once per hour for a total of eight times. Following the last exposure, e-nicotine or sham exposed females were mated with non-exposed males. The F1-generation was then analyzed for viability, growth and airway structure. We demonstrate that maternal exposure to e-nicotine not only leads to reduced maternal fertility, but also negatively affects size and weight, as well as tracheal development of the F1-generation, lasting from embryonic stage until adulthood. These results not only underline the need for studies investigating the effects of maternal vaping on offspring health, but also propose our established model for analyzing molecular mechanisms and signaling pathways mediating these intergenerational changes.
Collapse
Affiliation(s)
- Natalia El-Merhie
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany
| | - Arne Krüger
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany
| | - Karin Uliczka
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany
- Invertebrate Models, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stephanie Papenmeier
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany
- Invertebrate Models, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology and Zoology, Christian Albrechts University, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Kiel, Germany
| | - Klaus F Rabe
- Department of Pneumology, LungenClinic, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Kiel, Germany
| | - Christina Wagner
- Invertebrate Models, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Hanna Angstmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany
| | - Susanne Krauss-Etschmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany.
- Institute for Experimental Medicine, Christian Albrechts University, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Kiel, Germany.
| |
Collapse
|
23
|
Polli FS, Scharff MB, Ipsen TH, Aznar S, Kohlmeier KA, Andreasen JT. Prenatal nicotine exposure in mice induces sex-dependent anxiety-like behavior, cognitive deficits, hyperactivity, and changes in the expression of glutamate receptor associated-genes in the prefrontal cortex. Pharmacol Biochem Behav 2020; 195:172951. [PMID: 32439454 DOI: 10.1016/j.pbb.2020.172951] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Abstract
In rodents, prenatal nicotine exposure (PNE) has been associated with increased risk for development of cognitive and emotional disturbances, but the findings are somewhat conflicting. Lack of behavioral alterations following PNE could be due to the variety of methods available for nicotine delivery, exposure time and species used, with inbred strains being mostly employed. Such differences suggest the need to investigate the behavioral phenotype in each PNE model available if we are to find models with enhanced translational value. In this study, we assessed sex-dependent effects of PNE on ADHD-related behaviors and on the levels of mRNA coding for glutamate receptor subunits within the prefrontal cortex in the outbred NMRI mice exposed to nicotine via maternal drinking water during gestation. Cotinine levels were assessed in newborn pups. Behaviors related to anxiety, compulsivity, working memory, and locomotion were evaluated in both sexes of young adult offspring using the elevated zero maze, marble burying, spontaneous alternation behavior, and locomotor activity tests. Expression of mRNA coding for different glutamate receptors subunits within the prefrontal cortex (PFC) was measured using RT-qPCR. Cotinine levels in the serum of newborns confirmed fetal nicotine exposure. Both male and female offspring showed ADHD-like behaviors, such as deficit in the SAB test and hyperactivity. In addition, PNE male mice displayed anxiety- and compulsive-like behaviors, effects that were absent in female offspring. Finally, PNE reduced the mRNA expression of GluN1-, GluN2B-, and mGluR2-related genes within the PFC of male offspring, whereas it reduced the expression of mRNA coding for GluA2 subunit in female mice. PNE in NMRI mice induced sex-dependent behavioral changes, which parallels clinical findings following maternal cigarette smoke exposure. Alterations detected in PFC mRNA glutamate receptor proteins could contribute to the abnormal behavioral responses observed, but other signaling pathways or brain regions are likely involved in the behavioral susceptibility of PNE individuals.
Collapse
Affiliation(s)
- Filip S Polli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Malthe B Scharff
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Theis H Ipsen
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
24
|
Norepinephrine, neurodevelopment and behavior. Neurochem Int 2020; 135:104706. [PMID: 32092327 DOI: 10.1016/j.neuint.2020.104706] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023]
Abstract
Neurotransmitters play critical roles in the developing nervous system. Among the neurotransmitters, norepinephrine (NE) is in particular postulated to be an important regulator of brain development. NE is expressed during early stages of development and is known to regulate both the development of noradrenergic neurons and the development of target areas. NE participates in the shaping and the wiring of the nervous system during the critical periods of development, and perturbations in this process can alter the brain's developmental trajectory, which in turn can cause long-lasting and even permanent changes in the brain function and behavior later in life. Here we will briefly review evidence for the role of noradrenergic system in neurodevelopmental processes and will discuss about the potential disruptors of noradrenergic system during development and their behavioral consequences.
Collapse
|