1
|
Garke MÅ, Hentati Isacsson N, Kolbeinsson Ö, Hesser H, Månsson KNT. Improvements in emotion regulation during cognitive behavior therapy predict subsequent social anxiety reductions. Cogn Behav Ther 2025; 54:78-95. [PMID: 38985458 DOI: 10.1080/16506073.2024.2373784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Individuals with social anxiety disorder (SAD) experience overall emotion regulation difficulties, but less is known about the long-term role of such difficulties in cognitive behavior therapy (CBT) for SAD. Forty-six patients with SAD receiving internet-delivered CBT, and matched healthy controls (HCs; n = 39), self-reported the Difficulties in Emotion Regulation Scale (DERS), Liebowitz Social Anxiety Scale (LSAS-SR), and participated in anticipatory speech anxiety behavioral experiments. Patients were measured at seven time points before, during and after CBT over a total period of 28 months, and HCs at two timepoints. Disaggregated growth curve models with a total of 263 observations were used, as well as intra-class correlation coefficients and regression models. Patients' LSAS-SR and DERS ratings were reliable (ICC = .83 and .75 respectively), and patients, relative to controls, showed larger difficulties in emotion regulation at pre-treatment (p < .001). During CBT, within-individual improvements in emotion regulation significantly predicted later LSAS-SR reductions (p = .041, pseudo-R2 = 43%). Changes in emotion regulation may thus be important to monitor on an individual level and may be used to improve outcomes in future developments of internet-delivered CBT.
Collapse
Affiliation(s)
- Maria Å Garke
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm 171 77, Sweden
| | - Nils Hentati Isacsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm 171 77, Sweden
| | - Örn Kolbeinsson
- Department of Behavioural Sciences and Learning, Linköping University, Linkoping 581 83, Sweden
| | - Hugo Hesser
- Department of Behavioural Sciences and Learning, Linköping University, Linkoping 581 83, Sweden
- School of Law, Psychology and Social Work, Örebro University, Orebro 701 82, Sweden
| | - Kristoffer N T Månsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm 171 77, Sweden
| |
Collapse
|
2
|
Verhoeven JE, Wolkowitz OM, Barr Satz I, Conklin Q, Lamers F, Lavebratt C, Lin J, Lindqvist D, Mayer SE, Melas PA, Milaneschi Y, Picard M, Rampersaud R, Rasgon N, Ridout K, Söderberg Veibäck G, Trumpff C, Tyrka AR, Watson K, Wu GWY, Yang R, Zannas AS, Han LKM, Månsson KNT. The researcher's guide to selecting biomarkers in mental health studies. Bioessays 2024; 46:e2300246. [PMID: 39258367 DOI: 10.1002/bies.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024]
Abstract
Clinical mental health researchers may understandably struggle with how to incorporate biological assessments in clinical research. The options are numerous and are described in a vast and complex body of literature. Here we provide guidelines to assist mental health researchers seeking to include biological measures in their studies. Apart from a focus on behavioral outcomes as measured via interviews or questionnaires, we advocate for a focus on biological pathways in clinical trials and epidemiological studies that may help clarify pathophysiology and mechanisms of action, delineate biological subgroups of participants, mediate treatment effects, and inform personalized treatment strategies. With this paper we aim to bridge the gap between clinical and biological mental health research by (1) discussing the clinical relevance, measurement reliability, and feasibility of relevant peripheral biomarkers; (2) addressing five types of biological tissues, namely blood, saliva, urine, stool and hair; and (3) providing information on how to control sources of measurement variability.
Collapse
Affiliation(s)
- Josine E Verhoeven
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Isaac Barr Satz
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Quinn Conklin
- Center for Mind and Brain, University of California, Davis, California, USA
- Center for Health and Community, University of California, San Francisco, California, USA
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, Stockholm, Sweden
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Stefanie E Mayer
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Natalie Rasgon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Kathryn Ridout
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Department of Psychiatry, Kaiser Permanente, Santa Rosa Medical Center, Santa Rosa, California, USA
| | - Gustav Söderberg Veibäck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Audrey R Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Kathleen Watson
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Gwyneth Winnie Y Wu
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura K M Han
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Orygen, Parkville, Victoria, Australia
| | - Kristoffer N T Månsson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Mlakar V, Birkenæs V, Elvsaashagen T, Ormerod MBEG, Quintana DS, Ueland T, Melle I, Lagerberg TV, Djurovic S, Martin-Ruiz C, Steen NE, Andreassen OA, Aas M. Telomere length and verbal learning in bipolar disorders. J Affect Disord 2023; 339:555-560. [PMID: 37459977 DOI: 10.1016/j.jad.2023.07.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
INTRODUCTION Recent studies indicate accelerated ageing processes, shorter telomere length and poorer cognitive functioning in patients with bipolar disorder. The neurobiology underlying cognitive function in bipolar disorder is yet to be established. We anticipated that accelerated ageing as indicated by shortened telomere length, would be associated with reduced cognitive performance in bipolar disorder, particularly for ageing sensitive functions such as memory and learning. METHODS The study consisted of 647 participants (bipolar disorder [n = 246] and healthy controls [n = 401]). All participants underwent a standardized neuropsychological test battery, including working memory, executive functioning, processing speed, verbal learning, and verbal memory. Leucocyte telomere length was measured via blood and determined by quantitative real-time Polymerase Chain Reaction (qPCR) providing a telomere to single copy ratio (T/S ratio). The T/S ratio was used as an estimate of the mean telomere length of each participant. All analyses were adjusted for medication, Daily Defined Dose (DDD), chronological age, sex, and ethnicity. RESULTS Patients had shorter telomere lengths than healthy controls (Cohen's d = 0.11, p = 0.01). Within patients', a positive association was observed for verbal learning and telomere length (β = 0.14, p = 0.025), along with a trend for verbal memory and telomere length (β = 0.11, p = 0.07). No other associations were observed for telomere length and cognitive functioning in the patient or the control group (p > 0.1). CONCLUSION Our study may suggest poorer brain health in bipolar disorder as indexed by shorter telomere length and reduced learning correlates. However, the role of telomere length on cognitive functioning in bipolar disorder seems limited.
Collapse
Affiliation(s)
- Vid Mlakar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Viktoria Birkenæs
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Torbjørn Elvsaashagen
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Monica B E G Ormerod
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Daniel S Quintana
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Trine V Lagerberg
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Srdjan Djurovic
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Carmen Martin-Ruiz
- BioScreening Core Facility-CAV, Ageing Research Laboratories, Newcastle University, Campus for Ageing and Vitality, UK
| | - Nils Eiel Steen
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Monica Aas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Dept. of Behavioural Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
4
|
Ochi S, Roy B, Prall K, Shelton RC, Dwivedi Y. Strong associations of telomere length and mitochondrial copy number with suicidality and abuse history in adolescent depressed individuals. Mol Psychiatry 2023; 28:3920-3929. [PMID: 37735501 PMCID: PMC10730407 DOI: 10.1038/s41380-023-02263-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Major depressive disorder (MDD) is highly prevalent in adolescents and is a major risk factor for suicidality. Recent evidence shows that accelerated cellular senescence/aging is associated with psychiatric illness, including depression, in adults. The present study examined if the relationships of telomere length (TL) and mitochondrial DNA copy number (mtDNAcn), two critical indicators of cellular senescence/aging, are altered in depressed adolescents and whether these alterations are associated with suicidality, early-life adversities, and other co-occuring factors. In genomic DNA isolated from 53 adolescents (ages 16-19, 19 MDD with suicide attempt/suicidal ideation [MDD + SI/SA], 14 MDD without SA/SI [MDD-SI/SA], and 20 healthy controls [HC]), TL and mtDNAcn were measured as the ratio between the number of telomere repeats and that of a single-copy nuclear-hemoglobin [HBG] gene or the amount of mtDNA (NADH dehydrogenase, subunit 1) relative to HBG. Our data show that TL was significantly lower, and mtDNAcn was significantly higher in the total MDD group than HC. TL was significantly lower and mtDNAcn was significantly higher in the MDD + SA/SI group than in the HC, whereas there were no differences in the MDD-SI/SA group. TL was positively correlated with mtDNAcn in both HC and MDD-SA/SI groups; however, TL was negatively correlated with mtDNAcn in MDD + SA/SI. Furthermore, TL was negatively correlated with the severity of both depression and anxiety, while mtDNAcn was positively correlated with the severity of prior emotional abuse. Our study indicates that cellular senescence is more advanced in depressed adolescents with suicidal ideation and that childhood emotional abuse may participate in such a process.
Collapse
Affiliation(s)
- Shinichiro Ochi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kevin Prall
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Richard C Shelton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
5
|
Carvalhas-Almeida C, Cavadas C, Álvaro AR. The impact of insomnia on frailty and the hallmarks of aging. Aging Clin Exp Res 2023; 35:253-269. [PMID: 36583849 PMCID: PMC9895045 DOI: 10.1007/s40520-022-02310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/21/2022] [Indexed: 12/31/2022]
Abstract
Throughout the course of life, there are age-related changes in sleep. Despite these normal changes, there is a high percentage of older adults that report sleep dissatisfaction with a high pervasiveness of chronic insomnia, the most common sleep disorder worldwide, with its prevalence being expected to continuously increase due to the growing rates of aging and obesity. This can have different adverse health outcomes, especially by promoting both physical and cognitive decline, which ultimately may aggravate frailty in older adults. Moreover, age-related frailty and sleep dysfunction may have a common mechanism related to the hallmarks of cellular aging. Cellular aging was categorized into nine hallmarks, such as DNA damage, telomere attrition and epigenetic changes. In the context of geriatric and chronic insomnia research, this review aims at discussing the current evidence from both animal models and human cohorts addressing the link between chronic insomnia, the hallmarks of aging and their impact on frailty. Moreover, the most recent research about the putative effect of insomnia therapeutic approaches on hallmarks of aging will be also highlighted.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- EIT Health Ageing PhD School and Multidisciplinary Institute of Ageing (MIA-Portugal), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Moment-to-Moment Brain Signal Variability Reliably Predicts Psychiatric Treatment Outcome. Biol Psychiatry 2022; 91:658-666. [PMID: 34961621 DOI: 10.1016/j.biopsych.2021.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Biomarkers of psychiatric treatment response remain elusive. Functional magnetic resonance imaging (fMRI) has shown promise, but low reliability has limited the utility of typical fMRI measures (e.g., average brain signal) as harbingers of treatment success. Notably, although historically considered a source of noise, temporal brain signal variability continues to gain momentum as a sensitive and reliable indicator of individual differences in neural efficacy, yet has not been examined in relation to psychiatric treatment outcomes. METHODS A total of 45 patients with social anxiety disorder were scanned twice (11 weeks apart) using simple task-based and resting-state fMRI to capture moment-to-moment neural variability. After fMRI test-retest, patients underwent a 9-week cognitive behavioral therapy. Multivariate modeling and reliability-based cross-validation were used to perform brain-based prediction of treatment outcomes. RESULTS Task-based brain signal variability was the strongest contributor in a treatment outcome prediction model (total rACTUAL,PREDICTED = 0.77), outperforming self-reports, resting-state neural variability, and standard mean-based measures of neural activity. Notably, task-based brain signal variability showed excellent test-retest reliability (intraclass correlation coefficient = 0.80), even with a task length less than 3 minutes long. CONCLUSIONS Rather than a source of undesirable noise, moment-to-moment fMRI signal variability may instead serve as a highly reliable and efficient prognostic indicator of clinical outcome.
Collapse
|
7
|
Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, Milrod BL, Mühlberger A, Lilianne R, Mujica‐Parodi, Munjiza A, Mwangi B, Myers M, Igor Nenadi C, Neufang S, Nielsen JA, Oh H, Ottaviani C, Pan PM, Pantazatos SP, Martin P, Paulus, Perez‐Edgar K, Peñate W, Perino MT, Peterburs J, Pfleiderer B, Phan KL, Poletti S, Porta‐Casteràs D, Price RB, Pujol J, Andrea, Reinecke, Rivero F, Roelofs K, Rosso I, Saemann P, Salas R, Salum GA, Satterthwaite TD, Schneier F, Schruers KRJ, Schulz SM, Schwarzmeier H, Seeger FR, Smoller JW, Soares JC, Stark R, Stein MB, Straube B, Straube T, Strawn JR, Suarez‐Jimenez B, Boris, Suchan, Sylvester CM, Talati A, Tamburo E, Tükel R, Heuvel OA, Van der Auwera S, Nieuwenhuizen H, Tol M, van Velzen LS, Bort CV, Vermeiren RRJM, Visser RM, Volman I, Wannemüller A, Wendt J, Werwath KE, Westenberg PM, Wiemer J, Katharina, Wittfeld, Wu M, Yang Y, Zilverstand A, Zugman A, Zwiebel HL. ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum Brain Mapp 2022; 43:83-112. [PMID: 32618421 PMCID: PMC8805695 DOI: 10.1002/hbm.25100] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.
Collapse
Affiliation(s)
- Janna Marie Bas‐Hoogendam
- Department of Developmental and Educational PsychologyLeiden University, Institute of Psychology Leiden The Netherlands
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
| | - Moji Aghajani
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
- Department of Research & InnovationGGZ inGeest Amsterdam The Netherlands
| | - Gabrielle F. Freitag
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Anita Harrewijn
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Neda Jahanshad
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Sophia I. Thomopoulos
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Paul M. Thompson
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
| | - Anderson M. Winkler
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Daniel S. Pine
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Nic J. A. Wee
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
- University of Cape TownSouth African MRC Unit on Risk & Resilience in Mental Disorders Cape Town South Africa
- University of Cape TownNeuroscience Institute Cape Town South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Abstract. Climate change is now widely recognized as the greatest threat faced by humanity for thousands of years and is known to affect the social and environmental determinants of health; including access to clean air, safe drinking water, sufficient food, and secure shelter ( WHO, 2018 ). Anthropogenic climate change has already resulted in warming and precipitation trends that claim 150,000 lives annually, and a recent report from the WHO forecasts that between 2030 and 2050 climate change will cause an additional 250,000 additional deaths per year ( WHO, 2018 ). The interaction between climate change, mental health, and physical health is not yet well understood. This review addresses the question of how climate change is affecting mental health and will demonstrate that climate psychopathologies really matter in the face of the climate emergency.
Collapse
Affiliation(s)
- Harriet E. Thompson
- The Centre for Climate Justice, Glasgow Caledonian University, United Kingdom
| |
Collapse
|
9
|
Sfera A, Osorio C, Zapata Martín del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci 2021; 15:673217. [PMID: 34248502 PMCID: PMC8267916 DOI: 10.3389/fncel.2021.673217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome although the definite proof remains elusive. With the unfolding of COVID-19 pandemic, the interest in this condition has resurfaced as excessive tiredness, a major complaint of patients infected with the SARS-CoV-2 virus, often lingers for a long time, resulting in disability, and poor life quality. In a previous article, we hypothesized that COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence, disrupting the intestinal and blood brain barriers. Here, we hypothesize further that post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are promoted by the gut microbes or toxin translocation from the gastrointestinal tract into other tissues, including the brain. This model is supported by the SARS-CoV-2 interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting microbial translocation and cellular senescence may ameliorate the symptoms of this disabling illness.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose Campo Maldonado
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
10
|
Abstract
Human society is experiencing a serious aging process. Age-related arteriosclerotic cardiovascular diseases (ASCVD) are the most common cause of deaths around the world and bring a huge burden on the whole society. Vascular aging-related pathological alterations of the vasculature play an important role in the pathogenesis of ASCVD and morbidity and mortality of older adults. In this review, we describe the progress of clinical evaluation of vascular aging in humans, including functional evaluation, structural assessment, and cellular molecular markers. The significance of detection for vascular aging is highlighted, and we call for close attention to the evaluation for a better quality of life in the elderly population.
Collapse
|
11
|
Ekman U, Kemani MK, Wallert J, Wicksell RK, Holmström L, Ngandu T, Rennie A, Akenine U, Westman E, Kivipelto M. Evaluation of a Novel Psychological Intervention Tailored for Patients With Early Cognitive Impairment (PIPCI): Study Protocol of a Randomized Controlled Trial. Front Psychol 2020; 11:600841. [PMID: 33424715 PMCID: PMC7785936 DOI: 10.3389/fpsyg.2020.600841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Individuals with early phase cognitive impairment are frequently affected by existential distress, social avoidance and associated health issues (including symptoms of stress, anxiety, and depression). The demand for efficient psychological support is crucial from both an individual and a societal perspective. We have developed a novel psychological intervention (Psychological Intervention tailored for Patients with Cognitive Impairment, PIPCI) manual for providing a non-medical path to enhanced psychological health in the cognitively impaired population. The current article provides specific information on the randomized controlled trial (RCT)-design and methods. The main hypothesis is that participants receiving PIPCI will increase their psychological flexibility (the ability to notice and accept interfering thoughts, emotions, and bodily sensations without acting on them, when this serves action in line with personal values) compared to participants in the active control (cognitive training) group and the waiting list control group. The secondary hypotheses are that participants receiving PIPCI will improve psychological health (stress measures, quality of life, depression, and general health) compared to participants in the active control group and the waiting list control group. MATERIALS AND METHODS This three-arm RCT will recruit participants from the cognitive centers at Karolinska University Hospital in Stockholm and randomize approximately 120 individuals in the early phase of cognitive impairment to either an experimental group (psychological intervention once a week for 10 weeks), an active control group (cognitive training once a week for 10 weeks) or a waiting list control group. Intervention outcome will be evaluated with self-report questionnaires on physical and psychological aspects of health, cognitive assessment, biological markers (obtained from blood and saliva) and health care costs. Assessments will be performed at pre- (1 week before the interventions) and post-intervention (1 week after the interventions), as well as at a 6-month follow-up. DISCUSSION The development of a potentially feasible and effective psychological intervention tailored for early phase cognitive impairment (PIPCI) has the potential to advance the non-pharmacological intervention field. This is especially important given the extensive burden for many affected individuals and their families and the current lack of effective treatments. If the psychological intervention discussed here shows feasibility and efficacy, there is potential for far-reaching healthcare implications for patients with early cognitive impairment at risk of developing dementia. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT04356924. Date of registration: April 22, 2020. URL: https://clinicaltrials.gov/ct2/show/NCT04356924.
Collapse
Affiliation(s)
- Urban Ekman
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Medical Psychology, Allied Health Professionals, Karolinska University Hospital, Stockholm, Sweden
- Medical Unit Ageing, Allied Health Professionals Function, Karolinska University Hospital, Stockholm, Sweden
| | - Mike K. Kemani
- Medical Unit Medical Psychology, Allied Health Professionals, Karolinska University Hospital, Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - John Wallert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rikard K. Wicksell
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Linda Holmström
- Medical Unit Medical Psychology, Allied Health Professionals, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tiia Ngandu
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Anna Rennie
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Ulrika Akenine
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Eric Westman
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Miia Kivipelto
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Huddinge, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Ageing and Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Månsson KNT, Lueken U, Frick A. Enriching CBT by Neuroscience: Novel Avenues to Achieve Personalized Treatments. Int J Cogn Ther 2020. [DOI: 10.1007/s41811-020-00089-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractAlthough cognitive behavioral therapy (CBT) is an established and efficient treatment for a variety of common mental disorders, a considerable number of patients do not respond to treatment or relapse after successful CBT. Recent findings and approaches from neuroscience could pave the way for clinical developments to enhance the outcome of CBT. Herein, we will present how neuroscience can offer novel perspectives to better understand (a) the biological underpinnings of CBT, (b) how we can enrich CBT with neuroscience-informed techniques (augmentation of CBT), and (c) why some patients may respond better to CBT than others (predictors of therapy outcomes), thus paving the way for more personalized and effective treatments. We will introduce some key topics and describe a selection of findings from CBT-related research using tools from neuroscience, with the hope that this will provide clinicians and clinical researchers with a brief and comprehensible overview of the field.
Collapse
|