1
|
Szabo A, Akkouh I, Osete JR, de Assis DR, Kondratskaya E, Hughes T, Ueland T, Andreassen OA, Djurovic S. NLRP3 inflammasome mediates astroglial dysregulation of innate and adaptive immune responses in schizophrenia. Brain Behav Immun 2024; 124:144-156. [PMID: 39617069 DOI: 10.1016/j.bbi.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Mounting evidence indicates the involvement of neuroinflammation in the development of schizophrenia (SCZ), but the potential role of astroglia in this phenomenon remains poorly understood. We assessed the molecular and functional consequences of inflammasome activation using induced pluripotent stem cell (iPSC)-derived astrocytes generated from SCZ patients and healthy controls (CTRL). Screening protein levels in astrocytes at baseline identified lower expression of the NLRP3-ASC complex in SCZ, but increased Caspase-1 activity upon specific NLRP3 stimulation compared to CTRL. Using transcriptional profiling, we found corresponding downregulations of NLRP3 and ASC/PYCARD in both iPSC-derived astrocytes, and in a large (n = 429) brain postmortem case-control sample. Functional analyses following NLRP3 activation revealed an inflammatory phenotype characterized by elevated production of IL-1β/IL-18 and skewed priming of helper T lymphocytes (Th1/Th17) by SCZ astrocytes. This phenotype was rescued by specific inhibition of NLRP3 activation, demonstrating its dependence on the NLRP3 inflammasome. Taken together, SCZ iPSC-astrocytes display unique, NLRP3-dependent inflammatory characteristics that are manifested via various cellular functions, as well as via dysregulated innate and adaptive immune responses.
Collapse
Affiliation(s)
- Attila Szabo
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| | - Ibrahim Akkouh
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jordi Requena Osete
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Denis Reis de Assis
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Elena Kondratskaya
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Sebastian R, Song Y, Pak C. Probing the molecular and cellular pathological mechanisms of schizophrenia using human induced pluripotent stem cell models. Schizophr Res 2024; 273:4-23. [PMID: 35835709 PMCID: PMC9832179 DOI: 10.1016/j.schres.2022.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/13/2023]
Abstract
With recent advancements in psychiatric genomics, as a field, "stem cell-based disease modelers" were given the exciting yet daunting task of translating the extensive list of disease-associated risks into biologically and clinically relevant information in order to deliver therapeutically meaningful leads and insights. Despite their limitations, human induced pluripotent stem cell (iPSCs) based models have greatly aided our understanding of the molecular and cellular mechanisms underlying the complex etiology of brain disorders including schizophrenia (SCZ). In this review, we summarize the major findings from studies in the past decade which utilized iPSC models to investigate cell type-specific phenotypes relevant to idiopathic SCZ and disease penetrant alleles. Across cell type differences, several biological themes emerged, serving as potential neurodevelopmental mechanisms of SCZ, including oxidative stress and mitochondrial dysfunction, depletion of progenitor pools and insufficient differentiation potential of these progenitors, and structural and functional deficits of neurons and other supporting cells. Here, we discuss both the recent progress as well as challenges and improvements needed for future studies utilizing iPSCs as a model for SCZ and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Sebastian
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Yoonjae Song
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
3
|
Choudhary A, Peles D, Nayak R, Mizrahi L, Stern S. Current progress in understanding schizophrenia using genomics and pluripotent stem cells: A meta-analytical overview. Schizophr Res 2024; 273:24-38. [PMID: 36443183 DOI: 10.1016/j.schres.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/16/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
Schizophrenia (SCZ) is a complex, heritable and polygenic neuropsychiatric disease, which disables the patients as well as decreases their life expectancy and quality of life. Common and rare variants studies on SCZ subjects have provided >100 genomic loci that hold importance in the context of SCZ pathophysiology. Transcriptomic studies from clinical samples have informed about the differentially expressed genes (DEGs) and non-coding RNAs in SCZ patients. Despite these advancements, no causative genes for SCZ were found and hence SCZ is difficult to recapitulate in animal models. In the last decade, induced Pluripotent Stem Cells (iPSCs)-based models have helped in understanding the neural phenotypes of SCZ by studying patient iPSC-derived 2D neuronal cultures and 3D brain organoids. Here, we have aimed to provide a simplistic overview of the current progress and advancements after synthesizing the enormous literature on SCZ genetics and SCZ iPSC-based models. Although further understanding of SCZ genetics and pathophysiological mechanisms using these technological advancements is required, the recent approaches have allowed to delineate important cellular mechanisms and biological pathways affected in SCZ.
Collapse
Affiliation(s)
- Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
4
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
5
|
Jovanovic VM, Mesch KT, Tristan CA. hPSC-Derived Astrocytes at the Forefront of Translational Applications in Neurological Disorders. Cells 2024; 13:903. [PMID: 38891034 PMCID: PMC11172187 DOI: 10.3390/cells13110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Astrocytes, the most abundant glial cell type in the brain, play crucial roles in maintaining homeostasis within the central nervous system (CNS). Impairment or abnormalities of typical astrocyte functions in the CNS serve as a causative or contributing factor in numerous neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Currently, disease-modeling and drug-screening approaches, primarily focused on human astrocytes, rely on human pluripotent stem cell (hPSC)-derived astrocytes. However, it is important to acknowledge that these hPSC-derived astrocytes exhibit notable differences across studies and when compared to their in vivo counterparts. These differences may potentially compromise translational outcomes if not carefully accounted for. This review aims to explore state-of-the-art in vitro models of human astrocyte development, focusing on the developmental processes, functional maturity, and technical aspects of various hPSC-derived astrocyte differentiation protocols. Additionally, it summarizes their successful application in modeling neurological disorders. The discussion extends to recent advancements in the large-scale production of human astrocytes and their application in developing high-throughput assays conducive to therapeutic drug discovery.
Collapse
Affiliation(s)
- Vukasin M. Jovanovic
- Stem Cell Translation Laboratory (SCTL), Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA (C.A.T.)
| | | | | |
Collapse
|
6
|
Sæther LS, Szabo A, Akkouh IA, Haatveit B, Mohn C, Vaskinn A, Aukrust P, Ormerod MBEG, Eiel Steen N, Melle I, Djurovic S, Andreassen OA, Ueland T, Ueland T. Cognitive and inflammatory heterogeneity in severe mental illness: Translating findings from blood to brain. Brain Behav Immun 2024; 118:287-299. [PMID: 38461955 DOI: 10.1016/j.bbi.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Recent findings link cognitive impairment and inflammatory-immune dysregulation in schizophrenia (SZ) and bipolar (BD) spectrum disorders. However, heterogeneity and translation between the periphery and central (blood-to-brain) mechanisms remains a challenge. Starting with a large SZ, BD and healthy control cohort (n = 1235), we aimed to i) identify candidate peripheral markers (n = 25) associated with cognitive domains (n = 9) and elucidate heterogenous immune-cognitive patterns, ii) evaluate the regulation of candidate markers using human induced pluripotent stem cell (iPSC)-derived astrocytes and neural progenitor cells (n = 10), and iii) evaluate candidate marker messenger RNA expression in leukocytes using microarray in available data from a subsample of the main cohort (n = 776), and in available RNA-sequencing deconvolution analysis of postmortem brain samples (n = 474) from the CommonMind Consortium (CMC). We identified transdiagnostic subgroups based on covariance between cognitive domains (measures of speed and verbal learning) and peripheral markers reflecting inflammatory response (CRP, sTNFR1, YKL-40), innate immune activation (MIF) and extracellular matrix remodelling (YKL-40, CatS). Of the candidate markers there was considerable variance in secretion of YKL-40 in iPSC-derived astrocytes and neural progenitor cells in SZ compared to HC. Further, we provide evidence of dysregulated RNA expression of genes encoding YKL-40 and related signalling pathways in a high neuroinflammatory subgroup in the postmortem brain samples. Our findings suggest a relationship between peripheral inflammatory-immune activity and cognitive impairment, and highlight YKL-40 as a potential marker of cognitive functioning in a subgroup of individuals with severe mental illness.
Collapse
Affiliation(s)
- Linn Sofie Sæther
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway.
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ibrahim A Akkouh
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital/University of Oslo, Oslo, Norway
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christine Mohn
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; National Centre for Suicide Research and Prevention, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anja Vaskinn
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Monica B E G Ormerod
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital/University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| |
Collapse
|
7
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
8
|
Sisk LM, Keding TJ, Cohodes EM, McCauley S, Pierre JC, Odriozola P, Kribakaran S, Haberman JT, Zacharek SJ, Hodges HR, Caballero C, Gold G, Huang AY, Talton A, Gee DG. Multivariate links between the developmental timing of adversity exposure and white matter tract integrity in adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566271. [PMID: 38014148 PMCID: PMC10680630 DOI: 10.1101/2023.11.12.566271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Early-life adversity is pervasive worldwide and represents a potent risk factor for increased mental health burden across the lifespan. However, there is substantial individual heterogeneity in associations between adversity exposure, neurobiological changes, and mental health problems. Accounting for key features of adversity such as the developmental timing of exposure may clarify associations between adversity, neurodevelopment, and mental health. The present study leverages sparse canonical correlation analysis to characterize modes of covariation between age of adversity exposure and the integrity of white matter tracts throughout the brain in a sample of 107 adults. We find that adversity exposure during middle childhood (ages 5-6 and 8-9 in particular) is consistently linked with alterations in white matter tract integrity, such that tracts supporting sensorimotor functions display higher integrity in relation to adversity exposure while tracts supporting cortico-cortical communication display lower integrity. Further, latent patterns of tract integrity linked with adversity experienced across preschool age and middle childhood (ages 4-9) were associated with trauma-related symptoms in adulthood. Our findings underscore that adversity exposure may differentially affect white matter in a function- and developmental-timing specific manner and suggest that adversity experienced between ages 4-9 may shape the development of global white matter tracts in ways that are relevant for adult mental health.
Collapse
|
9
|
Pereira FC, Ge X, Kristensen JM, Kirkegaard RH, Maritsch K, Zhu Y, Decorte M, Hausmann B, Berry D, Wasmund K, Schintlmeister A, Boettcher T, Cheng JX, Wagner M. The Parkinson's drug entacapone disrupts gut microbiome homeostasis via iron sequestration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566429. [PMID: 38014294 PMCID: PMC10680583 DOI: 10.1101/2023.11.12.566429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Increasing evidence shows that many human-targeted drugs alter the gut microbiome, leading to implications for host health. However, much less is known about the mechanisms by which drugs target the microbiome and how drugs affect microbial function. Here we combined quantitative microbiome profiling, long-read metagenomics, stable isotope probing and single-cell chemical imaging to investigate the impact of two widely prescribed nervous system-targeted drugs on the gut microbiome. Ex vivo supplementation of physiologically relevant concentrations of entacapone or loxapine succinate to faecal samples significantly impacted the abundance of up to one third of the microbial species present. Importantly, we demonstrate that the impact of these drugs on microbial metabolism is much more pronounced than their impact on abundances, with low concentrations of drugs reducing the activity, but not the abundance of key microbiome members like Bacteroides, Ruminococcus or Clostridium species. We further demonstrate that entacapone impacts the microbiome due to its ability to complex and deplete available iron, and that microbial growth can be rescued by replenishing levels of microbiota-accessible iron. Remarkably, entacapone-induced iron starvation selected for iron-scavenging organisms carrying antimicrobial resistance and virulence genes. Collectively, our study unveils the impact of two under-investigated drugs on whole microbiomes and identifies metal sequestration as a mechanism of drug-induced microbiome disturbance.
Collapse
Affiliation(s)
- Fátima C. Pereira
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Xiaowei Ge
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts, USA
| | - Jannie Munk Kristensen
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Rasmus H. Kirkegaard
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Klara Maritsch
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Yifan Zhu
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Marie Decorte
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Kenneth Wasmund
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Boettcher
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Faculty of Chemistry, Department of Biological Chemistry, University of Vienna, Vienna, Austria
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts, USA
- Photonics Center, Boston University, Boston, Massachusetts, USA
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Michael C, Taxali A, Angstadt M, Kardan O, Weigard A, Molloy MF, McCurry KL, Hyde LW, Heitzeg MM, Sripada C. Socioeconomic resources in youth are linked to divergent patterns of network integration and segregation across the brain's transmodal axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.565517. [PMID: 38014302 PMCID: PMC10680554 DOI: 10.1101/2023.11.08.565517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Socioeconomic resources (SER) calibrate the developing brain to the current context, which can confer or attenuate risk for psychopathology across the lifespan. Recent multivariate work indicates that SER levels powerfully influence intrinsic functional connectivity patterns across the entire brain. Nevertheless, the neurobiological meaning of these widespread alterations remains poorly understood, despite its translational promise for early risk identification, targeted intervention, and policy reform. In the present study, we leverage the resources of graph theory to precisely characterize multivariate and univariate associations between household SER and the functional integration and segregation (i.e., participation coefficient, within-module degree) of brain regions across major cognitive, affective, and sensorimotor systems during the resting state in 5,821 youth (ages 9-10 years) from the Adolescent Brain Cognitive Development (ABCD) Study. First, we establish that decomposing the brain into profiles of integration and segregation captures more than half of the multivariate association between SER and functional connectivity with greater parsimony (100-fold reduction in number of features) and interpretability. Second, we show that the topological effects of SER are not uniform across the brain; rather, higher SER levels are related to greater integration of somatomotor and subcortical systems, but greater segregation of default mode, orbitofrontal, and cerebellar systems. Finally, we demonstrate that the effects of SER are spatially patterned along the unimodal-transmodal gradient of brain organization. These findings provide critical interpretive context for the established and widespread effects of SER on brain organization, indicating that SER levels differentially configure the intrinsic functional architecture of developing unimodal and transmodal systems. This study highlights both sensorimotor and higher-order networks that may serve as neural markers of environmental stress and opportunity, and which may guide efforts to scaffold healthy neurobehavioral development among disadvantaged communities of youth.
Collapse
Affiliation(s)
- Cleanthis Michael
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Aman Taxali
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Omid Kardan
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Weigard
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - M. Fiona Molloy
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - Luke W. Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Mary M. Heitzeg
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Chandra Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Aimaier G, Qian K, Cao H, Peng W, Zhang Z, Ma J, Ding J, Wang X. Inhibitory Neurons in Nucleus Tractus Solitarius Are Involved in Decrease of Heart Rate Variability and Development of Depression-Like Behaviors in Temporal Lobe Epilepsy. Int J Neuropsychopharmacol 2023; 26:669-679. [PMID: 37417335 PMCID: PMC10586034 DOI: 10.1093/ijnp/pyad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/09/2023] [Accepted: 07/16/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Diminished heart rate variability (HRV) has been observed in epilepsy, especially in epilepsy with depressive disorders. However, the underlying mechanism remains elusive. METHODS We studied HRV, spontaneous recurrent seizures, and depression-like behaviors in different phases of pilocarpine-induced temporal lobe epilepsy (TLE) in mice. Single-cell RNA sequencing analysis was used to identify various nerve cell subsets in TLE mice with and without depression. Differentially expressed gene (DEG) analysis was performed in epilepsy, depression, and HRV central control-related brain areas. RESULTS We found decreased HRV parameters in TLE mice, and alterations were positively correlated with the severity of depression-like behaviors. The severity of depression-like behaviors was correlated with the frequency of spontaneous recurrent seizure. Characteristic expression of mitochondria-related genes was significantly elevated in mice with depression in glial cells, and the enrichment analysis of those DEGs showed an enriched GABAergic synapse pathway in the HRV central control-related brain area. Furthermore, inhibitory neurons in the nucleus tractus solitarius, which is an HRV central control-related brain area, were specifically expressed in TLE mice combined with depression compared with those in mice without depression. A significantly enriched long-term depression pathway in DEGs from inhibitory neurons was found. CONCLUSIONS Our study reported correlations between HRV and epilepsy-depression comorbidity in different phases of TLE. More importantly, we found that HRV central control-related inhibitory neurons are involved in the development of depression in TLE, providing new insights into epilepsy comorbid with depression.
Collapse
Affiliation(s)
- Guliqiemu Aimaier
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kun Qian
- Department of Information and Intelligence Development, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huateng Cao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Weifeng Peng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Jianhua Ma
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Boland AW, Gas-Pascual E, van der Wel H, Kim HW, West CM. Synergy between a cytoplasmic vWFA/VIT protein and a WD40-repeat F-box protein controls development in Dictyostelium. Front Cell Dev Biol 2023; 11:1259844. [PMID: 37779900 PMCID: PMC10539598 DOI: 10.3389/fcell.2023.1259844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Like most eukaryotes, the pre-metazoan social amoeba Dictyostelium depends on the SCF (Skp1/cullin-1/F-box protein) family of E3 ubiquitin ligases to regulate its proteome. In Dictyostelium, starvation induces a transition from unicellular feeding to a multicellular slug that responds to external signals to culminate into a fruiting body containing terminally differentiated stalk and spore cells. These transitions are subject to regulation by F-box proteins and O2-dependent posttranslational modifications of Skp1. Here we examine in greater depth the essential role of FbxwD and Vwa1, an intracellular vault protein inter-alpha-trypsin (VIT) and von Willebrand factor-A (vWFA) domain containing protein that was found in the FbxwD interactome by co-immunoprecipitation. Reciprocal co-IPs using gene-tagged strains confirmed the interaction and similar changes in protein levels during multicellular development suggested co-functioning. FbxwD overexpression and proteasome inhibitors did not affect Vwa1 levels suggesting a non-substrate relationship. Forced FbxwD overexpression in slug tip cells where it is normally enriched interfered with terminal cell differentiation by a mechanism that depended on its F-box and RING domains, and on Vwa1 expression itself. Whereas vwa1-disruption alone did not affect development, overexpression of either of its three conserved domains arrested development but the effect depended on Vwa1 expression. Based on structure predictions, we propose that the Vwa1 domains exert their negative effect by artificially activating Vwa1 from an autoinhibited state, which in turn imbalances its synergistic function with FbxwD. Autoinhibition or homodimerization might be relevant to the poorly understood tumor suppressor role of the evolutionarily related VWA5A/BCSC-1 in humans.
Collapse
Affiliation(s)
- Andrew W. Boland
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Hyun W. Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Christopher M. West
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
13
|
Osete JR, Akkouh IA, Ievglevskyi O, Vandenberghe M, de Assis DR, Ueland T, Kondratskaya E, Holen B, Szabo A, Hughes T, Smeland OB, Steen VM, Andreassen OA, Djurovic S. Transcriptional and functional effects of lithium in bipolar disorder iPSC-derived cortical spheroids. Mol Psychiatry 2023; 28:3033-3043. [PMID: 36653674 PMCID: PMC10615757 DOI: 10.1038/s41380-023-01944-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Lithium (Li) is recommended for long-term treatment of bipolar disorder (BD). However, its mechanism of action is still poorly understood. Induced pluripotent stem cell (iPSC)-derived brain organoids have emerged as a powerful tool for modeling BD-related disease mechanisms. We studied the effects of 1 mM Li treatment for 1 month in iPSC-derived human cortical spheroids (hCS) from 10 healthy controls (CTRL) and 11 BD patients (6 Li-responders, Li-R, and 5 Li non-treated, Li-N). At day 180 of differentiation, BD hCS showed smaller size, reduced proportion of neurons, decreased neuronal excitability and reduced neural network activity compared to CTRL hCS. Li rescued excitability of BD hCS neurons by exerting an opposite effect in the two diagnostic groups, increasing excitability in BD hCS and decreasing it in CTRL hCS. We identified 132 Li-associated differentially expressed genes (DEGs), which were overrepresented in sodium ion homeostasis and kidney-related pathways. Moreover, Li regulated secretion of pro-inflammatory cytokines and increased mitochondrial reserve capacity in BD hCS. Through long-term Li treatment of a human 3D brain model, this study partly elucidates the functional and transcriptional mechanisms underlying the clinical effects of Li, such as rescue of neuronal excitability and neuroprotection. Our results also underscore the substantial influence of treatment duration in Li studies. Lastly, this study illustrates the potential of patient iPSC-derived 3D brain models for precision medicine in psychiatry.
Collapse
Affiliation(s)
- Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Ibrahim A Akkouh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Ievglevskyi
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Matthieu Vandenberghe
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Denis Reis de Assis
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Elena Kondratskaya
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Børge Holen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Olav B Smeland
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Vidar Martin Steen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
14
|
Schiera G, Cancemi P, Di Liegro CM, Naselli F, Volpes S, Cruciata I, Cardinale PS, Vaglica F, Calligaris M, Carreca AP, Chiarelli R, Scilabra SD, Leone O, Caradonna F, Di Liegro I. An In Vitro Model of Glioma Development. Genes (Basel) 2023; 14:genes14050990. [PMID: 37239349 DOI: 10.3390/genes14050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Gliomas are the prevalent forms of brain cancer and derive from glial cells. Among them, astrocytomas are the most frequent. Astrocytes are fundamental for most brain functions, as they contribute to neuronal metabolism and neurotransmission. When they acquire cancer properties, their functions are altered, and, in addition, they start invading the brain parenchyma. Thus, a better knowledge of transformed astrocyte molecular properties is essential. With this aim, we previously developed rat astrocyte clones with increasing cancer properties. In this study, we used proteomic analysis to compare the most transformed clone (A-FC6) with normal primary astrocytes. We found that 154 proteins are downregulated and 101 upregulated in the clone. Moreover, 46 proteins are only expressed in the clone and 82 only in the normal cells. Notably, only 11 upregulated/unique proteins are encoded in the duplicated q arm of isochromosome 8 (i(8q)), which cytogenetically characterizes the clone. Since both normal and transformed brain cells release extracellular vesicles (EVs), which might induce epigenetic modifications in the neighboring cells, we also compared EVs released from transformed and normal astrocytes. Interestingly, we found that the clone releases EVs containing proteins, such as matrix metalloproteinase 3 (MMP3), that can modify the extracellular matrix, thus allowing invasion.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Sara Volpes
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Paola Sofia Cardinale
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Fabiola Vaglica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Matteo Calligaris
- Proteomics Group, Department of Research, ISMETT-IRCCS, Ri.MED Foundation, 90127 Palermo, Italy
| | - Anna Paola Carreca
- Proteomics Group, Department of Research, ISMETT-IRCCS, Ri.MED Foundation, 90127 Palermo, Italy
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Simone Dario Scilabra
- Proteomics Group, Department of Research, ISMETT-IRCCS, Ri.MED Foundation, 90127 Palermo, Italy
| | - Olga Leone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palerm, Via del Vespro, 129, 90127 Palermo, Italy
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palerm, Via del Vespro, 129, 90127 Palermo, Italy
| |
Collapse
|
15
|
de Oliveira Figueiredo EC, Calì C, Petrelli F, Bezzi P. Emerging evidence for astrocyte dysfunction in schizophrenia. Glia 2022; 70:1585-1604. [PMID: 35634946 PMCID: PMC9544982 DOI: 10.1002/glia.24221] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex, chronic mental health disorder whose heterogeneous genetic and neurobiological background influences early brain development, and whose precise etiology is still poorly understood. Schizophrenia is not characterized by gross brain pathology, but involves subtle pathological changes in neuronal populations and glial cells. Among the latter, astrocytes critically contribute to the regulation of early neurodevelopmental processes, and any dysfunctions in their morphological and functional maturation may lead to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia, such as mitochondrial biogenesis, synaptogenesis, and glutamatergic and dopaminergic transmission. Studies of the mechanisms regulating astrocyte maturation may therefore improve our understanding of the cellular and molecular mechanisms underlying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
| | - Corrado Calì
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Pharmacology and Physiology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
16
|
Hribkova H, Svoboda O, Bartecku E, Zelinkova J, Horinkova J, Lacinova L, Piskacek M, Lipovy B, Provaznik I, Glover JC, Kasparek T, Sun YM. Clozapine Reverses Dysfunction of Glutamatergic Neurons Derived From Clozapine-Responsive Schizophrenia Patients. Front Cell Neurosci 2022; 16:830757. [PMID: 35281293 PMCID: PMC8904748 DOI: 10.3389/fncel.2022.830757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
The cellular pathology of schizophrenia and the potential of antipsychotics to target underlying neuronal dysfunctions are still largely unknown. We employed glutamatergic neurons derived from induced pluripotent stem cells (iPSC) obtained from schizophrenia patients with known histories of response to clozapine and healthy controls to decipher the mechanisms of action of clozapine, spanning from molecular (transcriptomic profiling) and cellular (electrophysiology) levels to observed clinical effects in living patients. Glutamatergic neurons derived from schizophrenia patients exhibited deficits in intrinsic electrophysiological properties, synaptic function and network activity. Deficits in K+ and Na+ currents, network behavior, and glutamatergic synaptic signaling were restored by clozapine treatment, but only in neurons from clozapine-responsive patients. Moreover, neurons from clozapine-responsive patients exhibited a reciprocal dysregulation of gene expression, particularly related to glutamatergic and downstream signaling, which was reversed by clozapine treatment. Only neurons from clozapine responders showed return to normal function and transcriptomic profile. Our results underscore the importance of K+ and Na+ channels and glutamatergic synaptic signaling in the pathogenesis of schizophrenia and demonstrate that clozapine might act by normalizing perturbances in this signaling pathway. To our knowledge this is the first study to demonstrate that schizophrenia iPSC-derived neurons exhibit a response phenotype correlated with clinical response to an antipsychotic. This opens a new avenue in the search for an effective treatment agent tailored to the needs of individual patients.
Collapse
Affiliation(s)
- Hana Hribkova
- Department of Biology, Masaryk University, Brno, Czechia
| | - Ondrej Svoboda
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Elis Bartecku
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Jana Zelinkova
- Department of Biology, Masaryk University, Brno, Czechia
| | - Jana Horinkova
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Lubica Lacinova
- Center of Bioscience, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Piskacek
- Department of Pathological Physiology, Masaryk University, Brno, Czechia
| | - Bretislav Lipovy
- Department of Burns and Plastic Surgery, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Joel C. Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Tomas Kasparek
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
- *Correspondence: Tomas Kasparek,
| | - Yuh-Man Sun
- Department of Biology, Masaryk University, Brno, Czechia
| |
Collapse
|
17
|
Yu W, Wang M, Zhang Y. Construction of lncRNA-ceRNA Networks to Reveal the Potential Role of Lfng/Notch1 Signaling Pathway in Alzheimer's Disease. Curr Alzheimer Res 2022; 19:772-784. [PMID: 36453506 DOI: 10.2174/1567205020666221130090103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) develops through a complex pathological process, in which many genes play a synergistic or antagonistic role. LncRNAs represent a kind of noncoding RNA, which can regulate gene expression at the epigenetic, transcriptional and posttranscriptional levels. Multiple lncRNAs have been found to have important regulatory functions in AD. Thus, their expression patterns, targets and functions should be explored as therapeutic targets. METHODS We used deep RNA-seq analysis to detect the dysregulated lncRNAs in the hippocampus of APP/PS1 mice. We performed Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to predict the biological roles and potential signaling pathways of dysregulated lncRNAs. Finally, we constructed lncRNA-miRNA-mRNA and lncRNA-mRNA co-expression networks to reveal the potential regulator roles in AD pathogenesis. RESULTS Our findings revealed 110 significantly dysregulated lncRNAs. GO and KEGG annotations showed the dysregulated lncRNAs to be closely related to the functions of axon and protein digestion and absorption. The lncRNA-mRNA network showed that 19 lncRNAs regulated App, Prnp, Fgf10 and Il33, while 5 lncRNAs regulated Lfng via the lncRNA-miR-3102-3p-Lfng axis. Furthermore, we preliminarily demonstrated the important regulatory role of the Lfng/Notch1 signaling pathway through lncRNA-ceRNA networks in AD. CONCLUSION We revealed the important regulatory roles of dysregulated lncRNAs in the etiopathogenesis of AD through lncRNA expression profiling. Our results showed that the mechanism involves the regulation of the Lfng/Notch1 signaling pathway.
Collapse
Affiliation(s)
- Wanpeng Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, P.R. China
| | - Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, P.R. China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, P.R. China
| |
Collapse
|
18
|
Brandão-Teles C, Zuccoli GS, Smith BJ, Vieira GM, Crunfli F. Modeling Schizophrenia In Vitro: Challenges and Insights on Studying Brain Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:35-51. [DOI: 10.1007/978-3-030-97182-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
19
|
Koskuvi M, Lehtonen Š, Trontti K, Keuters M, Wu YC, Koivisto H, Ludwig A, Plotnikova L, Virtanen PLJ, Räsänen N, Kaipainen S, Hyötyläinen I, Dhungana H, Giniatullina R, Ojansuu I, Vaurio O, Cannon TD, Lönnqvist J, Therman S, Suvisaari J, Kaprio J, Lähteenvuo M, Tohka J, Giniatullin R, Rivera C, Hovatta I, Tanila H, Tiihonen J, Koistinaho J. Contribution of astrocytes to familial risk and clinical manifestation of schizophrenia. Glia 2021; 70:650-660. [PMID: 34936134 PMCID: PMC9306586 DOI: 10.1002/glia.24131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022]
Abstract
Previous studies have implicated several brain cell types in schizophrenia (SCZ), but the genetic impact of astrocytes is unknown. Considering their high complexity in humans, astrocytes are likely key determinants of neurodevelopmental diseases, such as SCZ. Human induced pluripotent stem cell (hiPSC)‐derived astrocytes differentiated from five monozygotic twin pairs discordant for SCZ and five healthy subjects were studied for alterations related to high genetic risk and clinical manifestation of SCZ in astrocyte transcriptomics, neuron‐astrocyte co‐cultures, and in humanized mice. We found gene expression and signaling pathway alterations related to synaptic dysfunction, inflammation, and extracellular matrix components in SCZ astrocytes, and demyelination in SCZ astrocyte transplanted mice. While Ingenuity Pathway Analysis identified SCZ disease and synaptic transmission pathway changes in SCZ astrocytes, the most consistent findings were related to collagen and cell adhesion associated pathways. Neuronal responses to glutamate and GABA differed between astrocytes from control persons, affected twins, and their unaffected co‐twins and were normalized by clozapine treatment. SCZ astrocyte cell transplantation to the mouse forebrain caused gene expression changes in synaptic dysfunction and inflammation pathways of mouse brain cells and resulted in behavioral changes in cognitive and olfactory functions. Differentially expressed transcriptomes and signaling pathways related to synaptic functions, inflammation, and especially collagen and glycoprotein 6 pathways indicate abnormal extracellular matrix composition in the brain as one of the key characteristics in the etiology of SCZ.
Collapse
Affiliation(s)
- Marja Koskuvi
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kalevi Trontti
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Meike Keuters
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Hennariikka Koivisto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Lidiia Plotnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Noora Räsänen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Satu Kaipainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ida Hyötyläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hiramani Dhungana
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Ojansuu
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Olli Vaurio
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Tyrone D Cannon
- Department of Psychology and Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Jouko Lönnqvist
- Mental Health Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, University of Helsinki, Helsinki, Finland
| | - Sebastian Therman
- Mental Health Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Jaana Suvisaari
- Mental Health Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Iiris Hovatta
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Tiihonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland.,Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatric Research, Stockholm City Council, Stockholm, Sweden
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|