1
|
Huang Y, Liu Y, Xiao X, Guo D, Zeng W, Luo Z. Evaluation of quality consistency between dispensing granules and traditional decoction of Bombyx batryticatus based on peptidomics and in silico simulations. Biomed Chromatogr 2024; 38:e5906. [PMID: 38807034 DOI: 10.1002/bmc.5906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
The application of traditional Chinese medicine dispensing granules is becoming increasingly prevalent. However, the consistency of dispensing granules with traditional decoction remains controversial. In this study, the consistency of peptide composition and pharmacodynamics between dispensing granules and traditional decoction of Bombyx batryticatus (BB) were assessed. A peptidomics method based on LC-tandem mass spectrometry technology was used to evaluate peptide composition similarity between BB traditional decoction and dispensing granules. The results revealed notable differences in peptide sequences between the two dosage forms, with only 8.55% of peptides shared between them. To evaluate the potential pharmacodynamic effects of the two dosage forms on epilepsy, virtual screening was used to identify potential active peptides, including blood-brain barrier permeability, toxicity prediction, and molecular docking. BB traditional decoction demonstrated a higher number and greater abundance of potential active peptides than BB dispensing granules, suggesting that BB traditional decoction may have a more favorable effect in treating epilepsy compared with BB dispensing granules. Moreover, molecular docking and molecular dynamics simulation studies confirmed the mechanism of action of active peptides to γ-aminobutyric acid transporter 1 (GAT-1). This study provides a scientific basis for the evaluation of quality consistency between BB traditional decoction and dispensing granules.
Collapse
Affiliation(s)
- Yayang Huang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yaxiong Liu
- NMPA Key Laboratory of Rapid Drug Inspection Technology, Guangzhou, China
- Guangdong Biomedical Technology Collaborative Innovation Center, Guangzhou, China
- Guangdong Institute for Drug Control, Guangzhou, China
| | - Xiaotong Xiao
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dong Guo
- Guangdong Institute for Drug Control, Guangzhou, China
| | - Wenjie Zeng
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhuoya Luo
- NMPA Key Laboratory of Rapid Drug Inspection Technology, Guangzhou, China
- Guangdong Biomedical Technology Collaborative Innovation Center, Guangzhou, China
- Guangdong Institute for Drug Control, Guangzhou, China
| |
Collapse
|
2
|
Li S, Lin X, Duan L. Harnessing the power of natural alkaloids: the emergent role in epilepsy therapy. Front Pharmacol 2024; 15:1418555. [PMID: 38962319 PMCID: PMC11220463 DOI: 10.3389/fphar.2024.1418555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
The quest for effective epilepsy treatments has spotlighted natural alkaloids due to their broad neuropharmacological effects. This review provides a comprehensive analysis of the antiseizure properties of various natural compounds, with an emphasis on their mechanisms of action and potential therapeutic benefits. Our findings reveal that bioactive substances such as indole, quinoline, terpenoid, and pyridine alkaloids confer medicinal benefits by modulating synaptic interactions, restoring neuronal balance, and mitigating neuroinflammation-key factors in managing epileptic seizures. Notably, these compounds enhance GABAergic neurotransmission, diminish excitatory glutamatergic activities, particularly at NMDA receptors, and suppress proinflammatory pathways. A significant focus is placed on the strategic use of nanoparticle delivery systems to improve the solubility, stability, and bioavailability of these alkaloids, which helps overcome the challenges associated with crossing the blood-brain barrier (BBB). The review concludes with a prospective outlook on integrating these bioactive substances into epilepsy treatment regimes, advocating for extensive research to confirm their efficacy and safety. Advancing the bioavailability of alkaloids and rigorously assessing their toxicological profiles are essential to fully leverage the therapeutic potential of these compounds in clinical settings.
Collapse
Affiliation(s)
- Siyu Li
- Department of Neurosurgery, Clinical Trial Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijuan Duan
- Department of Neurosurgery, Clinical Trial Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Cao R, Wang Y, Zhou Y, Zhu J, Zhang K, Liu W, Feng F, Qu W. Advanced researches of traditional uses, phytochemistry, pharmacology, and toxicology of medical Uncariae Ramulus Cum Uncis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117848. [PMID: 38336181 DOI: 10.1016/j.jep.2024.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medical Uncariae Ramulus Cum Uncis consists of Uncaria rhynchophylla (Miq.) Miq. ex Havil, Uncaria macrophylla Wall, Uncaria sinensis (Oliv.) Havil, Uncaria hirsuta Havil, and Uncaria sessilifructus Roxb, which belongs to the species widely used in the genus Uncaria. These species resource widely distributed in China and abroad, and the hook-bearing stem is the primary constituent enrichment site. There are many different forms and architectures of chemicals, depending on the extraction site. Traditional remedies employing URCU had been used widely in antiquity and were first compiled in renowned ancient masterpiece 'Mingyi Bielu ()' written by Hongjing Tao. In modern pharmacological studies, both the total extracts and the phytoconstituents isolated from URCU have been shown to have neuroprotective, antioxidant, anti-inflammatory, anticancer, antibacterial, and autophagy-enhancer properties. AIM OF THE STUDY This review concentrates on the traditional uses, phytochemistry, pharmacology, toxicology, and nanomaterials studies of URCU, with a perspective to assist with further research and advance. MATERIAL AND METHODS The Chinese and English literature studies of this review are based on these database searches including Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Medalink, Google scholar, Elsevier, ACS Publications, iPlant, Missouri Botanical Garden, Plant of the World Online. The pertinent data on URCU was gathered. RESULTS Based on the examination of the genus Uncaria, 107 newly marked chemical compositions have been identified from URCU from 2015 to present, including alkaloids, terpenoids, flavonoids, steroids, and others. Pharmacological studies have demonstrated that URCU has a variety of benefits in diseases such as neurodegenerative diseases, cancer, cardiovascular diseases, diabetes, and migraine, due to its neuroprotective, anti-inflammatory, antioxidant, anti-tumor, anti-bacterial and anti-viral properties. According to metabolic and toxicological studies, the dosage, frequency, and interactions of the drugs that occur in vivo are of great significance for determining whether the organic bodies can perform efficacy or produce toxicity. The research on URCU-mediated nanomaterials is expanding and increasing in order to address the inadequacies of conventional Chinese medicine. The alkaloids in URCU have the capability to self-assemble with other classes of components in addition to being biologically active. CONCLUSION URCU plants are widely distributed, abundant in chemical constituents, and widely used in both traditional and modern medicine for a variety of pharmacological effects. The utilization of herbal medicines can be raised by assessing the pharmacological distinctions among several species within the same genus and may accelerate the modernization of traditional Chinese medicine. Controlling the concentration of drug administration, monitoring metabolic markers, and inventing novel nanotechnologies are effective strategies for synergistic influence and detoxification to alleviate the main obstacles that toxicity, low bioavailability, and poor permeability. This review can assist further research and advances.
Collapse
Affiliation(s)
- Ruolian Cao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Ya Zhou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaxin Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Kexin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Nanjing Medical University, Nanjing, 211198, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Zhang ZL, Li YZ, Wu GQ, Li YM, Zhang DD, Wang R. A comprehensive review of phytochemistry, pharmacology and clinical applications of Uncariae Ramulus Cum Uncis. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
5
|
Uncariphyllin A-J, indole alkaloids from Uncaria rhynchophylla as antagonists of dopamine D2 and Mu opioid receptors. Bioorg Chem 2022; 130:106257. [DOI: 10.1016/j.bioorg.2022.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
6
|
Hu S, Yang L, Ma Y, Li L, Li Z, Wen X, Wu Z. Protection against H 2O 2-evoked toxicity in HT22 hippocampal neuronal cells by geissoschizine methyl ether via inhibiting ERK pathway. Transl Neurosci 2022; 13:369-378. [PMID: 36304098 PMCID: PMC9552775 DOI: 10.1515/tnsci-2022-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Oxidative stress is considered as an important mechanism underlying the pathology of neurodegenerative disorders. In this study, we utilized an in vitro model where oxidative stress process was evoked by exogenous hydrogen peroxide (H2O2) in HT22 murine hippocampal neurons and evaluated the neuroprotective effects of geissoschizine methyl ether (GME), a naturally occurring alkaloid from the hooks of Uncaria rhynchophylla (Miq.) Jacks. After a 24 h H2O2 (350 μM) insult, a significant decrease in cell survival and a sharp increase in intracellular reactive oxygen species were observed in HT22 cells. Encouragingly, GME (10-200 μM) effectively reversed these abnormal cellular changes induced by H2O2. Moreover, mechanistic studies using Western blot revealed that GME inhibited the increase of phospho-ERK protein expression, but not phospho-p38, caused by H2O2. Molecular docking simulation further revealed a possible binding mode that GME inhibited ERK protein, showing that GME favorably bound to ERK via multiple hydrophobic and hydrogen bond interactions. These findings indicate that GME provide effective neuroprotection via inhibiting ERK pathway and also encourage further ex vivo and in vivo pharmacological investigations of GME in treating oxidative stress-mediated neurological disorders.
Collapse
Affiliation(s)
- Shengquan Hu
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| | - Lei Yang
- Department of Spine Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| | - Yucui Ma
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| | - Limin Li
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| | - Zhiyue Li
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| | - Xiaomin Wen
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhengzhi Wu
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
7
|
Network Pharmacology and Molecular Docking to Explore the Mechanism of Kangxian Decoction for Epilepsy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3333878. [PMID: 36193133 PMCID: PMC9525756 DOI: 10.1155/2022/3333878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
Purpose Kangxian decoction (KXD) has been used in clinical practice to treat epilepsy. The purpose of this study was to explore the active components of KXD and clarify its antiepileptic mechanism through network pharmacology and molecular docking. Methods The components of KXD were collected from the Encyclopedia of Traditional Chinese Medicine (ETCM) database and the literature was searched. Then, active ingredients were screened by SwissADME and potential targets were predicted by the SwissTargetPrediction database. Epilepsy-related differentially expressed genes were downloaded from the Gene Expression Omnibus database. A component-target-pathway network was constructed with Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein‒protein interaction network analysis revealed the potential mechanism and critical targets. Receiver operating characteristic (ROC) curves and box plots in microarray data validated the good diagnostic value and significant differential expression of these critical genes. Molecular docking verified the association between active ingredients and essential target proteins. Results In our study, we screened the important compounds of KXD for epilepsy, including quercetin, baicalin, kaempferol, yohimbine, geissoschizine methyl ether, baicalein, etc. KXD may exert its therapeutic effect on epilepsy through the following targets: PTGS2, MMP9, CXCL8, ERBB2, and ARG1, acting on the following pathways: neuroactive ligand-receptor interactions, arachidonic acid metabolism, IL-17, TNF, NF-kappa B, and MAPK signaling pathways. The molecular docking results showed that the active ingredients in KXD exhibited good binding ability to the key targets. Conclusion In this study, we explored the possibility that KXD for epilepsy may act on multiple targets through multiple active ingredients, involving neurotransmitters and neuroinflammatory pathways, providing a theoretical basis for subsequent clinical and experimental studies that will help develop effective new drugs to treat epilepsy.
Collapse
|
8
|
Mo Z, Luo W, Pi K, Duan L, Wang P, Ke Y, Zeng S, Jia R, Liang T, Huang Y, Liu R. Comparative transcriptome analysis between inbred lines and hybrids provides molecular insights into K + content heterosis of tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:940787. [PMID: 35991430 PMCID: PMC9389268 DOI: 10.3389/fpls.2022.940787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Potassium (K+) is essential for crop growth. Increasing the K+ content can often directly promote the improvement of crop yield and quality. Heterosis plays an important role in genetic improvement and leads to genetic gains. We found that the K+ content of tobacco showed significant heterosis, which is highly significant for cultivating tobacco varieties with high K+ content. However, the mechanism by which K+ content heterosis occurs in tobacco leaves is not clear. In this study, a comprehensive comparative transcriptome sequencing analysis of root samples from the hybrid G70 × GDH11 and its parental inbred lines G70 and GDH11 was performed to elucidate the importance of the root uptake capacity of K+ in the formation of heterosis. The results showed that 29.53% and 60.49% of the differentially expressed genes (DEGs) exhibited dominant and over-dominant expression patterns, respectively. These non-additive upregulated DEGs were significantly enriched in GO terms, such as metal ion transport and reaction, ion balance and homeostasis, ion channel activity, root meristem growth, and regulation of root hairs. The KEGG annotation results indicated that these genes were mainly involved in the pathways such as energy metabolism, carbohydrate formation, amino acid metabolism, and signal transduction. Further analysis showed that probable potassium transporter 17 (NtKT17) and potassium transporter 5-like (NtKT5), associated with potassium ion absorption, glutamate receptor 2.2-like and glutamate receptor 2.8-like, associated with ion channel activity, LOC107782957, protein detoxification 42-like, and probable glutamate carboxypeptidase 2, associated with root configuration, showed a significantly higher expression in the hybrids. These results indicated that the over-dominant expression pattern of DEGs played a key role in the heterosis of K+ content in tobacco leaves, and the overexpression of the genes related to K+ uptake, transport, and root development in hybrids helped to improve the K+ content of plants, thus showing the phenomenon of heterosis.
Collapse
Affiliation(s)
- Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Wen Luo
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Kai Pi
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Lili Duan
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Pingsong Wang
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Yuzhou Ke
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Shuaibo Zeng
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Rongli Jia
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Ting Liang
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Ying Huang
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Renxiang Liu
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Zeng Y, Zheng Y, Zhang T, Ye F, Zhan L, Kou Z, Zhu S, Gao Z. Identification of a Subtype-Selective Allosteric Inhibitor of GluN1/GluN3 NMDA Receptors. Front Pharmacol 2022; 13:888308. [PMID: 35754487 PMCID: PMC9218946 DOI: 10.3389/fphar.2022.888308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are Ca2+-permeable ionotropic glutamate receptors (iGluRs) in the central nervous system and play important roles in neuronal development and synaptic plasticity. Conventional NMDARs, which typically comprise GluN1 and GluN2 subunits, have different biophysical properties than GluN3-containing NMDARs: GluN3-containing NMDARs have smaller unitary conductance, less Ca2+-permeability and lower Mg2+-sensitivity than those of conventional NMDARs. However, there are very few specific modulators for GluN3-containing NMDARs. Here, we developed a cell-based high-throughput calcium assay and identified 3-fluoro-1,2-phenylene bis (3-hydroxybenzoate) (WZB117) as a relatively selective inhibitor of GluN1/GluN3 receptors. The IC50 value of WZB117 on GluN1/GluN3A receptors expressed in HEK-293 cells was 1.15 ± 0.34 μM. Consistently, WZB117 exhibited strong inhibitory activity against glycine-induced currents in the presence of CGP-78608 but only slightly affected the NMDA-, KA- and AMPA-induced currents in the acutely isolated rat hippocampal neurons. Among the four types of endogenous currents, only the first one is primarily mediated by GluN1/GluN3 receptors. Mechanistic studies showed that WZB117 inhibited the GluN1/GluN3A receptors in a glycine-, voltage- and pH-independent manner, suggesting it is an allosteric modulator. Site-directed mutagenesis and chimera construction further revealed that WZB117 may act on the GluN3A pre-M1 region with key determinants different from those of previously identified modulators. Together, our study developed an efficient method to discover modulators of GluN3-containing NMDARs and characterized WZB117 as a novel allosteric inhibitor of GluN1/GluN3 receptors.
Collapse
Affiliation(s)
- Yue Zeng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tongtong Zhang
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zengwei Kou
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Shujia Zhu
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
10
|
Abdullayeva N, Kumtepe A, Altaf CT, Seckin H, Sankir ND, Sankir M. Dual-Ionomer-Based Device: Acetylcholine Transport and Nonenzymatic Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50039-50051. [PMID: 33084309 DOI: 10.1021/acsami.0c13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The malfunctioning in the release of acetylcholine (ACh+), leading to consequential damages in the neural system, has become an impulsion for the development of numerous progressive transport and detection gadgets. However, several challenges, such as laterality and complexity of transport devices, low precision of amperometric detection systems, and sumptuous, multistaged enzymatic quantification methods, have not yet been overcome. Herein, ionomers, because of their selective ion transporting nature, are chosen as suitable candidates for being implemented into both targeted ACh+ delivery and sensing systems. Based on these two approaches, for the very first time in the literature, the disulfonated poly(arylene ether sulfone) membrane is concurrently (i) used in the mimicry of transduction of the electrical-to-ionic signal in a neural network as "Acetylcholine Pen" (ACh+ Pen) and (ii) operated as a highly sensitive, conductivity-based ACh+ quantifier. Our dual device, being able to operate under an actual action potential of 55 mVbias, shows a strong potential of future applicability in real-time ionic delivery-and-sensing systems.
Collapse
Affiliation(s)
- Nazrin Abdullayeva
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
| | - Alihan Kumtepe
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
| | - Cigdem Tuc Altaf
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
| | - Hakan Seckin
- Neurosurgery Clinic, Medicana Bursa Hospital, Izmir Yolu No. 41, Odunluk Nilufer, 16110 Bursa, Turkey
| | - Nurdan Demirci Sankir
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
| | - Mehmet Sankir
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
| |
Collapse
|
11
|
Qin N, Lu X, Liu Y, Qiao Y, Qu W, Feng F, Sun H. Recent research progress of Uncaria spp. based on alkaloids: phytochemistry, pharmacology and structural chemistry. Eur J Med Chem 2020; 210:112960. [PMID: 33148492 DOI: 10.1016/j.ejmech.2020.112960] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Medicinal plants are well-known in affording clinically useful agents, with rich medicinal values by combining with disease targets through various mechanisms. Plant secondary metabolites as lead compounds lay the foundation for the discovery and development of new drugs in disease treatment. Genus Uncaria from Rubiaceae family is a significant plant source of active alkaloids, with anti-hypertensive, sedative, anti-Alzheimer's disease, anti-drug addiction and anti-inflammatory effects. This review summarizes and discuss the research progress of Uncaria based on alkaloids in the past 15 years, mainly in the past 5 years, including biosynthesis, phytochemistry, pharmacology and structural chemistry. Among, focusing on representative compounds rhynchophylline and isorhynchophylline, the pharmacological activities surrounding the central nervous system and cardiovascular system are described in detail. On the basis of case studies, this article provides a brief overview of the synthesis and analogues of representative compounds types. In summary, this review provides an early basis for further searching for new targets and activities, discussing the mechanisms of pharmacological activity and studying the structure-activity relationships of active molecules.
Collapse
Affiliation(s)
- Nan Qin
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuting Qiao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, People's Republic of China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, People's Republic of China.
| |
Collapse
|
12
|
Yun WJ, Zhang XY, Liu TT, Liang JH, Sun CP, Yan JK, Huo XK, Tian XG, Zhang BJ, Huang HL, Ma XC. The inhibition effect of uncarialin A on voltage-dependent L-type calcium channel subunit alpha-1C: Inhibition potential and molecular stimulation. Int J Biol Macromol 2020; 159:1022-1030. [DOI: 10.1016/j.ijbiomac.2020.05.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
|