1
|
Mu Y, Luo LB, Huang R, Shen ZY, Huang D, Zhao SH, Yang J, Ma ZG. Cardiac-derived CTRP9 mediates the protection of empagliflozin against diabetes-induced male subfertility in mice. Clin Sci (Lond) 2024; 138:1421-1440. [PMID: 39392219 DOI: 10.1042/cs20241477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Previous studies have shown beneficial effects of empagliflozin (Empa), a selective inhibitor of the sodium-glucose cotransporter 2 (SGLT2), on diabetes and cardiovascular outcomes in patients with diabetes. However, whether Empa could ameliorate diabetes mellitus (DM)-induced male spermatogenesis dysfunction remains unclear. Our study aimed to investigate the effect of Empa in the development of DM-induced male spermatogenesis dysfunction and to reveal the molecular mechanisms. DM mice were orally treated with Empa to investigate the effects of Empa on DM-induced male mice spermatogenesis dysfunction. We employed a cardiac-specific C1q/tumor necrosis factor-related protein 9 (CTRP9)-deficient mouse model and a cardiac-specific CTRP9 overexpression mouse model to investigate its role in the protection of Empa against diabetes-induced male subfertility. We found that Empa treatment could improve DM-induced male mice subfertility. Interestingly, we discovered that cardiac-derived CTRP9 was decreased in DM mice and this decrease was prevented by Empa treatment. A CTRP9 blocking antibody or cardiac-specific depletion of CTRP9 abolished the protection of Empa on DM-induced male subfertility. Cardiac-specific CTRP9 overexpression ameliorated DM-induced male subfertility. Mechanistically, we identified that cardiac-derived CTRP9 increased steroidogenesis in mice with diabetes in a PKA-dependent manner. We also provided direct evidence that activation of AMP activated protein kinase α (AMPKα)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signalling pathway by CTRP9 was responsible for the attenuation of ferroptosis in Leydig cells. In conclusions, we supposed that Empa was a potential therapeutic agent against DM-induced male mice spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ling-Bo Luo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rong Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhuo-Yu Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Dan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Shu-Hong Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
2
|
Türkeş C. Aldose reductase with quinolone antibiotics interaction: In vitro and in silico approach of its relationship with diabetic complications. Arch Biochem Biophys 2024; 761:110161. [PMID: 39313142 DOI: 10.1016/j.abb.2024.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Aldose reductase (AR, EC1.1.1.21), a member of the aldo-keto reductase family, is critically implicated in the pathogenesis of chronic complications associated with diabetes mellitus, including neuropathy, nephropathy, and retinopathy. Hyperglycemia-induced AR overactivity results in intracellular sorbitol accumulation, NADPH depletion, and oxidative stress. Consequently, AR is recognized as a key mediator of oxidative and inflammatory signaling pathways involved in diverse human pathologies such as cardiovascular diseases, inflammatory disorders, and cancer. This has sparked renewed interest in developing novel AR inhibitors (ARIs) with enhanced therapeutic profiles. In this study, we evaluated the inhibitory potential of five quinolone antibiotics-gatifloxacin, lomefloxacin, nalidixic acid, norfloxacin, and sparfloxacin-as ARIs relevant to various physiological and pathological conditions. Through comprehensive in vitro and in silico analyses, we explored these antibiotics' binding interactions and affinities within the AR active site. Our findings reveal that these quinolones moderately inhibit AR at micromolar concentrations, with inhibition constants (KIs) ranging from 1.03 ± 0.13 μM to 4.12 ± 0.51 μM, compared to the reference drug epalrestat (KI of 0.85 ± 0.06 μM). The combined in vitro and in silico results underscore significant interactions between these drugs and AR, suggesting their potential as therapeutic agents against the aforementioned pathological conditions. Furthermore, these insights will aid in optimizing clinical dosing regimens and mitigating unexpected drug-drug interactions when these antibiotics are co-administered with other treatments.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24002, Turkey.
| |
Collapse
|
3
|
Zhu D, Ni Y, Chen C, Dong Z, Wang L, Zhang W. Geniposide ameliorates diabetic nephropathy in type 2 diabetic mice by targeting AGEs-RAGE-dependent inflammatory pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156046. [PMID: 39299095 DOI: 10.1016/j.phymed.2024.156046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a prevalent complication of diabetes mellitus and the primary cause of morbidity and mortality in end-stage renal disease. The receptor for advanced glycation end products (RAGE) plays a crucial role in mediating AGE-triggered inflammation, which has been implicated in DN pathogenesis. While geniposide, a natural compound, has demonstrated anti-inflammatory and hypoglycemic properties, its potential to mitigate AGE-induced renal inflammation and consequently impede DN progression remains unexplored. PURPOSE The objective of this study was to ascertain whether geniposide is a novel natural AGEs-RAGE blocker and to investigate its protective effect on renal DN in type 2 diabetic mice. METHODS Binding affinity between geniposide and RAGE was assessed using MicroScale Thermophoresis (MST), molecular docking, and co-immunoprecipitation. RAGE was then subjected to knockdown and overexpression in cellular experiments to evaluate geniposide's effects on AGE-induced inflammatory responses and the RAGE pathway. Finally, db/db mice were employed to validate the renoprotective effects of geniposide in DN. RESULTS Geniposide exhibited higher binding affinity to RAGE's V domain than AGEs, competitively inhibiting AGEs-RAGE interaction through hydrogen bonding. It suppressed RAGE expression and RAGE-dependent inflammatory responses to AGEs, comparable to RAGE siRNA effects. In RAGE-overexpressing cells, geniposide further inhibited AGEs-induced ERK1/2 and NFκB P65 activation, reducing inflammatory marker levels. Long-term oral administration of geniposide to db/db mice improved plasma creatinine, urea, and proteinuria levels, ameliorated pathological changes, and downregulated inflammatory factors such as TNF-α and IL-1β. Moreover, it dose-dependently attenuated enhanced renal expression of RAGE, phosphorylated ERK1/2, IκB-α, and NF-κB P65. CONCLUSION Geniposide effectively attenuates AGEs-induced RAGE activation by directly blocking AGEs-RAGE signal transduction, thereby mitigating inflammatory responses. These findings suggest that geniposide has potential as a high-affinity RAGE antagonist, potentially playing a crucial role in the treatment of DN.
Collapse
Affiliation(s)
- Dina Zhu
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, PR China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China
| | - Ying Ni
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, PR China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China
| | - Chao Chen
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, PR China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China
| | - Zhaoqi Dong
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Lei Wang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, PR China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China
| | - Wensheng Zhang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, PR China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| |
Collapse
|
4
|
Kulkarni P, Yeram PB, Vora A. Terpenes in the management of chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6351-6368. [PMID: 38683370 DOI: 10.1007/s00210-024-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Chronic kidney disease (CKD) is a chronic and progressive systemic condition that characterizes irreversible alterations in the kidneys' function and structure over an extended period, spanning months to years. CKD is the one of the major causes of mortality worldwide. However, very limited treatment options are available in the market for management of the CKD. Diabetes and hypertension are the key risk factors for the progression of CKD. It is majorly characterised by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Plants are considered safe and effective in treating various chronic conditions. A diverse group of phytoconstituents, including polyphenols, flavonoids, alkaloids, tannins, saponins, and terpenes, have found significant benefits in managing chronic ailments. Terpenes constitute a diverse group of plant compounds with various therapeutic benefits. Evidence-based pharmacological studies underscore the crucial role played by terpenes in preventing and managing CKD. These substances demonstrate the capacity to hinder detrimental pathways, such as oxidative stress, inflammation and fibrosis, thereby demonstrating benefit in renal dysfunction. This review offers a comprehensive overview of the roles and positive attributes of commonly occurring terpenes in managing the causes and risk factors of CKD and the associated conditions.
Collapse
Affiliation(s)
- Piyusha Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Pranali B Yeram
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India.
| |
Collapse
|
5
|
Wang X, Zhang Y, Chi K, Ji Y, Zhang K, Li P, Fu Z, Wang X, Cui S, Shen W, Cai G, Chen X, Zhu H, Hong Q. IGFBP2 induces podocyte apoptosis promoted by mitochondrial damage via integrin α5/FAK in diabetic kidney disease. Apoptosis 2024; 29:1109-1125. [PMID: 38796567 DOI: 10.1007/s10495-024-01974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/28/2024]
Abstract
Podocyte apoptosis or loss is the pivotal pathological characteristic of diabetic kidney disease (DKD). Insulin-like growth factor-binding protein 2 (IGFBP2) have a proinflammatory and proapoptotic effect on diseases. Previous studies have shown that serum IGFBP2 level significantly increased in DKD patients, but the precise mechanisms remain unclear. Here, we found that IGFBP2 levels obviously increased under a diabetic state and high glucose stimuli. Deficiency of IGFBP2 attenuated the urine protein, renal pathological injury and glomeruli hypertrophy of DKD mice induced by STZ, and knockdown or deletion of IGFBP2 alleviated podocytes apoptosis induced by high concentration of glucose or in DKD mouse. Furthermore, IGFBP2 facilitated apoptosis, which was characterized by increase in inflammation and oxidative stress, by binding with integrin α5 (ITGA5) of podocytes, and then activating the phosphorylation of focal adhesion kinase (FAK)-mediated mitochondrial injury, including membrane potential decreasing, ROS production increasing. Moreover, ITGA5 knockdown or FAK inhibition attenuated the podocyte apoptosis caused by high glucose or IGFBP2 overexpression. Taken together, these findings unveiled the insight mechanism that IGFBP2 increased podocyte apoptosis by mitochondrial injury via ITGA5/FAK phosphorylation pathway in DKD progression, and provided the potential therapeutic strategies for diabetic kidney disease.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yifan Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Kun Chi
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yuwei Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Keying Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Zhangning Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Shaoyuan Cui
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
6
|
Ji L, Han H, Shan X, Zhao P, Chen H, Zhang C, Xu M, Lu R, Guo W. Ginsenoside Rb1 ameliorates lipotoxicity-induced myocardial injury in diabetes mellitus by regulating Mfn2. Eur J Pharmacol 2024; 974:176609. [PMID: 38677536 DOI: 10.1016/j.ejphar.2024.176609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE Diabetic cardiomyopathy is a prevalent cardiovascular complication of diabetes mellitus. This study aimed to investigate the effects of ginsenoside Rb1 (GRb1) on the diabetic myocardium. METHODS Leptin receptor-deficient db/db mice and palmitic acid (PA)-treated cardiomyocyte models were utilized. Cardiac systolic and diastolic function, mitochondrial morphology, and respiratory chain function were determined. The expression of mitochondrial dynamics proteins was measured. Mitofusin 2 (Mfn2) overexpression and inhibition were achieved by lentiviral infection and small interfering RNA (siRNA) transfection. RESULTS In comparison to non-diabetic mice, db/db mice exhibited significant increases in body weight, blood glucose, blood lipids, and cardiac free fatty acid levels. This was accompanied by myocardial hypertrophy and left ventricular diastolic dysfunction, which were significantly ameliorated by GRb1 intervention. Stimulation with PA increased oxidative stress and apoptosis, and decreased viability in H9c2 cardiomyocytes. PA also reduced sarcomere contractility and relaxation in adult mice ventricular myocytes. PA-induced cellular and mitochondrial damage were reversed with GRb1 treatment. The cardiac tissue of db/db mice and PA-treated cardiomyocytes exhibited a decrease in Mfn2 expression, which was markedly improved by GRb1. Mfn2 overexpression reversed PA-induced mitochondrial fragmentation and functional damage in cardiomyocytes, while inhibition of Mfn2 expression by siRNA transfection blocked the protective effects of GRb1. CONCLUSION GRb1 alleviated myocardial lipid accumulation and mitochondrial injury, and attenuated ventricular diastolic dysfunction in diabetic mice. The regulation of Mfn2 was involved in the protective effects of GRb1 against lipotoxic myocardial injury.
Collapse
MESH Headings
- Animals
- Ginsenosides/pharmacology
- Ginsenosides/therapeutic use
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/pathology
- Mice
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/genetics
- Male
- Palmitic Acid/pharmacology
- Apoptosis/drug effects
- Oxidative Stress/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Rats
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Receptors, Leptin/deficiency
- Cell Line
- Mice, Inbred C57BL
- Myocardium/pathology
- Myocardium/metabolism
Collapse
Affiliation(s)
- Louyin Ji
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hui Han
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoli Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Huihua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chen Zhang
- Department of Pathology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ming Xu
- Department of Physiology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Rong Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wei Guo
- Department of Pathology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Zhang L, He S, Liu L, Huang J. Saponin monomers: Potential candidates for the treatment of type 2 diabetes mellitus and its complications. Phytother Res 2024; 38:3564-3582. [PMID: 38715375 DOI: 10.1002/ptr.8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR), has become one of the most serious health challenges of the 21st century, with considerable economic and societal implications worldwide. Considering the inevitable side effects of conventional antidiabetic drugs, natural ingredients exhibit promising therapeutic efficacy and can serve as safer and more cost-effective alternatives for the management of T2DM. Saponins are a structurally diverse class of amphiphilic compounds widely distributed in many popular herbal medicinal plants, some animals, and marine organisms. There are many saponin monomers, such as ginsenoside compound K, ginsenoside Rb1, ginsenoside Rg1, astragaloside IV, glycyrrhizin, and diosgenin, showing great efficacy in the treatment of T2DM and its complications in vivo and in vitro. However, although the mechanisms of action of saponin monomers at the animal and cell levels have been gradually elucidated, there is a lack of clinical data, which hinders the development of saponin-based antidiabetic drugs. Herein, the main factors/pathways associated with T2DM and the comprehensive underlying mechanisms and potential applications of these saponin monomers in the management of T2DM and its complications are reviewed and discussed, aiming to provide fundamental data for future high-quality clinical studies and trials.
Collapse
Affiliation(s)
- Lvzhuo Zhang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Qianjiang Central Hospital Affiliated to Yangtze University, Qianjiang, Hubei, China
| | - Shifeng He
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiangrong Huang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Fan X, Yang M, Lang Y, Lu S, Kong Z, Gao Y, Shen N, Zhang D, Lv Z. Mitochondrial metabolic reprogramming in diabetic kidney disease. Cell Death Dis 2024; 15:442. [PMID: 38910210 PMCID: PMC11194272 DOI: 10.1038/s41419-024-06833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Diabetic kidney disease, known as a glomerular disease, arises from a metabolic disorder impairing renal cell function. Mitochondria, crucial organelles, play a key role in substance metabolism via oxidative phosphorylation to generate ATP. Cells undergo metabolic reprogramming as a compensatory mechanism to fulfill energy needs for survival and growth, attracting scholarly attention in recent years. Studies indicate that mitochondrial metabolic reprogramming significantly influences the pathophysiological progression of DKD. Alterations in kidney metabolism lead to abnormal expression of signaling molecules and activation of pathways, inducing oxidative stress-related cellular damage, inflammatory responses, apoptosis, and autophagy irregularities, culminating in renal fibrosis and insufficiency. This review delves into the impact of mitochondrial metabolic reprogramming on DKD pathogenesis, emphasizing the regulation of metabolic regulators and downstream signaling pathways. Therapeutic interventions targeting renal metabolic reprogramming can potentially delay DKD progression. The findings underscore the importance of focusing on metabolic reprogramming to develop safer and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Dongdong Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
9
|
Yang Y, Liu J, Shi Q, Guo B, Jia H, Yang Y, Fu S. Roles of Mitochondrial Dysfunction in Diabetic Kidney Disease: New Perspectives from Mechanism to Therapy. Biomolecules 2024; 14:733. [PMID: 38927136 PMCID: PMC11201432 DOI: 10.3390/biom14060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes and the main cause of end-stage renal disease around the world. Mitochondria are the main organelles responsible for producing energy in cells and are closely involved in maintaining normal organ function. Studies have found that a high-sugar environment can damage glomeruli and tubules and trigger mitochondrial dysfunction. Meanwhile, animal experiments have shown that DKD symptoms are alleviated when mitochondrial damage is targeted, suggesting that mitochondrial dysfunction is inextricably linked to the development of DKD. This article describes the mechanisms of mitochondrial dysfunction and the progression and onset of DKD. The relationship between DKD and mitochondrial dysfunction is discussed. At the same time, the progress of DKD treatment targeting mitochondrial dysfunction is summarized. We hope to provide new insights into the progress and treatment of DKD.
Collapse
Affiliation(s)
- Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jiahui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiling Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hanbing Jia
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuxuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Songbo Fu
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Provincial Endocrine Disease Clinical Medicine Research Center, Lanzhou 730000, China
| |
Collapse
|
10
|
Ma YL, Kong CY, Guo Z, Wang MY, Wang P, Liu FY, Yang D, Yang Z, Tang QZ. Semaglutide ameliorates cardiac remodeling in male mice by optimizing energy substrate utilization through the Creb5/NR4a1 axis. Nat Commun 2024; 15:4757. [PMID: 38834564 PMCID: PMC11150406 DOI: 10.1038/s41467-024-48970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Semaglutide, a glucagon-like peptide-1 receptor agonist, is clinically used as a glucose-lowering and weight loss medication due to its effects on energy metabolism. In heart failure, energy production is impaired due to altered mitochondrial function and increased glycolysis. However, the impact of semaglutide on cardiomyocyte metabolism under pressure overload remains unclear. Here we demonstrate that semaglutide improves cardiac function and reduces hypertrophy and fibrosis in a mouse model of pressure overload-induced heart failure. Semaglutide preserves mitochondrial structure and function under chronic stress. Metabolomics reveals that semaglutide reduces mitochondrial damage, lipid accumulation, and ATP deficiency by promoting pyruvate entry into the tricarboxylic acid cycle and increasing fatty acid oxidation. Transcriptional analysis shows that semaglutide regulates myocardial energy metabolism through the Creb5/NR4a1 axis in the PI3K/AKT pathway, reducing NR4a1 expression and its translocation to mitochondria. NR4a1 knockdown ameliorates mitochondrial dysfunction and abnormal glucose and lipid metabolism in the heart. These findings suggest that semaglutide may be a therapeutic agent for improving cardiac remodeling by modulating energy metabolism.
Collapse
Affiliation(s)
- Yu-Lan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| |
Collapse
|
11
|
Zhang Y, Jiao X, Liu J, Feng G, Luo X, Zhang M, Zhang B, Huang L, Long Q. A new direction in Chinese herbal medicine ameliorates for type 2 diabetes mellitus: Focus on the potential of mitochondrial respiratory chain complexes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117484. [PMID: 38012971 DOI: 10.1016/j.jep.2023.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a common chronic disease. Chinese herbal medicine (CHM) has a history of several thousand years in the treatment of diabetes, and active components with hypoglycemic effects extracted from various CHM, such as polysaccharides, flavonoids, terpenes, and steroidal saponins, have been widely used in the treatment of diabetes. AIM OF THE STUDY Research exploring the potential of various CHM compounds to regulate the mitochondrial respiratory chain complex to improve type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS The literature data were primarily obtained from authoritative databases such as PubMed, CNKI, Wanfang, and others within the last decade. The main keywords used include "type 2 diabetes mellitus", "Chinese medicine", "Chinese herbal medicine", "mitochondrial respiratory chain complex", and "mitochondrial dysfunction". RESULTS Chinese herbal medicine primarily regulates the activity of mitochondrial respiratory chain complexes in various tissues such as liver, adipose tissue, skeletal muscle, pancreatic islets, and small intestine. It improves cellular energy metabolism through hypoglycemic, antioxidant, anti-inflammatory and lipid-modulating effects. Different components of CHM can regulate the same mitochondrial respiratory chain complexes, while the same components of a particular CHM can regulate different complex activities. The active components of CHM target different mitochondrial respiratory chain complexes, regulate their aberrant changes and effectively improve T2DM and its complications. CONCLUSION Chinese herbal medicine can modulate the function of mitochondrial respiratory chain complexes in various cell types and exert their hypoglycemic effects through various mechanisms. CHM has significant therapeutic potential in regulating mitochondrial respiratory chain complexes to improve T2DM, but further research is needed to explore the underlying mechanisms and conduct clinical trials to assess the safety and efficacy of these medications. This provides new perspectives and opportunities for personalized improvement and innovative developments in diabetes management.
Collapse
Affiliation(s)
- Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinyue Jiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianying Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Zhang R, Guan S, Meng Z, Zhang D, Lu J. Ginsenoside Rb1 alleviates 3-MCPD-induced renal cell pyroptosis by activating mitophagy. Food Chem Toxicol 2024; 186:114522. [PMID: 38373586 DOI: 10.1016/j.fct.2024.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Ginsenoside Rb1 (Gs-Rb1) is among the most significant effective pharmacological components in ginseng. 3-monochloropropane-1,2-diol (3-MCPD), a chloropropanol-like contaminant, is produced in the production of refined oils and thermal processing of food. Pyroptosis is a type of programmed cell death triggered by inflammasomes. Excessive pyroptosis causes kidney injury and inflammation. Previous studies have revealed that 3-MCPD induced pyroptosis in mice and NRK-52E cells. In the present study, we find that Gs-Rb1 attenuates 3-MCPD-induced renal cell pyroptosis by assaying GSDMD-N, caspase-1, IL-18, and IL-1β in mice and NRK-52E cells. In further mechanistic studies, we show that Gs-Rb1 removes damaged mitochondria via mitophagy and reduces intracellular reactive oxygen species (ROS) generation, therefore alleviating 3-MCPD-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) activation and pyroptosis. The above results are further validated by the addition of autophagy inhibitor Chloroquine (CQ) and mitophagy inhibitor Cyclosporin A (CsA). Afterward, we explore how Gs-Rb1 activated mitophagy in vitro. We determine that Gs-Rb1 enhances the protein expression and nuclear translocation of Transcription factor EB (TFEB). However, silencing of the TFEB gene by small interfering RNA technology reverses the role of Gs-Rb1 in activating mitophagy. Therefore, we conclude that 3-MCPD damages mitochondria and leads to ROS accumulation, which causes NLRP3 activation and pyroptosis in ICR mice and NRK-52E cells, while Gs-Rb1 mitigates this phenomenon via the TFEB-mitophagy pathway. Our findings may provide new insights for understanding the molecular mechanisms by which Gs-Rb1 mitigates renal injury.
Collapse
Affiliation(s)
- Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Zhuoqun Meng
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
13
|
Sun X, Shi Y, Shi D, Tu Y, Liu L. Biological Activities of Secondary Metabolites from the Edible-Medicinal Macrofungi. J Fungi (Basel) 2024; 10:144. [PMID: 38392816 PMCID: PMC10890728 DOI: 10.3390/jof10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Macrofungi are well-known as edible-medicinal mushrooms, which belong mostly to Basidiomycota, with a few from Ascomycota. In recent years, macrofungi have been recognized as a rich resource of structurally unique secondary metabolites, demonstrating a wide range of bioactivities, including anti-tumor, antioxidant, anti-inflammatory, antimicrobial, antimalarial, neuro-protective, hypoglycemic, and hypolipidemic activities. This review highlights over 270 natural products produced by 17 families of macrofungi covering 2017 to 2023, including their structures, bioactivities, and related molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoqi Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxiao Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Tu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Hu H, Liang W, Ding G. Ion homeostasis in diabetic kidney disease. Trends Endocrinol Metab 2024; 35:142-150. [PMID: 37880052 DOI: 10.1016/j.tem.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
The complications of type 2 diabetes are a major global public health problem with high incidence and mortality, affecting almost all individuals with diabetes worldwide. Diabetic kidney disease (DKD) is one such primary complication and has become a leading cause of end-stage renal disease in patients with diabetes. Progression from diabetes to DKD is a complex process typically involving multiple mechanisms. Recent remarkable clinical benefits of sodium-glucose cotransporter 2 (SGLT2) inhibitors in diabetes and DKD highlight the critical impact of renal ion homeostasis on disease progression. This review comprehensively examines the impact of ion homeostasis on the transition from diabetes to DKD, outlining possible therapeutic interventions and addressing the ongoing challenges in this rapidly developing field.
Collapse
Affiliation(s)
- Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei 430060, China; Key Clinical Research Center of Kidney Disease, 238 Jiefang Rd, Wuhan, Hubei 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei 430060, China; Key Clinical Research Center of Kidney Disease, 238 Jiefang Rd, Wuhan, Hubei 430060, China.
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei 430060, China; Key Clinical Research Center of Kidney Disease, 238 Jiefang Rd, Wuhan, Hubei 430060, China.
| |
Collapse
|
15
|
Hao Y, Fan Y, Feng J, Zhu Z, Luo Z, Hu H, Li W, Yang H, Ding G. ALCAT1-mediated abnormal cardiolipin remodelling promotes mitochondrial injury in podocytes in diabetic kidney disease. Cell Commun Signal 2024; 22:26. [PMID: 38200543 PMCID: PMC10777643 DOI: 10.1186/s12964-023-01399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cardiolipin (CL) plays a critical role in maintaining mitochondrial membrane integrity and overall mitochondrial homeostasis. Recent studies have suggested that mitochondrial damage resulting from abnormal cardiolipin remodelling is associated with the pathogenesis of diabetic kidney disease (DKD). Acyl-coenzyme A:lyso-cardiolipin acyltransferase-1 (ALCAT1) was confirmed to be involved in the progression of Parkinson's disease, diet-induced obesity and other ageing-related diseases by regulating pathological cardiolipin remodelling. Thus, the purpose of this investigation was to determine the role of ALCAT1-mediated CL remodelling in DKD and to explore the potential underlying mechanism. METHODS In vivo study, the mitochondrial structure was examined by transmission electron microscopy (TEM). The colocalization of ALCAT1 and synaptopodin was evaluated by double immunolabelling. Western blotting (WB) was performed to assess ALCAT1 expression in glomeruli. Lipidomics analysis was conducted to evaluate the composition of reconstructed cardiolipins. In vitro study, the lipidomics, TEM and WB analyses were similar to those in vivo. Mitochondrial function was evaluated by measuring the mitochondrial membrane potential (MMP) and the production of ATP and ROS. RESULTS Here, we showed that increased oxidized cardiolipin (ox-CL) and significant mitochondrial damage were accompanied by increased ALCAT1 expression in the glomeruli of patients with DKD. Similar results were found in db/db mouse kidneys and in cultured podocytes stimulated with high glucose (HG). ALCAT1 deficiency effectively prevented HG-induced ox-CL production and mitochondrial damage in podocytes. In contrast, ALCAT1 upregulation enhanced ox-CL levels and podocyte mitochondrial dysfunction. Moreover, treatment with the cardiolipin antioxidant SS-31 markedly inhibited mitochondrial dysfunction and cell injury, and SS-31 treatment partly reversed the damage mediated by ALCAT1 overexpression. We further found that ALCAT1 could mediate the key regulators of mitochondrial dynamics and mitophagy through the AMPK pathway. CONCLUSIONS Collectively, our studies demonstrated that ALCAT1-mediated cardiolipin remodelling played a crucial role in DKD, which might provide new insights for DKD treatment. Video Abstract.
Collapse
Affiliation(s)
- Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China.
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Weiwei Li
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Hongxia Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China.
| |
Collapse
|
16
|
Du H, Wang Y, Zhu Y, Li X, Zhu T, Wu Q, Zha F. MiR-29b Alleviates High Glucose-induced Inflammation and Apoptosis in Podocytes by Down-regulating PRKAB2. Endocr Metab Immune Disord Drug Targets 2024; 24:981-990. [PMID: 38204237 PMCID: PMC11275309 DOI: 10.2174/0118715303267375231204103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Podocyte injury and inflammatory response are the core contributors to the pathogenesis of diabetic nephropathy. This study aims to identify novel regulatory miRNAs and elucidate their underlying mechanisms, which will help us understand the pathogenesis of diabetic nephropathy more comprehensively. MATERIALS AND METHODS Different glucose concentrations were used to treat podocytes to mimic the pathology of diabetic nephropathy in vitro. Flow cytometry was used to determine cell apoptosis. Inflammatory cytokines released by podocytes were measured by using an enzymelinked immunosorbent assay (ELISA). Western Blot was used to detect the expression of PRKAB2 protein in podocytes. RESULTS Genecard and g: profiler results revealed that miR-29b might be involved in regulating HG-induced cell injury. QRT-PCR indicated that HG-induced downregulation of miR-29b in podocytes. MiR-29b knockdown promoted cell apoptosis and inflammatory response in podocytes. MiR-29b overexpression repressed cell apoptosis and inflammatory response induced by high glucose treatment in podocytes. Luciferase reporter assay and Western Blot showed that miR-29b targeted PRKAB2 to negatively regulate PRKAB2 expression directly. Knockdown of PRKAB2 reversed the increased cell apoptosis and inflammation induced by miR-29b inhibitors. CONCLUSION MiR-29b plays a role in inhibiting inflammation and apoptosis in high glucose (HG) treated podocytes by negatively regulating PRKAB2 expression. This study provides new potential targets and ideas for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Hongxiu Du
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Gongyuan East Road, Qingpu District, Shanghai, 201799, China
| | - Yakun Wang
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Gongyuan East Road, Qingpu District, Shanghai, 201799, China
| | - Yingchun Zhu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Gongyuan East Road, Qingpu District, Shanghai, 201799, China
| | - Xiaoying Li
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Gongyuan East Road, Qingpu District, Shanghai, 201799, China
| | - Tingying Zhu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Gongyuan East Road, Qingpu District, Shanghai, 201799, China
| | - Qianqian Wu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Gongyuan East Road, Qingpu District, Shanghai, 201799, China
| | - Fangfang Zha
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Gongyuan East Road, Qingpu District, Shanghai, 201799, China
| |
Collapse
|
17
|
Gong L, Wang R, Wang X, Liu J, Han Z, Li Q, Jin Y, Liao H. Research progress of natural active compounds on improving podocyte function to reduce proteinuria in diabetic kidney disease. Ren Fail 2023; 45:2290930. [PMID: 38073545 PMCID: PMC11001328 DOI: 10.1080/0886022x.2023.2290930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a primary cause of end-stage renal disease. Proteinuria is a clinical indicator of the different stages of DKD, and podocyte injury is a major cause of proteinuria. Podocyte-specific proteins (PSPs) play important roles in the normal filtration of podocytes. Studies have shown that natural active compounds (NACs) can ameliorate proteinuria; however, the mechanism related to PSPs needs to be explored. In this study, the five stages of DKD related to proteinuria and the functions of PSPs are displayed separately. Mechanisms for ameliorating proteinuria and improving the PSPs of the 15 NACs are summarized. The in vitro and in vivo mechanistic research showed that five compounds, astragaloside IV, ligustrazine, berberine, emodin and resveratrol, exerted renal protective effects via AMPK signaling, icariin and berberine via TLR4 signaling, hirudin and baicalin via MAPK signaling, curcumin and baicalin via NF-κB signaling, and emodin via protein kinase RNA-like endoplasmic reticulum kinase signaling. The 13 PSPs were divided into five categories: actin cytoskeleton, basal domain, apical domain, slit diaphragm, and others. In conclusion, anti-inflammatory effects, anti-oxidative stress, and enhanced autophagy are the main mechanisms underlying the ameliorative effects of NACs. Podocyte apoptosis is mainly related to nephrin and podocin, which are the most studied slit diaphragm PSPs.
Collapse
Affiliation(s)
- Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Rui Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Xinyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Qian Li
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Yi Jin
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| |
Collapse
|
18
|
Han YZ, Zheng HJ, Du BX, Zhang Y, Zhu XY, Li J, Wang YX, Liu WJ. Role of Gut Microbiota, Immune Imbalance, and Allostatic Load in the Occurrence and Development of Diabetic Kidney Disease. J Diabetes Res 2023; 2023:8871677. [PMID: 38094870 PMCID: PMC10719010 DOI: 10.1155/2023/8871677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevailing complication arising from diabetes mellitus. Unfortunately, there are no trustworthy and efficacious treatment modalities currently available. In recent times, compelling evidence has emerged regarding the intricate correlation between the kidney and the gut microbiota, which is considered the largest immune organ within the human physique. Various investigations have demonstrated that the perturbation of the gut microbiota and its associated metabolites potentially underlie the etiology and progression of DKD. This phenomenon may transpire through perturbation of both the innate and the adaptive immunity, leading to a burdensome allostatic load on the body and ultimately culminating in the development of DKD. Within this literature review, we aim to delve into the intricate interplay between the gut microbiota, its metabolites, and the immune system in the context of DKD. Furthermore, we strive to explore and elucidate potential chemical interventions that could hold promise for the treatment of DKD, thereby offering invaluable insights and directions for future research endeavors.
Collapse
Affiliation(s)
- Yi Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yao Xian Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Ma X, Ma J, Leng T, Yuan Z, Hu T, Liu Q, Shen T. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren Fail 2023; 45:2146512. [PMID: 36762989 PMCID: PMC9930779 DOI: 10.1080/0886022x.2022.2146512] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes and has become the leading cause of end-stage kidney disease. The pathogenesis of DKD is complicated, and oxidative stress is considered as a core of DKD onset. High glucose can lead to increased production of reactive oxygen species (ROS) via the polyol, PKC, AGE/RAGE and hexosamine pathways, resulting in enhanced oxidative stress response. In this way, pathways such as PI3K/Akt, TGF-β1/p38-MAPK and NF-κB are activated, inducing endothelial cell apoptosis, inflammation, autophagy and fibrosis that cause histologic and functional abnormalities of the kidney and finally result in kidney injury. Presently, the treatment for DKD remains an unresolved issue. Traditional Chinese medicine (TCM) has unique advantages for DKD prevention and treatment attributed to its multi-target, multi-component, and multi-pathway characteristics. Numerous studies have proved that Chinese herbs (e.g., Golden Thread, Kudzuvine Root, Tripterygium glycosides, and Ginseng) and patent medicines (e.g., Shenshuaining Tablet, Compound Rhizoma Coptidis Capsule, and Zishen Tongluo Granule) are effective for DKD treatment. The present review described the role of oxidative stress in DKD pathogenesis and the effect of TCM intervention for DKD prevention and treatment, in an attempt to provide evidence for clinical practice.
Collapse
Affiliation(s)
- Xiaoju Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingru Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Leng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhu Yuan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,CONTACT Tao Shen School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
20
|
Wu Y, Deng H, Sun J, Tang J, Li X, Xu Y. Poricoic acid A induces mitophagy to ameliorate podocyte injury in diabetic kidney disease via downregulating FUNDC1. J Biochem Mol Toxicol 2023; 37:e23503. [PMID: 37706594 DOI: 10.1002/jbt.23503] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023]
Abstract
Diabetic kidney disease (DKD) is a devastating complication of diabetes mellitus (DM) and is the most prevalent chronic kidney disease (CKD). Poricoic acid A (PAA), a component isolated from Traditional Chinese Medicine (TCM) Poria cocos, has hypoglycaemic and anti-fibrosis effects. However, the role of PAA in DKD remains largely unclear. To mimics an in vitro model of DKD, the mouse podocyte MPC5 cells were treated with high glucose (25 mM; HG) for 24 h. CCK-8 and flow cytometry assays were conducted for assessing MPC5 cell viability and apoptosis. Meanwhile, streptozotocin (STZ) was used to induce experimental DKD in mice by intraperitoneal injection. PAA notably inhibited the apoptosis and inflammation, reduced the generation of ROS, and elevated the MMP level in HG-treated MPC5 cells. Moreover, PAA obviously reduced blood glucose and urine protein levels, inhibited renal fibrosis in DKD mice. Meanwhile, PAA markedly increased LC3 and ATG5 levels and declined p62 and FUNDC1 levels in HG-treated MPC5 cells and in the kidney tissues of DKD mice, leading to the activation of cell mitophagy. Furthermore, the downregulation of FUNDC1 also inhibited apoptosis, inflammation, and promoted mitophagy in HG-treated MPC5 cells. As expected, the knockdown of FUNDC1 further enhanced the protective role of PAA in MPC5 cells following HG treatment, indicating that induction of mitophagy could attenuate podocyte injury. Collectively, PAA could exert beneficial effects on podocyte injury in DKD by promoting mitophagy via downregulating FUNDC1. These findings suggested that PAA may have great potential in alleviating kidney injury in DKD.
Collapse
Affiliation(s)
- Yuwen Wu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haohua Deng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiazhong Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Li
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
21
|
Chen M, Chen Y, Zhu W, Yan X, Xiao J, Zhang P, Liu P, Li P. Advances in the pharmacological study of Chinese herbal medicine to alleviate diabetic nephropathy by improving mitochondrial oxidative stress. Biomed Pharmacother 2023; 165:115088. [PMID: 37413900 DOI: 10.1016/j.biopha.2023.115088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the serious complications of diabetes mellitus, primarily arising from type 2 diabetes (T2DM), and can progress to chronic kidney disease (CKD) and end stage renal disease (ESRD). The pathogenesis of DN involves various factors such as hemodynamic changes, oxidative stress, inflammatory response, and lipid metabolism disorders. Increasing attention is being given to DN caused by oxidative stress in the mitochondrial pathway, prompting researchers to explore drugs that can regulate these target pathways. Chinese herbal medicine, known for its accessibility, rich historical usage, and remarkable efficacy, has shown promise in ameliorating renal injury caused by DN by modulating oxidative stress in the mitochondrial pathway. This review aims to provide a reference for the prevention and treatment of DN. Firstly, we outline the mechanisms by which mitochondrial dysfunction impairs DN, focusing on outlining the damage to mitochondria by oxidative stress. Subsequently, we describe the process by which formulas, herbs and monomeric compounds protect the kidney by ameliorating oxidative stress in the mitochondrial pathway. Finally, the rich variety of Chinese herbal medicine, combined with modern extraction techniques, has great potential, and as we gradually understand the pathogenesis of DN and research techniques are constantly updated, there will be more and more promising therapeutic targets and herbal drug candidates. This paper aims to provide a reference for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Ming Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiaoming Yan
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jing Xiao
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peiqing Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
22
|
Ma SX, Li XJ, Duan TT, Pei M, Zou L, Yu XY, Zhao YY. Moshen granule ameliorates membranous nephropathy by regulating NF-ƙB/Nrf2 pathways via aryl hydrocarbon receptor signalling. Heliyon 2023; 9:e20019. [PMID: 37809643 PMCID: PMC10559749 DOI: 10.1016/j.heliyon.2023.e20019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Considerable achievements were realized in illuminating underlying pathological mechanisms of patients with idiopathic membranous nephropathy (IMN). Although IMN patients are well diagnosed before they reach renal failure, no currently available drug intervention is effective in halting IMN progression. In this study, we assess Moshen granule (MSG) effect on IMN patients and cationic bovine serum albumin (CBSA)-induced rats. Increasing studies has indicated that activation of aryl hydrocarbon receptor (AHR) was related to oxidative stress and inflammation. We further determine MSG effect on AHR, nuclear factor ƙB (NF-ƙB) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the CBSA-induced rats. MSG markedly reduces proteinuria and improves kidney function in both IMN patients and rats induced by CBSA. MSG markedly inhibits increased mRNA expressions of intrarenal AHR and its four downstream target genes including CYP1A1, CYP1A2, CYP1B1 and COX-2 compared with untreated CBSA-induced rats. This is accompanied by markedly downregulated protein expressions of p-IƙBα and NF-ƙB p65 and its downstream gene products including MCP-1, COX-2, 12-LOX, iNOS, p47phox and p67phox, while markedly preserves protein expressions of Nrf2 and its downstream gene products including catalase, HO-1, GCLM, GCLC, MnSOD and NQO1 in the kidney tissues. These data suggests MSG blunts podocyte damage through inhibiting activation of NF-ƙB/Nrf2 pathway via AHR signaling. This finding may provide a promising therapy for treatment of IMN through oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, Baoji, Shaanxi 721008, China
| | - Xiao-Jun Li
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Ting-Ting Duan
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, Guangdong 510530, China
| | - Ming Pei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300073, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi 710003, China
| | - Ying-Yong Zhao
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan 610106, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
23
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
24
|
Xie X, Lou H, Shi Y, Gan G, Deng H, Ma X, Meng M, Gao X. A network pharmacological-based study of the mechanism of Liuwei Dihuang pill in the treatment of chronic kidney disease. Medicine (Baltimore) 2023; 102:e33727. [PMID: 37171332 PMCID: PMC10174353 DOI: 10.1097/md.0000000000033727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a progressive disease that poses a huge economic burden to society. Liuwei Dihuanng pill is an effective treatment for chronic kidney disease, but its treatment mechanism is unclear. The rapid development of network pharmacology has provided new strategies for studying Chinese medicine. METHOD The traditional Chinese medicine systems pharmacology database and analysis platform was used to obtain the bioactive components and targets of Liuwei Dihuanng pill. The sources for the CKD-related targets were then obtained from the Genecards, OMIM, TTD, and DisGeNET databases. R was used to identify the intersecting genes for Liuwei Dihuang pill and CKD-related targets. Analysis of protein-protein interactions (PPI) was performed using STRING, and PPI networks and drug-component-target networks were constructed using Cytoscape software. Kyoto encyclopedia of genes and genomes pathway and gene ontology enrichment analyses were performed using R. Finally, molecular docking was performed to determine the binding activity between bioactive components and the targets. RESULT After screening and data de-duplication of 74 active components, 209 drug targets, and 14,794 disease targets, a total of 204 drug-disease targets were acquired. Subsequently, a drug-component-target network and PPI network were established. The primary components of Liuwei Dihuang pill included quercetin, stigmasterol, kaempferol, beta-sitosterol, tetrahydroalstonine, kadsurenone, hederagenin, hancinone C, diosgenin, and sitosterol. In addition, JUN, AKT1, TP53, RELA, MAPK1, FOS, TNF, IL6, ESR1, and RXRA were identified as the main targets. Gene ontology function enrichment analysis revealed that these targets were involved in reactive oxygen species metabolic processes, responses to metal ions and to chemical stimuli, G protein-coupled amine receptor activity, and nuclear factor receptor activity. Kyoto encyclopedia of genes and genomes enrichment analysis showed that these targets were involved in the AGE-RAGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, and so on. Molecular docking results indicated good binding activity between the core targets and core components. CONCLUSION The potential mechanism of Liuwei Dihuanng pill in the treatment of CKD was preliminarily discussed in this study, providing a theoretical basis and evidence for further experimental research.
Collapse
Affiliation(s)
- Xi Xie
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongjun Lou
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ye Shi
- College of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Guang Gan
- College of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Hanqing Deng
- The First Clinical Medical College of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xinwei Ma
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Mingfang Meng
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xi Gao
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
25
|
Liu P, Zhang Z, Cai Y, Yang Y, Yuan J, Chen Q. Inhibition of the pyroptosis-associated inflammasome pathway: The important potential mechanism of ginsenosides in ameliorating diabetes and its complications. Eur J Med Chem 2023; 253:115336. [PMID: 37031528 DOI: 10.1016/j.ejmech.2023.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Diabetes mellitus (DM) and its complications have become an important global public health issue, affecting human health and negatively impacting life and lifespan. Pyroptosis is a recently discovered form of pro-inflammatory programmed cell death (PCD). To date, pyroptosis-associated inflammasome pathways have been identified primarily in the canonical and non-canonical inflammasome pathway, apoptotic caspase-mediated pathway, granzyme-mediated pathway, and streptococcal pyrogenic exotoxin B (SpeB)-mediated pathway. The activation of diabetes-mediated pyroptosis-associated factors play an important role in the pathophysiology of DM and its complications. Studies have shown that ginsenosides exert significant protective effects on DM and its complications. Through inhibiting the activation of pyroptosis-associated inflammasome pathways, and then the DM and its complications are improved. This review summarizes the subtypes of ginsenosides and their chemical characteristics, pharmacokinetics and side effects, the main pyroptosis-associated inflammasome pathways that have been discovered to date, and the potential mechanism of different subtypes of ginsenosides in the treatment of DM and its complications (such as diabetic cardiomyopathy, diabetic nephropathy, diabetic liver injury, diabetic retinopathy, and diabetic ischemic stroke) via anti-pyroptosis-associated inflammasome pathways. These findings may provide ideas for further research to explore ginsenoside mechanism in improving DM and its complications. However, many pyroptosis-associated inflammasome pathways and targets involved in the occurrence and development of DM and its complications are still unknown. In the future, further studies using in vitro cell models, in vivo animal models, and human disease models can be used to further elucidate the mechanism of ginsenosides in the treatment of DM and its complications.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China
| | - Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yunjiao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Jun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
26
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
27
|
Fan M, Lan X, Wang Q, Shan M, Fang X, Zhang Y, Wu D, Luo H, Gao W, Zhu D. Renal function protection and the mechanism of ginsenosides: Current progress and future perspectives. Front Pharmacol 2023; 14:1070738. [PMID: 36814491 PMCID: PMC9939702 DOI: 10.3389/fphar.2023.1070738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Nephropathy is a general term for kidney diseases, which refers to changes in the structure and function of the kidney caused by various factors, resulting in pathological damage to the kidney, abnormal blood or urine components, and other diseases. The main manifestations of kidney disease include hematuria, albuminuria, edema, hypertension, anemia, lower back pain, oliguria, and other symptoms. Early detection, diagnosis, and active treatment are required to prevent chronic renal failure. The concept of nephropathy encompasses a wide range of conditions, including acute renal injury, chronic kidney disease, nephritis, renal fibrosis, and diabetic nephropathy. Some of these kidney-related diseases are interrelated and may lead to serious complications without effective control. In serious cases, it can also develop into chronic renal dysfunction and eventually end-stage renal disease. As a result, it seriously affects the quality of life of patients and places a great economic burden on society and families. Ginsenoside is one of the main active components of ginseng, with anti-inflammatory, anti-tumor, antioxidant, and other pharmacological activities. A variety of monomers in ginsenosides can play protective roles in multiple organs. According to the difference of core structure, ginsenosides can be divided into protopanaxadiol-type (including Rb1, Rb3, Rg3, Rh2, Rd and CK, etc.), and protopanaxatriol (protopanaxatriol)- type (including Rg1, Rg2 and Rh1, etc.), and other types (including Rg5, Rh4, Rh3, Rk1, and Rk3, etc.). All of these ginsenosides showed significant renal function protection, which can reduce renal damage in renal injury, nephritis, renal fibrosis, and diabetic nephropathy models. This review summarizes reports on renal function protection and the mechanisms of action of these ginsenosides in various renal injury models.
Collapse
Affiliation(s)
- Meiling Fan
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Qunling Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Wenyi Gao, ; Difu Zhu,
| | - Difu Zhu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,*Correspondence: Wenyi Gao, ; Difu Zhu,
| |
Collapse
|
28
|
Türkeş C, Demir Y, Biçer A, Cin GT, Gültekin MS, Beydemir Ş. Exploration of Some Bis‐Sulfide and Bis‐Sulfone Derivatives as Non‐Classical Aldose Reductase İnhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Abdullah Biçer
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| | - Günseli Turgut Cin
- Department of Chemistry Faculty of Science Akdeniz University Antalya 07058 Turkey
| | | | - Şükrü Beydemir
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
| |
Collapse
|
29
|
Liu P, Chen Y, Xiao J, Zhu W, Yan X, Chen M. Protective effect of natural products in the metabolic-associated kidney diseases via regulating mitochondrial dysfunction. Front Pharmacol 2023; 13:1093397. [PMID: 36712696 PMCID: PMC9877617 DOI: 10.3389/fphar.2022.1093397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Metabolic syndrome (MS) is a complex group of metabolic disorders syndrome with hypertension, hyperuricemia and disorders of glucose or lipid metabolism. As an important organ involved in metabolism, the kidney is inevitably attacked by various metabolic disorders, leading to abnormalities in kidney structure and function. Recently, an increasing number of studies have shown that mitochondrial dysfunction is actively involved in the development of metabolic-associated kidney diseases. Mitochondrial dysfunction can be used as a potential therapeutic strategy for the treatment of metabolic-associated kidney diseases. Many natural products have been widely used to improve the treatment of metabolic-associated kidney diseases by inhibiting mitochondrial dysfunction. In this paper, by searching several authoritative databases such as PubMed, Web of Science, Wiley Online Library, and Springer Link. We summarize the Natural Products Protect Against Metabolic-Associated Kidney Diseases by Regulating Mitochondrial Dysfunction. In this review, we sought to provide an overview of the mechanisms by which mitochondrial dysfunction impaired metabolic-associated kidney diseases, with particular attention to the role of mitochondrial dysfunction in diabetic nephropathy, gouty nephropathy, hypertensive kidney disease, and obesity-related nephropathy, and then the protective role of natural products in the kidney through inhibition of mitochondrial disorders, thus providing a systematic understanding of the targets of mitochondrial dysfunction in metabolic-associated kidney diseases, and finally a review of promising therapeutic targets and herbal candidates for metabolic-associated kidney diseases through inhibition of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Yao Chen
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jing Xiao
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiaoming Yan
- Department of Medicine, Digestive Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Ming Chen
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| |
Collapse
|
30
|
Jin Q, Liu T, Chen D, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Therapeutic potential of artemisinin and its derivatives in managing kidney diseases. Front Pharmacol 2023; 14:1097206. [PMID: 36874000 PMCID: PMC9974673 DOI: 10.3389/fphar.2023.1097206] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Artemisinin, an antimalarial traditional Chinese herb, is isolated from Artemisia annua. L, and has shown fewer side effects. Several pieces of evidence have demonstrated that artemisinin and its derivatives exhibited therapeutic effects on diseases like malaria, cancer, immune disorders, and inflammatory diseases. Additionally, the antimalarial drugs demonstrated antioxidant and anti-inflammatory activities, regulating the immune system and autophagy and modulating glycolipid metabolism properties, suggesting an alternative for managing kidney disease. This review assessed the pharmacological activities of artemisinin. It summarized the critical outcomes and probable mechanism of artemisinins in treating kidney diseases, including inflammatory, oxidative stress, autophagy, mitochondrial homeostasis, endoplasmic reticulum stress, glycolipid metabolism, insulin resistance, diabetic nephropathy, lupus nephritis, membranous nephropathy, IgA nephropathy, and acute kidney injury, suggesting the therapeutic potential of artemisinin and its derivatives in managing kidney diseases, especially the podocyte-associated kidney diseases.
Collapse
Affiliation(s)
- Qi Jin
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Tongtong Liu
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Danqian Chen
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Huimin Mao
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Fang Ma
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Yuyang Wang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| |
Collapse
|
31
|
Türkeş C, Demir Y, Beydemir Ş. In Vitro
Inhibitory Activity and Molecular Docking Study of Selected Natural Phenolic Compounds as AR and SDH Inhibitors**. ChemistrySelect 2022. [DOI: 10.1002/slct.202204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
32
|
Liu H, Feng J, Tang L. Early renal structural changes and potential biomarkers in diabetic nephropathy. Front Physiol 2022; 13:1020443. [PMID: 36425298 PMCID: PMC9679365 DOI: 10.3389/fphys.2022.1020443] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 08/10/2023] Open
Abstract
Diabetic nephropathy is one of the most serious microvascular complications of diabetes mellitus, with increasing prevalence and mortality. Currently, renal function is assessed clinically using albumin excretion rate and glomerular filtration rate. But before the appearance of micro-albumin, the glomerular structure has been severely damaged. Glomerular filtration rate based on serum creatinine is a certain underestimate of renal status. Early diagnosis of diabetic nephropathy has an important role in improving kidney function and delaying disease progression with drugs. There is an urgent need for biomarkers that can characterize the structural changes associated with the kidney. In this review, we focus on the early glomerular and tubular structural alterations, with a detailed description of the glomerular injury markers SMAD1 and Podocalyxin, and the tubular injury markers NGAL, Netrin-1, and L-FABP in the context of diabetic nephropathy. We have summarized the currently studied protein markers and performed bioprocess analysis. Also, a brief review of proteomic and scRNA-seq method in the search of diabetic nephropathy.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
33
|
Chen DQ, Wu J, Li P. Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Front Pharmacol 2022; 13:1055296. [PMID: 36408255 PMCID: PMC9669587 DOI: 10.3389/fphar.2022.1055296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2023] Open
Abstract
Diabetic kidney disease (DKD) is the major complications of type 1 and 2 diabetes, and is the predominant cause of chronic kidney disease and end-stage renal disease. The treatment of DKD normally consists of controlling blood glucose and improving kidney function. The blockade of renin-angiotensin-aldosterone system and the inhibition of sodium glucose cotransporter 2 (SGLT2) have become the first-line therapy of DKD, but such treatments have been difficult to effectively block continuous kidney function decline, eventually resulting in kidney failure and cardiovascular comorbidities. The complex mechanism of DKD highlights the importance of multiple therapeutic targets in treatment. Chinese herbal medicine (active compound, extract and formula) synergistically improves metabolism regulation, suppresses oxidative stress and inflammation, inhibits mitochondrial dysfunction, and regulates gut microbiota and related metabolism via modulating GLP-receptor, SGLT2, Sirt1/AMPK, AGE/RAGE, NF-κB, Nrf2, NLRP3, PGC-1α, and PINK1/Parkin pathways. Clinical trials prove the reliable evidences for Chinese herbal medicine against DKD, but more efforts are still needed to ensure the efficacy and safety of Chinese herbal medicine. Additionally, the ideal combined therapy of Chinese herbal medicine and conventional medicine normally yields more favorable benefits on DKD treatment, laying the foundation for novel strategies to treat DKD.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
34
|
Zhu B, Fang J, Ju Z, Chen Y, Wang L, Wang H, Xing L, Cao A. Zuogui Wan ameliorates high glucose-induced podocyte apoptosis and improves diabetic nephropathy in db/db mice. Front Pharmacol 2022; 13:991976. [PMID: 36386214 PMCID: PMC9663993 DOI: 10.3389/fphar.2022.991976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Zuogui Wan (ZGW), a well-known traditional Chinese medicine (TCM), has been used to nourish “Kidney-Yin” for a long time in China, implying a protective effect on the kidney. The aim of the present study is to investigate the effect of ZGW on high glucose-induced podocyte apoptosis and diabetic nephropathy (DN) in db/db mice. ZGW (1 g/kg−1/day−1) was administered intragastrically to db/db mice for 8 weeks. HPLC was used for identifying the components of ZGW, biochemical and histopathological approaches were used for evaluating its therapeutic effects, and cultured mouse podocytes were used for further exploring its underlying mechanism in vitro. ZGW improved renal function and podocyte loss and also normalized kidney reactive oxygen species production in db/db mice. The cytotoxicity of ZGW on mouse podocytes was assessed by the LDH assay. The effect of ZGW on podocyte viability and apoptosis was determined with CCK-8 and Annexin-V/PI staining by treatment with high glucose. ZGW attenuated podocyte apoptosis, and oxidative stress was detected by the peroxide-sensitive fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA) staining in a dose-dependent manner. Furthermore, ZGW decreased the expression of caspase-3 and phospho-p38 in both the kidney cortex and high glucose-treated podocytes. Thus, our data from in vivo and in vitro studies demonstrated that ZGW improved renal injury in diabetes by inhibiting oxidative stress and podocyte apoptosis.
Collapse
Affiliation(s)
- Bingbing Zhu
- Department of Nephrology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji Fang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengcai Ju
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Chen
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Xing
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lina Xing, ; Aili Cao,
| | - Aili Cao
- Department of Nephrology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lina Xing, ; Aili Cao,
| |
Collapse
|
35
|
Chen Q, Ren D, Liu L, Xu J, Wu Y, Yu H, Liu M, Zhang Y, Wang T. Ginsenoside Compound K Ameliorates Development of Diabetic Kidney Disease through Inhibiting TLR4 Activation Induced by Microbially Produced Imidazole Propionate. Int J Mol Sci 2022; 23:ijms232112863. [PMID: 36361652 PMCID: PMC9656537 DOI: 10.3390/ijms232112863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common and devastating complication in diabetic patients, which is recognized as a large and growing problem leading to end-stage kidney disease. As dietary-mediated therapies are gradually becoming more acceptable to patients with DKD, we planned to find active compounds on preventing DKD progression from dietary material. The present paper reports the renoprotective properties and underlying mechanisms of ginsenoside compound K (CK), a major metabolite in serum after oral administration of ginseng. CK supplementation for 16 weeks could improve urine microalbumin, the ratio of urinary albumin/creatinine and renal morphological abnormal changes in db/db mice. In addition, CK supplementation reshaped the gut microbiota by decreasing the contents of Bacteroides and Paraprevotella and increasing the contents of Lactobacillu and Akkermansia at the genus level, as well as reduced histidine-derived microbial metabolite imidazole propionate (IMP) in the serum. We first found that IMP played a significant role in the progression of DKD through activating toll-like receptor 4 (TLR4). We also confirmed CK supplementation can down-regulate IMP-induced protein expression of the TLR4 signaling pathway in vivo and in vitro. This study suggests that dietary CK could offer a better health benefit in the early intervention of DKD. From a nutrition perspective, CK or dietary material containing CK can possibly be developed as new adjuvant therapy products for DKD.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Dongwen Ren
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Luokun Liu
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Jingge Xu
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Haiyang Yu
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Mengyang Liu
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yi Zhang
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Correspondence: (Y.Z.); (T.W.); Tel.: +86-22-59596163 (Y.Z.); +86-22-59596572 (T.W.)
| | - Tao Wang
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Correspondence: (Y.Z.); (T.W.); Tel.: +86-22-59596163 (Y.Z.); +86-22-59596572 (T.W.)
| |
Collapse
|
36
|
Zhang N, Guan C, Liu Z, Li C, Yang C, Xu L, Niu M, Zhao L, Zhou B, Che L, Wang Y, Xu Y. Calycosin attenuates renal ischemia/reperfusion injury by suppressing NF-κB mediated inflammation via PPARγ/EGR1 pathway. Front Pharmacol 2022; 13:970616. [PMID: 36278223 PMCID: PMC9585199 DOI: 10.3389/fphar.2022.970616] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/26/2022] [Indexed: 08/10/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI) is a leading and common cause of acute kidney injury (AKI), and inflammation is a critical factor in ischemic AKI progression. Calycosin (CAL), a major active component of Radix astragali, has been reported to have anti-inflammatory effect in multiple organs. However, whether CAL can alleviate renal IRI and its mechanism remain uncertain. In the present study, a renal IRI model is established by bilateral renal pedicles occlusion for 35 min in male C57BL/6 mice, and the effect of CAL on renal IRI is measured by serum creatinine and pathohistological assay. Hypoxia/reoxygenation (H/R) stimulated human renal tubular epithelial cells HK-2 were applied to explore the regulatory mechanisms of CAL. Luciferase reporter assay and molecular docking were applied to identify the CAL's target protein and pathway. In the mice with renal IRI, CAL dose dependently alleviated the renal injury and decreased nuclear factor kappa B (NF-κB) mediated inflammatory response. Bioinformatics analysis and experiments showed that early growth response 1 (EGR1) increased in mice with renal IRI and promoted NF-κB mediated inflammatory processes, and CAL dose-dependably reduced EGR1. Through JASPAR database and luciferase reporter assay, peroxisome proliferator-activated receptor γ (PPARγ) was predicted to be a transcription factor of EGR1 and repressed the expression of EGR1 in renal tubular epithelial cells. CAL could increase PPARγ in a dose dependent manner in mice with renal IRI and molecular docking predicted CAL could bind stably to PPARγ. In HK-2 cells after H/R, CAL increased PPARγ, decreased EGR1, and inhibited NF-κB mediated inflammatory response. However, PPARγ knockdown by siRNA transfection abrogated the anti-inflammation therapeutic effect of CAL. CAL produced a protective effect on renal IRI by attenuating NF-κB mediated inflammatory response via PPARγ/EGR1 pathway.
Collapse
|
37
|
Lei Z, Chen L, Hu Q, Yang Y, Tong F, Li K, Lin T, Nie Y, Rong H, Yu S, Song Q, Guo J. Ginsenoside Rb1 improves intestinal aging via regulating the expression of sirtuins in the intestinal epithelium and modulating the gut microbiota of mice. Front Pharmacol 2022; 13:991597. [PMID: 36238549 PMCID: PMC9552198 DOI: 10.3389/fphar.2022.991597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Intestinal aging seriously affects the absorption of nutrients of the aged people. Ginsenoside Rb1 (GRb1) which has multiple functions on treating gastrointestinal disorders is one of the important ingredients from Ginseng, the famous herb in tradition Chinese medicine. However, it is still unclear if GRb1 could improve intestinal aging. To investigate the function and mechanism of GRb1 on improving intestinal aging, GRb1 was administrated to 104-week-old C57BL/6 mice for 6 weeks. The jejunum, colon and feces were collected for morphology, histology, gene expression and gut microbiota tests using H&E staining, X-gal staining, qPCR, Western blot, immunofluorescence staining, and 16S rDNA sequencing technologies. The numbers of cells reduced and the accumulation of senescent cells increased in the intestinal crypts of old mice, and administration of GRb1 could reverse them. The protein levels of CLDN 2, 3, 7, and 15 were all decreased in the jejunum of old mice, and administration of GRb1 could significantly increase them. The expression levels of Tert, Lgr5, mKi67, and c-Myc were all significantly reduced in the small intestines of old mice, and GRb1 significantly increased them at transcriptional or posttranscriptional levels. The protein levels of SIRT1, SIRT3, and SIRT6 were all reduced in the jejunum of old mice, and GRb1 could increase the protein levels of them. The 16S rDNA sequencing results demonstrated the dysbiosis of the gut microbiota of old mice, and GRb1 changed the composition and functions of the gut microbiota in the old mice. In conclusion, GRb1 could improve the intestinal aging via regulating the expression of Sirtuins family and modulating the gut microbiota in the aged mice.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Keying Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| |
Collapse
|
38
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
39
|
Miao H, Zhang Y, Yu X, Zou L, Zhao Y. Membranous nephropathy: Systems biology-based novel mechanism and traditional Chinese medicine therapy. Front Pharmacol 2022; 13:969930. [PMID: 36176440 PMCID: PMC9513429 DOI: 10.3389/fphar.2022.969930] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/10/2022] [Indexed: 12/05/2022] Open
Abstract
Membranous nephropathy (MN) is a renal-limited non-inflammatory autoimmune disease in the glomerulus, which is the second or third main cause of end-stage kidney diseases in patients with primary glomerulonephritis. Substantial achievements have increased our understanding of the aetiology and pathogenesis of murine and human MN. The identification of nephritogenic autoantibodies against neutral endopeptidase, phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing 7A (THSD7A) antigens provide more specific concept-driven intervention strategies for treatments by specific B cell-targeting monoclonal antibodies to inhibit antibody production and antibody-antigen immune complex deposition. Furthermore, additional antibody specificities for antigens have been discovered, but their pathogenic effects are uncertain. Although anti-PLA2R and anti-THSD7A antibodies as a diagnostic marker is widely used in MN patients, many questions including autoimmune response development, antigenic epitopes, and podocyte damage signalling pathways remain unresolved. This review describes the current available evidence regarding both established and novel molecular mechanisms based on systems biology approaches (gut microbiota, long non-coding RNAs, metabolite biomarkers and DNA methylation) in MN, with an emphasis on clinical findings. This review further summarizes the applications of traditional Chinese medicines such as Tripterygium wilfordii and Astragalus membranaceus for MN treatment. Lastly, this review considers how the identification of novel antibodies/antigens and unresolved questions and future challenges reveal the pathogenesis of MN.
Collapse
Affiliation(s)
- Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yamei Zhang
- Key Laboratory of Clinical Genetics & Key Disciplines of Clinical Pharmacy, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Xiaoyong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, Shaanxi, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical Genetics & Key Disciplines of Clinical Pharmacy, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Lin L, Tian E, Ren J, Wu Z, Deng J, Yang J. Traditional Chinese Medicine in Treating Primary Podocytosis: From Fundamental Science to Clinical Research. Front Pharmacol 2022; 13:932739. [PMID: 36003509 PMCID: PMC9393213 DOI: 10.3389/fphar.2022.932739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Podocytes form a key component of the glomerular filtration barrier. Damage to podocytes is referred to as “podocyte disease.” There are many causes of podocyte injury, including primary injury, secondary injury, and gene mutations. Primary podocytosis mostly manifests as nephrotic syndrome. At present, first-line treatment is based on glucocorticoid administration combined with immunosuppressive therapy, but some patients still progress to end-stage renal disease. In Asia, especially in China, traditional Chinese medicine (TCM) still plays an important role in the treatment of kidney diseases. This study summarizes the potential mechanism of TCM and its active components in protecting podocytes, such as repairing podocyte injury, inhibiting podocyte proliferation, reducing podocyte apoptosis and excretion, maintaining podocyte skeleton structure, and upregulating podocyte-related protein expression. At the same time, the clinical efficacy of TCM in the treatment of primary podocytosis (including idiopathic membranous nephropathy, minimal change disease, and focal segmental glomerulosclerosis) is summarized to support the development of new treatment strategies for primary podocytosis.
Collapse
Affiliation(s)
- Lirong Lin
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - En Tian
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - Jiangwen Ren
- Department of Nephrology, Rheumatism and Immunology, Jiulongpo District People’s Hospital of Chongqing, Chongqing, China
| | - Zhifeng Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | | | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
41
|
Wang YN, Feng HY, Nie X, Zhang YM, Zou L, Li X, Yu XY, Zhao YY. Recent Advances in Clinical Diagnosis and Pharmacotherapy Options of Membranous Nephropathy. Front Pharmacol 2022; 13:907108. [PMID: 35694252 PMCID: PMC9178124 DOI: 10.3389/fphar.2022.907108] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Membranous nephropathy (MN) is the most common cause of nephrotic syndrome among adults, which is the leading glomerular disease that recurs after kidney transplantation. Treatment for MN remained controversial and challenging, partly owing to absence of sensitive and specific biomarkers and effective therapy for prediction and diagnosis of disease activity. MN starts with the formation and deposition of circulating immune complexes on the outer area in the glomerular basement membrane, leading to complement activation. The identification of autoantibodies against the phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing protein 7A (THSD7A) antigens illuminated a distinct pathophysiological rationale for MN treatments. Nowadays, detection of serum anti-PLA2R antibodies and deposited glomerular PLA2R antigen can be routinely applied to MN. Anti-PLA2R antibodies exhibited much high specificity and sensitivity. Measurement of PLA2R in immune complex deposition allows for the diagnosis of PLA2R-associated MN in patients with renal biopsies. In the review, we critically summarized newer diagnosis biomarkers including PLA2R and THSD7A tests and novel promising therapies by using traditional Chinese medicines such as Astragalus membranaceus, Tripterygium wilfordii, and Astragaloside IV for the treatment of MN patients. We also described unresolved questions and future challenges to reveal the diagnosis and treatments of MN. These unprecedented breakthroughs were quickly translated to clinical diagnosis and management. Considerable advances of detection methods played a critical role in diagnosis and monitoring of treatment.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, Xi’an, China
| | - Hao-Yu Feng
- Faculty of Life Science & Medicine, Northwest University, Xi’an, China
| | - Xin Nie
- Faculty of Life Science & Medicine, Northwest University, Xi’an, China
| | - Ya-Mei Zhang
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, Xi’an, China
- Department of General Practice, Xi’an International Medical Center Hospital, Northwest University, Xi’an, China
- *Correspondence: Xia Li, ; Xiao-Yong Yu, ; Ying-Yong Zhao,
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- *Correspondence: Xia Li, ; Xiao-Yong Yu, ; Ying-Yong Zhao,
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, China
- *Correspondence: Xia Li, ; Xiao-Yong Yu, ; Ying-Yong Zhao,
| |
Collapse
|
42
|
Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules 2022; 12:biom12030403. [DOI: 10.3390/biom12030403] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Podocytopathies are kidney diseases that are driven by podocyte injury with proteinuria and proteinuria-related symptoms as the main clinical presentations. Albeit podocytopathies are the major contributors to end-stage kidney disease, the underlying molecular mechanisms of podocyte injury remain to be elucidated. Mitochondrial oxidative stress is associated with kidney diseases, and increasing evidence suggests that oxidative stress plays a vital role in the pathogenesis of podocytopathies. Accumulating evidence has placed mitochondrial oxidative stress in the focus of cell death research. Excessive generated reactive oxygen species over antioxidant defense under pathological conditions lead to oxidative damage to cellular components and regulate cell death in the podocyte. Conversely, exogenous antioxidants can protect podocyte from cell death. This review provides an overview of the role of mitochondrial oxidative stress in podocytopathies and discusses its role in the cell death of the podocyte, aiming to identify the novel targets to improve the treatment of patients with podocytopathies.
Collapse
|