1
|
Zhang Y, Li A, Li Y, Ouyang B, Wang X, Zhang L, Xu H, Gu Y, Lu X, Dong L, Yi H, Wang C. Clinicopathological and Molecular Characteristics of Rare EBV-associated Diffuse Large B-cell Lymphoma With IRF4 Rearrangement. Am J Surg Pathol 2024; 48:1341-1348. [PMID: 39172106 DOI: 10.1097/pas.0000000000002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) is a rare form of aggressive B-cell lymphoma with limited molecular information reported regarding interferon regulatory factor 4 ( IRF4 ) status. Here, we presented 3 EBV-positive DLBCL cases with IRF4 rearrangement (EBV+DLBCL- IRF4 -R) verified by fluorescence in situ hybridization (FISH). Three patients, including 1 male and 2 females (median age: 64 y; range: 45 to 68 y), had normal immune function. During a median follow-up of 12 months (range: 0 to 24 mo), 2 patients succumbed to the disease, and 1 patient achieved complete response. Three tumors were present in the mediastinum, stomach, and thalamus, respectively. All three tumors exhibited DLBCL morphology and were identified as the non-germinal center B-cell subtype, with EBV-encoded small RNA positivity ranging from 70% to 80%. RNA sequencing was able to identify RHOH and IGH as fusion partners of IRF4 in two cases. No MYC and BCL2 rearrangements were detected in 3 cases by FISH and RNA sequencing. Next-generation sequencing revealed a low mutation burden, and only IRF4 was recurrently mutated in two EBV+DLBCL- IRF4 -R cases. Using the LymphGen 2.0 classifier, 1 case was classified as the MCD (including MYD88L265P and CD79B mutations) subtype. We report rare EBV+DLBCL- IRF4 -R that may enhance our understanding of the diverse spectrum of large B-cell lymphoma.
Collapse
MESH Headings
- Humans
- Interferon Regulatory Factors/genetics
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/virology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Female
- Middle Aged
- Aged
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/pathology
- Epstein-Barr Virus Infections/complications
- Gene Rearrangement
- In Situ Hybridization, Fluorescence
- Biomarkers, Tumor/genetics
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Genetic Predisposition to Disease
Collapse
Affiliation(s)
- Yuxiu Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anqi Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binshen Ouyang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijin Gu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Lu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Yi
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen X, Soma L, Murphy C, Tretiakova M, Naresh KN, Fromm JR. Utility of CCR7 to differentiate classic Hodgkin lymphoma and other B-cell lymphomas by flow cytometry and immunohistochemistry. Am J Clin Pathol 2024:aqae119. [PMID: 39288406 DOI: 10.1093/ajcp/aqae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES Classic Hodgkin lymphoma (CHL) is characterized by infrequent neoplastic Hodgkin and Reed-Sternberg (HRS) cells in an inflammatory background. The diagnostic utility of CC-chemokine receptor 7 (CCR7) in CHL was explored using flow cytometry and immunohistochemistry (IHC). METHODS Neoplastic specimens and non-neoplastic lymph nodes were immunophenotyped and CCR7 expression was measured semiquantitatively by flow cytometry (clone 3D12) and IHC (clone 150503). RESULTS Our results showed that CCR7 was expressed on HRS cells in the vast majority of CHL cases (45/48 by flow cytometry, 57/59 by IHC) but rarely expressed in neoplastic cells in diffuse large B-cell lymphoma, not otherwise specified (1/25 by flow cytometry, 2/40 by IHC) and nodular lymphocyte predominant Hodgkin lymphoma (0/4 by flow cytometry, 1/13 by IHC). Primary mediastinal large B-cell lymphoma (PMLBCL) revealed weak CCR7 expression by flow cytometry in most cases (8/10) but only occasionally by IHC (2/12). Both cases (2/2) of T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) also showed CCR7 expression detected by flow cytometry compared with IHC (0/7). The HRS cells demonstrated a greater percentage of positive cells and greater antigen intensity than the other B-cell lymphomas by IHC. The expression identified by flow cytometry in PMLBCL and THRLBCL but not by IHC suggests that there may be differences in the detection capabilities of the 2 techniques or the 2 CCR7 clones used. CONCLUSIONS The expression of CCR7 in HRS cells suggests its potential utility in differentiating CHL from other B-cell lymphomas. Incorporating CCR7 into flow cytometry and IHC panels may further enhance the diagnostic sensitivity of CHL.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, US
| | - Lori Soma
- Department of Pathology, City of Hope, Duarte, CA, US
| | - Claire Murphy
- Pathology Consultants, PC, Eugene/Springfield Lab, Springfield, OR, US
| | - Maria Tretiakova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, US
| | - Jonathan R Fromm
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
| |
Collapse
|
3
|
Candelaria M, Cerrato-Izaguirre D, Gutierrez O, Diaz-Chavez J, Aviles A, Dueñas-Gonzalez A, Malpica L. Characterizing the Mutational Landscape of Diffuse Large B-Cell Lymphoma in a Prospective Cohort of Mexican Patients. Int J Mol Sci 2024; 25:9328. [PMID: 39273276 PMCID: PMC11394969 DOI: 10.3390/ijms25179328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy worldwide. Molecular classifications have tried to improve cure rates. We prospectively examined and correlated the mutational landscape with the clinical features and outcomes of 185 Mexican patients (median age 59.3 years, 50% women) with newly diagnosed DLBCL. A customized panel of 79 genes was designed, based on previous international series. Most patients had ECOG performance status (PS) < 2 (69.2%), advanced-stage disease (72.4%), germinal-center phenotype (68.1%), and double-hit lymphomas (14.1%). One hundred and ten (59.5%) patients had at least one gene with driver mutations. The most common mutated genes were as follows: TP53, EZH2, CREBBP, NOTCH1, and KMT2D. The median follow-up was 42 months, and the 5-year relapse-free survival (RFS) and overall survival (OS) rates were 70% and 72%, respectively. In the multivariate analysis, both age > 50 years and ECOG PS > 2 were significantly associated with a worse OS. Our investigation did not reveal any discernible correlation between the presence of a specific mutation and survival. In conclusion, using a customized panel, we characterized the mutational landscape of a large cohort of Mexican DLBCL patients. These results need to be confirmed in further studies.
Collapse
Affiliation(s)
- Myrna Candelaria
- Clinical Research, The National Cancer Institute, Ciudad de Mexico 14080, Mexico
| | | | - Olga Gutierrez
- Clinical Research, The National Cancer Institute, Ciudad de Mexico 14080, Mexico
| | - Jose Diaz-Chavez
- Basic Research Division, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico
| | - Alejandro Aviles
- Pathology Department, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico
| | - Alfonso Dueñas-Gonzalez
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico
| | - Luis Malpica
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Kurz KS, Noerenberg D, Schaich M, Bethge W, Horn H, Staiger AM, Fend F, Damm F, Ott G. An aggressive mediastinal EBV-associated large B cell lymphoma. Histopathology 2024; 85:195-197. [PMID: 38566333 DOI: 10.1111/his.15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Katrin S Kurz
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Daniel Noerenberg
- Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Markus Schaich
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Wolfgang Bethge
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Heike Horn
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Annette M Staiger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Frederik Damm
- Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| |
Collapse
|
5
|
Thiebaut PA, Isnard P, Couronné L, Kaltenbach S, Lepine C, Sibon D, Balducci E, Ruminy P, Badoual C, Brière J, Hermine O, Asnafi V, Gaulard P, Bruneau J, Molina TJ. Multimodal integration of clinic, pathology, and genomics for a rare diagnosis of EBV-positive primary mediastinal large B-cell lymphoma. Virchows Arch 2024:10.1007/s00428-024-03836-2. [PMID: 38834916 DOI: 10.1007/s00428-024-03836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Affiliation(s)
- Pierre-Alain Thiebaut
- Department of Pathology, Necker-Enfants Malades and Robert Debré University Hospitals, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France
| | - Pierre Isnard
- Department of Pathology, Necker-Enfants Malades and Robert Debré University Hospitals, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France.
| | - Lucile Couronné
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Sophie Kaltenbach
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Charles Lepine
- Department of Pathology, Georges Pompidou University Hospital, APHP, Université Paris Cité, Paris, France
| | - David Sibon
- Department of Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Estelle Balducci
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Philippe Ruminy
- INSERM U1245, UNIROUEN, University of Normandie, Rouen, France
| | - Cécile Badoual
- Department of Pathology, Georges Pompidou University Hospital, APHP, Université Paris Cité, Paris, France
| | - Josette Brière
- Department of Pathology, Necker-Enfants Malades and Robert Debré University Hospitals, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France
| | - Olivier Hermine
- Department of Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Phillippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
| | - Julie Bruneau
- Department of Pathology, Necker-Enfants Malades and Robert Debré University Hospitals, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France
| | - Thierry Jo Molina
- Department of Pathology, Necker-Enfants Malades and Robert Debré University Hospitals, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France
| |
Collapse
|
6
|
Kazansky Y, Cameron D, Mueller HS, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Kuwahara Y, Somwar R, Ladanyi M, Qu R, de Stanchina E, Dela Cruz FS, Kung AL, Gounder MM, Kentsis A. Overcoming Clinical Resistance to EZH2 Inhibition Using Rational Epigenetic Combination Therapy. Cancer Discov 2024; 14:965-981. [PMID: 38315003 PMCID: PMC11147720 DOI: 10.1158/2159-8290.cd-23-0110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Epigenetic dependencies have become evident in many cancers. On the basis of antagonism between BAF/SWI-SNF and PRC2 in SMARCB1-deficient sarcomas, we recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics and diverse experimental models, we define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient tumors. We found distinct acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell-cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest, suggests a general mechanism for effective therapy, and provides prospective biomarkers for therapy stratification, including PRICKLE1. On the basis of this, we develop a combination strategy to circumvent tazemetostat resistance using bypass targeting of AURKB. This offers a paradigm for rational epigenetic combination therapy suitable for translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers. SIGNIFICANCE Genomic studies of patient epithelioid sarcomas and rhabdoid tumors identify mutations converging on a common pathway for response to EZH2 inhibition. Resistance mutations decouple drug-induced differentiation from cell-cycle control. We identify an epigenetic combination strategy to overcome resistance and improve durability of response, supporting its investigation in clinical trials. See related commentary by Paolini and Souroullas, p. 903. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Yaniv Kazansky
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen S. Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
7
|
Volaric AK, Kumar J, Nicholas V, Saleem A, Fernandez-Pol S, Suarez CJ, Natkunam Y. Targeted mutational profiling of Epstein Barr virus-positive mucocutaneous ulcer: Implications for differential diagnosis with EBV-positive diffuse large B-cell lymphoma. Ann Diagn Pathol 2024; 73:152344. [PMID: 38820910 DOI: 10.1016/j.anndiagpath.2024.152344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Epstein Barr Virus-positive mucocutaneous ulcer (EBVMCU) can be difficult to distinguish from EBV-positive diffuse large B cell lymphoma (DLBCL). We used targeted next-generation sequencing (NGS) to explore genetic alterations in EBVMCU to aid in this diagnostic challenge. Ten cases of EBVMCU were evaluated by a targeted NGS panel of 164 genes. Targeted NGS identified 18 variants in 15 genes in eight cases of EBVMCU. Loss of function TET2 variants were most frequently identified (3 of 10 cases, 30 %). One TET2 variant occurred at low variant allele frequency (VAF) of 3 %, which may be suggestive of clonal hematopoiesis of indeterminate potential. One case harbored a loss of function DNMT3A variant at low VAF. Two cases demonstrated missense variants in the IRF8 gene. Both variants occurred at a VAF close to 50 % and with an estimated high burden of disease (75 %). Two cases of mucosal gastrointestinal involvement had no reportable variants. Mutational profiling of EBVMCU identified TET2 loss of function variants at an elevated frequency in our cohort; however, the findings are not specific and its clinical significance cannot be completely elucidated. Further studies are needed to confirm the findings in an independent and larger cohort of EBVMCU, to determine the cell of origin of the variants, and to further assess their significance in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Ashley K Volaric
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Jyoti Kumar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Veronica Nicholas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Atif Saleem
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Sebastian Fernandez-Pol
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Carlos J Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America.
| |
Collapse
|
8
|
Witte H, Künstner A, Gebauer N. Update: The molecular spectrum of virus-associated high-grade B-cell non-Hodgkin lymphomas. Blood Rev 2024; 65:101172. [PMID: 38267313 DOI: 10.1016/j.blre.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
The vast spectrum of aggressive B-cell non-Hodgkin neoplasms (B-NHL) encompasses several infrequent entities occurring in association with viral infections, posing diagnostic challenges for practitioners. In the emerging era of precision oncology, the molecular characterization of malignancies has acquired paramount significance. The pathophysiological comprehension of specific entities and the identification of targeted therapeutic options have seen rapid development. However, owing to their rarity, not all entities have undergone exhaustive molecular characterization. Considerable heterogeneity exists in the extant body of work, both in terms of employed methodologies and the scale of cases studied. Presently, therapeutic strategies are predominantly derived from observations in diffuse large B-cell lymphoma (DLBCL), the most prevalent subset of aggressive B-NHL. Ongoing investigations into the molecular profiles of these uncommon virus-associated entities are progressively facilitating a clearer distinction from DLBCL, ultimately paving the way towards individualized therapeutic approaches. This review consolidates the current molecular insights into aggressive and virus-associated B-NHL, taking into consideration the recently updated 5th edition of the WHO classification of hematolymphoid tumors (WHO-5HAEM) and the International Consensus Classification (ICC). Additionally, potential therapeutically targetable susceptibilities are highlighted, offering a comprehensive overview of the present scientific landscape in the field.
Collapse
Affiliation(s)
- H Witte
- Department of Hematology and Oncology, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany; Department of Hematology and Oncology, University Hospital Schleswig-Holstein (UKSH) Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - A Künstner
- University Cancer Center Schleswig-Holstein (UCCSH), Ratzeburger Allee 160, 23538 Lübeck, Germany; Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - N Gebauer
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein (UKSH) Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; University Cancer Center Schleswig-Holstein (UCCSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
9
|
Sánchez-Beato M, Méndez M, Guirado M, Pedrosa L, Sequero S, Yanguas-Casás N, de la Cruz-Merino L, Gálvez L, Llanos M, García JF, Provencio M. A genetic profiling guideline to support diagnosis and clinical management of lymphomas. Clin Transl Oncol 2024; 26:1043-1062. [PMID: 37672206 PMCID: PMC11026206 DOI: 10.1007/s12094-023-03307-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
The new lymphoma classifications (International Consensus Classification of Mature Lymphoid Neoplasms, and 5th World Health Organization Classification of Lymphoid Neoplasms) include genetics as an integral part of lymphoma diagnosis, allowing better lymphoma subclassification, patient risk stratification, and prediction of treatment response. Lymphomas are characterized by very few recurrent and disease-specific mutations, and most entities have a heterogenous genetic landscape with a long tail of recurrently mutated genes. Most of these occur at low frequencies, reflecting the clinical heterogeneity of lymphomas. Multiple studies have identified genetic markers that improve diagnostics and prognostication, and next-generation sequencing is becoming an essential tool in the clinical laboratory. This review provides a "next-generation sequencing" guide for lymphomas. It discusses the genetic alterations of the most frequent mature lymphoma entities with diagnostic, prognostic, and predictive potential and proposes targeted sequencing panels to detect mutations and copy-number alterations for B- and NK/T-cell lymphomas.
Collapse
Affiliation(s)
- Margarita Sánchez-Beato
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain.
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain.
| | - Miriam Méndez
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - María Guirado
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital General Universitario de Elche, Alicante, Spain
| | - Lucía Pedrosa
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Silvia Sequero
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario San Cecilio, Granada, Spain
| | - Natalia Yanguas-Casás
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Luis de la Cruz-Merino
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Facultad de Medicina, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBID)/CSIC, Seville, Spain
| | - Laura Gálvez
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | - Marta Llanos
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario de Canarias, La Laguna, Sta. Cruz de Tenerife, Spain
| | - Juan Fernando García
- Servicio de Anatomía Patológica, Hospital MD Anderson Cancer Center, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Departamento de Medicina, Facultad de Medicina, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| |
Collapse
|
10
|
Medeiros LJ, Chadburn A, Natkunam Y, Naresh KN. Fifth Edition of the World Health Classification of Tumors of the Hematopoietic and Lymphoid Tissues: B-cell Neoplasms. Mod Pathol 2024; 37:100441. [PMID: 38309432 DOI: 10.1016/j.modpat.2024.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
We review B-cell neoplasms in the 5th edition of the World Health Organization classification of hematolymphoid tumors (WHO-HEM5). The revised classification is based on a multidisciplinary approach including input from pathologists, clinicians, and other experts. The WHO-HEM5 follows a hierarchical structure allowing the use of family (class)-level definitions when defining diagnostic criteria are partially met or a complete investigational workup is not possible. Disease types and subtypes have expanded compared with the WHO revised 4th edition (WHO-HEM4R), mainly because of the expansion in genomic knowledge of these diseases. In this review, we focus on highlighting changes and updates in the classification of B-cell lymphomas, providing a comparison with WHO-HEM4R, and offering guidance on how the new classification can be applied to the diagnosis of B-cell lymphomas in routine practice.
Collapse
Affiliation(s)
- L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle; Section of Pathology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle
| |
Collapse
|
11
|
Rogges E, Pelliccia S, Savio C, Lopez G, Della Starza I, La Verde G, Di Napoli A. Molecular Features of HHV8 Monoclonal Microlymphoma Associated with Kaposi Sarcoma and Multicentric Castleman Disease in an HIV-Negative Patient. Int J Mol Sci 2024; 25:3775. [PMID: 38612584 PMCID: PMC11011749 DOI: 10.3390/ijms25073775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Human herpesvirus 8 (HHV8)-associated diseases include Kaposi sarcoma (KS), multicentric Castleman disease (MCD), germinotropic lymphoproliferative disorder (GLPD), Kaposi sarcoma inflammatory cytokine syndrome (KICS), HHV8-positive diffuse large B-cell lymphoma (HHV8+ DLBCL), primary effusion lymphoma (PEL), and extra-cavitary PEL (ECPEL). We report the case of a human immunodeficiency virus (HIV)-negative male treated for cutaneous KS, who developed generalized lymphadenopathy, hepatosplenomegaly, pleural and abdominal effusions, renal insufficiency, and pancytopenia. The excised lymph node showed features of concomitant involvement by micro-KS and MCD, with aggregates of HHV8+, Epstein Barr virus (EBV)-negative, IgM+, and lambda+ plasmablasts reminiscent of microlymphoma. Molecular investigations revealed a somatically hypermutated (SHM) monoclonal rearrangement of the immunoglobulin heavy chain (IGH), accounting for 4% of the B-cell population of the lymph node. Mutational analyses identified a pathogenic variant of KMT2D and variants of unknown significance in KMT2D, FOXO1, ARID1A, and KMT2A. The patient died shortly after surgery. The histological features (HHV8+, EBV-, IgM+, Lambda+, MCD+), integrated with the molecular findings (monoclonal IGH, SHM+, KMT2D mutated), supported the diagnosis of a monoclonal HHV8+ microlymphoma, with features intermediate between an incipient HHV8+ DLBCL and an EBV-negative ECPEL highlighting the challenges in the accurate classification of HHV8-driven lymphoid proliferations.
Collapse
Affiliation(s)
- Evelina Rogges
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, PhD School in Translational Medicine and Oncology, Sapienza University of Rome, 00189 Rome, Italy;
| | - Sabrina Pelliccia
- Hematology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (S.P.); (G.L.V.)
| | - Camilla Savio
- Medical Genetics Unit, Department of Diagnostic Sciences, Sant’Andrea University Hospital, 00189 Rome, Italy;
| | - Gianluca Lopez
- Pathology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giacinto La Verde
- Hematology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (S.P.); (G.L.V.)
| | - Arianna Di Napoli
- Pathology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| |
Collapse
|
12
|
Kim JH, Park C, Kim WS. Lysine demethylase LSD1 is associated with stemness in EBV-positive B cell lymphoma. Sci Rep 2024; 14:6764. [PMID: 38514636 PMCID: PMC10957933 DOI: 10.1038/s41598-024-55113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
EBV-infected lymphoma has a poor prognosis and various treatment strategies are being explored. Reports suggesting that B cell lymphoma can be induced by epigenetic regulation have piqued interest in studying mechanisms targeting epigenetic regulation. Here, we set out to identify an epigenetic regulator drug that acts synergistically with doxorubicin in EBV-positive lymphoma. We expressed the major EBV protein, LMP1, in B-cell lymphoma cell lines and used them to screen 100 epigenetic modifiers in combination with doxorubicin. The screening results identified TCP, which is an inhibitor of LSD1. Further analyses revealed that LMP1 increased the activity of LSD1 to enhance stemness ability under doxorubicin treatment, as evidenced by colony-forming and ALDEFLUOR activity assays. Quantseq 3' mRNA sequencing analysis of potential targets regulated by LSD1 in modulating stemness revealed that the LMP1-induced upregulation of CHAC2 was decreased when LSD1 was inhibited by TCP or downregulated by siRNA. We further observed that SOX2 expression was altered in response to CHAC2 expression, suggesting that stemness is regulated. Collectively, these findings suggest that LSD1 inhibitors could serve as promising therapeutic candidates for EBV-positive lymphoma, potentially reducing stemness activity when combined with conventional drugs to offer an effective treatment approach.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea
| | - Chaehwa Park
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Won Seog Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Seoul, 06351, Korea.
| |
Collapse
|
13
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Zhang Y, Guo W, Zhan Z, Bai O. Carcinogenic mechanisms of virus-associated lymphoma. Front Immunol 2024; 15:1361009. [PMID: 38482011 PMCID: PMC10932979 DOI: 10.3389/fimmu.2024.1361009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/12/2024] [Indexed: 04/17/2024] Open
Abstract
The development of lymphoma is a complex multistep process that integrates numerous experimental findings and clinical data that have not yet yielded a definitive explanation. Studies of oncogenic viruses can help to deepen insight into the pathogenesis of lymphoma, and identifying associations between lymphoma and viruses that are established and unidentified should lead to cellular and pharmacologically targeted antiviral strategies for treating malignant lymphoma. This review focuses on the pathogenesis of lymphomas associated with hepatitis B and C, Epstein-Barr, and human immunodeficiency viruses as well as Kaposi sarcoma-associated herpesvirus to clarify the current status of basic information and recent advances in the development of virus-associated lymphomas.
Collapse
Affiliation(s)
| | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Liu F, Tian S, Liu Q, Deng Y, He Q, Shi Q, Chen G, Xu X, Yuan J, Nakamura S, Karube K, Wang Z. Comparison of genomic alterations in Epstein-Barr virus-positive and Epstein-Barr virus-negative diffuse large B-cell lymphoma. Cancer Med 2024; 13:e6995. [PMID: 38457199 PMCID: PMC10922027 DOI: 10.1002/cam4.6995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/30/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV-posDLBCL) is an aggressive B-cell lymphoma that often presents similar morphological and immune phenotype features to that of EBV-negative DLBCL (EBV-negDLBCL). AIMS AND METHODS To better understand their difference in genomic landscape, we performed whole-exome sequencing (WES) of EBV-posDLBCL and EBV-negDLBCL. RESULTS This analysis revealed a new mutational signature 17 (unknown) and signature 29 (smoking) in EBV-posDLBCL as well as a specific mutational signature 24 (associated with aflatoxin) in EBV-negDLBCL. Compared with EBV-negDLBCL, more somatic copy number alterations (CNAs) and deletions were detected in EBV-posDLBCL (p = 0.01). The most frequent CNAs specifically detected in EBV-posDLBCL were gains at 9p24.1 (PDL1 and JAK2), 8q22.2-q24.23 (DEPTOR and MYC), and 7q31.31-q32.2 (MET), which were validated in additional EBV-posDLBCL cases. Overall, 53.7% (22/41) and 62.9% (22/35) of the cases expressed PD-L1 and c-MET, respectively, in neoplastic cells, whereas only 15.4% (4/26) expressed c-MYC. Neoplastic c-MET expression was positively correlated with PD-L1 (p < 0.001) and MYC expression (p = 0.016). However, EBV-posDLBCL cases did not show any differences in overall survival between PD-L1-, c-MET-, or c-MYC-positive and -negative cases or between age-related groups. Analysis of the association between somatic mutation load and EBV status showed no difference in the distribution of tumor mutant burden between the two lymphomas (p = 0.41). Recurrent mutations in EBV-posDLBCL implicated several genes, including DCAF8L1, KLF2, and NOL9, while in EBV-negDLBCL, ANK2, BPTF, and CNIH3 were more frequently mutated. Additionally, PIM1 is the most altered gene in all the WES-detected cases. CONCLUSIONS Our results confirm that genomic alteration differs significantly between EBV-posDLBCL and EBV-negDLBCL, and reveal new genetic alterations in EBV-posDLBCL. The positive correlation of c-MET and PD-L1/c-Myc expression may be involved in the pathogenesis of EBV-posDLBCL, which is should be explored prospectively in trials involving MET-directed therapies.
Collapse
Affiliation(s)
- Fang Liu
- Department of PathologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Sufang Tian
- Department of Pathology and Molecular Diagnostics, Zhongnan HospitalWuhan UniversityWuhanHubeiChina
| | - Qing Liu
- Department of PathologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Yuanfei Deng
- Department of PathologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Qingyan He
- Department of PathologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Qianyun Shi
- Department of Pathology, Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingJiangsuChina
| | - Gang Chen
- Department of PathologyFujian Province Cancer CenterFuzhouFujianChina
| | - Xiuli Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing HospitalFourth Military Medical UniversityXi'anShannxiChina
| | - Jiayin Yuan
- Department of PathologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Shigeo Nakamura
- Department of Pathology and Clinical LaboratoriesNagoya University HospitalNagoyaJapan
| | - Kennosuke Karube
- Department of Pathology and Clinical LaboratoriesNagoya University HospitalNagoyaJapan
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing HospitalFourth Military Medical UniversityXi'anShannxiChina
| |
Collapse
|
16
|
Bednarska K, Chowdhury R, Tobin JWD, Swain F, Keane C, Boyle S, Khanna R, Gandhi MK. Epstein-Barr virus-associated lymphomas decoded. Br J Haematol 2024; 204:415-433. [PMID: 38155519 DOI: 10.1111/bjh.19255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Epstein-Barr virus (EBV)-associated lymphomas cover a range of histological B- and T-cell non-Hodgkin and Hodgkin lymphoma subtypes. The role of EBV on B-cell malignant pathogenesis and its impact on the tumour microenvironment are intriguing but incompletely understood. Both the International Consensus Classification (ICC) and 5th Edition of the World Health Organization (WHO-HAEM5) proposals give prominence to the distinct clinical, prognostic, genetic and tumour microenvironmental features of EBV in lymphoproliferative disorders. There have been major advances in our biological understanding, in how to harness features of EBV and its host immune response for targeted therapy, and in using EBV as a method to monitor disease response. In this article, we showcase the latest developments and how they may be integrated to stimulate new and innovative approaches for further lines of investigation and therapy.
Collapse
Affiliation(s)
- Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rakin Chowdhury
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Joshua W D Tobin
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Fiona Swain
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Colm Keane
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Stephen Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maher K Gandhi
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Li JW, Deng C, Zhou XY, Deng R. The biology and treatment of Epstein-Barr virus-positive diffuse large B cell lymphoma, NOS. Heliyon 2024; 10:e23921. [PMID: 38234917 PMCID: PMC10792184 DOI: 10.1016/j.heliyon.2023.e23921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
EBV positive Diffuse Large B-cell lymphoma, not otherwise specified (EBV+DLBCL-NOS) referred to DLBCL with expression of EBV encoded RNA in tumor nucleus. EBV+DLBCL-NOS patients present with more advanced clinical stages and frequent extranodal involvement. Although rituximab-containing immunochemotherapy regimens can significantly improve outcomes in patients with EBV+DLBCL, the best first-line treatment needs to be further explored. Due to the relatively low incidence and regional variation of EBV+DLBCL-NOS, knowledge about this particular subtype of lymphoma remains limited. Some signaling pathways was abnormally activated in EBV+DLBCL-NOS, including NF-κB and JAK/STAT pathways) and other signal transduction pathways. In addition, immune processes such as interferon response, antigen-presenting system and immune checkpoint molecule abnormalities were also observed. Currently, chimeric antigen receptor T-cell (CAR-T) therapy, chemotherapy combined with immunotherapy and novel targeted therapeutic drugs are expected to improve the prognosis of EBV+DLBCL-NOS patients, but more studies are needed to confirm this.
Collapse
Affiliation(s)
- Ji-Wei Li
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Chao Deng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Renfang Deng
- Department of Oncology, The Second Hospital of Zhuzhou City, Zhuzhou, 412000, China
| |
Collapse
|
18
|
Chen BJ, Hsieh TH, Yuan CT, Wang RC, Yang CF, Chuang WY, Su YZ, Ho CH, Lin CH, Chuang SS. Clinicopathological and genetic landscape of plasmablastic lymphoma in Taiwan. Pathol Res Pract 2024; 253:155059. [PMID: 38160484 DOI: 10.1016/j.prp.2023.155059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Plasmablastic lymphoma (PBL) is an aggressive large B-cell lymphoma with a terminal B-cell differentiation phenotype and is frequently associated with immunodeficiency. We aimed to investigate the clinicopathological and immunophenotypic features, genetic alterations, and mutational landscape of PBL in Taiwan. We retrospectively recruited 26 cases. Five (5/18; 28%) patients were HIV-positive and 21 (81%) presented extranodally. There were two morphological groups: one with purely monomorphic large cells (85%) and the other comprising large cells admixed with plasmacytic cells (15%). Phenotypically, the tumors expressed MYC (8/10; 80%), CD138 (20/26; 77%), and MUM1 (20/20; 100%), but not CD20 (n = 26; 0%). Fourteen (54%) cases were positive for EBV by in situ hybridization; the EBV-positive cases were more frequently HIV infected (p = 0.036), with extranodal presentation (p = 0.012) and CD79a expression (p = 0.012), but less frequent light chain restriction (p = 0.029). Using fluorescence in situ hybridization, we identified 13q14 deletion, MYC rearrangement, and CCND1 rearrangement in 74%, 30%, and 5% cases, respectively, without any cases having rearranged BCL6 or IGH::FGFR3 fusion. In the 15 cases with adequate tissue for whole exome sequencing, the most frequent recurrent mutations were STAT3 (40%), NRAS (27%), and KRAS (20%). In conclusion, most PBL cases in Taiwan were HIV-unrelated. Around half of the cases were positive for EBV, with distinct clinicopathological features. Deletion of chromosome 13q14 was frequent. The PBL cases in Taiwan showed recurrent mutations involving JAK-STAT, RAS-MAPK, epigenetic regulation, and NOTCH signaling pathways, findings similar to that from the West.
Collapse
Affiliation(s)
- Bo-Jung Chen
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Chang-Tsu Yuan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan; Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Ren Ching Wang
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Fen Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Yu Chuang
- School of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Zhen Su
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Information Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | | | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
19
|
Kazansky Y, Cameron D, Mueller HS, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Kuwahara Y, Somwar R, Ladanyi M, Qu R, De Stanchina E, Dela Cruz FS, Kung AL, Gounder M, Kentsis A. Overcoming clinical resistance to EZH2 inhibition using rational epigenetic combination therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527192. [PMID: 36798379 PMCID: PMC9934575 DOI: 10.1101/2023.02.06.527192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Essential epigenetic dependencies have become evident in many cancers. Based on the functional antagonism between BAF/SWI/SNF and PRC2 in SMARCB1-deficient sarcomas, we and colleagues recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics of patient tumors and diverse experimental models, we sought to define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient sarcomas and rhabdoid tumors. We found distinct classes of acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest despite EZH2 inhibition, and suggests a general mechanism for effective EZH2 therapy. This also enables us to develop combination strategies to circumvent tazemetostat resistance using cell cycle bypass targeting via AURKB, and synthetic lethal targeting of PGBD5-dependent DNA damage repair via ATR. This reveals prospective biomarkers for therapy stratification, including PRICKLE1 associated with tazemetostat resistance. In all, this work offers a paradigm for rational epigenetic combination therapy suitable for immediate translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers.
Collapse
|
20
|
Kaulen LD, Denisova E, Hinz F, Hai L, Friedel D, Henegariu O, Hoffmann DC, Ito J, Kourtesakis A, Lehnert P, Doubrovinskaia S, Karschnia P, von Baumgarten L, Kessler T, Baehring JM, Brors B, Sahm F, Wick W. Integrated genetic analyses of immunodeficiency-associated Epstein-Barr virus- (EBV) positive primary CNS lymphomas. Acta Neuropathol 2023; 146:499-514. [PMID: 37495858 PMCID: PMC10412493 DOI: 10.1007/s00401-023-02613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Immunodeficiency-associated primary CNS lymphoma (PCNSL) represents a distinct clinicopathological entity, which is typically Epstein-Barr virus-positive (EBV+) and carries an inferior prognosis. Genetic alterations that characterize EBV-related CNS lymphomagenesis remain unclear precluding molecular classification and targeted therapies. In this study, a comprehensive genetic analysis of 22 EBV+ PCNSL, therefore, integrated clinical and pathological information with exome and RNA sequencing (RNASeq) data. EBV+ PCNSL with germline controls carried a median of 55 protein-coding single nucleotide variants (SNVs; range 24-217) and 2 insertions/deletions (range 0-22). Genetic landscape was largely shaped by aberrant somatic hypermutation with a median of 41.01% (range 31.79-53.49%) of SNVs mapping to its target motifs. Tumors lacked established SNVs (MYD88, CD79B, PIM1) and copy number variants (CDKN2A, HLA loss) driving EBV- PCNSL. Instead, EBV+ PCNSL were characterized by SOCS1 mutations (26%), predicted to disinhibit JAK/STAT signaling, and mutually exclusive gain-of-function NOTCH pathway SNVs (26%). Copy number gains were enriched on 11q23.3, a locus directly targeted for chromosomal aberrations by EBV, that includes SIK3 known to protect from cytotoxic T-cell responses. Losses covered 5q31.2 (STING), critical for sensing viral DNA, and 17q11 (NF1). Unsupervised clustering of RNASeq data revealed two distinct transcriptional groups, that shared strong expression of CD70 and IL1R2, previously linked to tolerogenic tumor microenvironments. Correspondingly, deconvolution of bulk RNASeq data revealed elevated M2-macrophage, T-regulatory cell, mast cell and monocyte fractions in EBV+ PCNSL. In addition to novel insights into the pathobiology of EBV+ PCNSL, the data provide the rationale for the exploration of targeted therapies including JAK-, NOTCH- and CD70-directed approaches.
Collapse
Affiliation(s)
- Leon D Kaulen
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Evgeniya Denisova
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Hinz
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Ling Hai
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dennis Friedel
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Dirk C Hoffmann
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jakob Ito
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Alexandros Kourtesakis
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Pascal Lehnert
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sofia Doubrovinskaia
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Tobias Kessler
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Joachim M Baehring
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Neurology, Yale School of Medicine, New Haven, USA
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Kurz KS, Ott M, Kalmbach S, Steinlein S, Kalla C, Horn H, Ott G, Staiger AM. Large B-Cell Lymphomas in the 5th Edition of the WHO-Classification of Haematolymphoid Neoplasms-Updated Classification and New Concepts. Cancers (Basel) 2023; 15:cancers15082285. [PMID: 37190213 DOI: 10.3390/cancers15082285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The family/class of the large B-cell lymphomas (LBCL) in the 5th edition of the World Health Organization (WHO) classification of haematolymphoid tumors (WHO-HAEM5) features only a few major changes as compared to the 4th edition. In most entities, there are only subtle changes, many of them only representing some minor modifications in diagnostic terms. Major changes have been made in the diffuse large B-cell lymphomas (DLBCL)/high-grade B-cell lymphomas (HGBL) associated with MYC and BCL2 and/or BCL6 rearrangements. This category now consists of MYC and BCL2 rearranged cases exclusively, while the MYC/BCL6 double hit lymphomas now constitute genetic subtypes of DLBCL, not otherwise specified (NOS) or of HGBL, NOS. Other major changes are the conceptual merger of lymphomas arising in immune-privileged sites and the description of LBCL arising in the setting of immune dysregulation/deficiency. In addition, novel findings concerning underlying biological mechanisms in the pathogenesis of the different entities are provided.
Collapse
Affiliation(s)
- Katrin S Kurz
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Michaela Ott
- Department of Pathology, Marienhospital, 70199 Stuttgart, Germany
| | - Sabrina Kalmbach
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Sophia Steinlein
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Claudia Kalla
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Heike Horn
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| |
Collapse
|
22
|
Ross AM, Leahy CI, Neylon F, Steigerova J, Flodr P, Navratilova M, Urbankova H, Vrzalikova K, Mundo L, Lazzi S, Leoncini L, Pugh M, Murray PG. Epstein-Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma. Life (Basel) 2023; 13:521. [PMID: 36836878 PMCID: PMC9967091 DOI: 10.3390/life13020521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells and we address the germinal centre model of infection and how this can lead to lymphoma in some instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that end, we also explore the unique genetic background of this entity and briefly discuss the potential role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to improve patient stratification, treatment strategies, and outcomes.
Collapse
Affiliation(s)
- Aisling M. Ross
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ciara I. Leahy
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Fiona Neylon
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jana Steigerova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| | - Patrik Flodr
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Martina Navratilova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Helena Urbankova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky Univesity and University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Katerina Vrzalikova
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucia Mundo
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul G. Murray
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| |
Collapse
|
23
|
Williams MV, Mena-Palomo I, Cox B, Ariza ME. EBV dUTPase: A Novel Modulator of Inflammation and the Tumor Microenvironment in EBV-Associated Malignancies. Cancers (Basel) 2023; 15:855. [PMID: 36765813 PMCID: PMC9913121 DOI: 10.3390/cancers15030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
There is increasing evidence that put into question the classical dogma that the Epstein-Barr virus (EBV) exists in cells as either a lytic virus in which new progeny is produced or in a latent state in which no progeny is produced. Notably, a third state has now been described, known as the abortive-lytic phase, which is characterized by the expression of some immediate early (IE) and early (E) genes, but no new virus progeny is produced. While the function of these IE and E gene products is not well understood, several recent studies support the concept they may contribute to tumor promotion by altering the tumor microenvironment (TME). The mechanisms by which these viral gene products may contribute to tumorigenesis remain unclear; however, it has been proposed that some of them promote cellular growth, immune evasion, and/or inhibit apoptosis. One of these EBV early gene products is the deoxyuridine triphosphate nucleotidohydrolase (dUTPase) encoded by BLLF3, which not only contributes to the establishment of latency through the production of activin A and IL-21, but it may also alter the TME, thus promoting oncogenesis.
Collapse
Affiliation(s)
- Marshall V. Williams
- Department of Cancer Biology and Genetics (CBG), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Institute for Behavioral Medicine Research (IBMR), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Irene Mena-Palomo
- Institute for Behavioral Medicine Research (IBMR), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Brandon Cox
- Institute for Behavioral Medicine Research (IBMR), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Maria Eugenia Ariza
- Department of Cancer Biology and Genetics (CBG), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Institute for Behavioral Medicine Research (IBMR), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
24
|
New concepts in EBV-associated B, T, and NK cell lymphoproliferative disorders. Virchows Arch 2023; 482:227-244. [PMID: 36216980 PMCID: PMC9852222 DOI: 10.1007/s00428-022-03414-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
EBV-associated lymphoproliferative disorders (LPD) include conditions of B, T, and NK cell derivation with a wide clinicopathological spectrum ranging from indolent, self-limiting, and localized conditions to highly aggressive lymphomas. Since the 2016 World Health Organization (WHO) lymphoma classification, progress has been made in understanding the biology of the EBV-associated LPDs. The diagnostic criteria of EBV+ mucocutaneous ulcer and lymphomatoid granulomatosis have been refined, and a new category of EBV-positive polymorphic B cell LPD was introduced to encompass the full spectrum of EBV-driven B cell disorders. The differential diagnosis of these conditions is challenging. This report will present criteria to assist the pathologist in diagnosis. Within the group of EBV-associated T and NK cell lymphomas, a new provisional entity is recognized, namely, primary nodal EBV+ T or NK cell lymphoma. The EBV + T and NK cell LPDs in children have undergone major revisions. In contrast to the 2016 WHO classification, now four major distinct groups are recognized: hydroa vacciniforme (HV) LPD, severe mosquito bite allergy, chronic active EBV (CAEBV) disease, and systemic EBV-positive T cell lymphoma of childhood. Two forms of HV LPD are recognized: the classic and the systemic forms with different epidemiology, clinical presentation, and prognosis. The subclassification of PTLD, not all of which are EBV-positive, remains unaltered from the 2016 WHO classification. This review article summarizes the conclusions and the recommendations of the Clinical Advisory Committee (CAC), which are summarized in the International Consensus Classification of Mature Lymphoid Neoplasms.
Collapse
|
25
|
Ward BJH, Schaal DL, Nkadi EH, Scott RS. EBV Association with Lymphomas and Carcinomas in the Oral Compartment. Viruses 2022; 14:2700. [PMID: 36560704 PMCID: PMC9783324 DOI: 10.3390/v14122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus infecting approximately 90% of the world's population. The oral cavity serves a central role in the life cycle, transmission, and pathogenesis of EBV. Transmitted to a new host via saliva, EBV circulates between cellular compartments within oral lymphoid tissues. Epithelial cells primarily support productive viral replication, while B lymphocytes support viral latency and reactivation. EBV infections are typically asymptomatic and benign; however, the latent virus is associated with multiple lymphomas and carcinomas arising in the oral cavity. EBV association with cancer is complex as histologically similar cancers often test negative for the virus. However, the presence of EBV is associated with distinct features in certain cancers. The intrinsic ability of EBV to immortalize B-lymphocytes, via manipulation of survival and growth signaling, further implicates the virus as an oncogenic cofactor. A distinct mutational profile and burden have been observed in EBV-positive compared to EBV-negative tumors, suggesting that viral infection can drive alternative pathways that converge on oncogenesis. Taken together, EBV is also an important prognostic biomarker that can direct alternative therapeutic approaches. Here, we discuss the prevalence of EBV in oral malignancies and the EBV-dependent mechanisms associated with tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Rona S. Scott
- Department of Microbiology and Immunology, Center for Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
26
|
Luo H, Liu D, Liu W, Jin J, Bi X, Zhang P, Gu J, Zheng M, Xiao M, Liu X, Zhou J, Wang QF. Clinical and genetic characterization of Epstein-Barr virus-associated T/NK-cell lymphoproliferative diseases. J Allergy Clin Immunol 2022; 151:1096-1109. [PMID: 36423698 DOI: 10.1016/j.jaci.2022.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV)-associated T-/natural killer (T/NK)-cell lymphoproliferative diseases clinically take on various forms, ranging from an indolent course to an aggressive condition. OBJECTIVE Clinically, failure to establish precise diagnosis and provide proper treatment makes it difficult to help patients. We sought to better understand the underlying pathogenesis and to identify genetic prognostic factors to achieve better treatment efficacy. METHODS In this study, 119 cases of EBV-associated lymphoproliferative diseases, including EBV-associated hemophagocytic lymphohistiocytosis (n = 46) and chronic active EBV disease of T/NK cell type (n = 73), were retrospectively examined. RESULTS Adults aged >20 years at onset accounted for 71.4% of our cohort. About 54.6% patients with unfavorable overall survival developed hemophagocytic lymphohistiocytosis and had higher plasma EBV load. Allogenic hematopoietic stem-cell transplantation was the sole independent favorable factor. We systematically screened germline and somatic aberrations by whole-exome and targeted sequencing. Among 372 antiviral immunity genes, germline variants of 8 genes were significantly enriched. From a panel of 24 driver genes, somatic mutations were frequently identified in dominant EBV-infected T/NK cells. Patients carrying any germline/somatic aberrations in epigenetic modifiers and RIG-I-like receptor (RLR) pathway had worse overall survival than those without 2 type aberrations. Importantly, patients with IFIH1 and/or DDX3X aberrations in the RLR pathway had higher plasma and NK-cell EBV load. Knockdown of DDX3X in NKYS cells downregulated RLR signaling activities and elevated the expression of EBV-encoded oncogenes such as LMP1 and EBNA1. CONCLUSION Genetic defects were prevalent in adult EBV-associated hemophagocytic lymphohistiocytosis patients and patients with chronic active EBV disease of T/NK cell type; these defects were associated with unfavorable prognosis. These findings can help clinicians work out more precise staging of the condition and provide new insights into these EBV-associated diseases.
Collapse
Affiliation(s)
- Hui Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Dan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Wenbing Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jin Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Xiaoman Bi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peiling Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Jia Gu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Miao Zheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Xin Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Zhang F, Li W, Cui Q, Chen Y, Liu Y. Case Report: Immune Microenvironment and Mutation Features in a Patient With Epstein–Barr Virus Positive Large B-Cell Lymphoma Secondary to Angioimmunoblastic T-Cell Lymphoma. Front Genet 2022; 13:940513. [PMID: 35938041 PMCID: PMC9354849 DOI: 10.3389/fgene.2022.940513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 01/24/2023] Open
Abstract
On rare occasions, secondary Epstein–Barr virus (EBV)-associated B-cell lymphoma can develop in patients with angioimmunoblastic T-cell lymphoma (AITL). Here, we describe the tumor microenvironment and mutation features of a patient with EBV + large B-cell lymphoma (LBCL) secondary to AITL. He was admitted to hospital due to a 1-year history of fever and enlarged right inguinal lymph nodes. A biopsy of the right inguinal lymph node demonstrated that numerous diffuse medium-sized atypical lymphocytes proliferated, together with increased extrafollicular follicular dendritic cell meshwork, and the lymphocytes expressed CD3, CD4, BCL6, CD10, PD-1, CXCL13, and Ki-67 (75%). Thus, a diagnosis of AITL was made. However, the disease progressed following treatment by CHOP regimen (cyclophosphamide, adriamycin, vincristine, and prednisone). Biopsy showed that most of the cells were positive for CD20 staining and IgH rearrangement. Analysis of 22 kinds of immune cells showed that the numbers of activated NK cells and activated memory T cells increased, while the T-follicular helper population decreased in the transformed sample. In addition, compared with the primary sample, RHOA (G17V) mutation was not detected, while JAK2 and TRIP12 gene mutations were detected in the transformed sample. Overall, we described the immune microenvironment and mutation features of a patient with EBV + LBCL secondary to AITL. This study will help us to understand the mechanisms by which AITL transforms to B-cell lymphoma.
Collapse
|
28
|
Genomic characterization of lymphomas in patients with inborn errors of immunity. Blood Adv 2022; 6:5403-5414. [PMID: 35687490 PMCID: PMC9631701 DOI: 10.1182/bloodadvances.2021006654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 11/20/2022] Open
Abstract
Inborn errors of immunity-associated lymphomas are characterized by distinct clinical features and genetic signatures. Both germline and somatic alterations contribute to lymphomagenesis in patients with inborn errors of immunity.
Patients with inborn errors of immunity (IEI) have a higher risk of developing cancer, especially lymphoma. However, the molecular basis for IEI-related lymphoma is complex and remains elusive. Here, we perform an in-depth analysis of lymphoma genomes derived from 23 IEI patients. We identified and validated disease-causing or -associated germline mutations in 14 of 23 patients involving ATM, BACH2, BLM, CD70, G6PD, NBN, PIK3CD, PTEN, and TNFRSF13B. Furthermore, we profiled somatic mutations in the lymphoma genome and identified 8 genes that were mutated at a significantly higher level in IEI-associated diffuse large B-cell lymphomas (DLBCLs) than in non-IEI DLBCLs, such as BRCA2, NCOR1, KLF2, FAS, CCND3, and BRWD3. The latter, BRWD3, is furthermore preferentially mutated in tumors of a subgroup of activated phosphoinositide 3-kinase δ syndrome patients. We also identified 5 genomic mutational signatures, including 2 DNA repair deficiency-related signatures, in IEI-associated lymphomas and a strikingly high number of inter- and intrachromosomal structural variants in the tumor genome of a Bloom syndrome patient. In summary, our comprehensive genomic characterization of lymphomas derived from patients with rare genetic disorders expands our understanding of lymphomagenesis and provides new insights for targeted therapy.
Collapse
|
29
|
C-C Chemokine Receptor 7 in Cancer. Cells 2022; 11:cells11040656. [PMID: 35203305 PMCID: PMC8870371 DOI: 10.3390/cells11040656] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
C-C chemokine receptor 7 (CCR7) was one of the first two chemokine receptors that were found to be upregulated in breast cancers. Chemokine receptors promote chemotaxis of cells and tissue organization. Since under homeostatic conditions, CCR7 promotes migration of immune cells to lymph nodes, questions immediately arose regarding the ability of CCR7 to direct migration of cancer cells to lymph nodes. The literature since 2000 was examined to determine to what extent the expression of CCR7 in malignant tumors promoted migration to the lymph nodes. The data indicated that in different cancers, CCR7 plays distinct roles in directing cells to lymph nodes, the skin or to the central nervous system. In certain tumors, it may even serve a protective role. Future studies should focus on defining mechanisms that differentially regulate the unfavorable or beneficial role that CCR7 plays in cancer pathophysiology, to be able to improve outcomes in patients who harbor CCR7-positive cancers.
Collapse
|
30
|
Bosch-Schips J, Granai M, Quintanilla-Martinez L, Fend F. The Grey Zones of Classic Hodgkin Lymphoma. Cancers (Basel) 2022; 14:cancers14030742. [PMID: 35159009 PMCID: PMC8833496 DOI: 10.3390/cancers14030742] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Classic Hodgkin lymphoma (CHL) is a well-defined lymphoid neoplasm with a minority of characteristic neoplastic cells of B cell origin, namely Hodgkin and Reed–Sternberg cells immersed in a rich reactive inflammatory infiltrate in the background. Although CHL has always been set apart from non-Hodgkin lymphomas, cases with morphological and phenotypic features intermediate between CHL and other lymphomas have been described. Whereas some of these lymphomas only represent morphological mimics, others exhibit mutational and gene expression profiles which overlap with CHL, indicating that these cases, frequently termed grey zone lymphomas, reside on the biological boundary between CHL and large B-cell lymphomas. In the present review, we aim to describe the current knowledge of these rare lymphomas, address diagnostic issues and summarize today’s concepts on the classification of grey zone lymphomas and related tumors. Abstract Classic Hodgkin lymphoma (CHL) is a well-defined neoplasm characterized by the presence of a minority of pathognomonic Hodgkin and Reed–Sternberg (HRS) cells in a reactive inflammatory background. Although genotypically of B cell origin, HRS cells exhibit a downregulated B cell program and therefore are set apart from other B cell lymphomas in the current WHO classification. However, cases with morphological and phenotypic features overlapping with CHL have been recognized, and the category of B cell lymphoma—unclassifiable—with features intermediate between diffuse large B cell lymphoma (DLBCL) and CHL, also termed grey zone lymphoma, was first introduced into the WHO classification in 2008 as provisional entity. These cases, as well as others raising a differential diagnosis of CHL can present diagnostic problems, as well as therapeutic challenges. Whereas some of these lymphomas only represent biologically unrelated morphological mimics, others, especially mediastinal grey zone lymphoma, exhibit genetic and gene expression profiles which overlap with CHL, indicating a true biological relationship. In this review, we address areas of diagnostic difficulties between CHL and other lymphoma subtypes, discuss the biological basis of true grey zone lymphoma based on recent molecular studies and delineate current concepts for the classification of these rare tumors.
Collapse
Affiliation(s)
- Jan Bosch-Schips
- Institute of Pathology and Neuropathology, Tübingen University Hospital and Comprehensive Cancer Center Tübingen-Stuttgart, 72076 Tübingen, Germany; (J.B.-S.); (M.G.); (L.Q.-M.)
- Department of Pathology, Hospital Universitari de Bellvitge—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Massimo Granai
- Institute of Pathology and Neuropathology, Tübingen University Hospital and Comprehensive Cancer Center Tübingen-Stuttgart, 72076 Tübingen, Germany; (J.B.-S.); (M.G.); (L.Q.-M.)
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Tübingen University Hospital and Comprehensive Cancer Center Tübingen-Stuttgart, 72076 Tübingen, Germany; (J.B.-S.); (M.G.); (L.Q.-M.)
| | - Falko Fend
- Institute of Pathology and Neuropathology, Tübingen University Hospital and Comprehensive Cancer Center Tübingen-Stuttgart, 72076 Tübingen, Germany; (J.B.-S.); (M.G.); (L.Q.-M.)
- Correspondence: ; Tel.: +49-7071-2982266
| |
Collapse
|
31
|
Witte HM, Künstner A, Hertel N, Bernd HW, Bernard V, Stölting S, Merz H, von Bubnoff N, Busch H, Feller AC, Gebauer N. Integrative genomic and transcriptomic analysis in plasmablastic lymphoma identifies disruption of key regulatory pathways. Blood Adv 2022; 6:637-651. [PMID: 34714908 PMCID: PMC8791589 DOI: 10.1182/bloodadvances.2021005486] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmablastic lymphoma (PBL) represents a clinically heterogeneous subtype of aggressive B-cell non-Hodgkin lymphoma. Targeted-sequencing studies and a single-center whole-exome sequencing (WES) study in HIV-positive patients recently revealed several genes associated with PBL pathogenesis; however, the global mutational landscape and transcriptional profile of PBL remain elusive. To inform on disease-associated mutational drivers, mutational patterns, and perturbed pathways in HIV-positive and HIV-negative PBL, we performed WES and transcriptome sequencing (RNA-sequencing) of 33 PBL tumors. Integrative analysis of somatic mutations and gene expression profiles was performed to acquire insights into the divergent genotype-phenotype correlation in Epstein-Barr virus-positive (EBV+) and EBV- PBL. We describe a significant accumulation of mutations in the JAK signal transducer and transcription activator (OSMR, STAT3, PIM1, and SOCS1), as well as receptor tyrosine-kinase RAS (ERBB3, NRAS, PDGFRB, and NTRK) pathways. We provide further evidence of frequent perturbances of NF-κB signaling (NFKB2 and BTK). Induced pathways, identified by RNA-sequencing, closely resemble the mutational profile regarding alterations accentuated in interleukin-6/JAK/STAT signaling, NF-κB activity, and MYC signaling. Moreover, class I major histocompatibility complex-mediated antigen processing and cell cycle regulation were significantly affected by EBV status. An almost exclusive upregulation of phosphatidylinositol 3-kinase/AKT/mTOR signaling in EBV+ PBL and a significantly induced expression of NTRK3 in concert with recurrent oncogenic mutations in EBV- PBL hint at a specific therapeutically targetable mechanism in PBL subgroups. Our characterization of a mutational and transcriptomic landscape in PBL, distinct from that of diffuse large B-cell lymphoma and multiple myeloma, substantiates the pathobiological independence of PBL in the spectrum of B-cell malignancies and thereby refines the taxonomy for aggressive lymphomas.
Collapse
Affiliation(s)
- Hanno M. Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Axel Künstner
- Medical Systems Biology Group, and
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Nadine Hertel
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Heinz-Wolfram Bernd
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Stephanie Stölting
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Hauke Busch
- Medical Systems Biology Group, and
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Alfred C. Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| |
Collapse
|
32
|
Wang H, Zhang J, Lu Z, Dai W, Ma C, Xiang Y, Zhang Y. Identification of potential therapeutic targets and mechanisms of COVID-19 through network analysis and screening of chemicals and herbal ingredients. Brief Bioinform 2022; 23:bbab373. [PMID: 34505138 PMCID: PMC8499921 DOI: 10.1093/bib/bbab373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
After experiencing the COVID-19 pandemic, it is widely acknowledged that a rapid drug repurposing method is highly needed. A series of useful drug repurposing tools have been developed based on data-driven modeling and network pharmacology. Based on the disease module, we identified several hub proteins that play important roles in the onset and development of the COVID-19, which are potential targets for repositioning approved drugs. Moreover, different network distance metrics were applied to quantify the relationship between drug targets and COVID-19 disease targets in the protein-protein-interaction (PPI) network and predict COVID-19 therapeutic effects of bioactive herbal ingredients and chemicals. Furthermore, the tentative mechanisms of candidates were illustrated through molecular docking and gene enrichment analysis. We obtained 15 chemical and 15 herbal ingredient candidates and found that different drugs may play different roles in the process of virus invasion and the onset and development of the COVID-19 disease. Given pandemic outbreaks, our method has an undeniable immense advantage in the feasibility analysis of drug repurposing or drug screening, especially in the analysis of herbal ingredients.
Collapse
Affiliation(s)
- Hong Wang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Engineering Research Center for Clinical Big-data and Drug Evaluation, Chongqing Medical University, Chongqing, 401331, China
| | - Jingqing Zhang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Zhigang Lu
- Department of Neurology, The First People's Hospital of Jingmen affiliated to Hubei Minzu University, Jingmen, 448000, China
| | - Weina Dai
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Chuanjiang Ma
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Xiang
- Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Yonghong Zhang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Engineering Research Center for Clinical Big-data and Drug Evaluation, Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
33
|
Cuesta-Mateos C, Terrón F, Herling M. CCR7 in Blood Cancers - Review of Its Pathophysiological Roles and the Potential as a Therapeutic Target. Front Oncol 2021; 11:736758. [PMID: 34778050 PMCID: PMC8589249 DOI: 10.3389/fonc.2021.736758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
According to the classical paradigm, CCR7 is a homing chemokine receptor that grants normal lymphocytes access to secondary lymphoid tissues such as lymph nodes or spleen. As such, in most lymphoproliferative disorders, CCR7 expression correlates with nodal or spleen involvement. Nonetheless, recent evidence suggests that CCR7 is more than a facilitator of lymphatic spread of tumor cells. Here, we review published data to catalogue CCR7 expression across blood cancers and appraise which classical and novel roles are attributed to this receptor in the pathogenesis of specific hematologic neoplasms. We outline why novel therapeutic strategies targeting CCR7 might provide clinical benefits to patients with CCR7-positive hematopoietic tumors.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto la Princesa (IIS-IP), Madrid, Spain.,Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Fernando Terrón
- Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Marco Herling
- Clinic of Hematology and Cellular Therapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|