1
|
Khodaei A, Nawaz Q, Zhu Z, Amin Yavari S, Weinans H, Boccaccini AR. Biomolecule and Ion Releasing Mesoporous Nanoparticles: Nonconvergent Osteogenic and Osteo-immunogenic Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67491-67503. [PMID: 39576881 DOI: 10.1021/acsami.4c17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Immune-involved cell communications have recently been introduced as key role players in the fate of mesenchymal stem cells in making bone tissue. In this study, a drug delivery system for bone (re)generation based on copper-doped mesoporous bioactive glass nanoparticles (BGNPs) was developed to codeliver copper as a biologically active ion and icariin as an anti-inflammatory agent. This design was based on temporal inflammation fluctuations from proinflammatory to anti-inflammatory during bone generation. Three in vitro models were performed with human mesenchymal stem cells (hMSCs) to verify the osteo-immunomodulatory effects of released copper ions and icariin: nonstimulated, co-conditioned with macrophage medium and co-cultured with macrophages. Both icariin and copper showed increased levels of alkaline phosphatase activation, indicating a direct osteogenic effect. Copper-doped BGNPs showed the highest increase of osteo-immunogenic properties in a mineralization assay and also induced short-term inflammation. However, the mineralization dropped in copper doped BGNPs after loading with icariin due to copper-icariin chelate formation and inhibition of the early inflammatory phase in the immune-stimulated in vitro models. In the absence of copper, the direct osteogenic properties of icariin overtook its osteo-immunogenic inhibition and increased calcification. Overall, BGNPs doped with 5 mol % copper and no icariin showed the highest bone-forming capacity.
Collapse
Affiliation(s)
- Azin Khodaei
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
- Department of Orthopedics, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands
| | - Qaisar Nawaz
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Zhengqing Zhu
- Department of Orthopedics, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, Utrecht University, 3508GA Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Rossi M, Terreri S, Battafarano G, Rana I, Buonuomo PS, Di Giuseppe L, D'Agostini M, Porzio O, Di Gregorio J, Cipriani C, Jenkner A, Gonfiantini MV, Bartuli A, Del Fattore A. Analysis of circulating osteoclast and osteogenic precursors in patients with Gorham-Stout disease. J Endocrinol Invest 2024; 47:2775-2784. [PMID: 38556572 DOI: 10.1007/s40618-024-02365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE Gorham-Stout disease is a very rare disorder characterized by progressive bone erosion and angiomatous proliferation; its etiopathogenesis is still unknown, and diagnosis is still performed by exclusion criteria. The alteration of bone remodeling activity has been reported in patients; in this study, we characterized circulating osteoclast and osteogenic precursors that could be important to better understand the osteolysis observed in patients. METHODS Flow cytometry analysis of PBMC (Peripheral Blood Mononuclear Cells) was performed to characterize circulating osteoclast and osteogenic precursors in GSD patients (n = 9) compared to healthy donors (n = 55). Moreover, ELISA assays were assessed to evaluate serum levels of bone markers including RANK-L (Receptor activator of NF-κB ligand), OPG (Osteoprotegerin), BALP (Bone Alkaline Phosphatase) and OCN (Osteocalcin). RESULTS We found an increase of CD16-/CD14+CD11b+ and CD115+/CD14+CD11b+ osteoclast precursors in GSD patients, with high levels of serum RANK-L that could reflect the increase of bone resorption activity observed in patients. Moreover, no significant alterations were found regarding osteogenic precursors and serum levels of BALP and OCN. CONCLUSION The analysis of circulating bone cell precursors, as well as of RANK-L, could be relevant as an additional diagnostic tool for these patients and could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- M Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy
| | - S Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy
| | - G Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy
| | - I Rana
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P S Buonuomo
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - L Di Giuseppe
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - M D'Agostini
- Clinical Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - O Porzio
- Clinical Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - J Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Cristiana Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - A Jenkner
- Pediatric Palliative Care Center, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M V Gonfiantini
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Bartuli
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
3
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Wang DX, Yang ZS, Li DC, Li YD, Wang Y, Chen YL, Tang ZL. Promotion of mandibular distraction osteogenesis by parathyroid hormone via macrophage polarization induced through iNOS downregulation. Heliyon 2024; 10:e38564. [PMID: 39449705 PMCID: PMC11497452 DOI: 10.1016/j.heliyon.2024.e38564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Objective To investigate whether Parathyroid hormone (PTH) can promote mandibular distraction osteogenesis by regulating macrophage polarization and the underlying mechanisms of this phenomenon. Methods Forty-eight Rabbits were used to establish the mandibular distraction osteogenesis experimental model, randomly divided into 2 groups. Intermittent post-operative injections of 20 μg/kg PTH and normal saline were administered to the experimental and control groups, respectively. Regenerated new bone was examined using HE staining, osteoclast numbers were determined through tartrate-resistant acid phosphatase (TRAP) staining, and macrophage polarization markers arginase 1 (Arg1) and inducible nitric oxide synthase (iNOS) expressions were elucidated using immunohistochemistry (IHC), the mRNA expression of CD206, CD11C, Arg1 and iNOS were detected using qPCR. Results The bone trabeculae in the experimental group were thicker, with a more homogeneous structure and more new osteoid than in the control group. In the area of distraction osteogenesis, the osteoclast count in the experimental group was higher than in the control group (P < 0.05). IHC results indicated differential expressions of Arg1 and iNOS in the experimental group compared to the control group (P < 0.05). Relative mRNA expressions of CD11c and iNOS were lower in the experimental group than in the control group (P < 0.05), whereas the expressions of CD206 and Arg1 mRNA were higher in the experimental group compared to the control group (P < 0.05). Conclusion Intermittent PTH injections increased macrophage quantity in the mandible generated by distraction osteogenesis, downregulated iNOS, upregulated Arg1, and promoted macrophage polarization from M1 to M2 phenotype, thereby promoting mandibular distraction osteogenesis.
Collapse
Affiliation(s)
- Dong-xiang Wang
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhi-shan Yang
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Du-chenhui Li
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yong-di Li
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Wang
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - You-li Chen
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zheng-long Tang
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Liu Y, Chen H, Chen T, Qiu G, Han Y. The emerging role of osteoclasts in the treatment of bone metastases: rationale and recent clinical evidence. Front Oncol 2024; 14:1445025. [PMID: 39148909 PMCID: PMC11324560 DOI: 10.3389/fonc.2024.1445025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
The occurrence of bone metastasis is a grave medical concern that substantially impacts the quality of life in patients with cancer. The precise mechanisms underlying bone metastasis remain unclear despite extensive research efforts, and efficacious therapeutic interventions are currently lacking. The ability of osteoclasts to degrade the bone matrix makes them a crucial factor in the development of bone metastasis. Osteoclasts are implicated in several aspects of bone metastasis, encompassing the formation of premetastatic microenvironment, suppression of the immune system, and reactivation of quiescent tumor cells. Contemporary clinical interventions targeting osteoclasts have proven effective in mitigating bone-related symptoms in patients with cancer. This review comprehensively analyzes the mechanistic involvement of osteoclasts in bone metastasis, delineates potential therapeutic targets associated with osteoclasts, and explores clinical evidence regarding interventions targeting osteoclasts.
Collapse
Affiliation(s)
- Youjun Liu
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Huanshi Chen
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Tong Chen
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Guowen Qiu
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Zhao Y, Liu Y, Jia L. Gut microbial dysbiosis and inflammation: Impact on periodontal health. J Periodontal Res 2024. [PMID: 38991951 DOI: 10.1111/jre.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Periodontitis is widely acknowledged as the most prevalent type of oral inflammation, arising from the dynamic interplay between oral pathogens and the host's immune responses. It is also recognized as a contributing factor to various systemic diseases. Dysbiosis of the oral microbiota can significantly alter the composition and diversity of the gut microbiota. Researchers have delved into the links between periodontitis and systemic diseases through the "oral-gut" axis. However, whether the associations between periodontitis and the gut microbiota are simply correlative or driven by causative mechanistic interactions remains uncertain. This review investigates how dysbiosis of the gut microbiota impacts periodontitis, drawing on existing preclinical and clinical data. This study highlights potential mechanisms of this interaction, including alterations in subgingival microbiota, oral mucosal barrier function, neutrophil activity, and abnormal T-cell recycling, and offers new perspectives for managing periodontitis, especially in cases linked to systemic diseases.
Collapse
Affiliation(s)
- Yifan Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Ashkenazi-Preiser H, Reuven O, Uzan-Yulzari A, Komisarov S, Cirkin R, Turjeman S, Even C, Twaik N, Ben-Meir K, Mikula I, Cohen-Daniel L, Meirow Y, Pikarsky E, Louzoun Y, Koren O, Baniyash M. The Cross-talk Between Intestinal Microbiota and MDSCs Fuels Colitis-associated Cancer Development. CANCER RESEARCH COMMUNICATIONS 2024; 4:1063-1081. [PMID: 38506672 PMCID: PMC11017962 DOI: 10.1158/2767-9764.crc-23-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/24/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Intestinal chronic inflammation is associated with microbial dysbiosis and accumulation of various immune cells including myeloid-derived suppressor cells (MDSC), which profoundly impact the immune microenvironment, perturb homeostasis and increase the risk to develop colitis-associated colorectal cancer (CAC). However, the specific MDSCs-dysbiotic microbiota interactions and their collective impact on CAC development remain poorly understood. In this study, using a murine model of CAC, we demonstrate that CAC-bearing mice exhibit significantly elevated levels of highly immunosuppressive MDSCs, accompanied by microbiota alterations. Both MDSCs and bacteria that infiltrate the colon tissue and developing tumors can be found in close proximity, suggesting intricate MDSC-microbiota cross-talk within the tumor microenvironment. To investigate this phenomenon, we employed antibiotic treatment to disrupt MDSC-microbiota interactions. This intervention yielded a remarkable reduction in intestinal inflammation, decreased MDSC levels, and alleviated immunosuppression, all of which were associated with a significant reduction in tumor burden. Furthermore, we underscore the causative role of dysbiotic microbiota in the predisposition toward tumor development, highlighting their potential as biomarkers for predicting tumor load. We shed light on the intimate MDSCs-microbiota cross-talk, revealing how bacteria enhance MDSC suppressive features and activities, inhibit their differentiation into mature beneficial myeloid cells, and redirect some toward M2 macrophage phenotype. Collectively, this study uncovers the role of MDSC-bacteria cross-talk in impairing immune responses and promoting tumor growth, providing new insights into potential therapeutic strategies for CAC. SIGNIFICANCE MDSCs-dysbiotic bacteria interactions in the intestine play a crucial role in intensifying immunosuppression within the CAC microenvironment, ultimately facilitating tumor growth, highlighting potential therapeutic targets for improving the treatment outcomes of CAC.
Collapse
Affiliation(s)
- Hadas Ashkenazi-Preiser
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Or Reuven
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | - Sharon Komisarov
- Department of mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Roy Cirkin
- Department of mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Carmel Even
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Nira Twaik
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Kerem Ben-Meir
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Ivan Mikula
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Leonor Cohen-Daniel
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Yaron Meirow
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Eli Pikarsky
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Yoram Louzoun
- Department of mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Michal Baniyash
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| |
Collapse
|
9
|
Wu J, Niu L, Yang K, Xu J, Zhang D, Ling J, Xia P, Wu Y, Liu X, Liu J, Zhang J, Yu P. The role and mechanism of RNA-binding proteins in bone metabolism and osteoporosis. Ageing Res Rev 2024; 96:102234. [PMID: 38367813 DOI: 10.1016/j.arr.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis is a prevalent chronic metabolic bone disease that poses a significant risk of fractures or mortality in elderly individuals. Its pathophysiological basis is often attributed to postmenopausal estrogen deficiency and natural aging, making the progression of primary osteoporosis among elderly people, especially older women, seemingly inevitable. The treatment and prevention of osteoporosis progression have been extensively discussed. Recently, as researchers delve deeper into the molecular biological mechanisms of bone remodeling, they have come to realize the crucial role of posttranscriptional gene control in bone metabolism homeostasis. RNA-binding proteins, as essential actors in posttranscriptional activities, may exert influence on osteoporosis progression by regulating the RNA life cycle. This review compiles recent findings on the involvement of RNA-binding proteins in abnormal bone metabolism in osteoporosis and describes the impact of some key RNA-binding proteins on bone metabolism regulation. Additionally, we explore the potential and rationale for modulating RNA-binding proteins as a means of treating osteoporosis, with an overview of drugs that target these proteins.
Collapse
Affiliation(s)
- Jiaqiang Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Liyan Niu
- HuanKui College of Nanchang University, Nanchang 330006, China
| | - Kangping Yang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jingdong Xu
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Jing Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Peng Yu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China.
| |
Collapse
|
10
|
Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory Processes Affecting Bone Health and Repair. Curr Osteoporos Rep 2023; 21:842-853. [PMID: 37759135 PMCID: PMC10842967 DOI: 10.1007/s11914-023-00824-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.
Collapse
Affiliation(s)
- Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Biomedical Engineering and Physiology Track/Regenerative Sciences Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Jang AR, Lee YJ, Kim DY, Lee TS, Jung DH, Kim YJ, Seo IS, Ahn JH, Song EJ, Oh J, Li A, Song S, Kim HS, Kang MJ, Seo Y, Cho JY, Park JH. Water Extract of Desalted Salicornia europaea Inhibits RANKL-Induced Osteoclast Differentiation and Prevents Bone Loss in Ovariectomized Mice. Nutrients 2023; 15:4968. [PMID: 38068826 PMCID: PMC10708358 DOI: 10.3390/nu15234968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoporosis, which is often associated with increased osteoclast activity due to menopause or aging, was the main focus of this study. We investigated the inhibitory effects of water extract of desalted Salicornia europaea L. (WSE) on osteoclast differentiation and bone loss in ovariectomized mice. Our findings revealed that WSE effectively inhibited RANKL-induced osteoclast differentiation, as demonstrated by TRAP staining, and also suppressed bone resorption and F-actin ring formation in a dose-dependent manner. The expression levels of genes related to osteoclast differentiation, including NFATc1, ACP5, Ctsk, and DCSTAMP, were downregulated by WSE. Oral administration of WSE improved bone density and structural parameters in ovariectomized mice. Dicaffeoylquinic acids (DCQAs) and saponins were detected in WSE, with 3,4-DCQA, 3,5-DCQA, and 4,5-DCQA being isolated and identified. All tested DCQAs, including the aforementioned types, inhibited osteoclast differentiation, bone resorption, and the expression of osteoclast-related genes. Furthermore, WSE and DCQAs reduced ROS production mediated by RANKL. These results indicate the potential of WSE and its components, DCQAs, as preventive or therapeutic agents against osteoporosis and related conditions.
Collapse
Affiliation(s)
- Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine, Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
- NODCURE, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Yun-Ji Lee
- Laboratory Animal Medicine, College of Veterinary Medicine, Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Yeon Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine, Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine, Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeong-Jun Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Su Seo
- Laboratory Animal Medicine, College of Veterinary Medicine, Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine, Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun-Jung Song
- NODCURE, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jisu Oh
- NODCURE, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Aoding Li
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - SiHoon Song
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Min-Jung Kang
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
- NODCURE, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
12
|
Skubica P, Husakova M, Dankova P. In vitro osteoclastogenesis in autoimmune diseases - Strengths and pitfalls of a tool for studying pathological bone resorption and other disease characteristics. Heliyon 2023; 9:e21925. [PMID: 38034780 PMCID: PMC10682642 DOI: 10.1016/j.heliyon.2023.e21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Osteoclasts play a critical role in bone pathology frequently associated with autoimmune diseases. Studying the etiopathogenesis of these diseases and their clinical manifestations can involve in vitro osteoclastogenesis, an experimental technique that utilizes osteoclast precursors that are relatively easily accessible from peripheral blood or synovial fluid. However, the increasing number of methodical options to study osteoclastogenesis in vitro poses challenges in translating findings to clinical research and practice. This review compares and critically evaluates previous research work based on in vitro differentiation of human osteoclast precursors originating from patients, which aimed to explain autoimmune pathology in rheumatic and enteropathic diseases. The discussion focuses primarily on methodical differences between the studies, including the origin of osteoclast precursors, culture conditions, and methods for identifying osteoclasts and assessing their activity. Additionally, the review examines the clinical significance of the three most commonly used in vitro approaches: induced osteoclastogenesis, spontaneous osteoclastogenesis, and cell co-culture. By analyzing and integrating the gathered information, this review proposes general connections between different studies, even in cases where their results are seemingly contradictory. The derived conclusions and future directions aim to enhance our understanding of a potential and limitations of in vitro osteoclastogenesis and provide a foundation for discussing novel methods (such as osteoclastogenesis dynamic) and standardized approaches (such as spontaneous osteoclastogenesis) for future use in autoimmune disease research.
Collapse
Affiliation(s)
- Patrik Skubica
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Marketa Husakova
- First Faculty of Medicine, Charles University, Prague and Institute of Rheumatology, Prague, Czech Republic
| | - Pavlina Dankova
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Hascoët E, Blanchard F, Blin-Wakkach C, Guicheux J, Lesclous P, Cloitre A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res 2023; 11:26. [PMID: 37217496 DOI: 10.1038/s41413-023-00257-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases leading to increased bone resorption. Preventing this inflammatory bone resorption is a major health challenge. Both diseases share immunopathogenic similarities and a common inflammatory environment. The autoimmune response or periodontal infection stimulates certain immune actors, leading in both cases to chronic inflammation that perpetuates bone resorption. Moreover, RA and periodontitis have a strong epidemiological association that could be explained by periodontal microbial dysbiosis. This dysbiosis is believed to be involved in the initiation of RA via three mechanisms. (i) The dissemination of periodontal pathogens triggers systemic inflammation. (ii) Periodontal pathogens can induce the generation of citrullinated neoepitopes, leading to the generation of anti-citrullinated peptide autoantibodies. (iii) Intracellular danger-associated molecular patterns accelerate local and systemic inflammation. Therefore, periodontal dysbiosis could promote or sustain bone resorption in distant inflamed joints. Interestingly, in inflammatory conditions, the existence of osteoclasts distinct from "classical osteoclasts" has recently been reported. They have proinflammatory origins and functions. Several populations of osteoclast precursors have been described in RA, such as classical monocytes, a dendritic cell subtype, and arthritis-associated osteoclastogenic macrophages. The aim of this review is to synthesize knowledge on osteoclasts and their precursors in inflammatory conditions, especially in RA and periodontitis. Special attention will be given to recent data related to RA that could be of potential value in periodontitis due to the immunopathogenic similarities between the two diseases. Improving our understanding of these pathogenic mechanisms should lead to the identification of new therapeutic targets involved in the pathological inflammatory bone resorption associated with these diseases.
Collapse
Affiliation(s)
- Emilie Hascoët
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Frédéric Blanchard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | | | - Jérôme Guicheux
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
| | - Philippe Lesclous
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Alexandra Cloitre
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| |
Collapse
|
14
|
Tsai J, Kaneko K, Suh AJ, Bockman R, Park-Min KH. Origin of Osteoclasts: Osteoclast Precursor Cells. J Bone Metab 2023; 30:127-140. [PMID: 37449346 PMCID: PMC10346003 DOI: 10.11005/jbm.2023.30.2.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells and a key player in bone remodeling for health and disease. Since the discovery of osteoclasts in 1873, the structure and function of osteoclasts and the molecular and cellular mechanisms of osteoclastogenesis have been extensively studied. Moreover, it has been well established that osteoclasts are differentiated in vitro from myeloid cells such as bone marrow macrophages or monocytes. The concept showing that osteoclasts are derived from a specific population (named osteoclast precursor cells [OCPs]) among myeloid cells has been long hypothesized. However, the specific precursor population of osteoclasts is not clearly defined yet. A growing body of work provides evidence of the developmental origin and lifespan of murine osteoclasts, particularly in vivo. Here, we review the emerging evidence that supports the existence of OCPs and discuss current insights into their identity.
Collapse
Affiliation(s)
- Jefferson Tsai
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
| | - Kaichi Kaneko
- Division of Rheumatology, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba,
Japan
| | - Andrew J. Suh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
| | - Richard Bockman
- Division of Endocrinology and Metabolism, Hospital for Special Surgery, New York, NY,
USA
- Department of Medicine, Weill Cornell Medical College, New York, NY,
USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
- Department of Medicine, Weill Cornell Medical College, New York, NY,
USA
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY,
USA
| |
Collapse
|
15
|
Zhang H, Liesveld JL, Calvi LM, Lipe BC, Xing L, Becker MW, Schwarz EM, Yeh SCA. The roles of bone remodeling in normal hematopoiesis and age-related hematological malignancies. Bone Res 2023; 11:15. [PMID: 36918531 PMCID: PMC10014945 DOI: 10.1038/s41413-023-00249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Prior research establishing that bone interacts in coordination with the bone marrow microenvironment (BMME) to regulate hematopoietic homeostasis was largely based on analyses of individual bone-associated cell populations. Recent advances in intravital imaging has suggested that the expansion of hematopoietic stem cells (HSCs) and acute myeloid leukemia cells is restricted to bone marrow microdomains during a distinct stage of bone remodeling. These findings indicate that dynamic bone remodeling likely imposes additional heterogeneity within the BMME to yield differential clonal responses. A holistic understanding of the role of bone remodeling in regulating the stem cell niche and how these interactions are altered in age-related hematological malignancies will be critical to the development of novel interventions. To advance this understanding, herein, we provide a synopsis of the cellular and molecular constituents that participate in bone turnover and their known connections to the hematopoietic compartment. Specifically, we elaborate on the coupling between bone remodeling and the BMME in homeostasis and age-related hematological malignancies and after treatment with bone-targeting approaches. We then discuss unresolved questions and ambiguities that remain in the field.
Collapse
Affiliation(s)
- Hengwei Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Jane L Liesveld
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura M Calvi
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Endocrinology/Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | - Brea C Lipe
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael W Becker
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Allergy/Immunology/Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Shu-Chi A Yeh
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Physiology/Pharmacology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
16
|
Heat-Killed Staphylococcus aureus Induces Bone Mass Loss through Telomere Erosion. Int J Mol Sci 2023; 24:ijms24043179. [PMID: 36834587 PMCID: PMC9960843 DOI: 10.3390/ijms24043179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The mechanism of systemic osteoporosis caused by chronic infection is not completely clear, and there is a lack of reasonable interventions for this disease. In this study, heat-killed S. aureus (HKSA) was applied to simulate the inflammation caused by the typical clinical pathogen and to explore the mechanism of systemic bone loss caused by it. In this study, we found that the systemic application of HKSA caused bone loss in mice. Further exploration found that HKSA caused cellular senescence, telomere length shortening, and telomere dysfunction-induced foci (TIF) in limb bones. As a well-known telomerase activator, cycloastragenol (CAG) significantly alleviated HKSA-induced telomere erosion and bone loss. These results suggested that telomere erosion in bone marrow cells is a possible mechanism of HKSA-induced bone loss. CAG may protect against HKSA-induced bone loss by alleviating telomere erosion in bone marrow cells.
Collapse
|
17
|
Guo J, Wang F, Hu Y, Luo Y, Wei Y, Xu K, Zhang H, Liu H, Bo L, Lv S, Sheng S, Zhuang X, Zhang T, Xu C, Chen X, Su J. Exosome-based bone-targeting drug delivery alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel diseases. Cell Rep Med 2023; 4:100881. [PMID: 36603578 PMCID: PMC9873828 DOI: 10.1016/j.xcrm.2022.100881] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
Systematic bone loss is commonly complicated with inflammatory bowel diseases (IBDs) with unclear pathogenesis and uncertain treatment. In experimental colitis mouse models established by dextran sulfate sodium and IL-10 knockout induced with piroxicam, bone mass and quality are significantly decreased. Colitis mice demonstrate a lower bone formation rate and fewer osteoblasts in femur. Bone marrow mesenchymal stem/stromal cells (BMSCs) from colitis mice tend to differentiate into adipocytes rather than osteoblasts. Serum from patients with IBD promotes adipogenesis of human BMSCs. RNA sequencing reveals that colitis downregulates Wnt signaling in BMSCs. For treatment, exosomes with Golgi glycoprotein 1 inserted could carry Wnt agonist 1 and accumulate in bone via intravenous administration. They could alleviate bone loss, promote bone formation, and accelerate fracture healing in colitis mice. Collectively, BMSC commitment in inflammatory microenvironment contributes to lower bone quantity and quality and could be rescued by redirecting differentiation toward osteoblasts through bone-targeted drug delivery.
Collapse
Affiliation(s)
- Jiawei Guo
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Ying Luo
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Lumin Bo
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shunli Lv
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shihao Sheng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xinchen Zhuang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tao Zhang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Can Xu
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Organoid Research Center, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
18
|
Abstract
Osteoclasts are the only cells that can efficiently resorb bone. They do so by sealing themselves on to bone and removing the mineral and organic components. Osteoclasts are essential for bone homeostasis and are involved in the development of diseases associated with decreased bone mass, like osteoporosis, or abnormal bone turnover, like Paget's disease of bone. In addition, compromise of their development or resorbing machinery is pathogenic in multiple types of osteopetrosis. However, osteoclasts also have functions other than bone resorption. Like cells of the innate immune system, they are derived from myeloid precursors and retain multiple immune cell properties. In addition, there is now strong evidence that osteoclasts regulate osteoblasts through a process known as coupling, which coordinates rates of bone resorption and bone formation during bone remodeling. In this article we review the non-resorbing functions of osteoclasts and highlight their importance in health and disease.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Joseph Lorenzo
- The Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
19
|
Sharma N, Weivoda MM, Søe K. Functional Heterogeneity Within Osteoclast Populations-a Critical Review of Four Key Publications that May Change the Paradigm of Osteoclasts. Curr Osteoporos Rep 2022; 20:344-355. [PMID: 35838878 DOI: 10.1007/s11914-022-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW In this review, we critically evaluate the literature for osteoclast heterogeneity, including heterogeneity in osteoclast behavior, which has hitherto been unstudied and has only recently come to attention. We give a critical review centered on four recent high-impact papers on this topic and aim to shed light on the elusive biology of osteoclasts and focus on the variant features of osteoclasts that diverge from the classical viewpoint. RECENT FINDINGS Osteoclasts originate from the myeloid lineage and are best known for their unique ability to resorb bone. For decades, osteoclasts have been defined simply as multinucleated cells positive for tartrate-resistant acid phosphatase activity and quantified relative to the bone perimeter or surface in histomorphometric analyses. However, several recent, high-profile studies have demonstrated the existence of heterogeneous osteoclast populations, with variable origins and functions depending on the microenvironment. This includes long-term persisting osteoclasts, inflammatory osteoclasts, recycling osteoclasts (osteomorphs), and bone resorption modes. Most of these findings have been revealed through murine studies and have helped identify new targets for human studies. These studies have also uncovered distinct sets of behavioral patterns in heterogeneous osteoclast cultures. The underlying osteoclast heterogeneity likely drives differences in bone remodeling, altering patient risk for osteoporosis and fracture. Thus, identifying the underlying key features of osteoclast heterogeneity may help in better targeting bone diseases.
Collapse
Affiliation(s)
- Neha Sharma
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 1. Floor, 5000, Odense C, Denmark
| | | | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.
- Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 1. Floor, 5000, Odense C, Denmark.
| |
Collapse
|
20
|
Livshits G, Kalinkovich A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci 2022; 306:120847. [PMID: 35908619 DOI: 10.1016/j.lfs.2022.120847] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Systemic, chronic, low-grade inflammation (SCLGI) underlies the pathogenesis of various widespread diseases. It is often associated with bone loss, thus connecting chronic inflammation to the pathogenesis of osteoporosis. In postmenopausal women, osteoporosis is accompanied by SCLGI development, likely owing to estrogen deficiency. We propose that SCGLI persistence in osteoporosis results from failed inflammation resolution, which is mainly mediated by specialized, pro-resolving mediators (SPMs). In corroboration, SPMs demonstrate encouraging therapeutic effects in various preclinical models of inflammatory disorders, including bone pathology. Since numerous data implicate gut dysbiosis in osteoporosis-associated chronic inflammation, restoring balanced microbiota by supplementing probiotics and prebiotics could contribute to the efficient resolution of SCGLI. In the present review, we provide evidence for this hypothesis and argue that efficient SCGLI resolution may serve as a novel approach for treating osteoporosis, complementary to traditional anti-osteoporotic medications.
Collapse
Affiliation(s)
- Gregory Livshits
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|