1
|
Srivastava E, Qayoom I, Kumar A. Reduced Graphene Oxide-Substituted Nanohydroxyapatite: Rejuvenating Bone-Nerve Crosstalk with Electrical Cues in a Fragility Fracture Rat Model under Hyperglycemia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59738-59751. [PMID: 39467155 DOI: 10.1021/acsami.4c10206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Diabetes has currently acquired the status of epidemic worldwide, and among its various pathological consequences like retinopathy and nephropathy, bone fragility fractures from diabetic osteopathy occurs in later stages and is equally destructive. Chronic hyperglycemia culminates into deteriorating microvasculature and quality of bone, making it prone to fractures. Among these, hip fractures are most common, especially in older diabetic patients apart from underlying neuropathy. Our study is an attempt to ameliorate hip fragility fracture and nerve trauma with electrical stimulation as an interface in a chronic diabetic rat model. We have fabricated reduced graphene oxide-substituted hydroxyapatite as an electroactive bone substitute and incorporated it into chitosan gelatin cryogels. The in situ reduction of graphene oxide during sintering of hydroxyapatite imparts higher potential to the fabricated composite in dealing with problem at question. The cryogels depicted optimum in vitro biocompatibility and enhanced mineralization after ectopic subcutaneous implantation in rats. The therapeutic potency of composite cryogels was evaluated in a hip fracture model with compression to the sciatic nerve in diabetic rats, mimicking the severe clinical trauma. The presence of cryogels in the femoral neck canal coupled with electrical stimulation and biochemical factors significantly improved bone regeneration in diabetic rats as depicted with microcomputed tomography analysis and histology images. The application of electrical stimulation also ameliorated the nerve trauma observed with 70% improvement in electrophysiological parameters such as the compound muscle action potential with combinatorial therapy. We therefore report the successful implication of a multitarget therapy in a chronic diabetic rat model unraveling the bone-nerve crosstalk with electroactive smart cryogels.
Collapse
Affiliation(s)
- Ekta Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Excellence in Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Shi J, Zhang Y, Zhang B, Wu Z, Gupta A, Wang J, Sun Q, Li S, Dong M, Wang L. Loop-Neurorrhaphy Technique for Preventing Bone Resorption and Preserving Sensation in Mandibular Reconstruction. Plast Reconstr Surg 2024; 154:1004e-1014e. [PMID: 38507517 DOI: 10.1097/prs.0000000000011416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND The aim of this study was to investigate whether using an innervated vascularized iliac bone flap could effectively prevent bone resorption and maintain sensory function in the lower lip. METHODS In the innervated group, the deep circumflex iliac artery and recipient vessels were anastomosed, with simultaneous microanastomosis of ilioinguinal nerve, mental nerve, and inferior alveolar nerve. Conversely, the control group underwent solely vascular anastomosis. Computed tomography was used to assess bone quality. Sensory recovery of the lower lip was recorded using 2-point discrimination and current perception threshold testing. RESULTS The study comprised a total of 40 subjects, with each group accounting for 20 participants, equally distributed in terms of gender. Hounsfield unit loss was significantly lower in the innervated group (13.26% ± 8.65%) as compared with the control group (37.98% ± 8.60%) ( P < 0.001). Moreover, 2-point discrimination values were lower in the innervated group (15.11 ± 8.39 mm) when compared with the control group (21.44 ± 7.24 mm) ( P = 0.02). The current perception threshold values for the innervated group were 176.19 ± 31.89, 64.21 ± 19.23, and 42.29 ± 18.96 at 2 kHz, 250 Hz, and 5 Hz, respectively, whereas in the control group, the current perception threshold values were 204.47 ± 36.99, 82.26 ± 27.29, and 58.89 ± 25.38 at 2 kHz, 250 Hz, and 5 Hz ( P = 0.02, P = 0.02, and P = 0.03, respectively). CONCLUSION The innervated vascularized iliac bone flap represents a safe and effective novel approach to preserving lower lip sensation and preventing bone resorption through functional mandibular reconstruction. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, I.
Collapse
Affiliation(s)
- Jingcun Shi
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Yuhan Zhang
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Bingqing Zhang
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Ziqian Wu
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Anand Gupta
- Department of Dentistry, Government Medical College and Hospital
| | - Jieyu Wang
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Qi Sun
- Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Siyi Li
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Minjun Dong
- Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Lei Wang
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Department of Stomatology, Fengcheng Hospital
| |
Collapse
|
3
|
Zha K, Hu W, Xiong Y, Zhang S, Tan M, Bu P, Zhao Y, Zhang W, Lin Z, Hu Y, Shahbazi MA, Feng Q, Liu G, Mi B. Nanoarchitecture-Integrated Hydrogel Boosts Angiogenesis-Osteogenesis-Neurogenesis Tripling for Infected Bone Fracture Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406439. [PMID: 39234844 DOI: 10.1002/advs.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Indexed: 09/06/2024]
Abstract
Infected fracture healing is a complicated process that includes intricate interactions at the cellular and molecular levels. In addition to angiogenesis and osteogenesis, the significance of neurogenesis in fracture healing has also been recognized in recent years. Here, a nanocomposite hydrogel containing pH-responsive zinc-gallium-humic acids (HAs) nanoparticles is developed. Through the timed release of Zn2+, Ga3+, and HAs, the hydrogel exhibits potent antibacterial effects and promotes angiogenesis, osteogenesis, and neurogenesis. The enhanced neurogenesis further promotes angiogenesis and osteogenesis, forming a mutually supportive angiogenesis-osteogenesis-neurogenesis cycle at the fracture site. The hydrogel achieves rapid infected fracture healing and improves tissue regeneration in mice. This study proposes a comprehensive treatment approach that combines antibacterial effects with the regulation of tissue regeneration to improve infected fracture healing.
Collapse
Affiliation(s)
- Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengming Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meijun Tan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Pengzhen Bu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yanzhi Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenqian Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Qian Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
4
|
Xiong Y, Mi BB, Shahbazi MA, Xia T, Xiao J. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration. Mil Med Res 2024; 11:69. [PMID: 39434177 PMCID: PMC11492517 DOI: 10.1186/s40779-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| | - Tian Xia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Zhu M, Yea JH, Li Z, Qin Q, Xu M, Xing X, Negri S, Archer M, Mittal M, Levi B, James AW. Pharmacologic or genetic targeting of peripheral nerves prevents peri-articular traumatic heterotopic ossification. Bone Res 2024; 12:54. [PMID: 39327413 PMCID: PMC11427465 DOI: 10.1038/s41413-024-00358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 09/28/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process that commonly arises following severe polytrauma, characterized by the anomalous differentiation of mesenchymal progenitor cells and resulting in the formation of ectopic bone in non-skeletal tissues. This abnormal bone growth contributes to pain and reduced mobility, especially when adjacent to a joint. Our prior observations suggested an essential role of NGF (Nerve Growth Factor)-responsive TrkA (Tropomyosin Receptor Kinase A)-expressing peripheral nerves in regulating abnormal osteochondral differentiation following tendon injury. Here, we utilized a recently developed mouse model of hip arthroplasty-induced HO to further validate the role of peripheral nerve regulation of traumatic HO. Nerve ingrowth was either modulated using a knockin transgenic animals with point mutation in TrkA, or local treatment with an FDA-approved formulation of long acting Bupivacaine which prevents peripheral nerve growth. Results demonstrate exuberant sensory and sympathetic nerve growth within the peri-articular HO site, and that both methods to reduce local innervation significantly reduced heterotopic bone formation. TrkA inhibition led to a 34% reduction in bone volume, while bupivacaine treatment resulted in a 50% decrease. Mechanistically, alterations in TGFβ and FGF signaling activation accompanied both methods of local denervation, and a shift in macrophages from M1 to M2 phenotypes was observed. In sum, these studies reinforce the observations that peripheral nerves play a role in the etiopathogenesis of HO, and that targeting local nerves represents a potential therapeutic approach for disease prevention.
Collapse
Affiliation(s)
- Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ji-Hye Yea
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Orthopedic Unit, University of Verona, Verona, Italy
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Monisha Mittal
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Johannesdottir F, Tedtsen T, Cooke LM, Mahar S, Zhang M, Nustad J, Garrahan MA, Gehman SE, Yu EW, Bouxsein ML. Microvascular disease and early diabetes onset are associated with deficits in femoral neck bone density and structure among older adults with longstanding type 1 diabetes. J Bone Miner Res 2024; 39:1454-1463. [PMID: 39151032 PMCID: PMC11425704 DOI: 10.1093/jbmr/zjae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Adults with type 1 diabetes (T1D) have increased hip fracture risk, yet no studies have assessed volumetric bone density or structure at the hip in older adults with T1D. Here, we used previously collected 3D CT scans of the proximal femur from older adults with longstanding T1D and non-diabetic controls to identify bone deficits that may contribute to hip fracture in T1D. In this retrospective cohort study, we identified 101 adults with T1D and 181 age-, sex-, and race-matched non-diabetic controls (CON) who received abdominal or pelvis CT exams from 2010 to 2020. Among adults with T1D, 33 (33%) had mild-to-moderate nephropathy, 61 (60%) had neuropathy, and 71 (70%) had retinopathy. Within the whole cohort, adults with T1D tended to have lower FN density, though differences did not reach statistical significance. The subset of the T1D group who were diagnosed before age 15 had lower total BMC (-14%, TtBMC), cortical BMC (-19.5%, CtBMC), and smaller Ct cross-sectional area (-12.6, CtCSA) than their matched controls (p<.05 for all). Individuals with T1D who were diagnosed at a later age did not differ from controls in any bone outcome (p>.21). Furthermore, adults with T1D and nephropathy had lower FN aBMD (-10.6%), TtBMC (-17%), CtBMC (-24%), and smaller CtCSA (-15.4%) compared to matched controls (p<.05 for all). Adults with T1D and neuropathy had cortical bone deficits (8.4%-12%, p<.04). In summary, among older adults with T1D, those who were diagnosed before the age of 15 yr, as well as those with nephropathy and neuropathy had unfavorable bone outcomes at the FN, which may contribute to the high risk of hip fractures among patients with T1D. These novel observations highlight the longstanding detrimental impact of T1D when present during bone accrual and skeletal fragility as an additional complication of microvascular disease in individuals with T1D.
Collapse
Affiliation(s)
- Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02215, United States
| | - Trinity Tedtsen
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Laura M Cooke
- Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Sarah Mahar
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Meng Zhang
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Jordan Nustad
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Margaret A Garrahan
- Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Sarah E Gehman
- Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Elaine W Yu
- Harvard Medical School, Boston, MA 02215, United States
- Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02215, United States
- Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
7
|
El-Ghannam A, Sultana F, Dréau D, Tiwari A, Yang IH, AlFotawi R, Knabe-Ducheyne C. Novel 3D printed bioactive SiC orthopedic screw promotes bone growth associated activities by macrophages, neurons, and osteoblasts. J Biomed Mater Res A 2024. [PMID: 39319410 DOI: 10.1002/jbm.a.37801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Ceramic additive manufacturing currently relies on binders or high-energy lasers, each with limitations affecting final product quality and suitability for medical applications. To address these challenges, our laboratory has devised a surface activation technique for ceramic particles that eliminates the necessity for polymer binders or high-energy lasers in ceramic additive manufacturing. We utilized this method to 3D print bioactive SiC orthopedic screws and evaluated their properties. The study's findings reveal that chemical oxidation of SiC activated its surface, enabling 3D printing of orthopedic screws in a binder jet printer. Post-processing impregnation with NaOH and/or NH4OH strengthened the scaffold by promoting silica crystallization or partial conversion of silicon oxide into silicon nitride. The silica surface of the SiC 3D printed orthopedic screws facilitated osteoblast and neuron adhesion and extensive axon synthesis. The silicate ions released from the 3D printed SiC screws favorably modulated macrophage immune responses toward an M1 phenotype as indicated by the inhibition of TNFα secretions and of reactive oxygen species (ROS) expression along with the promotion of IL6R shedding. In contrast, under the same experimental conditions, Ti ions released from Ti6Al4V discs promoted macrophage TNFα secretion and ROS expression. In vivo tests demonstrated direct bone deposition on the SiC scaffold and a strong interfacial bond between the implanted SiC and bone. Immunostaining showed innervation, mineralization, and vascularization of the newly formed bone at the interface with SiC. Taken altogether, the 3D printed SiC orthopedic screws foster a favorable environment for wound healing and bone regeneration. The novel 3D printing method, based on ceramic surface activation represents a significant advancement in ceramic additive manufacturing and is applicable to a wide variety of materials.
Collapse
Affiliation(s)
- Ahmed El-Ghannam
- Department of Mechanical Engineering and Engineering Science, UNC Charlotte, Charlotte, North Carolina, USA
| | - Farjana Sultana
- Department of Mechanical Engineering and Engineering Science, UNC Charlotte, Charlotte, North Carolina, USA
| | - Didier Dréau
- Department of Biological Sciences, UNC Charlotte, Charlotte, North Carolina, USA
| | - Arjun Tiwari
- Department of Mechanical Engineering and Engineering Science, UNC Charlotte, Charlotte, North Carolina, USA
| | - In Hong Yang
- Department of Mechanical Engineering and Engineering Science, UNC Charlotte, Charlotte, North Carolina, USA
| | - Randa AlFotawi
- Department of Oral and Maxillofacial Surgery, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
8
|
Liu CR, Yang CY, Sharma D, Chen TH, Huang XQ, Hung TM, Kuo TBJ, Jou JH. Associations between Sleep Duration and Autonomic Nervous System Regulation in Patients with Probable Alzheimer's Disease: A Cross-Sectional Pilot Study. Clocks Sleep 2024; 6:533-545. [PMID: 39449309 PMCID: PMC11503315 DOI: 10.3390/clockssleep6040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
In this study, we aimed to investigate the relationships between sleep duration and autonomic nervous system (ANS) regulation. This cross-sectional pilot study included 27 older patients with probable Alzheimer's disease who were hospitalized at a psychiatric center. We measured heart rate variability to assess ANS regulation at night, evaluated dementia severity via the Clinical Dementia Rating scale, and obtained sleep duration data from sleep diaries maintained by psychiatric nurses. The data were analyzed using repeated-measures generalized linear models with age, sex, dementia severity, hypertension status, and medication use (antipsychotics) as covariates. A sleep duration of 6-9 h per night compared to shorter than 6 h was associated with a greater increase in parasympathetic nervous system activity (p = 0.03), and a sleep duration longer than 9 h was associated with a decrease sympathovagal balance (p = 0.02). In addition, we observed an inverted U-shaped association between sleep duration and ANS regulation. In this pilot study, we demonstrated that a sleep duration of 6-9 h per night may be beneficial for ANS regulation; however, the present study involved only a few participants and had some limitations. Additional research with a larger cohort is needed to confirm these findings.
Collapse
Affiliation(s)
- Chuen-Ru Liu
- Taipei City Hospital Songde Branch, Taipei City 110204, Taiwan; (C.-R.L.); (T.-M.H.)
| | - Chih-Yuan Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan;
| | - Dipanshu Sharma
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan; (D.S.); (T.-H.C.); (X.-Q.H.)
| | - Tun-Hao Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan; (D.S.); (T.-H.C.); (X.-Q.H.)
| | - Xian-Qing Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan; (D.S.); (T.-H.C.); (X.-Q.H.)
| | - Tsui-Mei Hung
- Taipei City Hospital Songde Branch, Taipei City 110204, Taiwan; (C.-R.L.); (T.-M.H.)
| | - Terry B. J. Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan;
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan; (D.S.); (T.-H.C.); (X.-Q.H.)
| |
Collapse
|
9
|
Onoki T, Kanczler J, Rawlings A, Smith M, Kim YH, Hashimoto K, Aizawa T, Oreffo ROC. Modulation of osteoblastogenesis by NRF2: NRF2 activation suppresses osteogenic differentiation and enhances mineralization in human bone marrow-derived mesenchymal stromal cells. FASEB J 2024; 38:e23892. [PMID: 39230563 DOI: 10.1096/fj.202400602r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Mesenchymal stromal stem cells (MSCs) or skeletal stem cells (SSCs) play a major role in tissue repair due to their robust ability to differentiate into osteoblasts, chondrocytes, and adipocytes. Complex cell signaling cascades tightly regulate this differentiation. In osteogenic differentiation, Runt-related transcription factor 2 (RUNX2) and ALP activity are essential. Furthermore, during the latter stages of osteogenic differentiation, mineral formation mediated by the osteoblast occurs with the secretion of a collagenous extracellular matrix and calcium deposition. Activation of nuclear factor erythroid 2-related factor 2 (NRF2), an important transcription factor against oxidative stress, inhibits osteogenic differentiation and mineralization via modulation of RUNX2 function; however, the exact role of NRF2 in osteoblastogenesis remains unclear. Here, we demonstrate that NRF2 activation in human bone marrow-derived stromal cells (HBMSCs) suppressed osteogenic differentiation. NRF2 activation increased the expression of STRO-1 and KITLG (stem cell markers), indicating NRF2 protects HBMSCs stemness against osteogenic differentiation. In contrast, NRF2 activation enhanced mineralization, which is typically linked to osteogenic differentiation. We determined that these divergent results were due in part to the modulation of cellular calcium flux genes by NRF2 activation. The current findings demonstrate a dual role for NRF2 as a HBMSC maintenance factor as well as a central factor in mineralization, with implications therein for elucidation of bone formation and cellular Ca2+ kinetics, dystrophic calcification and, potentially, application in the modulation of bone formation.
Collapse
Affiliation(s)
- Takahiro Onoki
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Janos Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Andrew Rawlings
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Melanie Smith
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Wang C, Liu X, Zhou J, Zhang X, Zhou Z, Zhang Q. Sensory nerves drive migration of dental pulp stem cells via the CGRP-Ramp1 axis in pulp repair. Cell Mol Life Sci 2024; 81:373. [PMID: 39196292 PMCID: PMC11358583 DOI: 10.1007/s00018-024-05400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Dental pulp stem cells (DPSCs) are responsible for maintaining pulp structure and function after pulp injury. DPSCs migrate directionally to the injury site before differentiating into odontoblast-like cells, which is a prerequisite and a determinant in pulp repair. Increasing evidence suggests that sensory neuron-stem cell crosstalk is critical for maintaining normal physiological functions, and sensory nerves influence stem cells mainly by neuropeptides. However, the role of sensory nerves on DPSC behaviors after pulp injury is largely unexplored. Here, we find that sensory nerves released significant amounts of calcitonin gene-related peptide (CGRP) near the injury site, acting directly on DPSCs via receptor activity modifying protein 1 (RAMP1) to promote collective migration of DPSCs to the injury site, and ultimately promoting pulp repair. Specifically, sensory denervation leads to poor pulp repair and ectopic mineralization, in parallel with that DPSCs failed to be recruited to the injury site. Furthermore, in vitro evidence shows that sensory nerve-deficient microenvironment suppressed DPSC migration prominently among all related behaviors. Mechanistically, the CGRP-Ramp1 axis between sensory neurons and DPSCs was screened by single-cell RNA-seq analysis and immunohistochemical studies confirmed that the expression of CGRP rather than Ramp1 increases substantially near the damaged site. We further demonstrated that CGRP released by sensory nerves binds the receptor Ramp1 on DPSCs to facilitate cell collective migration by an indirect co-culture system using conditioned medium from trigeminal neurons, CGRP recombinant protein and antagonists BIBN4096. The treatment with exogenous CGRP promoted the recruitment of DPSCs, and ultimately enhanced the quality of pulp repair. Targeting the sensory nerve could therefore provide a new strategy for stem cell-based pulp repair and regeneration.
Collapse
Affiliation(s)
- Chunmeng Wang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Xiaochen Liu
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Jiani Zhou
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Xiaoyi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Zihao Zhou
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Qi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China.
| |
Collapse
|
11
|
Xu M, Zhu M, Qin Q, Xing X, Archer M, Ramesh S, Cherief M, Li Z, Levi B, Clemens TL, James AW. Neuronal regulation of bone and tendon injury repair: a focused review. J Bone Miner Res 2024; 39:1045-1060. [PMID: 38836494 DOI: 10.1093/jbmr/zjae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in 3 stages of injury repair (inflammatory, reparative, and remodeling) in 2 commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern, Dallas, TX 75390, United States
| | - Thomas L Clemens
- Department of Orthopaedics, University of Maryland, Baltimore, MD 21205, United States
- Department of Research Services, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
12
|
Chen Y, Guo B, Ma G, Cao H. Sensory nerve regulation of bone homeostasis: Emerging therapeutic opportunities for bone-related diseases. Ageing Res Rev 2024; 99:102372. [PMID: 38880342 DOI: 10.1016/j.arr.2024.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Understanding the intricate interplay between sensory nerves and bone tissue cells is of paramount significance in the field of bone biology and clinical medicine. The regulatory role of sensory nerves in bone homeostasis offers a novel perspective for the development of targeted therapeutic interventions for a spectrum of bone-related diseases, including osteoarthritis, osteoporosis, and intervertebral disc degeneration. By elucidating the mechanisms through which sensory nerves and their neuropeptides influence the differentiation and function of bone tissue cells, this review aims to shed light on emerging therapeutic targets that harness the neuro-skeletal axis for the treatment and management of debilitating bone disorders. Moreover, a comprehensive understanding of sensory nerve-mediated bone regulation may pave the way for the development of innovative strategies to promote bone health and mitigate the burden of skeletal pathologies in clinical practice.
Collapse
Affiliation(s)
- Yong Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Botao Guo
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
13
|
Gu K, Tan Y, Li S, Chen S, Lin K, Tang Y, Zhu M. Sensory Nerve Regulation via H3K27 Demethylation Revealed in Akermanite Composite Microspheres Repairing Maxillofacial Bone Defect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400242. [PMID: 38874525 PMCID: PMC11321702 DOI: 10.1002/advs.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Maxillofacial bone defects exhibit intricate anatomy and irregular morphology, presenting challenges for effective treatment. This study aimed to address these challenges by developing an injectable bioactive composite microsphere, termed D-P-Ak (polydopamine-PLGA-akermanite), designed to fit within the defect site while minimizing injury. The D-P-Ak microspheres biodegraded gradually, releasing calcium, magnesium, and silicon ions, which, notably, not only directly stimulated the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) but also activated sensory nerve cells to secrete calcitonin gene-related peptide (CGRP), a key factor in bone repair. Moreover, the released CGRP enhanced the osteogenic differentiation of BMSCs through epigenetic methylation modification. Specifically, inhibition of EZH2 and enhancement of KDM6A reduced the trimethylation level of histone 3 at lysine 27 (H3K27), thereby activating the transcription of osteogenic genes such as Runx2 and Osx. The efficacy of the bioactive microspheres in bone repair is validated in a rat mandibular defect model, demonstrating that peripheral nerve response facilitates bone regeneration through epigenetic modification. These findings illuminated a novel strategy for constructing neuroactive osteo-inductive biomaterials with potential for further clinical applications.
Collapse
Affiliation(s)
- Kaijun Gu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Yu Tan
- Department of Orthodontics, Shanghai Stomatological Hospital and School of StomatologyFudan University Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan UniversityShanghai200001China
| | - Sitong Li
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Siyue Chen
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Kaili Lin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
- Department of OrthodonticsShanghai Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yanmei Tang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Min Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| |
Collapse
|
14
|
Li J, Zhang Z, Tang J, Hou Z, Li L, Li B. Emerging roles of nerve-bone axis in modulating skeletal system. Med Res Rev 2024; 44:1867-1903. [PMID: 38421080 DOI: 10.1002/med.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Over the past decades, emerging evidence in the literature has demonstrated that the innervation of bone is a crucial modulator for skeletal physiology and pathophysiology. The nerve-bone axis sparked extensive preclinical and clinical investigations aimed at elucidating the contribution of nerve-bone crosstalks to skeleton metabolism, homeostasis, and injury repair through the perspective of skeletal neurobiology. To date, peripheral nerves have been widely reported to mediate bone growth and development and fracture healing via the secretion of neurotransmitters, neuropeptides, axon guidance factors, and neurotrophins. Relevant studies have further identified several critical neural pathways that stimulate profound alterations in bone cell biology, revealing a complex interplay between the skeleton and nerve systems. In addition, inspired by nerve-bone crosstalk, novel drug delivery systems and bioactive materials have been developed to emulate and facilitate the process of natural bone repair through neuromodulation, eventually boosting osteogenesis for ideal skeletal tissue regeneration. Overall, this work aims to review the novel research findings that contribute to deepening the current understanding of the nerve-bone axis, bringing forth some schemas that can be translated into the clinical scenario to highlight the critical roles of neuromodulation in the skeletal system.
Collapse
Affiliation(s)
- Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinru Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeyu Hou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Malange KF, de Souza DM, Lemes JBP, Fagundes CC, Oliveira ALL, Pagliusi MO, Carvalho NS, Nishijima CM, da Silva CRR, Consonni SR, Sartori CR, Tambeli CH, Parada CA. The Implications of Brain-Derived Neurotrophic Factor in the Biological Activities of Platelet-Rich Plasma. Inflammation 2024:10.1007/s10753-024-02072-9. [PMID: 38904872 DOI: 10.1007/s10753-024-02072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
Platelet-rich plasma (PRP) is a biological blood-derived therapeutic obtained from whole blood that contains higher levels of platelets. PRP has been primarily used to mitigate joint degeneration and chronic pain in osteoarthritis (OA). This clinical applicability is based mechanistically on the release of several proteins by platelets that can restore joint homeostasis. Platelets are the primary source of brain-derived neurotrophic factor (BDNF) outside the central nervous system. Interestingly, BDNF and PRP share key biological activities with clinical applicability for OA management, such as anti-inflammatory, anti-apoptotic, and antioxidant. However, the role of BDNF in PRP therapeutic activities is still unknown. Thus, this work aimed to investigate the implications of BDNF in therapeutic outcomes provided by PRP therapy in vitro and in-vivo, using the MIA-OA animal model in male Wistar rats. Initially, the PRP was characterized, obtaining a leukocyte-poor-platelet-rich plasma (LP-PRP). Our assays indicated that platelets activated by Calcium release BDNF, and suppression of M1 macrophage polarization induced by LP-PRP depends on BDNF full-length receptor, Tropomyosin Kinase-B (TrkB). OA animals were given LP-PRP intra-articular and showed functional recovery in gait, joint pain, inflammation, and tissue damage caused by MIA. Immunohistochemistry for activating transcriptional factor-3 (ATF-3) on L4/L5 dorsal root ganglia showed the LP-PRP decreased the nerve injury induced by MIA. All these LP-PRP therapeutic activities were reversed in the presence of TrkB receptor antagonist. Our results suggest that the therapeutic effects of LP-PRP in alleviating OA symptoms in rats depend on BDNF/TrkB activity.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Douglas Menezes de Souza
- Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-887, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Julia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Cecilia Costa Fagundes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Anna Lethicia Lima Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Marco Oreste Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Nathalia Santos Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Cintia Rizoli Ruiz da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Silvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil.
| |
Collapse
|
16
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
17
|
Wang X, Ma C, Zhang X, Yuan P, Wang Y, Fu M, Zhang Z, Shi R, Wei N, Wang J, Wu W. Mussel inspired 3D elastomer enabled rapid calvarial bone regeneration through recruiting more osteoprogenitors from the dura mater. Regen Biomater 2024; 11:rbae059. [PMID: 38911700 PMCID: PMC11193312 DOI: 10.1093/rb/rbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Currently, the successful healing of critical-sized calvarial bone defects remains a considerable challenge. The immune response plays a key role in regulating bone regeneration after material grafting. Previous studies mainly focused on the relationship between macrophages and bone marrow mesenchymal stem cells (BMSCs), while dural cells were recently found to play a vital role in the calvarial bone healing. In this study, a series of 3D elastomers with different proportions of polycaprolactone (PCL) and poly(glycerol sebacate) (PGS) were fabricated, which were further supplemented with polydopamine (PDA) coating. The physicochemical properties of the PCL/PGS and PCL/PGS/PDA grafts were measured, and then they were implanted as filling materials for 8 mm calvarial bone defects. The results showed that a matched and effective PDA interface formed on a well-proportioned elastomer, which effectively modulated the polarization of M2 macrophages and promoted the recruitment of dural cells to achieve full-thickness bone repair through both intramembranous and endochondral ossification. Single-cell RNA sequencing analysis revealed the predominance of dural cells during bone healing and their close relationship with macrophages. The findings illustrated that the crosstalk between dural cells and macrophages determined the vertical full-thickness bone repair for the first time, which may be the new target for designing bone grafts for calvarial bone healing.
Collapse
Affiliation(s)
- Xuqiao Wang
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Chaoqun Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xinchi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Pingping Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yujiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Mingdi Fu
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
| | - Zheqian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ruiying Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Na Wei
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
| | - Juncheng Wang
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Wei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| |
Collapse
|
18
|
Li X, Cui Y, He X, Mao L. Hydrogel-Based Systems in Neuro-Vascularized Bone Regeneration: A Promising Therapeutic Strategy. Macromol Biosci 2024; 24:e2300484. [PMID: 38241425 DOI: 10.1002/mabi.202300484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Indexed: 01/21/2024]
Abstract
Blood vessels and nerve fibers are distributed throughout the skeletal tissue, which enhance the development and function of each other and have an irreplaceable role in bone formation and remodeling. Despite significant progress in bone tissue engineering, the inadequacy of nerve-vascular network reconstruction remains a major limitation. This is partly due to the difficulty of integrating and regulating multiple tissue types with artificial materials. Thus, understanding the anatomy and underlying coupling mechanisms of blood vessels and nerve fibers within bone to further develop neuro-vascularized bone implant biomaterials is an extremely critical aspect in the field of bone regeneration. Hydrogels have good biocompatibility, controllable mechanical characteristics, and osteoconductive and osteoinductive properties, making them important candidates for research related to neuro-vascularized bone regeneration. This review reports the classification and physicochemical properties of hydrogels, with a focus on the application advantages and status of hydrogels for bone regeneration. The authors also highlight the effect of neurovascular coupling on bone repair and regeneration and the necessity of achieving neuro-vascularized bone regeneration. Finally, the recent progress and design strategies of hydrogel-based biomaterials for neuro-vascularized bone regeneration are discussed.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Ya Cui
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Xiaoya He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| |
Collapse
|
19
|
Dai K, Geng Z, Zhang W, Wei X, Wang J, Nie G, Liu C. Biomaterial design for regenerating aged bone: materiobiological advances and paradigmatic shifts. Natl Sci Rev 2024; 11:nwae076. [PMID: 38577669 PMCID: PMC10989671 DOI: 10.1093/nsr/nwae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
China's aging demographic poses a challenge for treating prevalent bone diseases impacting life quality. As bone regeneration capacity diminishes with age due to cellular dysfunction and inflammation, advanced biomaterials-based approaches offer hope for aged bone regeneration. This review synthesizes materiobiology principles, focusing on biomaterials that target specific biological functions to restore tissue integrity. It covers strategies for stem cell manipulation, regulation of the inflammatory microenvironment, blood vessel regeneration, intervention in bone anabolism and catabolism, and nerve regulation. The review also explores molecular and cellular mechanisms underlying aged bone regeneration and proposes a database-driven design process for future biomaterial development. These insights may also guide therapies for other age-related conditions, contributing to the pursuit of 'healthy aging'.
Collapse
Affiliation(s)
- Kai Dai
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Wenchao Zhang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Xue Wei
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Zhang Q, Gao S, Li B, Li Q, Li X, Cheng J, Peng Z, Liang J, Zhang K, Hai J, Zhang B. Lithium-Doped Titanium Dioxide-Based Multilayer Hierarchical Structure for Accelerating Nerve-Induced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38663861 PMCID: PMC11082843 DOI: 10.1021/acsami.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Despite considerable advances in artificial bone tissues, the absence of neural network reconstruction in their design often leads to delayed or ineffective bone healing. Hence, we propose a multilayer hierarchical lithium (Li)-doped titanium dioxide structure, constructed through microarc oxidation combined with alkaline heat treatment. This structure can induce the sustained release of Li ions, mimicking the environment of neurogenic osteogenesis characterized by high brain-derived neurotrophic factor (BDNF) expression. During in vitro experiments, the structure enhanced the differentiation of Schwann cells (SCs) and the growth of human umbilical vein endothelial cells (HUVECs) and mouse embryo osteoblast progenitor cells (MC3T3-E1). Additionally, in a coculture system, the SC-conditioned media markedly increased alkaline phosphatase expression and the formation of calcium nodules, demonstrating the excellent potential of the material for nerve-induced bone regeneration. In an in vivo experiment based on a rat distal femoral lesion model, the structure substantially enhanced bone healing by increasing the density of the neural network in the tissue around the implant. In conclusion, this study elucidates the neuromodulatory pathways involved in bone regeneration, providing a promising method for addressing bone deformities.
Collapse
Affiliation(s)
- Qianqian Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Shuting Gao
- Dental
Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
| | - Bo Li
- The
Third Affiliated Hospital of AFMU, Air Force
Medical University, Xi’an 710000, China
| | - Qian Li
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xinjie Li
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jingyang Cheng
- Suzhou
Huaxia Stomatological Hospital, Su Zhou 215000, China
| | - Zhenjun Peng
- State
Key Laboratory of Solid Lubrication, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
| | - Jun Liang
- Research
Institute of Interdisciplinary Science, Dongguan University of Technology, Dongguan 523808, China
| | - Kailiang Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jun Hai
- CAS
Key Laboratory of Chemistry of Northwestern Plant Resources and Key
Laboratory of Natural Medicine of Gansu Province, Chinese Academy
of Sciences, Lanzhou Institute of Chemical
Physics, Lanzhou 730000, China
| | - Baoping Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Damiati LA, El Soury M. Bone-nerve crosstalk: a new state for neuralizing bone tissue engineering-A mini review. Front Med (Lausanne) 2024; 11:1386683. [PMID: 38690172 PMCID: PMC11059066 DOI: 10.3389/fmed.2024.1386683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Neuro bone tissue engineering is a multidisciplinary field that combines both principles of neurobiology and bone tissue engineering to develop innovative strategies for repairing and regenerating injured bone tissues. Despite the fact that regeneration and development are considered two distinct biological processes, yet regeneration can be considered the reactivation of development in later life stages to restore missing tissues. It is noteworthy that the regeneration capabilities are distinct and vary from one organism to another (teleost fishes, hydra, humans), or even in the same organism can vary dependent on the injured tissue itself (Human central nervous system vs. peripheral nervous system). The skeletal tissue is highly innervated, peripheral nervous system plays a role in conveying the signals and connecting the central nervous system with the peripheral organs, moreover it has been shown that they play an important role in tissue regeneration. Their regeneration role is conveyed by the different cells' resident in it and in its endoneurium (fibroblasts, microphages, vasculature associated cells, and Schwann cells) these cells secrete various growth factors (NGF, BDNF, GDNF, NT-3, and bFGF) that contribute to the regenerative phenotype. The peripheral nervous system and central nervous system synchronize together in regulating bone homeostasis and regeneration through neurogenic factors and neural circuits. Receptors of important central nervous system peptides such as Serotonin, Leptin, Semaphorins, and BDNF are expressed in bone tissue playing a role in bone homeostasis, metabolism and regeneration. This review will highlight the crosstalk between peripheral nerves and bone in the developmental stages as well as in regeneration and different neuro-bone tissue engineering strategies for repairing severe bone injuries.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
22
|
Feng H, Yue Y, Zhang Y, Liang J, Liu L, Wang Q, Feng Q, Zhao H. Plant-Derived Exosome-Like Nanoparticles: Emerging Nanosystems for Enhanced Tissue Engineering. Int J Nanomedicine 2024; 19:1189-1204. [PMID: 38344437 PMCID: PMC10859124 DOI: 10.2147/ijn.s448905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Tissue engineering holds great potential for tissue repair and rejuvenation. Plant-derived exosome-like nanoparticles (ELNs) have recently emerged as a promising avenue in tissue engineering. However, there is an urgent need to understand how plant ELNs can be therapeutically applied in clinical disease management, especially for tissue regeneration. In this review, we comprehensively examine the properties, characteristics, and isolation techniques of plant ELNs. We also discuss their impact on the immune system, compatibility with the human body, and their role in tissue regeneration. To ensure the suitability of plant ELNs for tissue engineering, we explore various engineering and modification strategies. Additionally, we provide insights into the progress of commercialization and industrial perspectives on plant ELNs. This review aims to highlight the potential of plant ELNs in regenerative medicine by exploring the current research landscape and key findings.
Collapse
Affiliation(s)
- Hui Feng
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Yang Yue
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Jingqi Liang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Liang Liu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Qiong Wang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| |
Collapse
|
23
|
Gollamudi J, Karkoska KA, Gbotosho OT, Zou W, Hyacinth HI, Teitelbaum SL. A bone to pick-cellular and molecular mechanisms of bone pain in sickle cell disease. FRONTIERS IN PAIN RESEARCH 2024; 4:1302014. [PMID: 38239327 PMCID: PMC10794347 DOI: 10.3389/fpain.2023.1302014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
The bone is one of the most commonly affected organs in sickle cell disease (SCD). Repeated ischemia, oxidative stress and inflammation within the bone is largely responsible for promoting bone pain. As more individuals with SCD survive into adulthood, they are likely to experience a synergistic impact of both aging and SCD on their bone health. As bone health deteriorates, bone pain will likely exacerbate. Recent mechanistic and observational studies emphasize an intricate relationship between bone remodeling and the peripheral nervous system. Under pathological conditions, abnormal bone remodeling plays a key role in the propagation of bone pain. In this review, we first summarize mechanisms and burden of select bone complications in SCD. We then discuss processes that contribute to pathological bone pain that have been described in both SCD as well as non-sickle cell animal models. We emphasize the role of bone-nervous system interactions and pitfalls when designing new therapies especially for the sickle cell population. Lastly, we also discuss future basic and translational research in addressing questions about the complex role of stress erythropoiesis and inflammation in the development of SCD bone complications, which may lead to promising therapies and reduce morbidity in this vulnerable population.
Collapse
Affiliation(s)
- Jahnavi Gollamudi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kristine A Karkoska
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Oluwabukola T Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Wei Zou
- Department of Medicine, Division of Bone and Mineral Diseases, and Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hyacinth I Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steven L Teitelbaum
- Department of Medicine, Division of Bone and Mineral Diseases, and Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
24
|
Bai L, Song P, Su J. Bioactive elements manipulate bone regeneration. BIOMATERIALS TRANSLATIONAL 2023; 4:248-269. [PMID: 38282709 PMCID: PMC10817798 DOI: 10.12336/biomatertransl.2023.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024]
Abstract
While bone tissue is known for its inherent regenerative abilities, various pathological conditions and trauma can disrupt its meticulously regulated processes of bone formation and resorption. Bone tissue engineering aims to replicate the extracellular matrix of bone tissue as well as the sophisticated biochemical mechanisms crucial for effective regeneration. Traditionally, the field has relied on external agents like growth factors and pharmaceuticals to modulate these processes. Although efficacious in certain scenarios, this strategy is compromised by limitations such as safety issues and the transient nature of the compound release and half-life. Conversely, bioactive elements such as zinc (Zn), magnesium (Mg) and silicon (Si), have garnered increasing interest for their therapeutic benefits, superior stability, and reduced biotic risks. Moreover, these elements are often incorporated into biomaterials that function as multifaceted bioactive components, facilitating bone regeneration via release on-demand. By elucidating the mechanistic roles and therapeutic efficacy of the bioactive elements, this review aims to establish bioactive elements as a robust and clinically viable strategy for advanced bone regeneration.
Collapse
Affiliation(s)
- Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
25
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
26
|
Wang S, He W, Wang H, Liu D, Wang M, Yang H, Pan G, Li B. Hematoma-like dynamic hydrogelation through natural glycopeptide molecular recognition for infected bone fracture repair. Bioact Mater 2023; 30:73-84. [PMID: 37575878 PMCID: PMC10413008 DOI: 10.1016/j.bioactmat.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Infected bone fractures remain a major clinical challenge for orthopedic surgeons. From a tissue regeneration perspective, biomaterial scaffolds with antibacterial and osteoinductive activities are highly desired, while advanced materials capable of mimicking the pathological microenvironment during the healing process of infected tissues remain an area deserving more research. Hematoma, the gel-like blood coagulum, plays an essential role in bone fracture repair because of its ability to serve as a dynamic and temporary scaffold with cytokines for both pathogen elimination and tissue healing. In light of this, we designed a dynamic hydrogel with hematoma-like antimicrobial or reparative performance for infected bone fracture repair in this study. The proposed dynamic hydrogel network was based on the reversible recognition of a natural glycopeptide antibiotic vancomycin (Van) and its target dipeptide D-Ala-D-Ala (AA), which could serve as a hematoma-like scaffold for obliterating bacteria in the fracture region and promoting bone repair by introducing an endogenous osteogenic peptide (OGP). In vivo experiments demonstrated that the hydrogel could rapidly eradicate bacteria, improve bone regeneration and restore the local inflammatory microenvironment. Together, findings from this study imply that the use of hematoma-like dynamic hydrogel could lead to a biomimetic revolution in surgical strategies against susceptible bone fractures.
Collapse
Affiliation(s)
- Shenghao Wang
- Orthopedic Institute, Department of Orthopaedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wenbo He
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopaedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Huilin Yang
- Orthopedic Institute, Department of Orthopaedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bin Li
- Orthopedic Institute, Department of Orthopaedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
27
|
Wang J, Yang Q, Saiding Q, Chen L, Liu M, Wang Z, Xiang L, Deng L, Chen Y, Cui W. Geometric Angles and Gene Expression in Cells for Structural Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304111. [PMID: 37775309 PMCID: PMC10646237 DOI: 10.1002/advs.202304111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Geometry and angles play crucial roles in cellular processes; however, its mechanisms of regulation remain unclear. In this study, a series of three dimensional (3D)-printed microfibers with different geometries is constructed using a near-field electrostatic printing technique to investigate the regulatory mechanisms of geometry on stem cell function and bone regeneration. The scaffolds precisely mimicked cell dimensions with high porosity and interoperability. Compared with other spatial topography angles, microfibers with a 90° topology can significantly promote the expression of osteogenic gene proteins in bone marrow-derived mesenchymal stem cells (BMSCs). The effects of different spatial structures on the expression profiles of BMSCs differentiation genes are correlated and validated using microRNA sequencing. Enrichment analysis shows that the 90° microfibers promoted osteogenesis in BMSCs by significantly upregulating miR-222-5p/cbfb/Runx2 expression. The ability of the geometric architecture to promote bone regeneration, as assessed using the cranial defect model, demonstrates that the 90° fiber scaffolds significantly promote new bone regeneration and neovascular neural network formation. This study is the first to elucidate the relationship between angular geometry and cellular gene expression, contributing significantly to the understanding of how geometric architecture can promote stem cell differentiation, proliferation, and function for structural bone regeneration.
Collapse
Affiliation(s)
- Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Qianhao Yang
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Liang Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Mingyue Liu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhen Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lei Xiang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yixuan Chen
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
28
|
Wu Z, Zhu J, Wen Y, Lei P, Xie J, Shi H, Wu R, Lou X, Hu Y. Hmga1-overexpressing lentivirus protects against osteoporosis by activating the Wnt/β-catenin pathway in the osteogenic differentiation of BMSCs. FASEB J 2023; 37:e22987. [PMID: 37555233 DOI: 10.1096/fj.202300488r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 08/10/2023]
Abstract
Postmenopausal osteoporosis is associated with bone formation inhibition mediated by the impaired osteogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs). However, identifying and confirming the essential genes in the osteogenic differentiation of BMSCs and osteoporosis remain challenging. The study aimed at revealing the key gene that regulated osteogenic differentiation of BMSCs and led to osteoporosis, thus exploring its therapeutic effect in osteoporosis. In the present study, six essential genes related to the osteogenic differentiation of BMSCs and osteoporosis were identified, namely, fibrillin 2 (Fbn2), leucine-rich repeat-containing 17 (Lrrc17), heat shock protein b7 (Hspb7), high mobility group AT-hook 1 (Hmga1), nexilin F-actin-binding protein (Nexn), and endothelial cell-specific molecule 1 (Esm1). Furthermore, the in vivo and in vitro experiments showed that Hmga1 expression was increased during the osteogenic differentiation of rat BMSCs, while Hmga1 expression was decreased in the bone tissue of ovariectomized (OVX) rats. Moreover, the expression of osteogenic differentiation-related genes, the activity of alkaline phosphatase (ALP), and the number of mineralized nodules were increased after Hmga1 overexpression, which was partially reversed by a Wnt signaling inhibitor (DKK1). In addition, after injecting Hmga1-overexpressing lentivirus into the bone marrow cavity of OVX rats, the bone loss, and osteogenic differentiation inhibition of BMSCs in OVX rats were partially reversed, while osteoclast differentiation promotion of BMSCs in OVX rats was unaffected. Taken together, the present study confirms that Hmga1 prevents OVX-induced bone loss by the Wnt signaling pathway and reveals that Hmga1 is a potential gene therapeutic target for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhixin Wu
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiayong Zhu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pengfei Lei
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Xie
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Haifei Shi
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ronghuan Wu
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xianfeng Lou
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yihe Hu
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Wu Z, Wang X, Shi J, Gupta A, Zhang Y, Zhang B, Cao Y, Wang L. Identification of Functional Modules and Key Pathways Associated with Innervation in Graft Bone-CGRP Regulates the Differentiation of Bone Marrow Mesenchymal Stem Cells via p38 MAPK and Wnt6/ β-Catenin. Stem Cells Int 2023; 2023:1154808. [PMID: 37621747 PMCID: PMC10447124 DOI: 10.1155/2023/1154808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Bone resorption occurs after bone grafting, however, contemporaneous reconstruction of the innervation of the bone graft is a potential treatment to maintain the bone mass of the graft. The innervation of bone is an emerging research topic. To understand the potential molecular mechanisms of bone innervation after bone grafting, we collected normal iliac bone tissue as well as bone grafts with or without innervation from nine patients 1 year after surgery and performed RNA sequencing. We identified differentially expressed genes) from these samples and used the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases for functional enrichment and signaling pathway analysis. In parallel, we established protein-protein interaction networks to screen functional modules. Based on bioinformatic results, we validated in vitro the osteogenic differentiation potential of rat bone marrow mesenchymal stem cells (BMMSCs) after calcitonin gene-related peptide (CGRP) stimulation and the expression of p38 MAPK and Wnt6/β-catenin pathways during osteogenesis. Our transcriptome analysis of bone grafts reveals functional modules and signaling pathways of innervation which play a vital role in the structural and functional integration of the bone graft. Simultaneously, we demonstrate that CGRP regulates the differentiation of BMMSCs through p38 MAPK and Wnt6/β-catenin.
Collapse
Affiliation(s)
- Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xudong Wang
- Department of Stomatology, Oriental Hospital, Tongji University, 200120, Shanghai, China
| | - Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, 160030, Chandigarh, India
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Department of Stomatology, Fengcheng Hospital, Fengxian District, Shanghai 201411, China
| |
Collapse
|
30
|
Ding Y, Li G, Zhang P, Zhang W. Editorial: New advances in functional rehabilitation after central and peripheral nervous system injury. Front Neurol 2023; 14:1160382. [PMID: 37006476 PMCID: PMC10061583 DOI: 10.3389/fneur.2023.1160382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Affiliation(s)
- Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Ying Ding
| | - Ge Li
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Ge Li
| | - Peixun Zhang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China
| | - Wei Zhang
- Research Department, Microbiome & Neuroscience, National Neuroscience Institute (NNI), Singapore, Singapore
| |
Collapse
|