1
|
Huang W, Zhu Q, Shi Z, Tu Y, Li Q, Zheng W, Yuan Z, Li L, Zu X, Hao Y, Chu B, Jiang Y. Dual inhibitors of DNMT and HDAC induce viral mimicry to induce antitumour immunity in breast cancer. Cell Death Discov 2024; 10:143. [PMID: 38490978 PMCID: PMC10943227 DOI: 10.1038/s41420-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
The existing conventional treatments for breast cancer, including immune checkpoint blockade, exhibit limited effects in some cancers, particularly triple-negative breast cancer. Epigenetic alterations, specifically DNMT and HDAC alterations, are implicated in breast cancer pathogenesis. We demonstrated that DNMTs and HDACs are overexpressed and positively correlated in breast cancer. The combination of DNMT and HDAC inhibitors has shown synergistic antitumour effects, and our previously designed dual DNMT and HDAC inhibitor (termed DNMT/HDACi) 15a potently inhibits breast cancer cell proliferation, migration, and invasion and induces apoptosis in vitro and in vivo. Mechanistically, 15a induces a viral mimicry response by promoting the expression of endogenous retroviral elements in breast cancer cells, thus increasing the intracellular level of double-stranded RNA to activate the RIG-I-MAVS pathway. This in turn promotes the production of interferons and chemokines and augments the expression of interferon-stimulated genes and PD-L1. The combination of 15a and an anti-PD-L1 antibody had an additive effect in vivo. These findings indicate that this DNMT/HDACi has immunomodulatory functions and enhances the effectiveness of immune checkpoint blockade therapy. A novel dual DNMT and HDAC inhibitor induces viral mimicry, which induces the accumulation of dsRNA to activate tumoral IFN signalling and cytokine production to enhance the immune response in breast cancer.
Collapse
Affiliation(s)
- Wenjun Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Qingyun Zhu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhichao Shi
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yao Tu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Qinyuan Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Wenwen Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zigao Yuan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yue Hao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Yuyang Jiang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Liu C, Zheng D, Pu X, Li S. HDAC7: a promising target in cancer. Front Oncol 2024; 14:1327933. [PMID: 38487728 PMCID: PMC10939994 DOI: 10.3389/fonc.2024.1327933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Histones have a vital function as components of nucleosomes, which serve as the fundamental building blocks of chromatin. Histone deacetylases (HDACs), which target histones, suppress gene transcription by compacting chromatin. This implies that HDACs have a strong connection to the suppression of gene transcription. Histone deacetylase 7 (HDAC7), a member of the histone deacetylase family, may participate in multiple cellular pathophysiological processes and activate relevant signaling pathways to facilitate the progression of different tumors by exerting deacetylation. In recent years, HDAC7 has been increasingly studied in the pathogenesis of tumors. Studies that are pertinent have indicated that it has a significant impact on the growth and metastasis of tumors, the formation of the vascular microenvironment, and the emergence of resistance to drugs. Therefore, HDAC7 could potentially function as a potent predictor for tumor prognosis and a promising target for mitigating drug resistance in tumors. This review primarily concentrates on elucidating the structure and function of HDAC7, its involvement in the development of various tumors, and its interplay with relevant signaling pathways. Meanwhile, we briefly discuss the research direction and prospect of HDAC7.
Collapse
Affiliation(s)
| | | | | | - Sijun Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Yu X, Zhao H, Wang R, Chen Y, Ouyang X, Li W, Sun Y, Peng A. Cancer epigenetics: from laboratory studies and clinical trials to precision medicine. Cell Death Discov 2024; 10:28. [PMID: 38225241 PMCID: PMC10789753 DOI: 10.1038/s41420-024-01803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Epigenetic dysregulation is a common feature of a myriad of human diseases, particularly cancer. Defining the epigenetic defects associated with malignant tumors has become a focus of cancer research resulting in the gradual elucidation of cancer cell epigenetic regulation. In fact, most stages of tumor progression, including tumorigenesis, promotion, progression, and recurrence are accompanied by epigenetic alterations, some of which can be reversed by epigenetic drugs. The main objective of epigenetic therapy in the era of personalized precision medicine is to detect cancer biomarkers to improve risk assessment, diagnosis, and targeted treatment interventions. Rapid technological advancements streamlining the characterization of molecular epigenetic changes associated with cancers have propelled epigenetic drug research and development. This review summarizes the main mechanisms of epigenetic dysregulation and discusses past and present examples of epigenetic inhibitors in cancer diagnosis and treatment, with an emphasis on the development of epigenetic enzyme inhibitors or drugs. In the final part, the prospect of precise diagnosis and treatment is considered based on a better understanding of epigenetic abnormalities in cancer.
Collapse
Affiliation(s)
- Xinyang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Hao Zhao
- Department of Spinal Surgery, Yichang Central People's Hospital Affiliated with China Three Gorges University, Yichang, Hubei, 443000, China
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong, 519000, China
| | - Yingyin Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Xumei Ouyang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Yihao Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
| | - Anghui Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
| |
Collapse
|
4
|
Xie J, Xie L, Wei H, Li XJ, Lin L. Dynamic Regulation of DNA Methylation and Brain Functions. BIOLOGY 2023; 12:152. [PMID: 36829430 PMCID: PMC9952911 DOI: 10.3390/biology12020152] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
DNA cytosine methylation is a principal epigenetic mechanism underlying transcription during development and aging. Growing evidence suggests that DNA methylation plays a critical role in brain function, including neurogenesis, neuronal differentiation, synaptogenesis, learning, and memory. However, the mechanisms underlying aberrant DNA methylation in neurodegenerative diseases remain unclear. In this review, we provide an overview of the contribution of 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) to brain development and aging, with a focus on the roles of dynamic 5mC and 5hmC changes in the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Identification of aberrant DNA methylation sites could provide potential candidates for epigenetic-based diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Liu WJ, Zhao Y, Chen X, Miao ML, Zhang RQ. Epigenetic modifications in esophageal cancer: An evolving biomarker. Front Genet 2023; 13:1087479. [PMID: 36704345 PMCID: PMC9871503 DOI: 10.3389/fgene.2022.1087479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Esophageal cancer is a widespread cancer of the digestive system that has two main subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA). In the diverse range of cancer therapy schemes, the side effects of conventional treatments remain an urgent challenge to be addressed. Therefore, the pursuit of novel drugs with multiple targets, good efficacy, low side effects, and low cost has become a hot research topic in anticancer therapy. Based on this, epigenetics offers an attractive target for the treatment of esophageal cancer, where major mechanisms such as DNA methylation, histone modifications, non-coding RNA regulation, chromatin remodelling and nucleosome localization offer new opportunities for the prevention and treatment of esophageal cancer. Recently, research on epigenetics has remained at a high level of enthusiasm, focusing mainly on translating the basic research into the clinical setting and transforming epigenetic alterations into targets for cancer screening and detection in the clinic. With the increasing emergence of tumour epigenetic markers and antitumor epigenetic drugs, there are also more possibilities for anti-esophageal cancer treatment. This paper focuses on esophageal cancer and epigenetic modifications, with the aim of unravelling the close link between them to facilitate precise and personalized treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wen-Jian Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xu Chen
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Man-Li Miao
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Ovejero S, Viziteu E, Dutrieux L, Devin J, Lin YL, Alaterre E, Jourdan M, Basbous J, Requirand G, Robert N, de Boussac H, Seckinger A, Hose D, Vincent L, Herbaux C, Constantinou A, Pasero P, Moreaux J. The BLM helicase is a new therapeutic target in multiple myeloma involved in replication stress survival and drug resistance. Front Immunol 2022; 13:983181. [PMID: 36569948 PMCID: PMC9780552 DOI: 10.3389/fimmu.2022.983181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance. Using independent cohorts of MM patients, we identified that high expression of BLM is associated with a poor outcome with a significant enrichment in replication stress signature. We provide evidence that chemical inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan to efficiently inhibit growth and promote cell death in HMCLs. Moreover, ML216 treatment re-sensitizes melphalan-resistant cell lines to this conventional therapeutic agent. Altogether, these data suggest that inhibition of BLM in combination with DNA damaging agents could be of therapeutic interest in the treatment of MM, especially in those patients with high BLM expression and/or resistance to melphalan.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elena Viziteu
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Laure Dutrieux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Julie Devin
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elina Alaterre
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Michel Jourdan
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jihane Basbous
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laure Vincent
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Herbaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Philippe Pasero
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Clinical Hematology, CHU Montpellier, Montpellier, France,*Correspondence: Jérôme Moreaux,
| |
Collapse
|
7
|
Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms and therapeutic opportunities. Exp Hematol Oncol 2022; 11:101. [PMID: 36384676 PMCID: PMC9667634 DOI: 10.1186/s40164-022-00356-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Programmed cell death protein 1(PD-1) is a type of immune-inhibitory checkpoint protein, which delivers inhibitory signals to cytotoxic T cells by binding to the programmed death ligand-1 (PD-L1) displayed on the surface of cancer cells. Antibodies blocking PD-1/PD-L1 interaction have been extensively used in treatment of human malignancies and have achieved promising outcomes in recent years. However, gradual development of resistance to PD-1/PD-L1 blockade has decreased the effectiveness of this immunotherapy in cancer patients. The underlying epigenetic mechanisms need to be elucidated for application of novel strategies overcoming this immunotherapy resistance. Epigenetic aberrations contribute to cancerogenesis by promoting different hallmarks of cancer. Moreover, these alterations may lead to therapy resistance, thereby leading to poor prognosis. Recently, the epigenetic regulatory drugs have been shown to decrease the resistance to PD-1/PD-L1 inhibitors in certain cancer patients. Inhibitors of the non-coding RNAs, DNA methyltransferases, and histone deacetylases combined with PD-1/PD-L1 inhibitors have shown considerable therapeutic efficacy against carcinomas as well as blood cancers. Importantly, DNA methylation-mediated epigenetic silencing can inhibit antigen processing and presentation, which promotes cancerogenesis and aggravates resistance to PD-1/PD-L1 blockade immunotherapy. These observations altogether suggest that the combination of the epigenetic regulatory drugs with PD-1/PD-L1 inhibitors may present potential solution to the resistance caused by monotherapy of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Dai
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medical, Foshan University, Foshan, China
| | - Can Küçük
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye
- Basic and Translational Research Program, İzmir Biomedicine and Genome Center, İzmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China.
| |
Collapse
|
8
|
Muylaert C, Van Hemelrijck LA, Maes A, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. Aberrant DNA methylation in multiple myeloma: A major obstacle or an opportunity? Front Oncol 2022; 12:979569. [PMID: 36059621 PMCID: PMC9434119 DOI: 10.3389/fonc.2022.979569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Drug resistance (DR) of cancer cells leading to relapse is a huge problem nowadays to achieve long-lasting cures for cancer patients. This also holds true for the incurable hematological malignancy multiple myeloma (MM), which is characterized by the accumulation of malignant plasma cells in the bone marrow (BM). Although new treatment approaches combining immunomodulatory drugs, corticosteroids, proteasome inhibitors, alkylating agents, and monoclonal antibodies have significantly improved median life expectancy, MM remains incurable due to the development of DR, with the underlying mechanisms remaining largely ill-defined. It is well-known that MM is a heterogeneous disease, encompassing both genetic and epigenetic aberrations. In normal circumstances, epigenetic modifications, including DNA methylation and posttranslational histone modifications, play an important role in proper chromatin structure and transcriptional regulation. However, in MM, numerous epigenetic defects or so-called ‘epimutations’ have been observed and this especially at the level of DNA methylation. These include genome-wide DNA hypomethylation, locus specific hypermethylation and somatic mutations, copy number variations and/or deregulated expression patterns in DNA methylation modifiers and regulators. The aberrant DNA methylation patterns lead to reduced gene expression of tumor suppressor genes, genomic instability, DR, disease progression, and high-risk disease. In addition, the frequency of somatic mutations in the DNA methylation modifiers seems increased in relapsed patients, again suggesting a role in DR and relapse. In this review, we discuss the recent advances in understanding the involvement of aberrant DNA methylation patterns and/or DNA methylation modifiers in MM development, progression, and relapse. In addition, we discuss their involvement in MM cell plasticity, driving myeloma cells to a cancer stem cell state characterized by a more immature and drug-resistant phenotype. Finally, we briefly touch upon the potential of DNA methyltransferase inhibitors to prevent relapse after treatment with the current standard of care agents and/or new, promising (immuno) therapies.
Collapse
|
9
|
Allegra A, Casciaro M, Barone P, Musolino C, Gangemi S. Epigenetic Crosstalk between Malignant Plasma Cells and the Tumour Microenvironment in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14112597. [PMID: 35681577 PMCID: PMC9179362 DOI: 10.3390/cancers14112597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
In multiple myeloma, cells of the bone marrow microenvironment have a relevant responsibility in promoting the growth, survival, and drug resistance of multiple myeloma plasma cells. In addition to the well-recognized role of genetic lesions, microenvironmental cells also present deregulated epigenetic systems. However, the effect of epigenetic changes in reshaping the tumour microenvironment is still not well identified. An assortment of epigenetic regulators, comprising histone methyltransferases, histone acetyltransferases, and lysine demethylases, are altered in bone marrow microenvironmental cells in multiple myeloma subjects participating in disease progression and prognosis. Aberrant epigenetics affect numerous processes correlated with the tumour microenvironment, such as angiogenesis, bone homeostasis, and extracellular matrix remodelling. This review focuses on the interplay between epigenetic alterations of the tumour milieu and neoplastic cells, trying to decipher the crosstalk between these cells. We also evaluate the possibility of intervening specifically in modified signalling or counterbalancing epigenetic mechanisms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
- Correspondence:
| | - Marco Casciaro
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Paola Barone
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
10
|
Alaterre E, Vikova V, Kassambara A, Bruyer A, Robert N, Requirand G, Bret C, Herbaux C, Vincent L, Cartron G, Elemento O, Moreaux J. RNA-Sequencing-Based Transcriptomic Score with Prognostic and Theranostic Values in Multiple Myeloma. J Pers Med 2021; 11:jpm11100988. [PMID: 34683129 PMCID: PMC8541503 DOI: 10.3390/jpm11100988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is the second most frequent hematological cancer and is characterized by the clonal proliferation of malignant plasma cells. Genome-wide expression profiling (GEP) analysis with DNA microarrays has emerged as a powerful tool for biomedical research, generating a huge amount of data. Microarray analyses have improved our understanding of MM disease and have led to important clinical applications. In MM, GEP has been used to stratify patients, define risk, identify therapeutic targets, predict treatment response, and understand drug resistance. In this study, we built a gene risk score for 267 genes using RNA-seq data that demonstrated a prognostic value in two independent cohorts (n = 674 and n = 76) of newly diagnosed MM patients treated with high-dose Melphalan and autologous stem cell transplantation. High-risk patients were associated with the expression of genes involved in several major pathways implicated in MM pathophysiology, including interferon response, cell proliferation, hypoxia, IL-6 signaling pathway, stem cell genes, MYC, and epigenetic deregulation. The RNA-seq-based risk score was correlated with specific MM somatic mutation profiles and responses to targeted treatment including EZH2, MELK, TOPK/PBK, and Aurora kinase inhibitors, outlining potential utility for precision medicine strategies in MM.
Collapse
Affiliation(s)
- Elina Alaterre
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
| | - Veronika Vikova
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
| | - Alboukadel Kassambara
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Diag2Tec, 34395 Montpellier, France
| | - Angélique Bruyer
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Diag2Tec, 34395 Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
| | - Caroline Bret
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
| | - Charles Herbaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France;
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France;
| | - Guillaume Cartron
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France;
- IGMM, UMR CNRS-UM 5535, 34090 Montpellier, France
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Jérôme Moreaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- IUF, Institut Universitaire de France, 75005 Paris, France
- Correspondence: ; Tel.: +33-(0)4-67-33-79-03
| |
Collapse
|
11
|
Herviou L, Ovejero S, Izard F, Karmous-Gadacha O, Gourzones C, Bellanger C, De Smedt E, Ma A, Vincent L, Cartron G, Jin J, De Bruyne E, Grimaud C, Julien E, Moreaux J. Targeting the methyltransferase SETD8 impairs tumor cell survival and overcomes drug resistance independently of p53 status in multiple myeloma. Clin Epigenetics 2021; 13:174. [PMID: 34530900 PMCID: PMC8447659 DOI: 10.1186/s13148-021-01160-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Background Multiple myeloma (MM) is a malignancy of plasma cells that largely remains incurable. The search for new therapeutic targets is therefore essential. In addition to a wide panel of genetic mutations, epigenetic alterations also appear as important players in the development of this cancer, thereby offering the possibility to reveal novel approaches and targets for effective therapeutic intervention. Results Here, we show that a higher expression of the lysine methyltransferase SETD8, which is responsible for the mono-methylation of histone H4 at lysine 20, is an adverse prognosis factor associated with a poor outcome in two cohorts of newly diagnosed patients. Primary malignant plasma cells are particularly addicted to the activity of this epigenetic enzyme. Indeed, the inhibition of SETD8 by the chemical compound UNC-0379 and the subsequent decrease in histone H4 methylation at lysine 20 are highly toxic in MM cells compared to normal cells from the bone marrow microenvironment. At the molecular level, RNA sequencing and functional studies revealed that SETD8 inhibition induces a mature non-proliferating plasma cell signature and, as observed in other cancers, triggers an activation of the tumor suppressor p53, which together cause an impairment of myeloma cell proliferation and survival. However, a deadly level of replicative stress was also observed in p53-deficient myeloma cells treated with UNC-0379, indicating that the cytotoxicity associated with SETD8 inhibition is not necessarily dependent on p53 activation. Consistent with this, UNC-0379 triggers a p53-independent nucleolar stress characterized by nucleolin delocalization and reduction of nucleolar RNA synthesis. Finally, we showed that SETD8 inhibition is strongly synergistic with melphalan and may overcome resistance to this alkylating agent widely used in MM treatment. Conclusions Altogether, our data indicate that the up-regulation of the epigenetic enzyme SETD8 is associated with a poor outcome and the deregulation of major signaling pathways in MM. Moreover, we provide evidences that myeloma cells are dependent on SETD8 activity and its pharmacological inhibition synergizes with melphalan, which could be beneficial to improve MM treatment in high-risk patients whatever their status for p53. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01160-z.
Collapse
Affiliation(s)
- Laurie Herviou
- IGH, CNRS, Univ Montpellier, Montpellier, France.,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Sara Ovejero
- IGH, CNRS, Univ Montpellier, Montpellier, France.,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Fanny Izard
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Ouissem Karmous-Gadacha
- Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Eva De Smedt
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- University of Montpellier, 34090, Montpellier, France.,Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte Grimaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France.,University of Montpellier, 34090, Montpellier, France.,Centre National de La Recherche Scientifique (CNRS), 34293, Montpellier, France
| | - Eric Julien
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France. .,University of Montpellier, 34090, Montpellier, France. .,Centre National de La Recherche Scientifique (CNRS), 34293, Montpellier, France.
| | - Jérôme Moreaux
- IGH, CNRS, Univ Montpellier, Montpellier, France. .,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France. .,University of Montpellier, 34090, Montpellier, France. .,Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
12
|
Yang T, Liu X, Kumar SK, Jin F, Dai Y. Decoding DNA methylation in epigenetics of multiple myeloma. Blood Rev 2021; 51:100872. [PMID: 34384602 DOI: 10.1016/j.blre.2021.100872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Dysregulation of DNA methylation in B cells has been observed during their neoplastic transformation and therefore closely associated with various B-cell malignancies including multiple myeloma (MM), a malignancy of terminally differentiated plasma cells. Emerging evidence has unveiled pronounced alterations in DNA methylation in MM, including both global and gene-specific changes that can affect genome stability and gene transcription. Moreover, dysregulated expression of DNA methylation-modifying enzymes has been related with myelomagenesis, disease progression, and poor prognosis. However, the functional roles of the epigenetic abnormalities involving DNA methylation in MM remain elusive. In this article, we review current understanding of the alterations in DNA methylome and DNA methylation modifiers in MM, particularly focusing on DNA methyltransferases (DNMTs) and tet methylcytosine dioxygenases (TETs). We also discuss how these DNA methylation modifiers may be regulated and function in MM cells, therefore providing a rationale for developing novel epigenetic therapies targeting DNA methylation in MM.
Collapse
Affiliation(s)
- Ting Yang
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Fengyan Jin
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130012, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| |
Collapse
|
13
|
The Selective Histone Deacetylase Inhibitor MI192 Enhances the Osteogenic Differentiation Efficacy of Human Dental Pulp Stromal Cells. Int J Mol Sci 2021; 22:ijms22105224. [PMID: 34069280 PMCID: PMC8156347 DOI: 10.3390/ijms22105224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
The use of human dental pulp stromal cells (hDPSCs) has gained increasing attention as an alternative stem cell source for bone tissue engineering. The modification of the cells' epigenetics has been found to play an important role in regulating differentiation, with the inhibition of histone deacetylases 3 (HDAC3) being linked to increased osteogenic differentiation. This study aimed to induce epigenetic reprogramming using the HDAC2 and 3 selective inhibitor, MI192 to promote hDPSCs osteogenic capacity for bone regeneration. MI192 treatment caused a time-dose-dependent change in hDPSC morphology and reduction in viability. Additionally, MI192 successfully augmented hDPSC epigenetic functionality, which resulted in increased histone acetylation and cell cycle arrest at the G2/M phase. MI192 pre-treatment exhibited a dose-dependent effect on hDPSCs alkaline phosphatase activity. Quantitative PCR and In-Cell Western further demonstrated that MI192 pre-treatment significantly upregulated hDPSCs osteoblast-related gene and protein expression (alkaline phosphatase, bone morphogenic protein 2, type I collagen and osteocalcin) during osteogenic differentiation. Importantly, MI192 pre-treatment significantly increased hDPSCs extracellular matrix collagen production and mineralisation. As such, for the first time, our findings show that epigenetic reprogramming with the HDAC2 and 3 selective inhibitor MI192 accelerates the osteogenic differentiation of hDPSCs, demonstrating the considerable utility of this MSCs engineering approach for bone augmentation strategies.
Collapse
|
14
|
De Smedt E, Devin J, Muylaert C, Robert N, Requirand G, Vlummens P, Vincent L, Cartron G, Maes K, Moreaux J, De Bruyne E. G9a/GLP targeting in MM promotes autophagy-associated apoptosis and boosts proteasome inhibitor-mediated cell death. Blood Adv 2021; 5:2325-2338. [PMID: 33938943 PMCID: PMC8114552 DOI: 10.1182/bloodadvances.2020003217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is an (epi)genetic highly heterogeneous plasma cell malignancy that remains mostly incurable. Deregulated expression and/or genetic defects in epigenetic-modifying enzymes contribute to high-risk disease and MM progression. Overexpression of the histone methyltransferase G9a was reported in several cancers, including MM, correlating with disease progression, metastasis, and poor prognosis. However, the exact role of G9a and its interaction partner G9a-like protein (GLP) in MM biology and the underlying mechanisms of action remain poorly understood. Here, we report that high G9a RNA levels are associated with a worse disease outcome in newly diagnosed and relapsed MM patients. G9a/GLP targeting using the specific G9a/GLP inhibitors BIX01294 and UNC0638 induces a G1-phase arrest and apoptosis in MM cell lines and reduces primary MM cell viability. Mechanistic studies revealed that G9a/GLP targeting promotes autophagy-associated apoptosis by inactivating the mTOR/4EBP1 pathway and reducing c-MYC levels. Moreover, genes deregulated by G9a/GLP targeting are associated with repressive histone marks. G9a/GLP targeting sensitizes MM cells to the proteasome inhibitors (PIs) bortezomib and carfilzomib, by (further) reducing mTOR signaling and c-MYC levels and activating p-38 and SAPK/JNK signaling. Therapeutic treatment of 5TGM1 mice with BIX01294 delayed in vivo MM tumor growth, and cotreatment with bortezomib resulted in a further reduction in tumor burden and a significantly prolonged survival. In conclusion, we provide evidence that the histone methyltransferases G9a/GLP support MM cell growth and survival by blocking basal autophagy and sustaining high c-MYC levels. G9a/GLP targeting represents a promising strategy to improve PI-based treatment in patients with high G9a/GLP levels.
Collapse
Affiliation(s)
- Eva De Smedt
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie Devin
- IGH, CNRS, University of Montpellier, Montpellier, France
| | - Catharina Muylaert
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nicolas Robert
- IGH, CNRS, University of Montpellier, Montpellier, France
- Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Guilhem Requirand
- IGH, CNRS, University of Montpellier, Montpellier, France
- Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Philip Vlummens
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS, University of Montpellier, Montpellier, France; and
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jerome Moreaux
- IGH, CNRS, University of Montpellier, Montpellier, France
- Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
15
|
Allegra A, Innao V, Polito F, Oteri R, Alibrandi A, Allegra AG, Oteri G, Di Giorgio RM, Musolino C, Aguennouz M. SIRT2 and SIRT3 expression correlates with redox imbalance and advanced clinical stage in patients with multiple myeloma. Clin Biochem 2021; 93:42-49. [PMID: 33861984 DOI: 10.1016/j.clinbiochem.2021.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Sirtuins comprise seven family elements (SIRT1-7) involved in various cell signalling pathways comprising cancer inhibition and tumorigenesis. The present study aims to evaluate SIRT2 and SIRT3 gene expression and potential redox reactions in patients with multiple myeloma (MM) at onset and its correlation with disease status, extent and presence of organ damage secondary to myeloma. DESIGN & METHODS Total RNA was extracted from 17 MM patients and 10 controls to assess gene expression using real-time PCR. The NAD+/NADH ratio as well as the levels of glutathione peroxidase (GPx) and hydrogen peroxide (HP) in peripheral blood mononuclear cells (PBMCs) were determined using established biochemical assays. RESULTS SIRT2 and SIRT3 expression is reduced in MM patients compared to healthy controls. Correlational analysis demonstrated that SIRT2 reduction is associated with advanced clinical stage and with more advanced bone lesions than in the remaining patients. SIRT3 expression is correlated with lytic bone lesions. Biochemical analysis indicated an imbalance of oxidative stress biomarkers with low concentrations of the antioxidant enzyme GPx, low amounts of NAD + and higher concentrations of pro-oxidant enzyme HP in PBMCs of MM patients compared to controls. Moreover, MM patients with bone lesions had lower concentrations of NAD + and GPx in PBMCs than patients without signs of bone disease. In addition, MM patients had higher quantities of intracellular HP than controls. CONCLUSIONS Our results demonstrate that SIRT2 and SIRT3 are downregulated in MM and that lower concentrations correlate with an advanced stage of disease and redox imbalance. We conclude that SIRT2 and SIRT3 together with oxidative stress biomarkers, may be useful for improved risk stratification of MM patients.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy.
| | - Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - Francesca Polito
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Italy
| | - Rosaria Oteri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - Giacomo Oteri
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Italy
| | - Rosa Maria Di Giorgio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - M'hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
16
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021. [DOI: 10.37349/etat.2020.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3University of Montpellier, UFR Medicine, 34093 Montpellier, France 4 Institut Universitaire de France (IUF), 75000 Paris France
| |
Collapse
|
17
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:65-106. [PMID: 36046090 PMCID: PMC9400753 DOI: 10.37349/etat.2021.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3UFR Medicine, University of Montpellier, 34093 Montpellier, France 4Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
18
|
Mondal P, Natesh J, Penta D, Meeran SM. Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: A clinical update. Semin Cancer Biol 2020; 83:503-522. [PMID: 33309850 DOI: 10.1016/j.semcancer.2020.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications are heritable yet reversible, essential for normal physiological functions and biological development. Aberrant epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA (ncRNA)-mediated gene regulation play a crucial role in cancer progression. In cellular reprogramming, irregular epigenomic modulations alter cell signaling pathways and the expression of tumor suppressor genes and oncogenes, resulting in cancer growth and metastasis. Therefore, alteration of epigenetic-status in cancer cells can be used as a potential target for cancer therapy. Several synthetic epigenetic inhibitors (epi-drugs) and natural epigenetic modulatory bioactives (epi-diets) have been shown to have the potential to alter the aberrant epigenetic status and inhibit cancer progression. Further, the use of combinatorial approaches with epigenetic drugs and diets has brought promising outcomes in cancer prevention and therapy. In this article, we have summarized the epigenetic modulatory activities of epi-drugs, epi-diets, and their combination against various cancers. We have also compiled the preclinical and clinical status of these epigenetic modulators in different cancers.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Hontecillas-Prieto L, Flores-Campos R, Silver A, de Álava E, Hajji N, García-Domínguez DJ. Synergistic Enhancement of Cancer Therapy Using HDAC Inhibitors: Opportunity for Clinical Trials. Front Genet 2020; 11:578011. [PMID: 33024443 PMCID: PMC7516260 DOI: 10.3389/fgene.2020.578011] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy is one of the most established and effective treatments for almost all types of cancer. However, the elevated toxicity due to the non-tumor-associated effects, development of secondary malignancies, infertility, radiation-induced fibrosis and resistance to treatment limit the effectiveness and safety of treatment. In addition, these multiple factors significantly impact quality of life. Over the last decades, our increased understanding of cancer epigenetics has led to new therapeutic approaches and the promise of improved patient outcomes. Epigenetic alterations are commonly found in cancer, especially the increased expression and activity of histone deacetylases (HDACs). Dysregulation of HDACs are critical to the development and progression of the majority of tumors. Hence, HDACs inhibitors (HDACis) were developed and now represent a very promising treatment strategy. The use of HDACis as monotherapy has shown very positive pre-clinical results, but clinical trials have had only limited success. However, combinatorial regimens with other cancer drugs have shown synergistic effects both in pre-clinical and clinical studies. At the same time, these combinations have enhanced the efficacy, reduced the toxicity and tumor resistance to therapy. In this review, we will examine examples of HDACis used in combination with other cancer drugs and highlight the synergistic effects observed in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Lourdes Hontecillas-Prieto
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Enrique de Álava
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain.,Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Nabil Hajji
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Daniel J García-Domínguez
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| |
Collapse
|
20
|
Sun Y, Xu Z, Jiang J, Xu T, Xu J, Liu P. High Expression of Succinate Dehydrogenase Subunit A Which Is Regulated by Histone Acetylation, Acts as a Good Prognostic Factor of Multiple Myeloma Patients. Front Oncol 2020; 10:563666. [PMID: 33014881 PMCID: PMC7511799 DOI: 10.3389/fonc.2020.563666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022] Open
Abstract
Most patients with multiple myeloma (MM) will eventually relapse and current treatments have limited effect. Herein, we demonstrate that succinate dehydrogenase subunit A (SDHA) was low expressed in MM patients, and patients with SDHA relatively high expression had long overall survival and progression-free survival. Furthermore, SDHA high expression inhibited proliferation and invasion in MM cell lines and enhanced the anti-tumor and synergistic effect of chemotherapeutics. More importantly, chidamide was proved effective in MM by targeting SDHA, and expression of SDHA was increased by chidamide through acetylating H3K27 site of SDHA. Collectively, high expression of SDHA, which was regulated by histone acetylation and targeted by chidamide, might become a good prognostic factor of MM patients.
Collapse
Affiliation(s)
- Yifeng Sun
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jifeng Jiang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianhong Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiadai Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Villard O, Armanet M, Couderc G, Bony C, Moreaux J, Noël D, De Vos J, Klein B, Veyrune JL, Wojtusciszyn A. Characterization of immortalized human islet stromal cells reveals a MSC-like profile with pancreatic features. Stem Cell Res Ther 2020; 11:158. [PMID: 32303252 PMCID: PMC7165390 DOI: 10.1186/s13287-020-01649-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) represent an interesting tool to improve pancreatic islet transplantation. They have immunomodulatory properties and secrete supportive proteins. However, the functional properties of MSCs vary according to many factors such as donor characteristics, tissue origin, or isolation methods. To counteract this heterogeneity, we aimed to immortalize and characterize adherent cells derived from human pancreatic islets (hISCs), using phenotypic, transcriptomic, and functional analysis. METHODS Adherent cells derived from human islets in culture were infected with a hTERT retrovirus vector and then characterized by microarray hybridization, flow cytometry analysis, and immunofluorescence assays. Osteogenic, adipogenic, and chondrogenic differentiation as well as PBMC proliferation suppression assays were used to compare the functional abilities of hISCs and MSCs. Extracellular matrix (ECM) gene expression profile analysis was performed using the SAM (Significance Analysis of Microarrays) software, and protein expression was confirmed by western blotting. RESULTS hISCs kept an unlimited proliferative potential. They exhibited several properties of MSCs such as CD73, CD90, and CD105 expression and differentiation capacity. From a functional point of view, hISCs inhibited the proliferation of activated peripheral blood mononuclear cells. The transcriptomic profile of hISCs highly clusterized with bone marrow (BM)-MSCs and revealed a differential enrichment of genes involved in the organization of the ECM. Indeed, the expression and secretion profiles of ECM proteins including collagens I, IV, and VI, fibronectin, and laminins, known to be expressed in abundance around and within the islets, were different between hISCs and BM-MSCs. CONCLUSION We generated a new human cell line from pancreatic islets, with MSCs properties and retaining some pancreatic specificities related to the production of ECM proteins. hISCs appear as a very promising tool in islet transplantation by their availability (as a source of inexhaustible source of cells) and ability to secrete a supportive "pancreatic" microenvironment.
Collapse
Affiliation(s)
- Orianne Villard
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Endocrinology, Diabetes, and Nutrition, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Mathieu Armanet
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Cell Therapy Unit, Hospital Saint- Louis, AP-HP, Paris, France
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 8 avenue de la Sallaz - 1011, Lausanne, Switzerland
| | - Guilhem Couderc
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Claire Bony
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - Jerome Moreaux
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Daniele Noël
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - John De Vos
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - Bernard Klein
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Jean-Luc Veyrune
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Anne Wojtusciszyn
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France.
- Department of Endocrinology, Diabetes, and Nutrition, Univ. Montpellier, CHU Montpellier, Montpellier, France.
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 8 avenue de la Sallaz - 1011, Lausanne, Switzerland.
| |
Collapse
|
22
|
Chatonnet F, Pignarre A, Sérandour AA, Caron G, Avner S, Robert N, Kassambara A, Laurent A, Bizot M, Agirre X, Prosper F, Martin-Subero JI, Moreaux J, Fest T, Salbert G. The hydroxymethylome of multiple myeloma identifies FAM72D as a 1q21 marker linked to proliferation. Haematologica 2020; 105:774-783. [PMID: 31221779 PMCID: PMC7049362 DOI: 10.3324/haematol.2019.222133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/19/2019] [Indexed: 01/16/2023] Open
Abstract
Cell identity relies on the cross-talk between genetics and epigenetics and their impact on gene expression. Oxidation of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) is the first step of an active DNA demethylation process occurring mainly at enhancers and gene bodies and, as such, participates in processes governing cell identity in normal and pathological conditions. Although genetic alterations are well documented in multiple myeloma (MM), epigenetic alterations associated with this disease have not yet been thoroughly analyzed. To gain insight into the biology of MM, genome-wide 5hmC profiles were obtained and showed that regions enriched in this modified base overlap with MM enhancers and super enhancers and are close to highly expressed genes. Through the definition of a MM-specific 5hmC signature, we identified FAM72D as a poor prognostic gene located on 1q21, a region amplified in high risk myeloma. We further uncovered that FAM72D functions as part of the FOXM1 transcription factor network controlling cell proliferation and survival and we evidenced an increased sensitivity of cells expressing high levels of FOXM1 and FAM72 to epigenetic drugs targeting histone deacetylases and DNA methyltransferases.
Collapse
Affiliation(s)
- Fabrice Chatonnet
- Université Rennes 1, Établissement Français du Sang de Bretaggne, Inserm, MICMAC -UMR_S 1236, Rennes, France
- Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Amandine Pignarre
- Université Rennes 1, Établissement Français du Sang de Bretaggne, Inserm, MICMAC -UMR_S 1236, Rennes, France
- Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Aurélien A Sérandour
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
- Ecole Centrale de Nantes, Nantes, France
- Institut de Cancérologie de l'Ouest, Site René-Gauducheau, Saint-Herblain, France
| | - Gersende Caron
- Université Rennes 1, Établissement Français du Sang de Bretaggne, Inserm, MICMAC -UMR_S 1236, Rennes, France
- Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Stéphane Avner
- SPARTE, IGDR, CNRS UMR6290, University Rennes 1, Rennes, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | - Audrey Laurent
- SPARTE, IGDR, CNRS UMR6290, University Rennes 1, Rennes, France
| | - Maud Bizot
- SPARTE, IGDR, CNRS UMR6290, University Rennes 1, Rennes, France
| | - Xabier Agirre
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | | | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- IGH, CNRS, Univ Montpellier, France
| | - Thierry Fest
- Université Rennes 1, Établissement Français du Sang de Bretaggne, Inserm, MICMAC -UMR_S 1236, Rennes, France
- Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Gilles Salbert
- SPARTE, IGDR, CNRS UMR6290, University Rennes 1, Rennes, France
| |
Collapse
|
23
|
Grieve S, Wajnberg G, Lees M, Chacko S, Weir J, Crapoulet N, Reiman T. TAZ functions as a tumor suppressor in multiple myeloma by downregulating MYC. Blood Adv 2019; 3:3613-3625. [PMID: 31743393 PMCID: PMC6880893 DOI: 10.1182/bloodadvances.2019000374] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is an incurable blood cancer that is often characterized by amplification and overexpression of the MYC oncogene. Despite efforts, direct targeting of MYC is not yet possible; therefore, alternative strategies to inhibit MYC activity are necessary. TAZ is a transcriptional coactivator downstream of the Hippo-signaling pathway that functions as an oncogene in many solid tumors. However, its role in hematological malignancies is largely unexplored. Here, we show that, in contrast to solid tumors, expression of TAZ is lower in hematological malignancies, and that high expression of TAZ correlates with better patient outcomes. We further show that TAZ is hypermethylated in MM patient samples and in a panel of MM cell lines. Genetic overexpression of TAZ or pharmacological upregulation of TAZ by treatment with the demethylating agent decitabine induces apoptosis. Importantly, TAZ-induced apoptosis is independent of canonical Hippo components LATS1 or the TEA-domain family of transcription factors. Instead, RNA-sequencing analysis revealed that overexpression of TAZ represses a MYC transcriptional program and we show that increased TAZ expression correlates with decreased MYC expression in both cell-line models and patient samples. Furthermore, promoter derepression of TAZ expression sensitizes MM cell lines through a reciprocal reduction in MYC expression using additional therapeutics such as bortezomib, trichostatin A, and panobinostat. Our findings uncover an unexpected role for TAZ in MM tumorigenesis and provide a compelling rationale for exploring the therapeutic potential of upregulating TAZ expression to restore sensitivity to specific therapeutics in MM.
Collapse
Affiliation(s)
- Stacy Grieve
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | | | - Miranda Lees
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Simi Chacko
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Jackson Weir
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | | | - Tony Reiman
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
- Department of Oncology, Saint John Regional Hospital, Saint John, NB, Canada; and
- Department of Medicine, Dalhousie University, Saint John, NB, Canada
| |
Collapse
|
24
|
De Smedt E, Lui H, Maes K, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. The Epigenome in Multiple Myeloma: Impact on Tumor Cell Plasticity and Drug Response. Front Oncol 2018; 8:566. [PMID: 30619733 PMCID: PMC6297718 DOI: 10.3389/fonc.2018.00566] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 01/19/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy that develops primarily in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, growth, and drug resistance. MM cells furthermore reshape the BM to their own needs by affecting the different BM stromal cell types resulting in angiogenesis, bone destruction, and immune suppression. Despite recent advances in treatment modalities, MM remains most often incurable due to the development of drug resistance to all standard of care agents. This underscores the unmet need for these heavily treated relapsed/refractory patients. Disruptions in epigenetic regulation are a well-known hallmark of cancer cells, contributing to both cancer onset and progression. In MM, sequencing and gene expression profiling studies have also identified numerous epigenetic defects, including locus-specific DNA hypermethylation of cancer-related and B cell specific genes, genome-wide DNA hypomethylation and genetic defects, copy number variations and/or abnormal expression patterns of various chromatin modifying enzymes. Importantly, these so-called epimutations contribute to genomic instability, disease progression, and a worse outcome. Moreover, the frequency of mutations observed in genes encoding for histone methyltransferases and DNA methylation modifiers increases following treatment, indicating a role in the emergence of drug resistance. In support of this, accumulating evidence also suggest a role for the epigenetic machinery in MM cell plasticity, driving the differentiation of the malignant cells to a less mature and drug resistant state. This review discusses the current state of knowledge on the role of epigenetics in MM, with a focus on deregulated histone methylation modifiers and the impact on MM cell plasticity and drug resistance. We also provide insight into the potential of epigenetic modulating agents to enhance clinical drug responses and avoid disease relapse.
Collapse
Affiliation(s)
- Eva De Smedt
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Lui
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
25
|
Requirand G, Robert N, Boireau S, Vincent L, Seckinger A, Bouhya S, Ceballos P, Cartron G, Hose D, Klein B, Moreaux J. BrdU incorporation in multiparameter flow cytometry: A new cell cycle assessment approach in multiple myeloma. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 96:209-214. [PMID: 30417559 DOI: 10.1002/cyto.b.21730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Mutiple myeloma (MM) is a neoplasia characterized by the accumulation of malignant plasma cells (PC) in the bone marrow. Although proliferation markers have been studied in MM, none of the current staging systems include them. Moreover, approaches used to analyze proliferation do not separate MM cells (MMCs) from normal PC. METHODS In this study, we combined multiparameter flow cytometry and BrdU incorporation or Ki67 staining to analyze MM cell proliferation in 44 monoclonal gammopathy of undetermined significance (MGUS), 153 newly diagnosed MM patients and 69 MM patients at relapse. The prognostic value of proliferation assessment was analyzed in 60 newly diagnosed patients treated with high-dose chemotherapy supported by autologous hematopoietic stem cell transplantation. RESULTS The median number of proliferating malignant PC significantly increases during MM disease progression. MM patients with a percentage of proliferating MMCs greater than 1.42% using BrdU/DAPI or greater than 1.1% using ki67/DAPI, are associated with a significantly shorter event free survival compared with patients with a lower percentage of proliferating MMCs. CONCLUSIONS Combination of flow cytometry with BrdU or ki67/DAPI staining could become a standard for the determination of MM cell proliferation. Furthermore, in the context of new effective myeloma treatment options, assessment of MM cell proliferation may be valuable, in clinical trials, to identify novel agents that could significantly affect the small proliferative compartment of MM cells. © 2018 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Guilhem Requirand
- CHU Montpellier, Department of Biological Hematology, Montpellier, France.,IGH, CNRS, University of Montpellier, Montpellier, France
| | - Nicolas Robert
- CHU Montpellier, Department of Biological Hematology, Montpellier, France.,IGH, CNRS, University of Montpellier, Montpellier, France
| | - Stéphanie Boireau
- CHU Montpellier, Department of Biological Hematology, Montpellier, France.,IGH, CNRS, University of Montpellier, Montpellier, France
| | - Laure Vincent
- CHU Montpellier, Department of Clinical Hematology, Montpellier, France
| | - Anja Seckinger
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | | | - Patrice Ceballos
- CHU Montpellier, Department of Clinical Hematology, Montpellier, France
| | - Guillaume Cartron
- CHU Montpellier, Department of Clinical Hematology, Montpellier, France.,University of Montpellier, UFR de Médecine, Montpellier, France
| | - Dirk Hose
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Bernard Klein
- CHU Montpellier, Department of Biological Hematology, Montpellier, France.,IGH, CNRS, University of Montpellier, Montpellier, France.,University of Montpellier, UFR de Médecine, Montpellier, France
| | - Jérôme Moreaux
- CHU Montpellier, Department of Biological Hematology, Montpellier, France.,IGH, CNRS, University of Montpellier, Montpellier, France.,University of Montpellier, UFR de Médecine, Montpellier, France.,UMR CNRS 5235, University of Montpellier, Montpellier, France
| |
Collapse
|
26
|
De Beck L, Melhaoui S, De Veirman K, Menu E, De Bruyne E, Vanderkerken K, Breckpot K, Maes K. Epigenetic treatment of multiple myeloma mediates tumor intrinsic and extrinsic immunomodulatory effects. Oncoimmunology 2018; 7:e1484981. [PMID: 30288346 PMCID: PMC6169579 DOI: 10.1080/2162402x.2018.1484981] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022] Open
Abstract
Immune evasion is an important driver of disease progression in the plasma cell malignancy multiple myeloma. Recent work highlights the potential of epigenetic modulating agents as tool to enhance anti-tumor immunity. The immune modulating effects of the combination of a DNA methyltransferase inhibitor and a histone deacetylase inhibitor in multiple myeloma is insufficiently characterized. Therefore, we used the murine immunocompetent 5T33MM model to investigate hallmarks of immunogenic cell death as well as alterations in the immune cell constitution in the bone marrow of diseased mice in response to the DNA methyltransferase inhibitor decitabine and the histone deacetylase inhibitor quisinostat. Vaccination of mice with 5T33 cells treated with epigenetic compounds delayed tumor development upon a subsequent tumor challenge. In vitro, epigenetic treatment induced ecto-calreticulin and CD47, as well as a type I interferon response. Moreover, treated 5T33vt cells triggered dendritic cell maturation. The combination of decitabine and quisinostat in vivo resulted in combinatory anti-myeloma effects. In vivo, epigenetic treatment increased tumoral ecto-calreticulin and decreased CD47 and PD-L1 expression, increased dendritic cell maturation and reduced CD11b positive cells. Moreover, epigenetic treatment induced a temporal increase in presence of CD8-positive and CD4-positive T cells with naive and memory-like phenotypes based on CD62L and CD44 expression levels, and reduced expression of exhaustion markers PD-1 and TIM3. In conclusion, a combination of a DNA methyltransferase inhibitor and a histone deacetylase inhibitor increased the immunogenicity of myeloma cells and altered the immune cell constitution in the bone marrow of myeloma-bearing mice.
Collapse
Affiliation(s)
- Lien De Beck
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium.,Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sarah Melhaoui
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|