1
|
Xia W, Goff M, Singh N, Huang J, Gillespie DL, Need E, Jensen R, Pagel MD, Maity A, Shi S, Goel S. Imaging-Guided Metabolic Radiosensitization of Pediatric Rhabdoid Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607364. [PMID: 39211061 PMCID: PMC11361026 DOI: 10.1101/2024.08.09.607364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tumor hypoxia leads to increased resistance to radiation therapy (RT), resulting in markedly worse clinical outcomes in the treatment and management of pediatric malignant rhabdoid tumors (MRT). To alleviate hypoxia in MRT, we repurposed an FDA approved, mitochondrial oxidative phosphorylation (OXPHOS) inhibitor, Atovaquone (AVO), to inhibit oxygen consumption and thereby enhance the sensitivity of tumor cells to low dose RT in MRT by hypoxia alleviation. Additionally, to better understand the tumor response induced by AVO and optimize the combination with RT, we employed an emerging, noninvasive imaging modality, known as multispectral optoacoustic tomography (MSOT), to monitor and evaluate real-time dynamic changes in tumor hypoxia and vascular perfusion. Oxygen-Enhanced (OE)-MSOT could measure the change of tumor oxygenation in the MRT xenograft models after AVO and RT treatments, indicating its potential as a response biomarker. OE-MSOT showed that treating MRT mouse models with AVO resulted in a transient increase in oxygen saturation (ΔsO 2 ) in tumors when the mice were subjected to oxygen challenge, while RT or saline treated groups produced no change. In AVO+RT combination groups, the tumors showed an increase in ΔsO 2 after AVO administration followed by a significant decrease after RT, that correlated with a strong anti-tumor response, demarcated by complete regression of tumors, with no relapse on long-term monitoring. These observations were histologically validated. In MRT models of acquired AVO resistance, combination therapy failed to alleviate tumoral hypoxia and elicit any therapeutic benefit. Together, our data highlights the utility of repurposing anti-malarial AVO as an anticancer adjuvant for enabling low dose RT for pediatric patients.
Collapse
|
2
|
Oraiopoulou ME, Couturier DL, Bunce EV, Cannell IG, Sweeney PW, Naylor H, Golinska M, Hannon GJ, Sakkalis V, Bohndiek SE. The in vitro dynamics of pseudo-vascular network formation. Br J Cancer 2024; 131:457-467. [PMID: 38902534 PMCID: PMC11300916 DOI: 10.1038/s41416-024-02722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pseudo-vascular network formation in vitro is considered a key characteristic of vasculogenic mimicry. While many cancer cell lines form pseudo-vascular networks, little is known about the spatiotemporal dynamics of these formations. METHODS Here, we present a framework for monitoring and characterising the dynamic formation and dissolution of pseudo-vascular networks in vitro. The framework combines time-resolved optical microscopy with open-source image analysis for network feature extraction and statistical modelling. The framework is demonstrated by comparing diverse cancer cell lines associated with vasculogenic mimicry, then in detecting response to drug compounds proposed to affect formation of vasculogenic mimics. Dynamic datasets collected were analysed morphometrically and a descriptive statistical analysis model was developed in order to measure stability and dissimilarity characteristics of the pseudo-vascular networks formed. RESULTS Melanoma cells formed the most stable pseudo-vascular networks and were selected to evaluate the response of their pseudo-vascular networks to treatment with axitinib, brucine and tivantinib. Tivantinib has been found to inhibit the formation of the pseudo-vascular networks more effectively, even in dose an order of magnitude less than the two other agents. CONCLUSIONS Our framework is shown to enable quantitative analysis of both the capacity for network formation, linked vasculogenic mimicry, as well as dynamic responses to treatment.
Collapse
Affiliation(s)
- Mariam-Eleni Oraiopoulou
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Ellie V Bunce
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Ian G Cannell
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Paul W Sweeney
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Huw Naylor
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Monika Golinska
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Vangelis Sakkalis
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Sweeney PW, Hacker L, Lefebvre TL, Brown EL, Gröhl J, Bohndiek SE. Unsupervised Segmentation of 3D Microvascular Photoacoustic Images Using Deep Generative Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402195. [PMID: 38923324 PMCID: PMC11348209 DOI: 10.1002/advs.202402195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Mesoscopic photoacoustic imaging (PAI) enables label-free visualization of vascular networks in tissues with high contrast and resolution. Segmenting these networks from 3D PAI data and interpreting their physiological and pathological significance is crucial yet challenging due to the time-consuming and error-prone nature of current methods. Deep learning offers a potential solution; however, supervised analysis frameworks typically require human-annotated ground-truth labels. To address this, an unsupervised image-to-image translation deep learning model is introduced, the Vessel Segmentation Generative Adversarial Network (VAN-GAN). VAN-GAN integrates synthetic blood vessel networks that closely resemble real-life anatomy into its training process and learns to replicate the underlying physics of the PAI system in order to learn how to segment vasculature from 3D photoacoustic images. Applied to a diverse range of in silico, in vitro, and in vivo data, including patient-derived breast cancer xenograft models and 3D clinical angiograms, VAN-GAN demonstrates its capability to facilitate accurate and unbiased segmentation of 3D vascular networks. By leveraging synthetic data, VAN-GAN reduces the reliance on manual labeling, thus lowering the barrier to entry for high-quality blood vessel segmentation (F1 score: VAN-GAN vs. U-Net = 0.84 vs. 0.87) and enhancing preclinical and clinical research into vascular structure and function.
Collapse
Affiliation(s)
- Paul W. Sweeney
- Cancer Research UK Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- Department of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Lina Hacker
- Cancer Research UK Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- Department of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Thierry L. Lefebvre
- Cancer Research UK Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- Department of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Emma L. Brown
- Cancer Research UK Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- Department of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Janek Gröhl
- Cancer Research UK Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- Department of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Sarah E. Bohndiek
- Cancer Research UK Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- Department of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| |
Collapse
|
4
|
Lin X, Yang C, Lv Y, Zhang B, Kan J, Li H, Tao J, Yang C, Li X, Liu Y. Preclinical multi-physiologic monitoring of immediate-early responses to diverse treatment strategies in breast cancer by optoacoustic imaging. JOURNAL OF BIOPHOTONICS 2024; 17:e202300457. [PMID: 38221652 DOI: 10.1002/jbio.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Optoacoustic imaging enables the measurement of tissue oxygen saturation (sO2) and blood perfusion while being utilized for detecting tumor microenvironments. Our aim was to employ multispectral optoacoustic tomography (MSOT) to assess immediate-early changes of hemoglobin level and sO2 within breast tumors during diverse treatments. Mouse breast cancer models were allocated into four groups: control, everolimus (EVE), paclitaxel (PTX), and photodynamic therapy (PDT). Hemoglobin was quantified daily, as well as sO2 and blood perfusion were verified by immunohistochemical (IHC) staining. MSOT showed a temporal window of enhanced oxygenation and improved perfusion in EVE and PTX groups, while sO2 consistently remained below baseline in PDT. The same results were obtained for the IHC. Therefore, MSOT can monitor tumor hypoxia and indirectly reflect blood perfusion in a non-invasive and non-labeled way, which has the potential to monitor breast cancer progression early and enable individualized treatment in clinical practice.
Collapse
Affiliation(s)
- Xiaoqian Lin
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Changfeng Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yijie Lv
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Bowen Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Junnan Kan
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Caixia Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
5
|
Else TR, Hacker L, Gröhl J, Bunce EV, Tao R, Bohndiek SE. Effects of skin tone on photoacoustic imaging and oximetry. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11506. [PMID: 38125716 PMCID: PMC10732256 DOI: 10.1117/1.jbo.29.s1.s11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Significance Photoacoustic imaging (PAI) provides contrast based on the concentration of optical absorbers in tissue, enabling the assessment of functional physiological parameters such as blood oxygen saturation (sO 2 ). Recent evidence suggests that variation in melanin levels in the epidermis leads to measurement biases in optical technologies, which could potentially limit the application of these biomarkers in diverse populations. Aim To examine the effects of skin melanin pigmentation on PAI and oximetry. Approach We evaluated the effects of skin tone in PAI using a computational skin model, two-layer melanin-containing tissue-mimicking phantoms, and mice of a consistent genetic background with varying pigmentations. The computational skin model was validated by simulating the diffuse reflectance spectrum using the adding-doubling method, allowing us to assign our simulation parameters to approximate Fitzpatrick skin types. Monte Carlo simulations and acoustic simulations were run to obtain idealized photoacoustic images of our skin model. Photoacoustic images of the phantoms and mice were acquired using a commercial instrument. Reconstructed images were processed with linear spectral unmixing to estimate blood oxygenation. Linear unmixing results were compared with a learned unmixing approach based on gradient-boosted regression. Results Our computational skin model was consistent with representative literature for in vivo skin reflectance measurements. We observed consistent spectral coloring effects across all model systems, with an overestimation of sO 2 and more image artifacts observed with increasing melanin concentration. The learned unmixing approach reduced the measurement bias, but predictions made at lower blood sO 2 still suffered from a skin tone-dependent effect. Conclusion PAI demonstrates measurement bias, including an overestimation of blood sO 2 , in higher Fitzpatrick skin types. Future research should aim to characterize this effect in humans to ensure equitable application of the technology.
Collapse
Affiliation(s)
- Thomas R. Else
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Lina Hacker
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Janek Gröhl
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Ellie V. Bunce
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Ran Tao
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| |
Collapse
|
6
|
Sweeney A, Arora A, Edwards S, Mallidi S. Ultrasound-guided Photoacoustic image Annotation Toolkit in MATLAB (PHANTOM) for preclinical applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565885. [PMID: 37986998 PMCID: PMC10659350 DOI: 10.1101/2023.11.07.565885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Depth-dependent fluence-compensation in photoacoustic (PA) imaging is paramount for accurate quantification of chromophores from deep tissues. Here we present a user-friendly toolkit named PHANTOM (PHotoacoustic ANnotation TOolkit for MATLAB) that includes a graphical interface and assists in the segmentation of ultrasound-guided PA images. We modelled the light source configuration with Monte Carlo eXtreme and utilized 3D segmented tissues from ultrasound to generate fluence maps to depth compensate PA images. The methodology was used to analyze PA images of phantoms with varying blood oxygenation and results were validated with oxygen electrode measurements. Two preclinical models, a subcutaneous tumor and a calcified placenta, were imaged and fluence-compensated using the PHANTOM toolkit and the results were verified with immunohistochemistry. The PHANTOM toolkit provides scripts and auxiliary functions to enable biomedical researchers not specialized in optical imaging to apply fluence correction to PA images, enhancing accessibility of quantitative PAI for researchers in various fields.
Collapse
Affiliation(s)
- Allison Sweeney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Aayush Arora
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Skye Edwards
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Juhong A, Li B, Liu Y, Yao CY, Yang CW, Agnew DW, Lei YL, Luker GD, Bumpers H, Huang X, Piyawattanametha W, Qiu Z. Recurrent and convolutional neural networks for sequential multispectral optoacoustic tomography (MSOT) imaging. JOURNAL OF BIOPHOTONICS 2023; 16:e202300142. [PMID: 37382181 DOI: 10.1002/jbio.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Multispectral optoacoustic tomography (MSOT) is a beneficial technique for diagnosing and analyzing biological samples since it provides meticulous details in anatomy and physiology. However, acquiring high through-plane resolution volumetric MSOT is time-consuming. Here, we propose a deep learning model based on hybrid recurrent and convolutional neural networks to generate sequential cross-sectional images for an MSOT system. This system provides three modalities (MSOT, ultrasound, and optoacoustic imaging of a specific exogenous contrast agent) in a single scan. This study used ICG-conjugated nanoworms particles (NWs-ICG) as the contrast agent. Instead of acquiring seven images with a step size of 0.1 mm, we can receive two images with a step size of 0.6 mm as input for the proposed deep learning model. The deep learning model can generate five other images with a step size of 0.1 mm between these two input images meaning we can reduce acquisition time by approximately 71%.
Collapse
Affiliation(s)
- Aniwat Juhong
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Bo Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Yifan Liu
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Cheng-You Yao
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Chia-Wei Yang
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Dalen W Agnew
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary D Luker
- Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Harvey Bumpers
- Department of Surgery, Michigan State University, East Lansing, Michigan, USA
| | - Xuefei Huang
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Wibool Piyawattanametha
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand
| | - Zhen Qiu
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Lin Q, Choyke PL, Sato N. Visualizing vasculature and its response to therapy in the tumor microenvironment. Theranostics 2023; 13:5223-5246. [PMID: 37908739 PMCID: PMC10614675 DOI: 10.7150/thno.84947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
Tumor vasculature plays a critical role in the progression and metastasis of tumors, antitumor immunity, drug delivery, and resistance to therapies. The morphological and functional changes of tumor vasculature in response to therapy take place in a spatiotemporal-dependent manner, which can be predictive of treatment outcomes. Dynamic monitoring of intratumor vasculature contributes to an improved understanding of the mechanisms of action of specific therapies or reasons for treatment failure, leading to therapy optimization. There is a rich history of methods used to image the vasculature. This review describes recent advances in imaging technologies to visualize the tumor vasculature, with a focus on enhanced intravital imaging techniques and tumor window models. We summarize new insights on spatial-temporal vascular responses to various therapies, including changes in vascular perfusion and permeability and immune-vascular crosstalk, obtained from intravital imaging. Finally, we briefly discuss the clinical applications of intravital imaging techniques.
Collapse
Affiliation(s)
| | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Zitzmann-Kolbe S, Kristian A, Zopf D, Kamfenkel C, Politz O, Ellingsen C, Hilbig J, Juul MU, Fonslet J, Nielsen CH, Schatz CA, Bjerke RM, Cuthbertson AS, Mumberg D, Hagemann UB. A Targeted Thorium-227 Conjugate Demonstrates Efficacy in Preclinical Models of Acquired Drug Resistance and Combination Potential with Chemotherapeutics and Antiangiogenic Therapies. Mol Cancer Ther 2023; 22:1073-1086. [PMID: 37365121 PMCID: PMC10477831 DOI: 10.1158/1535-7163.mct-22-0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Targeted alpha therapies (TAT) are an innovative class of therapies for cancer treatment. The unique mode-of-action of TATs is the induction of deleterious DNA double-strand breaks. Difficult-to-treat cancers, such as gynecologic cancers upregulating the chemoresistance P-glycoprotein (p-gp) and overexpressing the membrane protein mesothelin (MSLN), are promising targets for TATs. Here, based on the previous encouraging findings with monotherapy, we investigated the efficacy of the mesothelin-targeted thorium-227 conjugate (MSLN-TTC) both as monotherapy and in combination with chemotherapies and antiangiogenic compounds in ovarian and cervical cancer models expressing p-gp. MSLN-TTC monotherapy showed equal cytotoxicity in vitro in p-gp-positive and -negative cancer cells, while chemotherapeutics dramatically lost activity on p-gp-positive cancer cells. In vivo, MSLN-TTC exhibited dose-dependent tumor growth inhibition with treatment/control ratios of 0.03-0.44 in various xenograft models irrespective of p-gp expression status. Furthermore, MSLN-TTC was more efficacious in p-gp-expressing tumors than chemotherapeutics. In the MSLN-expressing ST206B ovarian cancer patient-derived xenograft model, MSLN-TTC accumulated specifically in the tumor, which combined with pegylated liposomal doxorubicin (Doxil), docetaxel, bevacizumab, or regorafenib treatment induced additive-to-synergistic antitumor efficacy and substantially increased response rates compared with respective monotherapies. The combination treatments were well tolerated and only transient decreases in white and red blood cells were observed. In summary, we demonstrate that MSLN-TTC treatment shows efficacy in p-gp-expressing models of chemoresistance and has combination potential with chemo- and antiangiogenic therapies.
Collapse
|
10
|
Bhargava A, Popel AS, Pathak AP. Vascular phenotyping of the invasive front in breast cancer using a 3D angiogenesis atlas. Microvasc Res 2023; 149:104555. [PMID: 37257688 PMCID: PMC10526652 DOI: 10.1016/j.mvr.2023.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE Vascular remodeling at the invasive tumor front (ITF) plays a critical role in progression and metastasis of triple negative breast cancer (TNBC). Therefore, there is a crucial need to characterize the vascular phenotype (i.e. changes in the structure and function of vasculature) of the ITF and tumor core (TC) in TNBC. This requires high-resolution, 3D structural and functional microvascular data that spans the ITF and TC (i.e. ∼4-5 mm from the tumor's edge). Since such data are often challenging to obtain with most conventional imaging approaches, we employed a unique "3D whole-tumor angiogenesis atlas" derived from orthotopic xenografts to characterize the vascular phenotype of the ITF and TC in TNBC. METHODS First, high-resolution (8 μm) computed tomography (CT) images of "whole-tumor" microvasculature were acquired from eight orthotopic TNBC xenografts, of which three tumors were excised at post-inoculation day 21 (i.e. early-stage) and five tumors were excised at post-inoculation day 35 (i.e. advanced-stage). These 3D morphological CT data were combined with soft tissue contrast from MRI as well as functional data generated in silico using image-based hemodynamic modeling to generate a multi-layered "angiogenesis atlas". Employing this atlas, blood vessels were first spatially stratified within the ITF (i.e. ≤1 mm from the tumor's edge) and TC (i.e. >1 mm from the tumor's edge) of each tumor xenograft. Then, a novel method was developed to visualize and characterize microvascular remodeling and perfusion changes in terms of distance from the tumor's edge. RESULTS The angiogenesis atlas enabled the 3D visualization of changes in tumor vessel growth patterns, morphology and perfusion within the ITF and TC. Early and advanced stage tumors demonstrated significant differences in terms of their edge-to-center distributions for vascular surface area density, vascular length density, intervessel distance and simulated perfusion density (p ≪ 0.01). Elevated vascular length density, vascular surface area density and perfusion density along the circumference of the ITF was suggestive of a preferential spatial pattern of angiogenic growth in this tumor cohort. Finally, we demonstrated the feasibility of differentiating the vascular phenotypes of ITF and TC in these TNBC xenografts. CONCLUSIONS The combination of a 3D angiogenesis atlas and image-based hemodynamic modeling heralds a new approach for characterizing the role of vascular remodeling in cancer and other diseases.
Collapse
Affiliation(s)
- Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Electrical Engineering, Johns Hopkins University
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Electrical Engineering, Johns Hopkins University; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
11
|
Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C, Sun S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023; 12:3. [PMID: 36624542 PMCID: PMC9830930 DOI: 10.1186/s40164-022-00363-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Breast cancer heterogeneity determines cancer progression, treatment effects, and prognosis. However, the precise mechanism for this heterogeneity remains unknown owing to its complexity. Here, we summarize the origins of breast cancer heterogeneity and its influence on disease progression, recurrence, and therapeutic resistance. We review the possible mechanisms of heterogeneity and the research methods used to analyze it. We also highlight the importance of cell interactions for the origins of breast cancer heterogeneity, which can be further categorized into cooperative and competitive interactions. Finally, we provide new insights into precise individual treatments based on heterogeneity.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ling Zhan
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Lan Luo
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
12
|
Akhmedzhanova KG, Kurnikov AA, Khochenkov DA, Khochenkova YA, Glyavina AM, Kazakov VV, Yudintsev AV, Maslennikova AV, Turchin IV, Subochev PV, Orlova AG. In vivo monitoring of vascularization and oxygenation of tumor xenografts using optoacoustic microscopy and diffuse optical spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:5695-5708. [PMID: 36733761 PMCID: PMC9872889 DOI: 10.1364/boe.469380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 05/11/2023]
Abstract
The research is devoted to comparison of the blood vessel structure and the oxygen state of three xenografts: SN-12C, HCT-116 and Colo320. Differences in the vessel formation and the level of oxygenation are revealed by optoacoustic (OA) microscopy and diffuse optical spectroscopy (DOS) respectively. The Colo320 tumor is characterized by the highest values of vessel size and fraction. DOS showed increased content of deoxyhemoglobin that led to reduction of saturation level for Colo320 as compared to other tumors. Immunohistochemical (IHC) analysis for CD31 demonstrates the higher number of vessels in Colo320. The IHC for hypoxia was consistent with DOS results and revealed higher values of the relative hypoxic fraction in Colo320.
Collapse
Affiliation(s)
- K. G. Akhmedzhanova
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A. A. Kurnikov
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - D. A. Khochenkov
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Togliatti State University, Togliatti, Russia
| | - Yu. A. Khochenkova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - A. M. Glyavina
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - V. V. Kazakov
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A. V. Yudintsev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A. V. Maslennikova
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - I. V. Turchin
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - P. V. Subochev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A. G. Orlova
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
13
|
Tissue Sheet Engineered Using Human Umbilical Cord-Derived Mesenchymal Stem Cells Improves Diabetic Wound Healing. Int J Mol Sci 2022; 23:ijms232012697. [PMID: 36293557 PMCID: PMC9604116 DOI: 10.3390/ijms232012697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulceration is a common chronic diabetic complication. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been widely used in regenerative medicine owing to their multipotency and easy availability. We developed poly(lactic-co-glycolic acid) (PLGA)-based scaffold to create hUC-MSC tissue sheets. In vitro immunostaining showed that hUC-MSC tissue sheets formed thick and solid tissue sheets with an abundance of extracellular matrix (ECM). Diabetic wounds in mice treated with or without either the hUC-MSC tissue sheet, hUC-MSC injection, or fiber only revealed that hUC-MSC tissue sheet transplantation promoted diabetic wound healing with improved re-epithelialization, collagen deposition, blood vessel formation and maturation, and alleviated inflammation compared to that observed in other groups. Taken collectively, our findings suggest that hUC-MSCs cultured on PLGA scaffolds improve diabetic wound healing, collagen deposition, and angiogenesis, and provide a novel and effective method for cell transplantation, and a promising alternative for diabetic skin wound treatment.
Collapse
|
14
|
Escudero Sanchez L, Brown E, Rundo L, Ursprung S, Sala E, Bohndiek SE, Partarrieu IX. Photoacoustic imaging radiomics in patient-derived xenografts: a study on feature sensitivity and model discrimination. Sci Rep 2022; 12:15142. [PMID: 36071117 PMCID: PMC9452574 DOI: 10.1038/s41598-022-19084-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Photoacoustic imaging is an increasingly popular method of exploring the tumour microenvironment, which can provide insight into tumour oxygenation status and potentially treatment response assessment. Currently, the measurements most commonly performed on such images are the mean and median of the pixel values of the tumour volumes of interest. We investigated expanding the set of measurements that can be extracted from these images by adding radiomic features. In particular, we found that Skewness was sensitive to differences between basal and luminal patient derived xenograft cancer models with an [Formula: see text] of 0.86, and that it was robust to variations in confounding factors such as reconstruction type and wavelength. We also built discriminant models with radiomic features that were correlated with the underlying tumour model and were independent from each other. We then ranked features by their importance in the model. Skewness was again found to be an important feature, as were 10th Percentile, Root Mean Squared, and several other texture-based features. In summary, this paper proposes a methodology to select radiomic features extracted from photoacoustic images that are robust to changes in acquisition and reconstruction parameters, and discusses features found to have discriminating power between the underlying tumour models in a pre-clinical dataset.
Collapse
Affiliation(s)
- Lorena Escudero Sanchez
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
| | - Emma Brown
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
- Washington University School of Medicine in St Louis, St. Louis, MO, 63110, USA
| | - Leonardo Rundo
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, CB2 0RE, UK
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Fisciano, SA, 84084, Italy
| | - Stephan Ursprung
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | | |
Collapse
|
15
|
Bajbouj K, Al-Ali A, Shafarin J, Sahnoon L, Sawan A, Shehada A, Elkhalifa W, Saber-Ayad M, Muhammad J, Elmoselhi AB, Guraya S, Hamad M. Vitamin D Exerts Significant Antitumor Effects by Suppressing Vasculogenic Mimicry in Breast Cancer Cells. Front Oncol 2022; 12:918340. [PMID: 35747793 PMCID: PMC9210804 DOI: 10.3389/fonc.2022.918340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundNumerous clinical and experimental observations have alluded to the substantial anti-neoplastic role of vitamin D in breast cancer (BC), primarily by inducing apoptosis and affecting metastasis. Tumor progression and resistance to chemotherapy have been linked to vasculogenic mimicry (VM), which represents the endothelial-independent formation of microvascular channels by cancer cells. However, the effect of vitamin D on VM formation in BC has not been thoroughly investigated. This study examined the impact of 1α,25-dihydroxyvitamin D3 (calcitriol), the active form of vitamin D, on the expression of major factors involved in BC migration, invasion, and VM formation.Experimental MethodsPublicly available transcriptomic datasets were used to profile the expression status of the key VM markers in vitamin D-treated BC cells. The in silico data were validated by examining the expression and activity of the key factors that are involved in tumor progression and MV formation in hormone-positive MCF-7 and aggressive triple‐negative MDA-MB-231 BC cells after treatment with calcitriol.Results and DiscussionsThe bioinformatics analysis showed that tumor VM formation-enriched pathways were differentially downregulated in vitamin D-treated cells when compared with control counterparts. Treatment of BC cells with calcitriol resulted in increased expression of tissue inhibitors of metalloproteinases (TIMPs 1 and 2) and decreased content and gelatinolytic activity of matrix metalloproteinases (MMPs 2 and 9). Furthermore, calcitriol treatment reduced the expression of several pro-MV formation regulators including vascular endothelial growth factor (VEGF), tumor growth factor (TGF-β1), and amphiregulin. Eventually, this process resulted in a profound reduction in cell migration and invasion following the treatment of BC cells with calcitriol when compared to the controls. Finally, the formation of VM was diminished in the aggressive triple‐negative MDA-MB-231 cancer cell line after calcitriol treatment.ConclusionOur findings demonstrate that vitamin D mediates its antitumor effects in BC cells by inhibiting and curtailing their potential for VM formation.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Khuloud Bajbouj,
| | - Abeer Al-Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Lina Sahnoon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Sawan
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed Shehada
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Medical Pharmacology Department, Cairo University, Cairo, Egypt
| | - Jibran Sualeh Muhammad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Adel B. Elmoselhi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Salman Y. Guraya
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Brown EL, Lefebvre TL, Sweeney PW, Stolz BJ, Gröhl J, Hacker L, Huang Z, Couturier DL, Harrington HA, Byrne HM, Bohndiek SE. Quantification of vascular networks in photoacoustic mesoscopy. PHOTOACOUSTICS 2022; 26:100357. [PMID: 35574188 PMCID: PMC9095888 DOI: 10.1016/j.pacs.2022.100357] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of in silico synthetic vasculatures and a string phantom indicated that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Segmentation of vessels in breast cancer patient-derived xenografts (PDXs) compared favourably to ex vivo immunohistochemistry. Furthermore, our findings underscore the importance of validating segmentation methods when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo.
Collapse
Affiliation(s)
- Emma L. Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Thierry L. Lefebvre
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Paul W. Sweeney
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Bernadette J. Stolz
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Janek Gröhl
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Lina Hacker
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Ziqiang Huang
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
17
|
Someya Y, Iima M, Imai H, Yoshizawa A, Kataoka M, Isoda H, Le Bihan D, Nakamoto Y. Investigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers. Sci Rep 2022; 12:6523. [PMID: 35444193 PMCID: PMC9021220 DOI: 10.1038/s41598-022-10081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated the associations of time-dependent DWI, non-Gaussian DWI, and CEST parameters with histological biomarkers in a breast cancer xenograft model. 22 xenograft mice (7 MCF-7 and 15 MDA-MB-231) were scanned at 4 diffusion times [Td = 2.5/5 ms with 11 b-values (0–600 s/mm2) and Td = 9/27.6 ms with 17 b-values (0–3000 s/mm2), respectively]. The apparent diffusion coefficient (ADC) was estimated using 2 b-values in different combinations (ADC0–600 using b = 0 and 600 s/mm2 and shifted ADC [sADC200–1500] using b = 200 and 1500 s/mm2) at each of those diffusion times. Then the change (Δ) in ADC/sADC between diffusion times was evaluated. Non-Gaussian diffusion and intravoxel incoherent motion (IVIM) parameters (ADC0, the virtual ADC at b = 0; K, Kurtosis from non-Gaussian diffusion; f, the IVIM perfusion fraction) were estimated. CEST images were acquired and the amide proton transfer signal intensity (APT SI) were measured. The ΔsADC9–27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{9\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC9ms200-1500 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500 and ΔADC2.5_sADC27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{ADC}}_{{2.5\, {\text{ms}}}}^{0{-}600}$$\end{document}ADC2.5ms0-600 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500) was significantly larger for MCF-7 groups, and ΔADC2.5_sADC27.6 was positively correlated with Ki67max and APT SI. ADC0 decreased significantly in MDA-MB-231 group and K increased significantly with Td in MCF-7 group. APT SI and cellular area had a moderately strong positive correlation in MDA-MB-231 and MCF-7 tumors combined, and there was a positive correlation in MDA-MB-231 tumors. There was a significant negative correlation between APT SI and the Ki-67-positive ratio in MDA-MB-231 tumors and when combined with MCF-7 tumors. The associations of ΔADC2.5_sADC27.6 and API SI with Ki-67 parameters indicate that the Td-dependent DW and CEST parameters are useful to predict the histological markers of breast cancers.
Collapse
Affiliation(s)
- Yuko Someya
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroyoshi Isoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Paris-Saclay University, 91191, Gif-sur-Yvette, France.,Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.,National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
18
|
Quiros-Gonzalez I, Tomaszewski MR, Golinska MA, Brown E, Ansel-Bollepalli L, Hacker L, Couturier DL, Sainz RM, Bohndiek SE. Photoacoustic Tomography Detects Response and Resistance to Bevacizumab in Breast Cancer Mouse Models. Cancer Res 2022; 82:1658-1668. [PMID: 35404400 PMCID: PMC9359720 DOI: 10.1158/0008-5472.can-21-0626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/27/2021] [Accepted: 02/18/2022] [Indexed: 01/07/2023]
Abstract
Angiogenesis is an established prognostic factor in advanced breast cancer, yet response to antiangiogenic therapies in this disease remains highly variable. Noninvasive imaging biomarkers could help identify patients that will benefit from antiangiogenic therapy and provide an ideal tool for longitudinal monitoring, enabling dosing regimens to be altered with real-time feedback. Photoacoustic tomography (PAT) is an emerging imaging modality that provides a direct readout of tumor hemoglobin concentration and oxygenation. We hypothesized that PAT could be used in the longitudinal setting to provide an early indication of response or resistance to antiangiogenic therapy. To test this hypothesis, PAT was performed over time in estrogen receptor-positive and estrogen receptor-negative breast cancer xenograft mouse models undergoing treatment with the antiangiogenic bevacizumab as a single agent. The cohort of treated tumors, which were mostly resistant to the treatment, contained a subset that demonstrated a clear survival benefit. At endpoint, the PAT data from the responding subset showed significantly lower oxygenation and higher hemoglobin content compared with both resistant and control tumors. Longitudinal analysis revealed that tumor oxygenation diverged significantly in the responding subset, identifying early treatment response and the evolution of different vascular phenotypes between the subsets. Responding tumors were characterized by a more angiogenic phenotype when analyzed with IHC, displaying higher vessel density, yet poorer vascular maturity and elevated hypoxia. Taken together, our findings indicate that PAT shows promise in providing an early indication of response or resistance to antiangiogenic therapy. SIGNIFICANCE Photoacoustic assessment of tumor oxygenation is a noninvasive early indicator of response to bevacizumab therapy, clearly distinguishing between control, responding, and resistant tumors within just a few weeks of treatment.
Collapse
Affiliation(s)
- Isabel Quiros-Gonzalez
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Michal R. Tomaszewski
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Monika A. Golinska
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Emma Brown
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Laura Ansel-Bollepalli
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Rosa M. Sainz
- Cell Morphology and Biology Department, IUOPA and ISPA, Universidad de Oviedo, Oviedo, Spain
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| |
Collapse
|
19
|
Lefebvre TL, Brown E, Hacker L, Else T, Oraiopoulou ME, Tomaszewski MR, Jena R, Bohndiek SE. The Potential of Photoacoustic Imaging in Radiation Oncology. Front Oncol 2022; 12:803777. [PMID: 35311156 PMCID: PMC8928467 DOI: 10.3389/fonc.2022.803777] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is recognized globally as a mainstay of treatment in most solid tumors and is essential in both curative and palliative settings. Ionizing radiation is frequently combined with surgery, either preoperatively or postoperatively, and with systemic chemotherapy. Recent advances in imaging have enabled precise targeting of solid lesions yet substantial intratumoral heterogeneity means that treatment planning and monitoring remains a clinical challenge as therapy response can take weeks to manifest on conventional imaging and early indications of progression can be misleading. Photoacoustic imaging (PAI) is an emerging modality for molecular imaging of cancer, enabling non-invasive assessment of endogenous tissue chromophores with optical contrast at unprecedented spatio-temporal resolution. Preclinical studies in mouse models have shown that PAI could be used to assess response to radiotherapy and chemoradiotherapy based on changes in the tumor vascular architecture and blood oxygen saturation, which are closely linked to tumor hypoxia. Given the strong relationship between hypoxia and radio-resistance, PAI assessment of the tumor microenvironment has the potential to be applied longitudinally during radiotherapy to detect resistance at much earlier time-points than currently achieved by size measurements and tailor treatments based on tumor oxygen availability and vascular heterogeneity. Here, we review the current state-of-the-art in PAI in the context of radiotherapy research. Based on these studies, we identify promising applications of PAI in radiation oncology and discuss the future potential and outstanding challenges in the development of translational PAI biomarkers of early response to radiotherapy.
Collapse
Affiliation(s)
- Thierry L. Lefebvre
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Emma Brown
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Else
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mariam-Eleni Oraiopoulou
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michal R. Tomaszewski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Rajesh Jena
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Recapitulating the Angiogenic Switch in a Hydrogel-Based 3D In Vitro Tumor-Stroma Model. Bioengineering (Basel) 2021; 8:bioengineering8110186. [PMID: 34821752 PMCID: PMC8614676 DOI: 10.3390/bioengineering8110186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
To ensure nutrient and oxygen supply, tumors beyond a size of 1–2 mm3 need a connection to the vascular system. Thus, tumor cells modify physiological tissue homeostasis by secreting inflammatory and angiogenic cytokines. This leads to the activation of the tumor microenvironment and the turning of the angiogenic switch, resulting in tumor vascularization and growth. To inhibit tumor growth by developing efficient anti-angiogenic therapies, an in depth understanding of the molecular mechanism initiating angiogenesis is essential. Yet so far, predominantly 2D cell cultures or animal models have been used to clarify the interactions within the tumor stroma, resulting in poor transferability of the data obtained to the in vivo situation. Consequently, there is an abundant need for complex, humanized, 3D models in vitro. We established a dextran-hydrogel-based 3D organotypic in vitro model containing microtumor spheroids, macrophages, neutrophils, fibroblasts and endothelial cells, allowing for the analysis of tumor–stroma interactions in a controlled and modifiable environment. During the cultivation period of 21 days, the microtumor spheroids in the model grew in size and endothelial cells formed elongated tubular structures resembling capillary vessels, that appeared to extend towards the tumor spheroids. The tubular structures exhibited complex bifurcations and expanded without adding external angiogenic factors such as VEGF to the culture. To allow high-throughput screening of therapeutic candidates, the 3D cell culture model was successfully miniaturized to a 96-well format, while still maintaining the same level of tumor spheroid growth and vascular sprouting. The quantification of VEGF in the conditioned medium of these cultures showed a continuous increase during the cultivation period, suggesting the contribution of endogenous VEGF to the induction of the angiogenic switch and vascular sprouting. Thus, this model is highly suitable as a testing platform for novel anticancer therapeutics targeting the tumor as well as the vascular compartment.
Collapse
|
21
|
Yu P, Zhu X, Zhu JL, Han YB, Zhang H, Zhou X, Yang L, Xia YZ, Zhang C, Kong LY. The Chk2-PKM2 axis promotes metabolic control of vasculogenic mimicry formation in p53-mutated triple-negative breast cancer. Oncogene 2021; 40:5262-5274. [PMID: 34244606 DOI: 10.1038/s41388-021-01933-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Vasculogenic mimicry (VM) formation, which participates in the process of neovascularization, is highly activated in p53-mutated triple-negative breast cancer (TNBC). Here, we show that Chk2 is negatively correlated with VM formation in p53-mutated TNBC. Its activation by DNA-damaging agents such as cisplatin, etoposide, and DPT reduces VM formation. Mechanistically, the Chk2-PKM2 axis plays an important role in the inhibition of VM formation at the level of metabolic regulation. Chk2 promotes the Chk2-PKM2 interaction through the Chk2 SCD (SQ/TQ cluster domain) and the PKM2 C domain. Furthermore, Chk2 promotes the nuclear export of PKM2 by phosphorylating PKM2 at Ser100. P-PKM2 S100 reduces VM formation by decreasing glucose flux, and the PKM2 S100A mutation abolishes the inhibition of glucose flux and VM formation induced by Chk2 activation. Overall, this study proposes a novel strategy of VM suppression through Chk2 induction, which prevents PKM2-mediated glucose flux in p53-mutated TNBC.
Collapse
Affiliation(s)
- Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiong Zhu
- Medical and Chemical Institute, China Pharmaceutical University, Nanjing, China
| | - Jia-Le Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Bao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
22
|
Morales-Guadarrama G, García-Becerra R, Méndez-Pérez EA, García-Quiroz J, Avila E, Díaz L. Vasculogenic Mimicry in Breast Cancer: Clinical Relevance and Drivers. Cells 2021; 10:cells10071758. [PMID: 34359928 PMCID: PMC8304745 DOI: 10.3390/cells10071758] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022] Open
Abstract
In solid tumors, vasculogenic mimicry (VM) is the formation of vascular structures by cancer cells, allowing to generate a channel-network able to transport blood and tumor cells. While angiogenesis is undertaken by endothelial cells, VM is assumed by cancer cells. Besides the participation of VM in tumor neovascularization, the clinical relevance of this process resides in its ability to favor metastasis and to drive resistance to antiangiogenic therapy. VM occurs in many tumor types, including breast cancer, where it has been associated with a more malignant phenotype, such as triple-negative and HER2-positive tumors. The latter may be explained by known drivers of VM, like hypoxia, TGFB, TWIST1, EPHA2, VEGF, matrix metalloproteinases, and other tumor microenvironment-derived factors, which altogether induce the transformation of tumor cells to a mesenchymal phenotype with a high expression rate of stemness markers. This review analyzes the current literature in the field, including the participation of some microRNAs and long noncoding RNAs in VM-regulation and tumorigenesis of breast cancer. Considering the clinical relevance of VM and its association with the tumor phenotype and clinicopathological parameters, further studies are granted to target VM in the clinic.
Collapse
Affiliation(s)
- Gabriela Morales-Guadarrama
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (G.M.-G.); (E.A.M.-P.); (J.G.-Q.); (E.A.)
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Edgar Armando Méndez-Pérez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (G.M.-G.); (E.A.M.-P.); (J.G.-Q.); (E.A.)
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (G.M.-G.); (E.A.M.-P.); (J.G.-Q.); (E.A.)
| | - Euclides Avila
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (G.M.-G.); (E.A.M.-P.); (J.G.-Q.); (E.A.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (G.M.-G.); (E.A.M.-P.); (J.G.-Q.); (E.A.)
- Correspondence: ; Tel.: +52-(55)-5487-0900
| |
Collapse
|
23
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Gröhl J, Schellenberg M, Dreher K, Maier-Hein L. Deep learning for biomedical photoacoustic imaging: A review. PHOTOACOUSTICS 2021; 22:100241. [PMID: 33717977 PMCID: PMC7932894 DOI: 10.1016/j.pacs.2021.100241] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 05/04/2023]
Abstract
Photoacoustic imaging (PAI) is a promising emerging imaging modality that enables spatially resolved imaging of optical tissue properties up to several centimeters deep in tissue, creating the potential for numerous exciting clinical applications. However, extraction of relevant tissue parameters from the raw data requires the solving of inverse image reconstruction problems, which have proven extremely difficult to solve. The application of deep learning methods has recently exploded in popularity, leading to impressive successes in the context of medical imaging and also finding first use in the field of PAI. Deep learning methods possess unique advantages that can facilitate the clinical translation of PAI, such as extremely fast computation times and the fact that they can be adapted to any given problem. In this review, we examine the current state of the art regarding deep learning in PAI and identify potential directions of research that will help to reach the goal of clinical applicability.
Collapse
Affiliation(s)
- Janek Gröhl
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Melanie Schellenberg
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
| | - Kris Dreher
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - Lena Maier-Hein
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
- Heidelberg University, Faculty of Mathematics and Computer Science, Heidelberg, Germany
| |
Collapse
|
25
|
Nisar MA, Zheng Q, Saleem MZ, Ahmmed B, Ramzan MN, Ud Din SR, Tahir N, Liu S, Yan Q. IL-1β Promotes Vasculogenic Mimicry of Breast Cancer Cells Through p38/MAPK and PI3K/Akt Signaling Pathways. Front Oncol 2021; 11:618839. [PMID: 34055597 PMCID: PMC8160375 DOI: 10.3389/fonc.2021.618839] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Vasculogenic mimicry (VM), a micro vessel-like structure formed by the cancer cells, plays a pivotal role in cancer malignancy and progression. Interleukin-1 beta (IL-1β) is an active pro-inflammatory cytokine and elevated in many tumor types, including breast cancer. However, the effect of IL-1β on the VM of breast cancer has not been clearly elucidated. In this study, breast cancer cells (MCF-7 and MDA-MB-231) were used to study the effect of IL-1β on the changes that can promote VM. The evidence for VM stimulated by IL-1β was acquired by analyzing the expression of VM-associated biomarkers (VE-cadherin, VEGFR-1, MMP-9, MMP-2, c-Fos, and c-Jun) via western blot, immunofluorescent staining, and Immunohistochemistry (IHC). Additionally, morphological evidence was collected via Matrigel-based cord formation assay under normoxic/hypoxic conditions and microvessel examination through Hematoxylin and Eosin staining (H&E). Furthermore, the STRING and Gene Ontology database was also used to analyze the VM-associated interacting molecules stimulated by IL-β. The results showed that the expression of VM biomarkers was increased in both MCF-7 and MDA-MB-231 cells after IL-1β treatment. The increase in VM response was observed in IL-1β treated cells under both normoxia and hypoxia. IL-1β also increased the activation of transcription factor AP-1 complex (c-Fos/c-Jun). The bioinformatics data indicated that p38/MAPK and PI3K/Akt signaling pathways were involved in the IL-1β stimulation. It was further confirmed by the downregulated expression of VM biomarkers and reduced formation of the intersections upon the addition of the signaling pathway inhibitors. The study suggests that IL-1β stimulates the VM and its associated events in breast cancer cells via p38/MAPK and PI3K/Akt signaling pathways. Aiming the VM-associated molecular targets promoted by IL-1β may offer a novel anti-angiogenic therapeutic strategy to control the aggressiveness of breast cancer cells.
Collapse
Affiliation(s)
- Muhammad Azhar Nisar
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Qin Zheng
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Muhammad Zubair Saleem
- Department of Pathology and Pathophysiology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Bulbul Ahmmed
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Muhammad Noman Ramzan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Naeem Tahir
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Lafci B, Merčep E, Herraiz JL, Deán-Ben XL, Razansky D. Noninvasive multiparametric characterization of mammary tumors with transmission-reflection optoacoustic ultrasound. Neoplasia 2020. [DOI: https://doi.org/10.1016/j.neo.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Lafci B, Merčep E, Herraiz JL, Deán-Ben XL, Razansky D. Noninvasive multiparametric charac-terization of mammary tumors with transmission-reflection optoacoustic ultrasound. Neoplasia 2020; 22:770-777. [PMID: 33142241 PMCID: PMC7644559 DOI: 10.1016/j.neo.2020.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Development of imaging methods capable of furnishing tumor-specific morphological, functional, and molecular information is paramount for early diagnosis, staging, and treatment of breast cancer. Ultrasound (US) and optoacoustic (OA) imaging methods exhibit excellent traits for tumor imaging in terms of fast imaging speed, ease of use, excellent contrast, and lack of ionizing radiation. Here, we demonstrate simultaneous tomographic whole body imaging of optical absorption, US reflectivity, and speed of sound (SoS) in living mice. In vivo studies of 4T1 breast cancer xenografts models revealed synergistic and complementary value of the hybrid imaging approach for characterizing mammary tumors. While neovasculature surrounding the tumor areas were observed based on the vascular anatomy contrast provided by the OA data, the tumor boundaries could be discerned by segmenting hypoechoic structures in pulse-echo US images. Tumor delineation was further facilitated by enhancing the contrast and spatial resolution of the SoS maps with a full-wave inversion method. The malignant lesions could thus be distinguished from other hypoechoic regions based on the average SoS values. The reported findings corroborate the strong potential of the hybrid imaging approach for advancing cancer research in small animal models and fostering development of new clinical diagnostic approaches.
Collapse
Affiliation(s)
- Berkan Lafci
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elena Merčep
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Neuherberg, Germany; iThera Medical GmbH, Munich, Germany
| | - Joaquin L Herraiz
- Nuclear Physics Group and IPARCOS, Complutense University of Madrid, Madrid, Spain; Health Research Institute of Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland; Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Neuherberg, Germany.
| |
Collapse
|
28
|
Liapis E, Klemm U, Karlas A, Reber J, Ntziachristos V. Resolution of Spatial and Temporal Heterogeneity in Bevacizumab-Treated Breast Tumors by Eigenspectra Multispectral Optoacoustic Tomography. Cancer Res 2020; 80:5291-5304. [PMID: 32994204 DOI: 10.1158/0008-5472.can-20-1011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/05/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
Understanding temporal and spatial hemodynamic heterogeneity as a function of tumor growth or therapy affects the development of novel therapeutic strategies. In this study, we employed eigenspectra multispectral optoacoustic tomography (eMSOT) as a next-generation optoacoustic method to impart high accuracy in resolving tumor hemodynamics during bevacizumab therapy in two types of breast cancer xenografts (KPL-4 and MDA-MB-468). Patterns of tumor total hemoglobin concentration (THb) and oxygen saturation (sO2) were imaged in control and bevacizumab-treated tumors over the course of 58 days (KPL-4) and 16 days (MDA-MB-468), and the evolution of functional vasculature "normalization" was resolved macroscopically. An initial sharp drop in tumor sO2 and THb content shortly after the initiation of bevacizumab treatment was followed by a recovery in oxygenation levels. Rim-core subregion analysis revealed steep spatial oxygenation gradients in growing tumors that were reduced after bevacizumab treatment. Critically, eMSOT imaging findings were validated directly by histopathologic assessment of hypoxia (pimonidazole) and vascularity (CD31). These data demonstrate how eMSOT brings new abilities for accurate observation of entire tumor responses to challenges at spatial and temporal dimensions not available by other techniques today. SIGNIFICANCE: Accurate assessment of hypoxia and vascularization over space and time is critical for understanding tumor development and the role of spatial heterogeneity in tumor aggressiveness, metastasis, and response to treatment.
Collapse
Affiliation(s)
- Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany
| | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.,Chair of Biological Imaging, TranslaTUM Technical University of Munich, Munich, Germany
| | - Josefine Reber
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.,Chair of Biological Imaging, TranslaTUM Technical University of Munich, Munich, Germany
| |
Collapse
|
29
|
Hacker L, Brunker J, Smith ESJ, Quiros-Gonzalez I, Bohndiek SE. Photoacoustics resolves species-specific differences in hemoglobin concentration and oxygenation. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200056RR. [PMID: 32888263 PMCID: PMC7471783 DOI: 10.1117/1.jbo.25.9.095002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/11/2020] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE Photoacoustic imaging (PAI) enables the detection of blood hemoglobin (HB) concentration and oxygenation (sO2) with high contrast and resolution. Despite the heavy use of photoacoustically determined total hemoglobin (THb) and oxygenation (sO2) biomarkers in PAI research, their relationship with underlying biochemical blood parameters and the impact of intra- and interspecies genetic variability have yet to be established. AIM To explore the relationship between THb and sO2 photoacoustic biomarkers and the underlying biochemical blood parameters in a species-specific manner. APPROACH Experiments were performed on blood in vitro using tissue-mimicking agar phantoms. Blood was extracted from mouse, rat, human, and naked mole-rat (Heterocephalus glaber), anticoagulated in ethylenediaminetetraacetic acid, and measured within 48 h. THb and sO2 were measured using a commercial photoacoustic tomography system (InVision 128, iThera Medical GmBH). Biochemical blood parameters such as HB concentration (g/dL), hematocrit (HCT, %), and red blood cell (RBC) count (μL - 1) were assessed using a hematology analyzer (Mythic 18 Vet, Woodley Equipment). RESULTS A significant correlation was observed between THb and biochemical HB, HCT, and RBC in mouse and rat blood. Moreover, PAI accurately recapitulated interspecies variations in HB and HCT between mouse and rat blood and resolved differences in the oxygen dissociation curves measured using sO2 between human, mouse, and rat. With these validation data in hand, we applied PAI to studies of blood obtained from naked mole-rats and could confirm the high oxygen affinity of this species in comparison to other rodents of similar size. CONCLUSIONS Our results demonstrate the high sensitivity of photoacoustically determined hemoglobin biomarkers toward species-specific variations in vitro.
Collapse
Affiliation(s)
- Lina Hacker
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Joanna Brunker
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Ewan St. John Smith
- University of Cambridge, Department of Pharmacology, Cambridge, United Kingdom
| | - Isabel Quiros-Gonzalez
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| |
Collapse
|
30
|
Wechman SL, Emdad L, Sarkar D, Das SK, Fisher PB. Vascular mimicry: Triggers, molecular interactions and in vivo models. Adv Cancer Res 2020; 148:27-67. [PMID: 32723566 DOI: 10.1016/bs.acr.2020.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular mimicry is induced by a wide array of genes with functions related to cancer stemness, hypoxia, angiogenesis and autophagy. Vascular mimicry competent (VM-competent) cells that form de novo blood vessels are common in solid tumors facilitating tumor cell survival and metastasis. VM-competent cells display increased levels of vascular mimicry selecting for stem-like cells in an O2-gradient-dependent manner in deeply hypoxic tumor regions, while also aiding in maintaining tumor cell metabolism and stemness. Three of the principal drivers of vascular mimicry are EphA2, Nodal and HIF-1α, however, directly or indirectly many of these molecules affect VE-Cadherin (VE-Cad), which forms gap-junctions to bind angiogenic blood vessels together. During vascular mimicry, the endothelial-like functions of VM-competent cancer stem cells co-opt VE-Cad to bind cancer cells together to create cancer cell-derived blood conducting vessels. This process potentially compensates for the lack of access to blood and nutrient in avascular tumors, simultaneously providing nutrients and enhancing cancer invasion and metastasis. Current evidence also supports that vascular mimicry promotes cancer malignancy and metastasis due to the cooperation of oncogenic signaling molecules driving cancer stemness and autophagy. While a number of currently used cancer therapeutics are effective inhibitors of vascular mimicry, developing a new class of vascular mimicry specific inhibitors could allow for the treatment of angiogenesis-resistant tumors, inhibit cancer metastasis and improve patient survival. In this review, we describe the principal vascular mimicry pathways in addition to emphasizing the roles of hypoxia, autophagy and select proangiogenic oncogenes in this process.
Collapse
Affiliation(s)
- Stephen L Wechman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
31
|
Ghosh P, Guo Y, Ashrafi A, Chen J, Dey S, Zhong S, Liu J, Campbell J, Konduri PC, Gerberich J, Garrossian M, Mason RP, Zhang L, Liu L. Oxygen-Enhanced Optoacoustic Tomography Reveals the Effectiveness of Targeting Heme and Oxidative Phosphorylation at Normalizing Tumor Vascular Oxygenation. Cancer Res 2020; 80:3542-3555. [PMID: 32546631 DOI: 10.1158/0008-5472.can-19-3247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/20/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
Multispectral optoacoustic tomography (MSOT) is an emerging noninvasive imaging modality that can detect real-time dynamic information about the tumor microenvironment in humans and animals. Oxygen enhanced (OE)-MSOT can monitor tumor vasculature and oxygenation during disease development or therapy. Here, we used MSOT and OE-MSOT to examine in mice the response of human non-small cell lung cancer (NSCLC) xenografts to a new class of antitumor drugs, heme-targeting agents heme-sequestering peptide 2 (HSP2) and cyclopamine tartrate (CycT). HSP2 inhibits heme uptake, while CycT inhibits heme synthesis in NSCLC cells, where heme is essential for ATP generation via oxidative phosphorylation. HSP2 and CycT can inhibit ATP generation and thereby suppress NSCLC cell tumorigenic functions. MSOT showed that treatment of NSCLC tumors with HSP2 or CycT reduced total hemoglobin, increased oxygen saturation, and enhanced the amplitude of response to oxygen gas breathing challenge. HSP2 and CycT normalized tumor vasculature and improved tumor oxygenation, where levels of several hypoxia markers in NSCLC tumors were reduced by treatment with HSP2 or CycT. Furthermore, treatment with HSP2 or CycT reduced levels of angiogenic factor VEGFA, its receptor VEGFR1, and vascular marker CD34. Together, our data show that heme-targeting drugs HSP2 and CycT elicit multiple tumor-suppressing functions, such as inhibiting angiogenic function, normalizing tumor vasculature, alleviating tumor hypoxia, and inhibiting oxygen consumption and ATP generation. SIGNIFICANCE: Heme-targeting agents HSP2 and CycT effectively normalize tumor vasculature and alleviate tumor hypoxia, raising the possibility of their combination with chemo-, radio-, and immunotherapies to improve antitumor efficacy.See related commentary by Tomaszewski, p. 3461.
Collapse
Affiliation(s)
- Poorva Ghosh
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | - Yihang Guo
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Gastrointestinal surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, China
| | - Adnin Ashrafi
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | - Jingyu Chen
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas.,Ultrasound Department, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Sanchareeka Dey
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | - Shigen Zhong
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Ultrasound, The General Hospital of Chongqing, Chongqing, China
| | - Jie Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas.,The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Department of Clinical Laboratory, Hedong District, Tianjin, China
| | - James Campbell
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Jeni Gerberich
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas.
| | - Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
32
|
Hochuli R, An L, Beard PC, Cox BT. Estimating blood oxygenation from photoacoustic images: can a simple linear spectroscopic inversion ever work? JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-13. [PMID: 31849203 PMCID: PMC7005536 DOI: 10.1117/1.jbo.24.12.121914] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/21/2019] [Indexed: 05/07/2023]
Abstract
Linear spectroscopic inversions, in which photoacoustic amplitudes are assumed to be directly proportional to absorption coefficients, are widely used in photoacoustic imaging to estimate blood oxygen saturation because of their simplicity. Unfortunately, they do not account for the spatially varying wavelength-dependence of the light fluence within the tissue, which introduces "spectral coloring," a potentially significant source of error. However, accurately correcting for spectral coloring is challenging, so we investigated whether there are conditions, e.g., sets of wavelengths, where it is possible to ignore the spectral coloring and still obtain accurate oxygenation measurements using linear inversions. Accurate estimates of oxygenation can be obtained when the wavelengths are chosen to (i) minimize spectral coloring, (ii) avoid ill-conditioning, and (iii) maintain a sufficiently high signal-to-noise ratio (SNR) for the estimates to be meaningful. It is not obvious which wavelengths will satisfy these conditions, and they are very likely to vary for different imaging scenarios, making it difficult to find general rules. Through the use of numerical simulations, we isolated the effect of spectral coloring from sources of experimental error. It was shown that using wavelengths between 500 nm and 1000 nm yields inaccurate estimates of oxygenation and that careful selection of wavelengths in the 620- to 920-nm range can yield more accurate oxygenation values. However, this is only achievable with a good prior estimate of the true oxygenation. Even in this idealized case, it was shown that considerable care must be exercised over the choice of wavelengths when using linear spectroscopic inversions to obtain accurate estimates of blood oxygenation. This suggests that for a particular imaging scenario, obtaining accurate and reliable oxygenation estimates using linear spectroscopic inversions requires careful modeling or experimental studies of that scenario, taking account of the instrumentation, tissue anatomy, likely sO2 range, and image formation process.
Collapse
Affiliation(s)
- Roman Hochuli
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Lu An
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Paul C. Beard
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Benjamin T. Cox
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Address all correspondence to Benjamin T. Cox, E-mail:
| |
Collapse
|
33
|
Optoacoustic imaging in gastroenterology. TRANSLATIONAL BIOPHOTONICS 2019. [DOI: 10.1002/tbio.201900002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
34
|
Liu JJ, Tang W, Fu M, Gong XQ, Kong L, Yao XM, Jing M, Cai FY, Li XT, Ju RJ. Development of R 8 modified epirubicin-dihydroartemisinin liposomes for treatment of non-small-cell lung cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1947-1960. [PMID: 31079495 DOI: 10.1080/21691401.2019.1615932] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Presently, there are no few anticancer drugs that have been used clinically due to their poor targeting ability, short half-life period, non-selective distributions, generation of vasculogenic mimicry (VM) channels, high metastasis, and high recurrence rate. This study aimed to explore the effects of R8 modified epirubicin-dihydroartemisinin liposomes that could target non-small-cell lung cancer (NSCLC) cells, destroy VM channels, inhibit tumor metastasis, and explain the possible underlying mechanism. In vitro assays indicated that R8 modified epirubicin-dihydroartemisinin liposomes with ideal physicochemical characteristics could exhibit not only powerful cytotoxicity on A549 cells, but also the effective suppression of VM channels and tumor metastasis. Mechanistic studies manifested that R8 modified epirubicin-dihydroartemisinin liposomes could down-regulate the levels of VE-Cad, TGF-β1, MMP-2, and HIF-1α. In vivo assays indicated that R8 modified epirubicin-dihydroartemisinin liposomes could both increase the selective accumulation of chemotherapeutic drugs at tumor sites and show a targeting conspicuous of antitumor efficacy. In conclusion, the R8 modified epirubicin-dihydroartemisinin liposomes prepared in this study provide a treatment strategy with high efficiency for NSCLC.
Collapse
Affiliation(s)
- Jing-Jing Liu
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Wei Tang
- b Linyi Food and Drug Testing Center , Linyi , China
| | - Min Fu
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xiao-Qing Gong
- c Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Liang Kong
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xue-Min Yao
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Ming Jing
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Fu-Yi Cai
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xue-Tao Li
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Rui-Jun Ju
- c Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| |
Collapse
|
35
|
Gehrung M, Bohndiek SE, Brunker J. Development of a blood oxygenation phantom for photoacoustic tomography combined with online pO2 detection and flow spectrometry. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31625321 PMCID: PMC7005535 DOI: 10.1117/1.jbo.24.12.121908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/09/2019] [Indexed: 05/07/2023]
Abstract
Photoacoustic tomography (PAT) is intrinsically sensitive to blood oxygen saturation (sO2) in vivo. However, making accurate sO2 measurements without knowledge of tissue- and instrumentation-related correction factors is extremely challenging. We have developed a low-cost flow phantom to facilitate validation of PAT systems. The phantom is composed of a flow circuit of tubing partially embedded within a tissue-mimicking material, with independent sensors providing online monitoring of the optical absorption spectrum and partial pressure of oxygen in the tube. We first test the flow phantom using two small molecule dyes that are frequently used for photoacoustic imaging: methylene blue and indocyanine green. We then demonstrate the potential of the phantom for evaluating sO2 using chemical oxygenation and deoxygenation of blood in the circuit. Using this dynamic assessment of the photoacoustic sO2 measurement in phantoms in relation to a ground truth, we explore the influence of multispectral processing and spectral coloring on accurate assessment of sO2. Future studies could exploit this low-cost dynamic flow phantom to validate fluence correction algorithms and explore additional blood parameters such as pH and also absorptive and other properties of different fluids.
Collapse
Affiliation(s)
- Marcel Gehrung
- Cancer Research UK Cambridge Institute, Li Ka-Shing Centre, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- Cancer Research UK Cambridge Institute, Li Ka-Shing Centre, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Joanna Brunker
- Cancer Research UK Cambridge Institute, Li Ka-Shing Centre, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| |
Collapse
|
36
|
Simpson JD, Smith SA, Thurecht KJ, Such G. Engineered Polymeric Materials for Biological Applications: Overcoming Challenges of the Bio-Nano Interface. Polymers (Basel) 2019; 11:E1441. [PMID: 31480780 PMCID: PMC6780590 DOI: 10.3390/polym11091441] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine has generated significant interest as an alternative to conventional cancertherapy due to the ability for nanoparticles to tune cargo release. However, while nanoparticletechnology has promised significant benefit, there are still limited examples of nanoparticles inclinical practice. The low translational success of nanoparticle research is due to the series ofbiological roadblocks that nanoparticles must migrate to be effective, including blood and plasmainteractions, clearance, extravasation, and tumor penetration, through to cellular targeting,internalization, and endosomal escape. It is important to consider these roadblocks holistically inorder to design more effective delivery systems. This perspective will discuss how nanoparticlescan be designed to migrate each of these biological challenges and thus improve nanoparticledelivery systems in the future. In this review, we have limited the literature discussed to studiesinvestigating the impact of polymer nanoparticle structure or composition on therapeutic deliveryand associated advancements. The focus of this review is to highlight the impact of nanoparticlecharacteristics on the interaction with different biological barriers. More specific studies/reviewshave been referenced where possible.
Collapse
Affiliation(s)
- Joshua D Simpson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, the University of Queensland, St Lucia QLD 4072, Australia;
| | - Samuel A Smith
- School of Chemistry, University of Melbourne, Parkville VIC 3010, Australia;
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, the University of Queensland, St Lucia QLD 4072, Australia;
| | - Georgina Such
- School of Chemistry, University of Melbourne, Parkville VIC 3010, Australia;
| |
Collapse
|
37
|
Fu M, Tang W, Liu JJ, Gong XQ, Kong L, Yao XM, Jing M, Cai FY, Li XT, Ju RJ. Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. J Drug Target 2019; 28:245-258. [PMID: 31462111 DOI: 10.1080/1061186x.2019.1656725] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional treatment fails to completely eliminate highly invasive breast cancer cells, and most surviving breast cancer cells tend to reproliferate and metastasize by forming vasculogenic mimicry (VM) channels. Thus, a type of targeted liposomes was developed by modification with arginine8-glycine-aspartic acid (R8GD) to encapsulate daunorubicin and emodin separately. A combination of the two targeted liposomes was then developed to destroy VM channels and inhibit tumour metastasis. MDA-MB-435S cells, a highly invasive breast cancer, were then evaluated in vitro and in mice. The experiments indicated that R8GD modified daunorubicin liposomes plus R8GD modified emodin liposomes had small particle size, uniform particle size distribution and high drug encapsulation rate. The combination of the two targeted liposomes exerted strong toxicity on the MDA-MB-435S cells and effectively inhibited the formation of VM channels and the metastasis of tumour cells. Action mechanism studies showed that the R8GD modified daunorubicin liposomes plus R8GD modified emodin liposomes could downregulate some metastasis-related proteins, including MMP-2, VE-cad, TGF-β1 and HIF-1α. These studies also demonstrated that the targeted liposomes allowed the chemotherapeutic drug to selectively accumulate at tumour site, thus exhibiting a distinct antitumor effect. Therefore, the combination of targeted daunorubicin liposomes and targeted emodin liposomes can provide a potential treatment for invasive breast cancer.
Collapse
Affiliation(s)
- Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Wei Tang
- Linyi Food and Drug Testing Center, Linyi, China
| | - Jing-Jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Qing Gong
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| |
Collapse
|
38
|
An Q, Shi CX, Guo H, Xie SM, Yang YY, Liu YN, Liu ZH, Zhou CZ, Niu FJ. Development and characterization of octreotide-modified curcumin plus docetaxel micelles for potential treatment of non-small-cell lung cancer. Pharm Dev Technol 2019; 24:1164-1174. [PMID: 31340709 DOI: 10.1080/10837450.2019.1647236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We prepared octreotide (OCT)-modified curcumin plus docetaxel micelles to enhance active targeting and inhibit tumor metastasis by destroying vasculogenic mimicry (VM) channels. Soluplus was applied as an amphiphilic material to form micelles via film dispersion. The cytotoxic effects, active cellular targeting, and inhibitory effects on metastasis were systematically evaluated in vitro using A549 cells, and in vivo antitumor effects were evaluated using xenograft tumor-bearing mice. In vitro assays indicated that the OCT-modified curcumin plus docetaxel micelles showed robust cytotoxicity on A549 cells and effectively inhibited VM channels and tumor metastasis. Studying the mechanism of action indicated that OCT-modified curcumin plus docetaxel micelles downregulated MMP-2 and HIF-1α. In vivo assays indicated that OCT-modified curcumin plus docetaxel micelles increased drug accumulation at tumor sites and showed obvious antitumor efficacy. The developed OCT-modified curcumin plus docetaxel micelles may offer a promising treatment strategy for non-small-cell lung cancer.
Collapse
Affiliation(s)
- Quan An
- Technology Research and Development Centre, Yunnan Baiyao Group Health Products Co., LTD , Kunming , China
| | - Chen-Xiao Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine , Jinan , China
| | - Hao Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine , Jinan , China
| | - Shi-Min Xie
- School of Pharmacy, Shandong University of Traditional Chinese Medicine , Jinan , China
| | - Ying-Ying Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine , Jinan , China
| | - Ying-Nan Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine , Jinan , China
| | - Zi-Hao Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine , Jinan , China
| | - Chang-Zheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine , Jinan , China
| | - Feng-Ju Niu
- Health Protection Center, Affiliated Hospital of Shandong Academy of Traditional Chinese Medicine , Jinan , China
| |
Collapse
|
39
|
Brown E, Brunker J, Bohndiek SE. Photoacoustic imaging as a tool to probe the tumour microenvironment. Dis Model Mech 2019; 12:12/7/dmm039636. [PMID: 31337635 PMCID: PMC6679374 DOI: 10.1242/dmm.039636] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumour microenvironment (TME) is a complex cellular ecosystem subjected to chemical and physical signals that play a role in shaping tumour heterogeneity, invasion and metastasis. Studying the roles of the TME in cancer progression would strongly benefit from non-invasive visualisation of the tumour as a whole organ in vivo, both preclinically in mouse models of the disease, as well as in patient tumours. Although imaging techniques exist that can probe different facets of the TME, they face several limitations, including limited spatial resolution, extended scan times and poor specificity from confounding signals. Photoacoustic imaging (PAI) is an emerging modality, currently in clinical trials, that has the potential to overcome these limitations. Here, we review the biological properties of the TME and potential of existing imaging methods that have been developed to analyse these properties non-invasively. We then introduce PAI and explore the preclinical and clinical evidence that support its use in probing multiple features of the TME simultaneously, including blood vessel architecture, blood oxygenation, acidity, extracellular matrix deposition, lipid concentration and immune cell infiltration. Finally, we highlight the future prospects and outstanding challenges in the application of PAI as a tool in cancer research and as part of a clinical oncologist's arsenal. Summary: This Review details the potential of photoacoustic imaging to visualise features of the tumour microenvironment such as blood vessels, hypoxia, fibrosis and immune infiltrate to provide unprecedented insight into tumour biology.
Collapse
Affiliation(s)
- Emma Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Joanna Brunker
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK .,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
40
|
Ron A, Deán-Ben XL, Gottschalk S, Razansky D. Volumetric Optoacoustic Imaging Unveils High-Resolution Patterns of Acute and Cyclic Hypoxia in a Murine Model of Breast Cancer. Cancer Res 2019; 79:4767-4775. [PMID: 31097477 DOI: 10.1158/0008-5472.can-18-3769] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/03/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022]
Abstract
Mapping tumor heterogeneity and hypoxia within a living intact organism is essential for understanding the processes involved in cancer progression and assessing long-term responses to therapies. Efficient investigations into tumor hypoxia mechanisms have been hindered by the lack of intravital imaging tools capable of multiparametric probing of entire solid tumors with high spatial and temporal resolution. Here, we exploit volumetric multispectral optoacoustic tomography (vMSOT) for accurate, label-free delineation of tumor heterogeneity and dynamic oxygenation behavior. Mice bearing orthotopic MDA-MB-231 breast cancer xenografts were imaged noninvasively during rest and oxygen stress challenge, attaining time-lapse three-dimensional oxygenation maps across entire tumors with 100 μm spatial resolution. Volumetric quantification of the hypoxic fraction rendered values of 3.9% to 21.2%, whereas the oxygen saturation (sO2) rate declined at 1.7% to 2.3% per mm in all tumors when approaching their core. Three distinct functional areas (the rim, hypoxic, and normoxic cores) were clearly discernible based on spatial sO2 profiles and responses to oxygen challenge. Notably, although sO2 readings were responsive to the challenge, deoxyhemoglobin (HbR) trends exhibited little to no variations in all mice. Dynamic analysis further revealed the presence of cyclic hypoxia patterns with a 21% average discrepancy between cyclic fractions assessed via sO2 (42.2% ± 17.3%) and HbR fluctuations (63% ± 14.1%) within the hypoxic core. These findings corroborate the strong potential of vMSOT for advancing preclinical imaging of cancer and informing clinical decisions on therapeutic interventions. SIGNIFICANCE: vMSOT provides quantitative measures of volumetric hypoxic fraction and cyclic hypoxia in a label-free and noninvasive manner, providing new readouts to aid tumor staging and treatment decision making. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/18/4767/F1.large.jpg.See related commentary by Klibanov and Hu, p. 4577.
Collapse
Affiliation(s)
- Avihai Ron
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany.,Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Xosé Luís Deán-Ben
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany.,Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering ETH Zurich, Zurich, Switzerland
| | - Sven Gottschalk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany. .,Faculty of Medicine, Technical University of Munich, Munich, Germany.,Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering ETH Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Orlova A, Sirotkina M, Smolina E, Elagin V, Kovalchuk A, Turchin I, Subochev P. Raster-scan optoacoustic angiography of blood vessel development in colon cancer models. PHOTOACOUSTICS 2019; 13:25-32. [PMID: 30555784 PMCID: PMC6275215 DOI: 10.1016/j.pacs.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
Raster-scan optoacoustic angiography at 532 nm wavelength with 50 μm lateral resolution at 2 mm diagnostic depth was used for quantitative characterization of neoangiogenesis in colon cancer models. Two tumor models of human colon adenocarcinoma (HT-29) and murine colon carcinoma (CT26) different in their histology and vascularization were compared. Tumors of both origins showed an inhomogeneous distribution of areas with high and low vascularization. Rapidly growing CT26 tumor demonstrated a higher rate of vessel growth from the periphery to the center. Peculiarities of the vascularity of tumor models revealed by optoacoustic imaging were confirmed by fluorescent microscopy with FITC-dextran and morphological analysis. The obtained results may be important for the investigation of tumor development and for improvement of colon cancer treatment strategies.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
- Corresponding author.
| | - Marina Sirotkina
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Ekaterina Smolina
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Vadim Elagin
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Andrey Kovalchuk
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Ilya Turchin
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Pavel Subochev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
42
|
Türkcan S, Kiru L, Naczynski DJ, Sasportas LS, Pratx G. Lactic Acid Accumulation in the Tumor Microenvironment Suppresses 18F-FDG Uptake. Cancer Res 2018; 79:410-419. [PMID: 30510121 DOI: 10.1158/0008-5472.can-17-0492] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/13/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022]
Abstract
The process by which tumor cells take up 2-[18F]fluoro-2-deoxy-D-glucose (FDG) is heterogeneous and influenced by a multitude of factors. In mouse tumor grafts, the core of the tumor often presents lower FDG uptake than the periphery. Whether this pattern is caused by the intrinsic avidity of individual cells for FDG, the density of viable cells in the tumor, or the perfusion of the radiotracer remains unknown. In this study, we used radioluminescence microscopy to measure FDG uptake in single cells isolated from the core and periphery of the tumor and found that differences in FDG uptake persist on the level of single cells. Single cells from the core of 4T1 and MDA-MB-231 tumors grafts took up 26% to 84% less FDG than those from the periphery. These differences were observed in mice with large tumors (>8 mm diameter) but not in those with smaller tumors. To explain the origin of these differences, we examined the influence of three microenvironmental factors on FDG uptake. Hypoxia was ruled out as a possible explanation because its presence in the core would increase and not decrease FDG uptake. Higher cell proliferation in the periphery was consistent with higher FDG uptake, but there was no evidence of a causal relationship. Finally, lactate was higher in the core of the tumor, and it suppressed FDG uptake in a dose-dependent fashion. We therefore conclude that lactic acidosis-the combination of lactate ion buildup and acidic pH-can increase the heterogeneity of FDG uptake in MDA-MB-231 and 4T1 tumor grafts. SIGNIFICANCE: Analysis of single cells from heterogeneous tumors reveals the role played by the tumor microenvironment, lactic acidosis in particular, on the uptake by tumor cells of 18F-FDG, a PET imaging agent.
Collapse
Affiliation(s)
- Silvan Türkcan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Louise Kiru
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Dominik J Naczynski
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Laura S Sasportas
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
43
|
Samykutty A, Thomas A, McNally M, Chiba A, McNally LR. Osteopontin-targeted probe detects orthotopic breast cancers using optoacoustic imaging. Biotech Histochem 2018; 93:608-614. [PMID: 30260254 DOI: 10.1080/10520295.2018.1514466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Improved detection of breast cancer using highly sensitive, tumor-specific imaging would facilitate diagnosis, surveillance and assessment of response to treatment. We conjugated osteopontin peptide to an infrared fluorescent dye to serve as a contrast agent for detection of breast cancer by multispectral optoacoustic tomography (MSOT). Selective binding of the osteopontin-based probe was identified using flow cytometry and near infrared fluorescent imaging in triple negative and HER2 positive breast cancer cell lines in vitro. Osteopontin-750 accumulation was evaluated in vivo using MSOT with secondary confirmation of signal accumulation using near infrared fluorescent imaging. The osteopontin-based probe demonstrated binding to breast cancer cells in vitro. Similarly, after intravenous administration of the osteopontin-750 probe, it accumulated preferentially in the subcutaneous breast tumor in nude mice (557 MSOT a.u. compared to untargeted organs such as kidney (53.7 MSOT a.u.) and liver (32.1 MSOT a.u.). At 2.5 h post-injection, signal intensity within the tumor was 9.7 and 17 times greater in the tumor bed than in the kidney or liver, respectively. Fluorescence imaging ex vivo comparing tumor signal to that of nontarget organs confirmed the results in vivo. MSOT imaging demonstrated selective accumulation of the fluorescent osteopontin targeting probe to tumor sites both in vitro and in vivo, and provided high-resolution images. Further development of this tool is promising for advanced diagnostic imaging, disease surveillance and therapeutic models that limit nontarget toxicity.
Collapse
Affiliation(s)
- A Samykutty
- a Department of Cancer Biology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - A Thomas
- b Department of Internal Medicine , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - M McNally
- a Department of Cancer Biology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - A Chiba
- c Department of Surgery , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - L R McNally
- a Department of Cancer Biology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| |
Collapse
|